
 
𝑰𝒇 𝒕𝒉𝒆 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏  𝒙𝟓 + 𝒂𝒙𝟒 + 𝒃𝒙𝟑 + 𝒄𝒙𝟐 + 𝒅𝒙 + 𝟏 = 𝟎  

𝒉𝒂𝒔 𝟓 𝒓𝒆𝒂𝒍 𝒓𝒐𝒐𝒕𝒔 𝒂𝒓𝒆 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒕 𝒊𝒏 𝒑𝒂𝒊𝒓𝒔 
 𝒕𝒉𝒆𝒏 𝒑𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 𝟐(𝒂𝟐 + 𝒅𝟐) > 𝟓(𝒃 + 𝒄)  
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Solution by Tapas Das-India 
 

  𝒙𝟓 + 𝒂𝒙𝟒 + 𝒃𝒙𝟑 + 𝒄𝒙𝟐 + 𝒅𝒙 + 𝟏 = 𝟎   (𝟏) 
𝑳𝒆𝒕 𝒓𝟏, 𝒓𝟐, 𝒓𝟑, 𝒓𝟒, 𝒓𝟓 𝒃𝒆 𝒕𝒉𝒆 𝒓𝒐𝒐𝒕𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 (𝟏) 

 
 𝑹𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔𝒉𝒊𝒑𝒔 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒓𝒐𝒐𝒕𝒔 𝒂𝒏𝒅 𝒄𝒐𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒕 𝒘𝒆 𝒈𝒆𝒕: 

 𝒑𝟏 = ∑ 𝒓𝒊
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𝒐𝒓 𝟓(𝒑𝟏

𝟐 − 𝟐𝒑𝟐) > (𝒑𝟏)𝟐  𝒐𝒓 𝟓(𝒂𝟐 − 𝟐𝒃) > 𝒂𝟐  𝒐𝒓 𝟒𝒂𝟐 > 𝟏𝟎𝒃 𝒐𝒓 𝟐𝒂𝟐 > 𝟓𝒃 (𝟑) 
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𝒐𝒓 𝟓(𝒅𝟐 − 𝟐𝒄) >
(𝟏)&(𝟐)

 𝒅𝟐 𝒐𝒓, 𝟒𝒅𝟐 > 𝟏𝟎𝒄  𝒐𝒓, 𝟐𝒅𝟐 > 𝟓𝒄  (𝟒) 
 

𝑨𝒅𝒅𝒊𝒏𝒈 (𝟑) & (𝟒)𝒘𝒆 𝒈𝒆𝒕 ∶ 
 

 𝟐𝒂𝟐 + 𝟐𝒅𝟐 > 𝟓𝒃 + 𝟓𝒄  𝒐𝒓, 𝟐(𝒂𝟐 + 𝒅𝟐) > 𝟓(𝒃 + 𝒄)  
 
 


