ROMANIAN MATHEMATICAL MAGAZINE

If $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}>\boldsymbol{0}$ then:

$$
a b \cdot 2^{\frac{c}{b}}+b c \cdot 2^{\frac{a}{c}}+c a \cdot 2^{\frac{b}{a}} \geq 2(a b+b c+c a)
$$

Proposed by Daniel Sitaru - Romania
Solution 1 by Tapas Das-India

$$
\begin{gathered}
\frac{a b\left(2^{\frac{c}{b}}\right)+b c\left(2^{\frac{a}{c}}\right)+c a\left(2^{\frac{b}{a}}\right)}{a b+b c+c a} \geq\left[\left(2^{\frac{c}{b}}\right)^{a b} \cdot\left(2^{\frac{a}{c}}\right)^{b c} \cdot\left(2^{\frac{b}{a}}\right)^{c a}\right]^{\frac{1}{a b+b c+c a}}= \\
=\left(2^{a c} \cdot 2^{a b} \cdot 2^{b c}\right)^{\overline{a b+b c+c a}}=2^{(a b+b c+c a) \cdot \frac{1}{(a b+b c+c a)}}=2 \\
\therefore a b 2^{\frac{c}{b}}+b c \cdot 2^{\frac{a}{c}}+c a \cdot 2^{\frac{b}{a}} \geq 2(a b+b c+c a) \\
\text { Equality holds for } a=b=c .
\end{gathered}
$$

Solution 2 by Khaled Abd Imouti-Syria

$$
\begin{gathered}
a b \cdot 2^{\frac{c}{b}}+b c \cdot 2^{\frac{a}{c}}+c a \cdot 2^{\frac{b}{a}} \geq 2(a b+b c+c a) \\
e_{1}=\left(\frac{a b}{a b+b c+c a}\right)\left(2^{\frac{c}{b}}\right)+\left(\frac{b c}{a b+b c+c a}\right)\left(2^{\frac{a}{c}}\right)+\left(\frac{c a}{a b+b c+c a}\right)\left(2^{\frac{b}{a}}\right) \stackrel{?}{\geq} 2
\end{gathered}
$$

By using weighted AM-GM inequality

$$
\begin{gathered}
e_{1}=\left(\left(2^{\frac{c}{b}}\right)^{a b} \cdot\left(2^{\frac{a}{c}}\right)^{b c} \cdot\left(2^{\frac{b}{a}}\right)^{c a}\right)^{\frac{1}{a b+b c+c a}} \\
e_{1} \geq 2^{(c a+b c+a b) \cdot \frac{1}{(a b+b c+c a)}} \\
e_{1} \geq 2 \\
\text { Equality holds for } a=b=c .
\end{gathered}
$$

