Romanian Mathematical Magazine
Web: http://www.ssmrmh.ro
The Author: This article is published with open access.

SOME INEQUALITIES SOLVED BY BW METHOD

By Marius Drăgan and Neculai Stanciu-Romania

Abstract. This paper presents some inequalities solved by Buffalo Way (BW) method.
Keywords: algebraic inequalities, problem solving.
MSC: 26D05.

I was going through an "article" on the "Buffalo Way", where the author said that one should NEVER use the Buffalo Way for proving inequalities in actual real-time contests as it is "highly inelengant". What is the reason behind this notion ? In Mathematics, there are a whole lot of ways to attempt a given question. If the BW provides a proof for some inequality, then why it is given the downvote ?[1]
As an answer to this question we will solve some inequalities by "Buffalo Way" (BW) method.
APPLICATION I. In [2], [3] and [5] was proved on many pages the following inequality:

$$
\text { If } x, y, z, t \geq 0 \text {, then: }
$$

$$
(x+y+z+t)(x y z+x y t+x z t+y z t) \geq(-x+y+z+t)(x-y+z+t)(x+y-z+t)(x+y+z-t) .
$$

Solution: Here we proved the inequality in few lines ! We use "Buffalo Way" (BW) method see also [5]. We make substitutions:

$$
\begin{equation*}
x=\min \{x, y, z, t\}, y=x+u, z=x+v, t=x+w, \text { wher } u, v, w \geq 0 . \tag{1}
\end{equation*}
$$

The inequality to prove becomes:
$\left(3 \sum u^{2}-2 \sum u v\right) x^{2}+\left(4 \sum u^{3}-2 \sum u v(u+v)+2 u v w\right) x+\sum u^{4}-2 \sum u^{2} v^{2}+u v u(u+v+w) \geq 0$.
We denote: $A=3 \sum u^{2}-2 \sum u v, B=4 \sum u^{3}-2 \sum u v(u+v)+2 u v w$, $C=\sum u^{4}-2 \sum u^{2} v^{2}+u v w(u+v+w) ; A=\sum u^{2}+\sum(u-v)^{2} \geq 0$.

Since $\sum u^{3}+3 u v w-\sum u v(u+v) \geq 0$ (Schur) and $\sum \frac{u+v}{w}=\sum\left(\frac{u}{v}+\frac{v}{u}\right) \geq 6>5 \Rightarrow$ $\Rightarrow \sum u v(u+v)-5 u v w \geq 0$, we obtain

$$
B=4\left(\sum u^{3}+3 u v w-\sum u v(u+v)\right)+2\left(\sum u v(u+v)-5 u v w\right)>0 .
$$

$$
\text { By } \sum u^{4}+u v u(u+v+w) \stackrel{\text { Schur }}{\geq} \sum u v\left(u^{2}+v^{2}\right) \stackrel{M A-M G}{\geq} 2 \sum u^{2} v^{2} \text { we deduce } C \geq 0 \text {. }
$$

APPLICATION II. If $x, y, z, t \geq 0$, then:

$$
4\left(x^{3}+y^{3}+z^{3}+t^{3}\right)+15(x y z+x y t+x z t+y z t) \geq(x+y+z+t)^{3},
$$

(see the inequality 3 from [4], pag. 271).
Solution: Using (1) the inequality becomes
$12 x^{3}+9 \sum u v \cdot x^{2}+6 \sum u v \cdot x+3\left(\sum u^{3}-\sum(u+v) u v+3 u v w\right) \geq 0$, which is true because $\sum u^{3}-\sum u v(u+v)+3 u v w \geq 0,($ Schur $)$.

