
 
𝐈𝐧 𝒂𝐧𝐲 ∆ 𝐀𝐁𝐂, 𝐭𝐡𝐞 𝐟𝐨𝒍𝒍𝐨𝐰𝐢𝐧𝐠 𝐫𝐞𝒍𝒂𝐭𝐢𝐨𝐧𝐬𝐡𝐢𝐩 𝐡𝐨𝒍𝐝𝐬 ∶ 

𝐰𝒂 + 𝐰𝐛 + 𝐰𝐜

𝟔
≥ √

𝐬𝟐𝐑𝐫𝟐(𝟑𝟐𝐑𝟐𝐬𝟐𝐫𝟐 + 𝟏𝟔𝐑𝟐𝐫𝟒 + 𝟒𝟎𝐑𝐬𝟐𝐫𝟑 + 𝟖𝐑𝐫𝟓 + 𝐬𝟔 + 𝟑𝐬𝟒𝐫𝟐 + 𝟑𝐬𝟐𝐫𝟒 + 𝐫𝟔)

𝟔(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)𝟑

𝟓

 

  Proposed by Nguyen Minh Tho-Vietnam 

Solution by Soumava Chakraborty-Kolkata-India 

∑
𝒂

(𝐛 + 𝐜)𝟐
𝐜𝐲𝐜

= ∑
(𝒂 − 𝟐𝐬) + 𝟐𝐬

(𝐛 + 𝐜)𝟐
𝐜𝐲𝐜

= 𝟐𝐬.
∑ (𝐜 + 𝒂)𝟐(𝒂 + 𝐛)𝟐

𝐜𝐲𝐜

∏ (𝐛 + 𝐜)𝟐
𝐜𝐲𝐜

− ∑
𝟏

𝐛 + 𝐜
𝐜𝐲𝐜

 

=
(∑ (𝐜 + 𝒂)(𝒂 + 𝐛)𝐜𝐲𝐜 )

𝟐
− 𝟐. 𝟐𝐬(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)(𝟒𝐬)

𝟐𝐬(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)𝟐
−

∑ (𝐜 + 𝒂)(𝒂 + 𝐛)𝐜𝐲𝐜

𝟐𝐬(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)
 

=

((∑ 𝒂𝟐
𝐜𝐲𝐜 + 𝟐 ∑ 𝒂𝐛𝐜𝐲𝐜 ) + ∑ 𝒂𝐛𝐜𝐲𝐜 )

𝟐
− 𝟏𝟔𝐬𝟐(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)

−(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)(𝟓𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)

𝟐𝐬(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)𝟐
⇒ 

∑
𝒂

(𝐛 + 𝐜)𝟐

𝐜𝐲𝐜

=
(⦁) (𝟓𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)𝟐 − 𝟏𝟔𝐬𝟐(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐) − (𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)(𝟓𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)

𝟐𝐬(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)𝟐
 

𝐍𝐨𝐰, ∑ 𝐰𝒂
𝟐

𝐜𝐲𝐜

= ∑
𝟒𝐛𝐜𝐬(𝐬 − 𝒂)

(𝐛 + 𝐜)𝟐

𝐜𝐲𝐜

= ∑
𝐛𝐜((𝐛 + 𝐜)𝟐 − 𝒂𝟐)

(𝐛 + 𝐜)𝟐

𝐜𝐲𝐜

= ∑ (𝐛𝐜 −
𝒂𝟐𝐛𝐜

(𝐛 + 𝐜)𝟐
)

𝐜𝐲𝐜

 

=
𝐯𝐢𝒂 (⦁)

𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐 

+𝟐𝐑𝐫.
(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)(𝟓𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐) + 𝟏𝟔𝐬𝟐(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐) − (𝟓𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)𝟐

(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)𝟐
 

=
𝐬𝟔 + 𝟑𝐫𝟐𝐬𝟒 + 𝐫𝟐𝐬𝟐(𝟑𝟐𝐑𝟐 + 𝟒𝟎𝐑𝐫 + 𝟑𝐫𝟐) + 𝐫𝟒(𝟏𝟔𝐑𝟐 + 𝟖𝐑𝐫 + 𝐫𝟐)

(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)𝟐
 

∴
𝟑𝟐𝐑𝟐𝐬𝟐𝐫𝟐 + 𝟏𝟔𝐑𝟐𝐫𝟒 + 𝟒𝟎𝐑𝐬𝟐𝐫𝟑 + 𝟖𝐑𝐫𝟓 + 𝐬𝟔 + 𝟑𝐬𝟒𝐫𝟐 + 𝟑𝐬𝟐𝐫𝟒 + 𝐫𝟔

(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)𝟐
=

(⦁⦁)
∑ 𝐰𝒂

𝟐

𝐜𝐲𝐜

 

𝐀𝐠𝒂𝐢𝐧, 𝐰𝒂𝐰𝐛𝐰𝐜 = ∏
𝟐𝐛𝐜 𝐜𝐨𝐬

𝐀

𝟐

𝐛 + 𝐜
𝐜𝐲𝐜

=
𝟖. 𝟏𝟔𝐑𝟐𝐫𝟐𝐬𝟐.

