

ROMANIAN MATHEMATICAL MAGAZINE

If $x, y > 0$, $3x^2 + 4y^2 + 4xy - 9x - 10y + 8 = 0$ then:

$$\frac{7x + 11y + 13}{2x + 3y + 5} \geq 3$$

Proposed by Nguyen Hung Cuong-Vietnam

Solution by Tapas Das-India

We need to show: $\frac{7x + 11y + 13}{2x + 3y + 5} \geq 3$

$$7x + 11y + 13 \geq 6x + 9y + 15 \text{ or, } 2x + 2y \geq 2$$

$$\text{Let } L(x, y) = x + 2y$$

$$\text{Let } G(x, y) \equiv 3x^2 + 4y^2 + 4xy - 9x - 10y + 8$$

Extremum Values theorem(Weierstrass):

If a function $f: X \rightarrow R$ is continuous on a compact set X (closed + bounded), then f attains both maximum and minimum value on X .

$$X_{\min}, X_{\max} \in X \text{ such that } f(X_{\min}) \leq f(X) \leq f(X_{\max}) \quad (1)$$

$$3x^2 + 4y^2 + 4xy - 9x - 10y + 8 = 0$$

Comparing with the general equation of 2nd degree:

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0 \text{ we get:}$$

$$a = 3, h = 2, b = 4, g = -\frac{9}{2}, f = -5, c = 8$$

$$\text{then } \Delta = abc + 2fgh - af^2 - bg^2 - ch^2 = -245 < 0 \text{ and}$$

$$D = ab - h^2 = 12 - 4 = 8 > 0$$

So the given equation represent an Ellipse

Set $E = \{(x, y) \in R^2: 3x^2 + 4y^2 + 4xy - 9x - 10y + 8 = 0\}$ is a compact set (2)

Using Lagrange's multipliers at an extremum on the constraints there exist λ with

$$dL - \lambda dG = 0$$

$$\text{or } (dx + 2dy) - \lambda((6x + 4y - 9)dx + (8y + 4x - 10)dy) = 0$$

$$\text{Comparing: } 1 = \lambda(6x + 4y - 9) \text{ and } 2 = \lambda(8y + 4x - 10)$$

$$\text{Eliminating } \lambda \text{ we get } \frac{2}{1} = \frac{4x + 8y - 10}{6x + 4y - 9}$$

$$\text{or } 12x + 8y - 18 = 4x + 8y - 10 \text{ or } 8x = 8 \text{ or } x = 1$$

Putting $x = 1$ in $G(x, y)$ we get $2y^2 - 3y + 1 = 0$ which implies $y = 1, \frac{1}{2}$

$$\text{Now, } L(x, y) = x + 2y \text{ then } L(1, 1) = 3 \text{ and } L\left(1, \frac{1}{2}\right) = 2$$

ROMANIAN MATHEMATICAL MAGAZINE

So using (1) and (2) we can say $2 \leq L(x, y) \leq 3$

$$2x + y \geq 2 \text{ or } \frac{7x + 11y + 13}{2x + 3y + 5} \geq 3$$

Equality holds for $x = 1, y = \frac{1}{2}$.