APPLICATION III. If $x, y, z, t \geq 0$ şi $\lambda \geq \frac{11}{2}$, then

$$
\lambda\left(x^{3}+y^{3}+z^{3}+t^{3}\right)+(16-\lambda)(x y z+x y t+x z t+y z t) \geq(x+y+z+t)^{3} .
$$

Solution: Using (1) the inequality becomes

$$
\begin{aligned}
& \qquad(\lambda-4)\left(3 \sum u^{2}-2 \sum u v\right) x+ \\
& +(\lambda-1) \underbrace{\left(\sum u^{3}+3 u v w-\sum u v(u+v)\right)}_{\geq 0,(\text { Sccur })}+(\lambda-4) \sum u v(u+v)-(4 \lambda-13) u v w \geq 0 . \\
& \text { Since }(\lambda-4) \sum u v(u+v)-(4 \lambda-13) u v w=u v v\left[(\lambda-4) \sum\left(\frac{u}{v}+\frac{v}{u}\right)+13-4 \lambda\right] \geq \\
& \quad \geq u v w(6 \lambda-24+13-4 \lambda)=(2 \lambda-11) u v w \geq 0, \text { the inequality is proved. }
\end{aligned}
$$

Remark. For $\lambda=\frac{11}{2}$ we obtain a problem proposed by Vasile Cârtoaje (M.S. 2006).
APPLICATION IV. If $x, y, z, t \geq 0$ şi $\alpha, \beta \in R$ such that $\alpha \geq 4, \alpha+\beta \geq 16,3 \alpha+\beta \geq 27$, then

$$
\alpha\left(x^{3}+y^{3}+z^{3}+t^{3}\right)+\beta(x y z+x y t+x z t+y z t) \geq(x+y+z+t)^{3} .
$$

(see the inequality 41 from [4], pag. 374).
Solution: Using (1) the inequality becomes

$$
\begin{gathered}
4(\alpha+\beta-16) x^{3}+3(\alpha+\beta-16) \sum u \cdot x^{2}+\left\lfloor(3 \alpha-12) \sum u^{2}+(2 \beta-24) \sum u v\right\rfloor \cdot x+ \\
+(\alpha-1) \sum u^{3}+(\beta-6) u v w-3 \sum u v(u+v) \geq 0 .
\end{gathered}
$$

Since $3 \alpha+2 \beta=\frac{6 \alpha+4 \beta}{2}=\frac{3 \alpha+\beta+3(\alpha+\beta)}{2} \geq \frac{75}{2} \geq 36$, we deduce:

$$
(3 \alpha-12) \sum u^{2}+(2 \beta-24) \sum u v \geq(3 \alpha+2 \beta-36) \sum u v \geq 0
$$

Since $\left[(\alpha-4) \sum\left(\frac{u}{v}+\frac{v}{u}\right)+\beta-3 \alpha-3\right] \geq 6(\alpha-4)+\beta-3 \alpha-3=3 \alpha+\beta-27 \geq 0$, we obtain

$$
(\alpha-1) \sum u^{3}+(\beta-6) u v w-3 \sum u v(u+v)=(\alpha-1) \underbrace{\left.\sum u^{3}+3 u v w-\sum u v(u+v)\right)}_{\geq 0,(\text { Schur })}-
$$

$$
-(3 \alpha-3) u v w+(\alpha-1) \sum u v(u+v)+(\beta-6) u v w-3 \sum u v(u+v)=
$$

$$
=(\alpha-1) \underbrace{\left(\sum u^{3}+3 u v w-\sum u v(u+v)\right)}_{\geq 0,(\text { Schur })}+u v \hat{}\left[(\alpha-4) \sum\left(\frac{u}{v}+\frac{v}{u}\right)+\beta-6-3 \alpha+3\right] \geq 0 .
$$

Hence, from above yields the given inequality.On BW method see also [6].

References:

[1] https://math.stackexchange.com/questions/2120812/why-is-the-buffalo-way-considered-inelegant
[2] M. Cucoaneş, M. Drăgan - Asupra unei inegalităţi algebrice, R.M.T., Nr. 3 (2018), pag. 15-16.
[3] M. Dincă - O demonstraţie nouă a unei inegalităţi din RMT, R.M.T., Nr. 4 (2019), pag. 8-9.
[4] V. Cîrtoaje - Algebraic Inequalities (Old and New Methods), GIL Publishing House, Zalău, Romania, 2006.
[5] https://artofproblemsolving.com/community/c6h605279
[6] https://artofproblemsolving.com/community/c6h522084

