A generalization, a refinement and a reverse for Cesaro's inequality

Dorin Marghidanu

In this work a generalization of Cesaro's inequality are presented and demonstrated. Also – for this generalization is obtained a refinement and a reverse inequality.

Keywords: Cesaro's inequality, Hermite-Hadamard inequality, convex functions, refinement inequality, reverse inequality

2020 Mathematics Subject Classification: 26D20

Is well known and often used the Cesaro's inequality,

$$(a+b)(b+c)(c+a) \ge 8 a b c \qquad (1)$$

The inequality in the following sentence was proposed in [1], then taken over and presented in the prestigious site *Cut-the-knot*, [2]:

1. Proposition

If $a, b, c \in (0, \infty)$, such that $a \neq b \neq c \neq a$ and $n \in \mathbb{N}^*$, then:

$$\frac{a^{n+1} - b^{n+1}}{a - b} \cdot \frac{b^{n+1} - c^{n+1}}{b - c} \cdot \frac{c^{n+1} - a^{n+1}}{c - a} > (n+1)^3 \cdot (abc)^n$$
 (2)

Proof

With the help of a well-known decomposition formula and then with the *inequality of means*, we have successively:

$$\frac{a^{n+1} - b^{n+1}}{a - b} = \sum_{k=0}^{n} a^{n-k} b^{k} \stackrel{\text{(AM-GM)}}{\geq} (n+1) \cdot n + 1 \sqrt{\prod_{k=0}^{n} a^{n-k} b^{k}} =$$

$$= (n+1) \cdot n + 1 \sqrt{\prod_{k=0}^{n} (ab)^{1+2+...+n}} = (n+1) \cdot n + 1 \sqrt{\prod_{k=0}^{n} (ab)^{n(n+1)/2}} = (n+1) \cdot (ab)^{n/2} \cdot$$

How $a \neq b$, the inequality is strict, therefore:

$$\frac{a^{n+1} - b^{n+1}}{a - b} > (n+1) \cdot (ab)^{n/2} \cdot$$
 (3)

Analogously we have:
$$\frac{b^{n+1} - c^{n+1}}{b - c} > (n+1) \cdot (bc)^{n/2}, \tag{4}$$

$$\frac{a^{n+1} - b^{n+1}}{a - b} > (n+1) \cdot (ab)^{n/2} \cdot$$
 (5)

By multiplying relationships (3), (4), (5) inequality (2) from the statement is obtained.

2. Corollary (Generalization of Cesaro's inequality)

If $a, b, c \in [0, \infty)$ and $n \in \mathbb{N}^*$, then:

$$\left(\sum_{k=0}^{n} a^{n-k} b^{k}\right) \cdot \left(\sum_{k=0}^{n} b^{n-k} c^{k}\right) \cdot \left(\sum_{k=0}^{n} c^{n-k} a^{k}\right) \ge \left(n+1\right)^{3} \cdot \left(abc\right)^{n} \cdot . \tag{6}$$

The **Proof** is extracted from the one above - after the first equal, with the observation that here we also have the possibility of equality, when a = b = c.

3. Remark

For n=1 in inequality (6), Cesaro's inequality is obtained.

For n=2 in inequality (6), the following inequality is obtained,

$$(a^{2} + ab + b^{2})(b^{2} + bc + c^{2})(c^{2} + ca + a^{2}) \ge 27(abc)^{2}$$
 (7)

Another **<u>Proof</u>** for Proposition 1 is obtained using the well-known inequality of *Hermite – Hadamard*:

 \bullet if f is a convex function on the interval [a,b], then occurs the inequality,

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \cdot \int_{a}^{b} f(x) \cdot dx \le \frac{f(a)+f(b)}{2} \quad . \tag{8}$$

Considering the function $f(x) = x^n$, obviously convex and increasing on $[0, \infty)$, using the first inequality from (8) and the inequality of means, we successively have:

$$\frac{1}{b-a} \cdot \int_{a}^{b} x^{n} \cdot dx \ge \left(\frac{a+b}{2}\right)^{n} \iff \frac{b^{n+1} - a^{n+1}}{(n+1) \cdot (b-a)} \ge \left(\frac{a+b}{2}\right)^{n} \ge \left(\sqrt{ab}\right)^{n} \iff \frac{b^{n+1} - a^{n+1}}{b-a} \ge (n+1) \cdot \left(\sqrt{ab}\right)^{n},$$

that is, inequality (3). Further, the proof proceeds as in the proof of *Proposition* 1.

