
 
Prove that: 

𝑰 = ∫
𝟐𝝅𝒕

𝐥𝐧𝟐(𝒙) + 𝟒𝝅𝟐𝒕𝟐 .
𝒅𝒙

𝟏 + 𝒙𝟐

∞

𝟎

=
𝟏

𝟐
(𝝍 (𝒕 +

𝟑

𝟒
) − 𝝍 (𝒕 +

𝟏

𝟒
)) 

Proposed by Hikmat Mammadov-Azerbaijan 

Solution 1 by Amin Hajiyev-Azerbaijan 

    𝑳𝒂𝒑𝒍𝒂𝒄𝒆 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎  𝑳𝒙{𝐬𝐢𝐧(𝒃𝒙)}(𝒔) =
𝒃

𝒔𝟐 + 𝒃𝟐
   𝒔 = |𝐥𝐧(𝒙)|, 𝒃 = 𝟐𝝅𝒕 

𝑳𝒂𝒑𝒍𝒂𝒄𝒆 − 𝑭𝒐𝒖𝒓𝒊𝒆𝒓 𝒊𝒏𝒕𝒆𝒈𝒓𝒂𝒍 ∫ 𝒆𝒖|𝐥𝐧(𝒙)|
∞

𝟎

𝐬𝐢𝐧(𝟐𝝅𝒕𝒖) 𝒅𝒖 =
𝟐𝝅𝒕

|𝐥𝐧(𝒙)|𝟐 + (𝟐𝝅𝒕)𝟐
. 

𝑰 = ∫ (∫ 𝒙𝒖 𝐬𝐢𝐧(𝟐𝝅𝒕𝒖) 𝒅𝒖
∞

𝟎

)
∞

𝟎

.
𝟏

𝟏 + 𝒙𝟐
𝒅𝒙 = ∫ 𝐬𝐢𝐧 (𝟐𝝅𝒕𝒖)(∫

𝒙𝒖

𝟏 + 𝒙𝟐
𝒅𝒙

∞

𝟎

∞

𝟎

)𝒅𝒖 

𝑰𝒖 = ∫
𝒙𝒖

𝟏 + 𝒙𝟐
𝒅𝒙

∞

𝟎

=
𝟏

𝟐
∫

𝒙
𝒖
𝟐+

𝟏
𝟐−𝟏

(𝟏 + 𝒙)(
𝒖
𝟐+

𝟏
𝟐)+(

𝟏
𝟐−

𝒖
𝟐)

∞

𝟎

𝒅𝒙 =
𝟏

𝟐
𝜷 (

𝒖 + 𝟏

𝟐
;
𝟏 − 𝒖

𝟐
) = 

=
𝟏

𝟐
𝜞 (𝟏 −

𝒖

𝟐
−

𝟏

𝟐
) 𝜞 (

𝒖

𝟐
+

𝟏

𝟐
)     

  𝑮𝒂𝒎𝒎𝒂 𝒓𝒆𝒇𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝒇𝒐𝒓𝒎𝒖𝒍𝒂: 𝜞(𝟏 − 𝒛)𝜞(𝒛) =
𝝅

𝒔𝒊𝒏(𝝅𝒛)
 

𝑰𝒖 =
𝝅

𝟐 𝐜𝐨𝐬 (𝝅 (
𝒖
𝟐

+
𝟏
𝟐

))

=
𝝅

𝟐 𝐜𝐨𝐬 (
𝝅𝒖
𝟐

)
→   𝑰 =

𝝅

𝟐
∫

𝐬𝐢𝐧(𝟐𝝅𝒕𝒖)

𝐜𝐨𝐬 (
𝝅𝒖
𝟐

)
𝐝𝐮 

∞

𝟎

    

𝟏

𝐜𝐨𝐬 (
𝝅𝒖
𝟐

)
=

𝟐𝒆−
𝝅𝒖
𝟐

𝟏 + 𝒆−𝝅𝒖
= 𝟐 ∑(−𝟏)𝒏𝒆

((𝒏+
𝟏
𝟐))𝝅𝒖

 

