

ROMANIAN MATHEMATICAL MAGAZINE

Solve for natural numbers:

$$x^3 - y^3 = 2(x^2 + y^2) + 3xy + 17$$

Proposed by Nguyen Hung Cuong-Vietnam

Solution by Tapas Das-India

$$x^3 - y^3 = 2(x^2 + y^2) + 3xy + 17 \quad (1)$$

Clearly, $x, y \in N$ for this R.H.S part > 0 , consequently L.H.S > 0 , $x > y$

let $d = x - y > 0$ then $x = d + y$ whth this substitution from (1)we get
$$(d + y)^3 - y^3 = 2((d + y)^2 + y^2) + 3(d + y)y + 17$$

$$d(d^2 + 2dy + y^2 + dy + y^2 + y^2) = 2(d^2 + 2dy + 2y^2) + 3y(d + y) + 17$$

$$\text{or, } y^2(3d - 7) + y(3d^2 - 7d) + (d^3 - 2d^2 - 17) = 0 \quad (2)$$

we note that $x, y \in N$

Case – 1:

$d = 1$ then equation (2)becomes, $-4y^2 - 4y - 18 = 0$ or, $2y^2 + 2y + 9 = 0$,real root does not exist as discriminant $= 2^2 - 4 \cdot 2 \cdot 9 = -68 < 0$

Case – 2:

*$d = 2$ then equation (2)becomes, $-y^2 - 2y - 17 = 0$ or
 $y^2 + 2y + 17 = 0$,real root does not exist as discriminant $= 2^2 - 4 \cdot 1 \cdot 17 = -64 < 0$*

Case – 3:

*$d = 3$ then equation (2)becomes, $2y^2 + 6y - 8 = 0$ or, $(y + 4)(y - 1) = 0$
or, $y = 1$ (as $y \in N$, so $y \neq -4$), $x = y + d = 1 + 3 = 4$
now from(2) for $d \geq 4$ coefficient of $y^2 \geq 3 \times 4 - 7 = 5 > 0$
coefficient of $y \geq 3 \times 4^2 - 7 \times 4 = 20 > 0$
constant term $\geq 4^3 - 32 - 17 = 64 - 49 = 15 > 0$
clearly for $d \geq 4$ equation (2) never be zero.*

Required solution in N is $x = 4, y = 1$