

DANIEL SITARU - ROMANIA

5801. Solve for real x :

$$\frac{1}{1+x^4} + \frac{1}{2+x^6} + \frac{1}{3+x^8} + \frac{1}{4+x^{10}} = \frac{77}{60x^2}$$

Daniel Sitaru

Solution 1 by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

It is enough to solve the equation for $x > 0$. By changing variable by doing $\frac{1}{x^2} = t$, the equation changes to

$$\frac{t^2}{t^2+1} + \frac{t^3}{2t^3+1} + \frac{t^4}{3t^4+1} + \frac{t^5}{4t^5+1} = \frac{77t}{60}$$

and, since $t \neq 0$, it is equivalent to

$$(8) \quad \frac{t}{t^2+1} + \frac{t^2}{2t^3+1} + \frac{t^3}{3t^4+1} + \frac{t^4}{4t^5+1} = \frac{77}{60}$$

Let $f_p(t) = \frac{t^p}{pt^{p+1}+1}$, for $p = 1, 2, 3, 4$. $f'_p(t) = \frac{-pt^{p-1}(t^{p+1}-1)}{(pt^{p+1}+1)^2}$ whose only real root in the domain $t > 0$ is $t = 1$.

$$f''_p(t) = \frac{pt^{p-2}(-p(p+1)t^{p+1} + 2pt^{2p+2} + p - 1)}{(pt^{p+1}+1)^3}$$

and

$$f''_p(1) = \frac{p(-p(p+5) + 2p + p - 1)}{(p+1)^3} = \frac{-p(p+1)^2}{(p+1)^3} < 0.$$

Therefore, functions $f_p(t)$ have respective maximum at $t = 1$, with value

$f_p(1) = \frac{1}{p+1}$ and $\sum_{p=1}^4 \frac{1}{p+1} = \frac{77}{60}$, which implies that the only solution to equation (8) is $t = 1$, so the given equation has $x = 1$ and $x = -1$ as the only real roots. \square

Solution 2 by Brian D. Beasley, Simpsonville, SC..

Let $u = x^2$. Then we seek all non-negative real numbers u with

$$\frac{1}{1+u^2} + \frac{1}{2+u^3} + \frac{1}{3+u^4} + \frac{1}{4+u^5} = \frac{77}{60u}.$$

Noting that $u \neq 0$, we multiply by $f(u) = 60u(1+u^2)(2+u^3)(3+u^4)(4+u^5)$ to obtain

$$\frac{f(u)}{1+u^2} + \frac{f(u)}{2+u^3} + \frac{f(u)}{3+u^4} + \frac{f(u)}{4+u^5} = 77(1+u^2)(2+u^3)(3+u^4)(4+u^5).$$

Then tedious but straightforward algebra yields the equivalent equation $(u-1)^2 g(u) = 0$, where

$$g(u) = 77u^{12} + 94u^{11} + 128u^{10} + 256u^9 + 375u^8 + 716u^7 + 688u^6 + 1070u^5 + 988u^4 + 1425u^3 + 1392u^2 + 696u + 1848.$$

Since $g(u) > 0$ for all $u \geq 0$, we conclude that the unique non-negative real solution is $u = 1$. Hence the original equation has the real solutions $x = \pm 1$. \square

Solution 3 by Daniel Văcăru, "Maria Teiuleanu" National Economic College, Pitești, Romania.

By AM-GM, one has

$$\begin{aligned} x^4 + 1 &\geq 2x^2 \Leftrightarrow \frac{1}{1+x^4} \leq \frac{1}{2x^2} \\ 2 + x^6 &= 1 + 1 + x^6 \geq 3\sqrt[3]{x^6} = 3x^2 \Leftrightarrow \frac{1}{2+x^6} \leq \frac{1}{3x^2} \\ 3 + x^8 &= 1 + 1 + 1 + x^8 \geq 4\sqrt[4]{x^8} = 4x^2 \Leftrightarrow \frac{1}{3+x^8} \leq \frac{1}{4x^2} \\ 4 + x^{10} &= 1 + 1 + 1 + 1 + x^{10} \geq 5\sqrt[5]{x^{10}} = 5x^2 \Leftrightarrow \frac{1}{4+x^{10}} \leq \frac{1}{5x^2} \end{aligned}$$