∞

𝒏=𝟎

→  𝑰

= 𝝅 ∑(−𝟏)𝒏 ∫ 𝒆
−(𝒏+

𝟏
𝟐)𝝅𝒖

∞

𝟎

∞

𝒏=𝟎

𝐬𝐢𝐧(𝟐𝝅𝒕𝒖) 𝒅𝒖 

𝑺𝒊𝒏𝒆 𝒊𝒏𝒕𝒆𝒈𝒓𝒂𝒍:  ∫ 𝒆−𝒂𝒖𝐬𝐢𝐧(𝒃𝒖)𝒅𝒖 =
𝒃

𝒂𝟐 + 𝒃𝟐

∞

𝟎

 

𝑰 = 𝝅 ∑(−𝟏)𝒏
𝟐𝝅𝒕

𝝅𝟐 (𝒏 +
𝟏
𝟐

)
𝟐

+ 𝟒𝝅𝟐𝒕𝟐

∞

𝒏=𝟎

= 𝟐𝒕 ∑
(−𝟏)𝒏

(𝒏 +
𝟏
𝟐

)
𝟐

+ (𝟐𝒕)𝟐

∞

𝒏=𝟎

 

       𝑨𝒑𝒑𝒍𝒚𝒊𝒏𝒈 𝒕𝒉𝒆 𝑴𝒊𝒕𝒕𝒂𝒈 − 𝑳𝒆𝒇𝒇𝒍𝒆𝒓 𝒑𝒐𝒍𝒆 𝒆𝒙𝒑𝒂𝒏𝒔𝒊𝒐𝒏 𝒕𝒐 𝒄𝒐𝒏𝒗𝒆𝒓𝒕 𝒕𝒉𝒆 

 𝒕𝒓𝒊𝒈𝒐𝒏𝒐𝒎𝒆𝒕𝒓𝒊𝒄 𝒊𝒏𝒕𝒆𝒈𝒓𝒂𝒏𝒅 𝒊𝒏𝒕𝒐 𝒂 𝑫𝒊𝒈𝒂𝒎𝒎𝒂 − 𝒓𝒆𝒍𝒂𝒕𝒆𝒅 𝒔𝒆𝒓𝒊𝒆𝒔. 



 

→  𝑰 = ∑
(−𝟏)𝒏

𝟐𝒕 + 𝒏 +
𝟏
𝟐

∞

𝒏=𝟎

   𝒏 = 𝟐𝒌, 𝒏 = 𝟐𝒌 + 𝟏 

𝑰 = ∑ (
𝟏

𝟐𝒕 + 𝟐𝒌 +
𝟏
𝟐

−
𝟏

𝟐𝒕 + 𝟐𝒌 +
𝟑
𝟐

)

∞

𝒌=𝟎

=
𝟏

𝟐
∑ (

𝟏

𝒌 + 𝒕 +
𝟏
𝟒

−
𝟏

𝒌 + 𝒕 +
𝟑
𝟒

)

∞

𝒌=𝟎

 

𝑫𝒊𝒈𝒂𝒎𝒎𝒂 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏: 𝝍(𝒛 + 𝒂) − 𝝍(𝒛 + 𝒃) = ∑ (
𝟏

𝒌 + 𝒛 + 𝒃
−

𝟏

𝒌 + 𝒛 + 𝒂
)

∞

𝒌=𝟎

 

∫
𝟐𝝅𝒕

𝐥𝐧𝟐(𝒙) + 𝟒𝝅𝟐𝒕𝟐
.

𝟏

𝟏 + 𝒙𝟐

∞

𝟎

𝒅𝒙 =
𝟏

𝟐
(𝝍 (𝒕 +

𝟑

𝟒
) − 𝝍 (𝒕 +

𝟏

𝟒
)) 

Solution 2 by Amin Hajiyev-Azerbaijan 

𝑰 = ∫
𝟐𝝅𝒕

𝒍𝒏𝟐(𝒙)+𝟒𝝅𝟐𝒕𝟐

∞

𝟎
.

