

ROMANIAN MATHEMATICAL MAGAZINE

If $xz + yz + 2y = 1$ and $2xz + yz + x + 3y = 2$

then prove that : $0 \leq xy(1 + z) \leq \frac{1}{4}$

Proposed by Nguyen Hung Cuong-Vietnam

Solution by Soumava Chakraborty-Kolkata-India

$$\begin{aligned} (2xz + yz + x + 3y) - (xz + yz + 2y) &= 2 - 1 \Rightarrow xz + x + y = 1 \\ \Rightarrow x(1 + z) = 1 - y \Rightarrow xy(1 + z) &= y(1 - y) = y - y^2 - \frac{1}{4} + \frac{1}{4} = \frac{1}{4} - \frac{4y^2 - 4y + 1}{4} \\ &= \frac{1}{4} - \frac{(2y - 1)^2}{4} \leq \frac{1}{4} \end{aligned}$$

Now, $2(xz + yz + 2y) = 2xz + yz + x + 3y \Rightarrow y + yz = x \Rightarrow y(1 + z) = x$
 $\Rightarrow xy(1 + z) = x^2 \geq 0$ and so, $0 \leq xy(1 + z) \leq \frac{1}{4}$ whenever $xz + yz + 2y = 1$
and $2xz + yz + x + 3y = 2$, " = " for LH inequality iff $x = 0$
and " = " for RH inequality iff $y = \frac{1}{2}$ (QED)