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=
(𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)(𝟒𝐬) + 𝟐𝐬(𝐬𝟐 − 𝟔𝐑𝐫 − 𝟑𝐫𝟐) + ∑ 𝒂𝟐𝐛𝐜𝐲𝐜
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𝐍𝐨𝐰,
∑ 𝒂𝟐𝐛𝐜𝐲𝐜

𝟐𝐬(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)
≤

𝐂𝐁𝐒
√(∑ 𝒂𝟐𝐛𝟐

𝐜𝐲𝐜 )(∑ 𝒂𝟐
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𝟐𝐬(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)
<
? 𝟏𝟐𝐬𝟐 + 𝟕𝟔𝐑𝐫 + 𝟔𝟒𝐫𝟐

𝟏𝟑(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)
 

⇔ 𝟐𝐬𝟐(𝟏𝟐𝐬𝟐 + 𝟕𝟔𝐑𝐫 + 𝟔𝟒𝐫𝟐)𝟐 >
?

𝟏𝟔𝟗(𝐬𝟐 − 𝟒𝐑𝐫 − 𝐫𝟐)((𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)𝟐 − 𝟏𝟔𝐑𝐫𝐬𝟐) 
⇔ 𝟏𝟏𝟗𝐬𝟔 + (𝟓𝟔𝟕𝟔𝐑𝐫 + 𝟐𝟗𝟎𝟑𝐫𝟐)𝐬𝟒 + 𝐫𝟐(𝟑𝟒𝟒𝟎𝐑𝟐 + 𝟏𝟖𝟏𝟎𝟒𝐑𝐫 + 𝟖𝟑𝟔𝟏𝐫𝟐)𝐬𝟐 

+𝐫𝟑(𝟏𝟎𝟖𝟏𝟔𝐑𝟑 + 𝟖𝟏𝟏𝟐𝐑𝟐𝐫 + 𝟐𝟎𝟐𝟖𝐑𝐫𝟐 + 𝟏𝟔𝟗𝐫𝟑) >
?

𝟎 → 𝐭𝐫𝐮𝐞 ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 
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 ∀ ∆ 𝐀𝐁𝐂, 
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