

ROMANIAN MATHEMATICAL MAGAZINE

If $\lambda \in \mathbb{Z}$ fixed then prove that the equation:

$$x^3 + y^3 - z^3 = \lambda^2(x + y - z)$$

has an infinitely solutions in integers.

Proposed by Marin Chirciu-Romania

Solution by Tapas Das-India

We are asked to prove existence of infinitely many integer solution, not to find all solution, so it is enough to find of solution one infinite family for this we put $x + y - z = 0 \Rightarrow z = x + y$ then the equation becomes

$$x^3 + y^3 - (x + y)^3 = 0 \text{ or } -3xy(x + y) = 0 \Rightarrow x = 0 \text{ or } y = 0 \text{ or } x + y = 0$$

Case 1) $x = 0$ then $z = y$ as $z = x + y$, solution $(0, y, y), y \in \mathbb{Z}$

Case 2) $y = 0$ then $z = x$ as $z = x + y$, solution $(x, 0, x), x \in \mathbb{Z}$

Case 3) $x + y = 0$ then $y = -x, z = 0$ as $z = x + y$, solution $(x, -x, 0), x \in \mathbb{Z}$

For all these solutions $x + y - z = 0 \Rightarrow \lambda^2(x + y - z) = 0$ then $x^3 + y^3 - z^3 = 0$

then original equation is satisfied for every integer $\lambda, (0, y, y), (x, 0, x), (x, -x, 0)$

$x, y, z \in \mathbb{Z}$ infinitely many integer solutions .