4. Remark

Grace to inequality (8), by taking $f(x) = x^t$, t real number, t > 1 - we can expand the inequality from relation (2) to real powers, too; see also [2].

But using the *Hermite - Hadamard inequality* actually allows us to get more than the proof of inequality from Proposition 1. It also provides the following,

5. Proposition (Refinement and reverse of generalized Cesaro's inequality)

If $a, b, c \in [0, \infty)$, and $n \in \mathbb{N}^*$, then:

$$(n+1)^{3} \cdot (abc)^{n} \leq \frac{(n+1)^{3}}{8^{n}} \cdot (a+b)^{n} (b+c)^{n} (c+a)^{n} \leq$$

$$\leq \left(\sum_{k=0}^{n} a^{n-k} b^{k}\right) \cdot \left(\sum_{k=0}^{n} b^{n-k} c^{k}\right) \cdot \left(\sum_{k=0}^{n} c^{n-k} a^{k}\right) \leq$$

$$\leq \frac{(n+1)^{3}}{8} \cdot (a^{n} + b^{n}) (b^{n} + c^{n}) (c^{n} + a^{n}) \cdot \tag{9}$$

The **Proof** is obtained using mainly the inequality (8).

For $n \in \mathbb{N}_{\geq 2}$, equality occurs if and only if a = b = c.

6. Remark

For $n \in \mathbb{N}_{\geq 2}$, the second inequality in (9) constitutes a *refinement* of the *generalized* inequality of Cesaro (6), and the last inequality in (9) is an inverse inequality of the generalized Cesaro's inequality (6), thus establishing an inequality on the right side

of the product
$$\left(\sum_{k=0}^{n} a^{n-k} b^{k}\right) \cdot \left(\sum_{k=0}^{n} b^{n-k} c^{k}\right) \cdot \left(\sum_{k=0}^{n} c^{n-k} a^{k}\right)$$
.

For n=1, all the inequalities in (9) - starting with the second one - become equalities. This is how inequality is presented (9), for n=2:

7. Corollary

If $a, b, c \in [0, \infty)$, then holds the inequalities:

$$27(abc)^{2} \leq \frac{27}{64} \cdot (a+b)^{2} (b+c)^{2} (c+a)^{2} \leq$$

$$\leq (a^{2} + ab + b^{2}) (b^{2} + bc + c^{2}) (c^{2} + ca + a^{2})$$

$$\leq \frac{27}{8} \cdot (a^{2} + b^{2}) (b^{2} + c^{2}) (c^{2} + a^{2}) . \tag{10}$$

It is to be expected that almost any inequality that is demonstrated with *Cesaro's inequality* to benefit from the results of this note. We reserve the right to revert to the possibilities of applying these results.

References

- [1] Dorin Marghidanu, *Proposed problem*, in 'Mathematical Inequalities', 15 Mars, 2018, https://www.facebook.com/groups/1486244404996949/user/100001473529824
- [2] Alexander Bogomolny (Cut-the Knot), "A Little of Algebra for an Inequality, A Little of Calculus for a Generalization", 2018. https://www.cut-the-knot.org/m/Algebra/MarghidanuGiugiuc.shtml
- [3] **Dorin Marghidanu**, *Proposed problem*, in 'PURE INEQUALITIES', 30 Mars, 2024, https://www.facebook.com/photo/?fbid=7809335792458794&set=gm.1391688314885224 &idorvanity=132382434149158