It follows that

$$\frac{77}{60x^2} = \frac{1}{1+x^4} + \frac{1}{2+x^6} + \frac{1}{3+x^8} + \frac{1}{4+x^{10}} \leq \frac{1}{2x^2} + \frac{1}{3x^2} + \frac{1}{4x^2} + \frac{1}{5x^2} = \frac{77}{60x^2}.$$

One obtain

$$x^2 = 1$$

and one find

$$\mathcal{S} = \{-1, 1\}$$

where \mathcal{S} denote the set of solutions of equation

$$\frac{1}{1+x^4} + \frac{1}{2+x^6} + \frac{1}{3+x^8} + \frac{1}{4+x^{10}} = \frac{77}{60x^2}.$$

\square

Solution 4 by David A. Huckaby, Angelo State University, San Angelo, TX.

For $x = 1$ or $x = -1$, the left side of the equation is $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} = \frac{77}{60}$. So $x = 1$ and $x = -1$ are solutions of the equation. We will show that these are the only real solutions. Combining the fractions on the left side of the equation gives

$$\frac{x^{24} + x^{22} + x^{20} + 4x^{18} + 4x^{16} + 10x^{14} + 6x^{12} + 18x^{10} + 14x^8 + 19x^6 + 26x^4 + 50}{(x^4 + 1)(x^6 + 2)(x^8 + 3)(x^{10} + 4)} = \frac{77}{6x^2},$$

so that

$$\begin{aligned} 60x^2(x^{24} + x^{22} + x^{20} + 4x^{18} + 4x^{16} + 10x^{14} + 6x^{12} + 18x^{10} + 14x^8 + 19x^6 + 26x^4 + 50) \\ = 77(x^4 + 1)(x^6 + 2)(x^8 + 3)(x^{10} + 4). \end{aligned}$$

So

$$\begin{aligned} 60x^2(x^{24} + x^{22} + x^{20} + 4x^{18} + 4x^{16} + 10x^{14} + 6x^{12} + 18x^{10} + 14x^8 + 19x^6 + 26x^4 + 50) \\ - 77(x^4 + 1)(x^6 + 2)(x^8 + 3)(x^{10} + 4) = 0, \end{aligned}$$

that is,

$$\begin{aligned} 77x^{28} - 60x^{26} + 17x^{24} + 94x^{22} - 9x^{20} + 222x^{18} - 369x^{16} + 410x^{14} - 464x^{12} \\ + 546x^{10} - 524x^8 - 636x^6 + 1848x^4 - 3000x^2 + 1848 = 0. \end{aligned}$$

Synthetic division reveals that $x = 1$ and $x = -1$ are actually double roots of this degree 28 polynomial, so we have

$$\begin{aligned} (x - 1)^2(x + 1)^2(77x^{24} + 94x^{22} + 128x^{20} + 256x^{18} + 375x^{16} + 716x^{14} + 688x^{12} \\ + 1070x^{10} + 988x^8 + 1452x^6 + 1392x^4 + 696x^2 + 1848) = 0. \end{aligned}$$

By Descartes' rule of signs, the degree 24 polynomial has no real positive or negative real roots. So $x = 1$ and $x = -1$ are indeed the only real roots of the original equation. \square

Solution 5 by Devis Alvarado, UNAH and UPNFM, Tegucigalpa, Honduras.

Note that for every natural number $n \geq 2$, we have

$$n - 1 + x^{2n} = \underbrace{1 + 1 + \dots + 1}_{n-1 \text{ veces}} + x^{2n} \geq n \sqrt[n]{x^{2n}} = nx^2,$$

by the AM-GM inequality, which is equivalent to

$$\frac{1}{n - 1 + x^{2n}} \leq \frac{1}{nx^2}$$

Thus, we have

$$\sum_{k=2}^n \frac{1}{k - 1 + x^{2k}} \leq \sum_{k=2}^n \frac{1}{kx^2} = \left(\sum_{k=2}^n \frac{1}{k} \right) \frac{1}{x^2}.$$

This inequality becomes an equality when $x = \pm 1$. Thus, for the given problem, we use the previous inequality with $n = 5$, since $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} = \frac{77}{60}$.

$$\frac{1}{1+x^4} + \frac{1}{2+x^6} + \frac{1}{3+x^8} + \frac{1}{4+x^{10}} \leq \frac{77}{60x^2}.$$

Therefore, the solutions are $x = \pm 1$. \square

Solution 6 by Michel Bataille, Rouen, France.

