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      Is well known and often used the     Cesaro's inequality   ,   
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     The inequality in the following sentence was proposed in [1] , then taken over and  
presented in the prestigious site  Cut-the-knot , [2] : 
 

              1. Proposition     

            If  a , b , c ⋲ ( 0 ,  ) , such that  a    b    c    a  and  n ⋲ ℕ*  ,  then :     
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              Proof 
 

              With the help of a wellknown decomposition formula and then with the inequality of     
           means , we have successively :  
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                  How  a   b  ,  the inequality is strict , therefore : 
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            Analogously we have:      ,
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            By multiplying relationships (3) , (4) , (5)  inequality (2) from the statement is obtained . 
 
 

              2. Corollary   ( Generalization of Cesaro's inequality ) 
 

            If  a , b , c ⋲ [ 0 ,  )   and  n ⋲ ℕ* ,  then :    
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             The Proof is extracted from the one above - after the first equal, with the observation  
          that here we also have the possibility of equality , when  a = b = c . 
  

               3. Remark 
 

             For  n = 1  in inequality (6), Cesaro's inequality is obtained.  
             For  n = 2  in inequality (6), the following inequality is obtained ,   
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     Another Proof  for Proposition 1 is obtained using the well-known inequality 
  of  Hermite  Hadamard : 

     if  f  is a convex function on the interval  [ a , b] , then occurs the inequality , 
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             Considering the function  f ( x ) = x 
n ,  obviously convex and increasing on  [ 0 ,  ) ,  

          using the first inequality from (8) and the inequality of means , we successively have :    
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        that is , inequality (3) . Further, the proof proceeds as in the proof of  Proposition 1 .  
 
    



            4. Remark 
 

           Grace to inequality (8) , by taking   f ( x ) = x 
t  ,   t  real number  ,  t > 1 - we can expand 

        the inequality  from relation (2) to  real powers , too ; see also [2].  
             But using the  Hermite - Hadamard inequality  actually allows us to get more than the  
         proof of inequality from Proposition 1. It also provides the following, 
 

               5. Proposition  ( Refinement and reverse of generalized  Cesaro's  inequality ) 
 

             If  a , b , c ⋲ [ 0 ,  ) ,  and  n ⋲ ℕ* ,  then :         
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            The  Proof   is obtained using mainly the inequality (8) .   
             For  n ⋲ ℕ≥2  ,  equality occurs  if and only if  a = b = c . 
 

            6. Remark 
 

            For  n ⋲ ℕ≥2 , the second inequality in (9)  constitutes a  refinement  of the  generalized    
         inequality  of   Cesaro  (6) , and the last inequality in  (9)  is an  inverse inequality  of the    
         generalized   Cesaro’s  inequality  (6) ,  thus establishing an inequality on the right side  

         of  the product    
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            For  n = 1 ,  all the inequalities in (9) - starting with the second one - become equalities. 
            This is how inequality is presented (9) , for  n = 2 : 
 

              7. Corollary     
 

            If  a , b , c ⋲ [ 0 ,  ) , then holds  the inequalities :  
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    It is to be expected that almost any inequality that is demonstrated with Cesaro's  
inequality  to benefit from the results of this note . We reserve the right to revert to the 
possibilities of applying these results . 
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