𝒅𝒙

𝟏+𝒙𝟐
  substitution: 𝒆𝒖 = 𝒙 , 𝒅𝒙 = 𝒆𝒖𝒅𝒖 

𝑰 = ∫
𝟐𝝅𝒕

𝒖𝟐 + (𝟐𝝅𝒕)𝟐

∞

−∞

.
𝒆𝒖

𝒆𝟐𝒖 + 𝟏
𝒅𝒖, 𝐜𝐨𝐬𝐡(𝒖) =

𝒆𝒖 + 𝒆−𝒖

𝟐
=

𝒆𝟐𝒖 + 𝟏

𝟐𝒆𝒖
 

𝑰 = 𝝅𝒕 ∫
𝟏

((𝒖𝟐 + (𝟐𝝅𝒕)𝟐) 𝐜𝐨𝐬𝐡(𝒖))

∞

−∞

𝒅𝒖,   𝒇(𝒛) =
𝟏

(𝒛𝟐 + (𝟐𝝅𝒕)𝟐) 𝐜𝐨𝐬𝐡(𝒛)
 {İ𝒎{𝒛} > 𝟎} 

𝒂)  𝒛𝟐 + (𝟐𝝅𝒕)𝟐 = 𝟎 →  𝒛 = 𝟐𝝅𝒊𝒕 𝒃)  𝐜𝐨𝐬𝐡(𝒛) = 𝟎 →  𝒛𝒌 = 𝒊𝝅 (𝒌 +
𝟏

𝟐
)   𝒌𝝐𝒁+ 

𝒂) 𝒛 = 𝟐𝝅𝒊𝒕 →  𝑹𝒆𝒔(𝒇, 𝟐𝝅𝒊𝒕) = 𝐥𝐢𝐦
𝒛→𝟐𝝅𝒊𝒕

𝒛 − 𝟐𝝅𝒊𝒕

(𝒛 − 𝟐𝝅𝒊𝒕)(𝒛 + 𝟐𝝅𝒊𝒕) 𝐜𝐨𝐬𝐡(𝒛)
=

𝟏

𝟒𝝅𝒊𝒕 𝐜𝐨𝐬(𝟐𝝅𝒕)
 

       𝒃) 𝒛𝒌 = 𝒊𝝅 (𝒌 +
𝟏

𝟐
) → {𝑹𝒆𝒔(𝒇, 𝒛𝟎) =

𝑷(𝒛𝟎)

𝑸′(𝒛𝟎)
}   𝑹𝒆𝒔(𝒇, 𝒛𝒌) =

𝟏

(𝒛𝒌
𝟐+(𝟐𝝅𝒕)²)𝐬𝐢𝐧𝐡 (𝒛𝒌)

= 

=
𝟏

(−𝝅𝟐 (𝒌 +
𝟏
𝟐

)
𝟐

+ (𝟐𝝅𝒕)𝟐) 𝐬𝐢𝐧𝐡 (𝝅𝒊 (𝒌 +
𝟏
𝟐

))

=
𝟏

𝝅𝟐𝒊 ((𝟐𝒕)𝟐 − (𝒌 +
𝟏
𝟐

)
𝟐

) 𝐬𝐢𝐧 (
𝝅
𝟐

+ 𝝅𝒌)

 

   𝐍𝐨𝐭𝐞: 𝐬𝐢𝐧𝐡(𝒊𝒂) = 𝒊𝒔𝒊𝒏(𝒂),  

   𝐬𝐢𝐧 (
𝝅

𝟐
+ 𝝅𝒌) = (−𝟏)𝒌  𝒌𝝐𝒁+  -> 𝑹𝒆𝒔(𝒇, 𝒛𝒌) =

𝒊(−𝟏)𝒌

𝝅𝟐((𝒌+
𝟏

𝟐
)