We remark that $\frac{77}{60} = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$, from which we deduce that 1 and -1 are solutions for x . We show that there are no other solutions.

Let x be a solution. Then the remark above yields

$$u_1(x) + u_2(x) + u_3(x) + u_4(x) = 0$$

$$\text{where } u_n(x) = \frac{1}{n+x^{2n+2}} - \frac{1}{(n+1)x^2} = \frac{(n+1)x^2 - n - x^{2n+2}}{(n+1)x^2(n+x^{2n+2})}.$$

Now, we have

$$\begin{aligned} (n+1)x^2 - n - x^{2n+2} &= n(x^2 - 1) + x^2(1 - (x^2)^n) \\ &= (1 - x^2)(x^2(1 + x^2 + \dots + x^{2n-2}) - n) \\ &= (1 - x^2)((x^2 - 1) + (x^4 - 1) + \dots + (x^{2n} - 1)) \\ &= (1 - x^2)(x^2 - 1)(1 + (x^2 + 1) + \dots + (x^{2n-2} + \dots + x^2 + 1)) \\ &= -(1 - x^2)^2 \cdot k(x) \end{aligned}$$

where $k(x) > 0$ for all real x . It follows that $u_n(x) \leq 0$ with equality if and only if $x = 1$ or $x = -1$. We see that the four terms in the left-hand side of (1) are less than or equal 0 so that (1) implies that each of them is 0, hence that $x = 1$ or $x = -1$. Thus, (1) implies that $x = 1$ or $x = -1$ and we are done. \square

Solution 7 by Moti Levy, Rehovot, Israel.

Set $t = x^2$, then the equation is equivalent to,

$$\frac{t}{1+t^2} + \frac{t}{2+t^3} + \frac{t}{3+t^4} + \frac{t}{4+t^5} = \frac{77}{60}.$$

Now we prove that

$$\frac{t}{1+t^2} + \frac{t}{2+t^3} + \frac{t}{3+t^4} + \frac{t}{4+t^5} \leq \frac{77}{60},$$

where equality is attained only or $t = 1$. Define

$$F(t) = \frac{t}{1+t^2} + \frac{t}{2+t^3} + \frac{t}{3+t^4} + \frac{t}{4+t^5}, \quad t > 0.$$

For $k = 1, 2, 3, 4$ let

$$f_k(t) = \frac{t}{k+t^{k+1}},$$

$$f'_k(t) = \frac{k(1-t^{k+1})}{(k+t^{k+1})^2}.$$

For any fixed $k > 0$, we have

$$\operatorname{sgn} \{f'_k(t)\} = \begin{cases} + & (0 < t < 1), \\ 0 & (t = 1), \\ - & (t > 1). \end{cases}$$

Consequently,

$$F'(t) = \sum_{k=1}^4 f'_k(t) \begin{cases} > 0 & (0 < t < 1), \\ = 0 & (t = 1), \\ < 0 & (t > 1). \end{cases}$$

Thus F is strictly increasing on $(0, 1)$ and strictly decreasing on $(1, \infty)$. Because of that monotonicity the *unique* global maximum of F on $(0, \infty)$ occurs at $t = 1$.

$$F(1) = \frac{1}{1+1} + \frac{1}{2+1} + \frac{1}{3+1} + \frac{1}{4+1} = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} = \frac{30+20+15+12}{60} = \frac{77}{60}$$

We conclude that for every $t > 0$

$$F(t) \leq F(1) = \frac{77}{60},$$

and the equality case of all four derivatives forces $t = 1$, so equality is attained solely at that point.

Solution for x is $x = \pm 1$. □

Solution 8 by Ulrich Abel, Technische Hochschule Mittelhessen, Friedberg, Germany.

