

ROMANIAN MATHEMATICAL MAGAZINE

Solve for integers:

$$x^3 + 2y^3 + 3x + 4y = 4x^2 + 4y^2$$

Proposed by Sakthi Vel-India

Solution by Tapas Das-India

$$\begin{aligned} x^3 + 2y^3 + 3x + 4y &= 4x^2 + 4y^2 \\ \Rightarrow x(x^2 - 4x + 3) + 2y(y^2 - 2y + 2) &= 0 \\ \Rightarrow x(x-1)(x-3) + 2y((y-1)^2 + 1) &= 0 \quad (1) \\ \text{Clearly sign of entire } y \text{ term } 2y((y-1)^2 + 1) \\ \text{is depend on } y \text{ as } (y-1)^2 + 1 \geq 1 \end{aligned}$$

Case 1: $y = 0$ then $x(x-1)(x-3) = 0 \Rightarrow x = 0, 1, 2$
so solutions are $(x, y) = (0, 0), (1, 0), (3, 0)$

Case 2: $y > 0$ then $2y((y-1)^2 + 1) > 0$ and from (1)
 $x(x-1)(x-3)$ must be < 0 so $x < 0$ or, $1 < x < 3$

Sub case A: $1 < x < 3$ then only integer $x = 2$ then from (1) we get

$$\begin{aligned} 2(2-1)(2-3) + 2y((y-1)^2 + 1) &= 0 \text{ or, } 2y^3 - 4y^2 + 4y - 2 = 0 \\ y^3 - 2y^2 + 2y - 1 &= 0 \text{ or, } (y-1)(y^2 - y + 1) = 0 \text{ or, } y = 1 \\ \text{as } y^2 - y + 1 &= 0 \text{ does not have real root since} \\ D = 1 - 4 &= -3 < 0, \text{ solution } (x, y) = (2, 1) \end{aligned}$$

If $y > 1$ so $y \geq 2$ (Integer), for $y = 2$ and $x = 2$ from (1) we get
 $-2 + 2 \cdot 2(1^2 + 1) = -2 + 8 \neq 0$, not satisfied,
so there are not integer solution for $y > 1$

Sub case B: $x < 0$, if $y = 2$ from (1) we get

$$x(x-1)(x-3) + 2 \cdot 2((2-1)^2 + 1) = 0 \text{ or, } x(x-1)(x-3) + 8 = 0$$

Clearly $x = -1$ satisfy above relation,
absolute value of $x(x-1)(x-3)$ increases as x becomes more negative
so only solution $(x, y) = (-1, 2)$

If $y = 3$ then from (1) we get $x(x-1)(x-3) + 2 \cdot 3((3-1)^2 + 1) = 0$
or $x(x-1)(x-3) + 30 = 0$

Clearly $x = -2$ satisfy above relation, so solution $(x, y) = (-2, 3)$

If $y = 4$ from (1) we get :

$x(x-1)(x-3) + 2 \cdot 4((4-1)^2 + 1) = 0$ or, $x(x-1)(x-3) + 80 = 0$
If we take $x = -3$ then $x(x-1)(x-3) = -72 \neq -80$
If we take $x = -4$ then $x(x-1)(x-3) = -140 \neq -80$

ROMANIAN MATHEMATICAL MAGAZINE

*so no solution exist since
 $|x(x-1)(x-3)|$ is increases as x becomes more negative*

*Case 3 : $y < 0$, so $2y((y-1)^2 + 1) > 0$, from (1)we have
 $x(x-1)(x-3) > 0$ or, $0 < x < 1$ or, $x > 3$*

We must consider $x \geq 4$ as no integer in $(0, 1)$

sub case A, $x \geq 4$ and $y = -1$

from (1)we have $x(x-1)(x-3) - 10 = 0$

*for $x = 4$, $x(x-1)(x-3) = 12 \neq 10$ and value of $x(x-1)(x-3)$ increases for
 $x \geq 4$, so no integer solution exist*

*If $y = -2$ then from (1)we have
 $x(x-1)(x-3) - 40 = 0$*

Clearly $x = 5$ satisfy above expression and value of

$x(x-1)(x-3)$ increases for $x \geq 4$

so only solution $(x, y) = (5, -2)$

*Combine all above result required solutions are
 $(x, y) = (0, 0), (1, 0), (3, 0), (-1, 2), (-2, 3), (5, -2), (2, 1)$*