𝟐
−(𝟐𝝅𝒕)𝟐)

 

𝑰 = 𝟐𝝅𝒊∑𝑹𝒆𝒔 = 𝟐𝝅𝟐𝒕𝒊(𝑹𝒆𝒔(𝒇, 𝟐𝝅𝒊𝒕) + 𝑹𝒆𝒔(𝒇, 𝒛𝒌)) = 

=
𝝅

𝟐𝒕𝒄𝒐𝒔(𝟐𝝅𝒕)
+ 𝟐𝒕 ∑

(−𝟏)𝒌

𝟒𝒕𝟐 − (𝒌 +
𝟏
𝟐

) ²

∞

𝒌=𝟎

 



 
• 𝑻𝒉𝒆𝒐𝒓𝒆𝒎 𝑴𝒊𝒕𝒕𝒂𝒈 − 𝑳𝒆𝒇𝒇𝒍𝒆𝒓  

 
𝝅

𝟐𝐜𝐨𝐬(𝟐𝝅𝒕)
= ∑ (−𝟏)𝒌

∞

𝒌=−∞

[
𝟏

𝒌 − 𝟐𝒕 +
𝟏
𝟐

] ==
𝟏

𝟐
∑(−𝟏)𝒌[

𝟏

𝒌 − 𝟐𝒕 +
𝟏
𝟐

∞

𝒌=𝟎

+
𝟏

𝒌 + 𝟐𝒕 +
𝟏
𝟐

] 

𝑰 =
𝟏

𝟐
∑(−𝟏)𝒌(

𝟏

𝒌 +
𝟏
𝟐

− 𝟐𝒕

∞

𝒌=𝟎

+
𝟏

𝒌 +
𝟏
𝟐

+ 𝟐𝒕
−

𝟏

𝒌 +
𝟏
𝟐

− 𝟐𝒕
+

𝟏

𝒌 +
𝟏
𝟐

+ 𝟐𝒕
) 

𝑰 = ∑
(−𝟏)𝒌

𝒌 +
𝟏
𝟐

+ 𝟐𝒕

∞

𝒌=𝟎

 𝑹𝒆𝒂𝒓𝒓𝒂𝒏𝒈𝒆𝒎𝒆𝒏𝒕 𝒐𝒇 𝒔𝒆𝒓𝒊𝒆𝒔: 

  

𝑩𝒊𝒔𝒆𝒄𝒕𝒊𝒐𝒏 𝒎𝒆𝒕𝒉𝒐𝒅

∑(−𝟏)𝒏𝒇(𝒏) = ∑(𝒇(𝟐𝒌) − 𝒇(𝟐𝒌 + 𝟏))

∞

𝒌=𝟎

∞

𝒏=𝟎

 

𝑰 = ∑
𝟏

𝟐𝒏 +
𝟏
𝟐

+ 𝟐𝒕

∞

𝒏=𝟎

− ∑
𝟏

𝟐𝒏 +
𝟑
𝟐

+ 𝟐𝒕

∞

𝒏=𝟎

=
𝟏

𝟐
∑ (

𝟏

𝒏 +
𝟏
𝟒

+ 𝒕
−

𝟏

𝒏 +
𝟑
𝟒

+ 𝒕
)

∞

𝒏=𝟎

 

 𝑫𝒊𝒈𝒂𝒎𝒎𝒂 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏  𝝍(𝒂) − 𝝍(𝒃) = ∑
𝟏

𝒏 + 𝒃

∞

𝒏=𝟎

− ∑
𝟏

𝒏 + 𝒂

∞

𝒏=𝟎

 

∫
𝟐𝝅𝒕

𝒍𝒏𝟐(𝒙) + 𝟒𝝅𝟐𝒕𝟐

∞

𝟎

.
𝒅𝒙

𝟏 + 𝒙𝟐
=

𝟏

𝟐
(𝝍 (𝒕 +

𝟑

𝟒
) − 𝝍 (𝒕 +

𝟏

𝟒
)) 

 

 