We show the following generalization: The equation

$$\sum_{k=1}^n \frac{1}{k+x^{2k+2}} = \frac{H_{n+1}-1}{x^2}$$

where $H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n}$ denotes the harmonic number, has exactly two real solutions, namely, $x = -1$ and $x = 1$.

Problem #5801 SSMJ is the special case $n = 4$ with $H_5 - 1 = \frac{77}{60}$.

Proof: The substitution $t = x^2$ leads to the equation

$$f_n(t) := \sum_{k=1}^n \frac{t}{k+t^{k+1}} = H_{n+1} - 1.$$

Since

$$f'_n(t) = \sum_{k=1}^n \frac{k(1-t^{k+1})}{(k+t^{k+1})^2}$$

we conclude that f_n is strictly increasing on $[0, 1]$ and strictly decreasing on $[1, \infty)$. Hence, f unimodal function on $[0, \infty)$ with a unique maximum at $t = 1$. Observing

that $f_n(1) = H_{n+1} - 1$ we infer that $t = 1$ is the unique solution of the equation $f_n(t) = H_{n+1} - 1$. Therefore,

$$\frac{f_n(x^2)}{x^2} = \sum_{k=1}^n \frac{1}{k + x^{2k+2}} = \frac{H_{n+1} - 1}{x^2}$$

has exactly two solutions $x = -1$ and $x = 1$ on $\mathbb{R} \setminus \{0\}$. \square

Solution 9 by proposer.

$$(1) \quad \frac{1}{x^2} + x^2 \stackrel{\text{AM-GM}}{\geq} 2 \cdot \sqrt{\frac{1}{x^2} \cdot x^2} = 2 \Rightarrow \frac{1}{\frac{1}{x^2} + x^2} \leq \frac{1}{2}$$

$$(2) \quad \frac{1}{x^2} + \frac{1}{x^2} + x^4 \stackrel{\text{AM-GM}}{\geq} 3 \cdot \sqrt[3]{\frac{1}{x^2} \cdot \frac{1}{x^2} \cdot x^4} = 3 \Rightarrow \frac{1}{\frac{1}{x^2} + x^4} \leq \frac{1}{3}$$

$$(3) \quad \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2} + x^6 \stackrel{\text{AM-GM}}{\geq} 4 \cdot \sqrt[4]{\frac{1}{x^2} \cdot \frac{1}{x^2} \cdot \frac{1}{x^2} \cdot x^6} = 3 \Rightarrow \frac{1}{\frac{1}{x^2} + x^6} \leq \frac{1}{4}$$

$$\frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2} + x^8 \stackrel{\text{AM-GM}}{\geq} 5 \cdot \sqrt[5]{\frac{1}{x^2} \cdot \frac{1}{x^2} \cdot \frac{1}{x^2} \cdot \frac{1}{x^2} \cdot x^8} = 5$$

$$(4) \quad \Rightarrow \frac{1}{\frac{1}{x^2} + x^8} \leq \frac{1}{5}$$

By adding (1), (2), (3), (4):

$$\frac{1}{\frac{1}{x^2} + x^2} + \frac{1}{\frac{1}{x^2} + x^4} + \frac{1}{\frac{1}{x^2} + x^6} + \frac{1}{\frac{1}{x^2} + x^8} \leq \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$$

$$\frac{x^2}{1+x^4} + \frac{x^2}{2+x^6} + \frac{x^2}{3+x^8} + \frac{x^2}{4+x^{10}} \leq \frac{30+20+15+12}{60}$$

$$\frac{1}{1+x^4} + \frac{1}{2+x^6} + \frac{1}{3+x^8} + \frac{1}{4+x^{10}} \leq \frac{77}{60x^2}$$

Equality holds for:

$$x^2 = \frac{1}{x^2}, x^4 = \frac{1}{x^2}, x^6 = \frac{1}{x^2}, x^8 = \frac{1}{x^2} \Rightarrow x = \pm 1$$

\square

MATHEMATICS DEPARTMENT, NATIONAL ECONOMIC COLLEGE "THEODOR COSTESCU", DROBETA
TURNU - SEVERIN, ROMANIA
Email address: dansitaru63@yahoo.com