
 

𝐈𝐟 𝐢𝐧 ∆𝑨𝑩𝑪 ∶ 𝒙 = 𝟐𝑹 ∑
𝟏
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𝒙
, 𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝐚𝐭 : 
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Proposed by Tapas Das-India 

Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝐖𝐞 𝐡𝐚𝐯𝐞 : 

𝒙 = 𝟐𝑹 ∑
𝟏

𝒘𝒂
𝒄𝒐𝒔

𝑩 − 𝑪

𝟐
𝒄𝒚𝒄

= 𝟐𝑹 ∑
𝒃 + 𝒄

𝟐𝒃𝒄 𝐜𝐨𝐬
𝑨
𝟐

.
𝒃 + 𝒄

𝟒𝑹 𝐜𝐨𝐬
𝑨
𝟐𝒄𝒚𝒄

= 

=
𝟏

𝟒
∑

(𝒃 + 𝒄)𝟐

𝒔(𝒔 − 𝒂)
𝒄𝒚𝒄

=
𝟏

𝟒𝒔
∑

(𝒂 + 𝟐(𝒔 − 𝒂))
𝟐

𝒔 − 𝒂
𝒄𝒚𝒄

≥ 

≥⏞
𝑨𝑴−𝑮𝑴

 
𝟏

𝟒𝒔
∑

𝟒. 𝟐(𝒔 − 𝒂)𝒂

𝒔 − 𝒂
𝒄𝒚𝒄

= 𝟒  ⇒   𝒚 ≤ 𝟏. 

𝐁𝐲 𝐁𝐞𝐫𝐧𝐨𝐮𝐥𝐥𝐢′𝐬 𝐢𝐧𝐞𝐪𝐮𝐚𝐥𝐢𝐭𝐲, 𝐰𝐞 𝐡𝐚𝐯𝐞 : 
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=
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𝐄𝐪𝐮𝐚𝐥𝐢𝐭𝐲 𝐡𝐨𝐥𝐝𝐬 𝐢𝐟𝐟 ∆𝑨𝑩𝑪 𝐢𝐬 𝐞𝐪𝐮𝐢𝐥𝐚𝐭𝐞𝐫𝐚𝐥. 