𝐬

𝟒𝐑

𝟐𝐬(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)
=

𝟏𝟔𝐑𝐫𝟐𝐬𝟐

𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐
 

∴
𝐬𝟐𝐑𝐫𝟐

𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐
=

(⦁⦁⦁) 𝐰𝒂𝐰𝐛𝐰𝐜

𝟏𝟔
∴ (⦁⦁) 𝒂𝐧𝐝 (⦁⦁⦁) ⇒ 

√
𝐬𝟐𝐑𝐫𝟐(𝟑𝟐𝐑𝟐𝐬𝟐𝐫𝟐 + 𝟏𝟔𝐑𝟐𝐫𝟒 + 𝟒𝟎𝐑𝐬𝟐𝐫𝟑 + 𝟖𝐑𝐫𝟓 + 𝐬𝟔 + 𝟑𝐬𝟒𝐫𝟐 + 𝟑𝐬𝟐𝐫𝟒 + 𝐫𝟔)

𝟔(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)𝟑

𝟓

 

= √
𝐰𝒂𝐰𝐛𝐰𝐜

𝟗𝟔
. ∑ 𝐰𝒂

𝟐

𝐜𝐲𝐜

𝟓 ≤
𝐰𝒂 + 𝐰𝐛 + 𝐰𝐜

𝟔
⇔

𝟏

𝟔𝟓
(∑ 𝒙

𝐜𝐲𝐜

)

𝟓

≥
𝟏

𝟗𝟔
. 𝒙𝐲𝐳 ∑ 𝒙𝟐

𝐜𝐲𝐜

 



 

(𝒙 = 𝐰𝒂, 𝐲 = 𝐰𝐛, 𝐳 = 𝐰𝐜) ⇔ (∑ 𝒙

𝐜𝐲𝐜

)

𝟓

≥
(∗)

𝟖𝟏𝒙𝐲𝐳 ∑ 𝒙𝟐

𝐜𝐲𝐜

  

𝐀𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐲 + 𝐳 = 𝐌, 𝐳 + 𝒙 = 𝐍, 𝒙 + 𝐲 = 𝐏 ⇒ 𝐌 + 𝐍 − 𝐏 = 𝟐𝐳 > 𝟎, 𝐍 + 𝐏 − 𝐌 
= 𝟐𝒙 > 𝟎 𝒂𝐧𝐝 𝐏 + 𝐌 − 𝐍 = 𝟐𝐲 > 𝟎 ⇒ 𝐌 + 𝐍 > 𝐏, 𝐍 + 𝐏 > 𝐌, 𝐏 + 𝐌 > 𝐍 ⇒ 

𝐌, 𝐍, 𝐏 𝐟𝐨𝐫𝐦 𝐬𝐢𝐝𝐞𝐬 𝐨𝐟 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬
= 

𝐬′, 𝐑′, 𝐫′ (𝐬𝒂𝐲) 𝐲𝐢𝐞𝐥𝐝𝐢𝐧𝐠 𝟐 ∑ 𝒙

𝐜𝐲𝐜

= ∑ 𝐌

𝐜𝐲𝐜

= 𝟐𝐬′ ⇒ ∑ 𝒙

𝐜𝐲𝐜

= 𝐬′ → (𝟏) 

⇒ 𝒙 = 𝐬′ − 𝐌, 𝐲 = 𝐬′ − 𝐍, 𝐳 = 𝐬′ − 𝐏 ⇒ 𝒙𝐲𝐳 = 𝐫′𝟐𝐬′ → (𝟐) 𝒂𝐧𝐝 
𝐯𝐢𝒂 𝐬𝐮𝐜𝐡 𝐬𝐮𝐛𝐬𝐭𝐢𝐭𝐮𝐭𝐢𝐨𝐧𝐬, ⇒ 𝒙𝐲𝐳 = 𝐫′𝟐𝐬′ → (𝟐) 𝒂𝐧𝐝 𝐯𝐢𝒂 𝐬𝐮𝐜𝐡 𝐬𝐮𝐛𝐬𝐭𝐢𝐭𝐮𝐭𝐢𝐨𝐧𝐬, 

∑ 𝒙𝟐

𝐜𝐲𝐜

= (∑ 𝒙

𝐜𝐲𝐜

)

𝟐

− 𝟐 ∑ 𝒙𝐲

𝐜𝐲𝐜

= (∑ 𝒙

𝐜𝐲𝐜

)

𝟐

− 𝟐 ∑(𝐬 − 𝐌)(𝐬 − 𝐍)

𝐜𝐲𝐜

 

=
𝐯𝐢𝒂 (𝟏)

𝐬′𝟐 − 𝟐(𝟒𝐑′𝐫′ + 𝐫′𝟐) ∴ ∑ 𝒙𝟐

𝐜𝐲𝐜

= 𝐬′𝟐 − 𝟖𝐑′𝐫′ − 𝟐𝐫′𝟐 → (𝟑) 

∴ (𝟏), (𝟐), (𝟑) ⇒ (∗) ⇔ 𝐬′𝟓 ≥ 𝟖𝟏𝐫′𝟐𝐬′(𝐬′𝟐 − 𝟖𝐑′𝐫′ − 𝟐𝐫′𝟐) 

⇔ 𝐬′𝟒 ≥
(∗∗)

𝟖𝟏𝐫′𝟐(𝐬′𝟐 − 𝟖𝐑′𝐫′ − 𝟐𝐫′𝟐) 

𝐒𝐢𝐧𝐜𝐞 (𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 ∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 
𝐬𝟒 − 𝟖𝟏𝐫𝟐(𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐) ≥ 𝟎, 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝐋𝐇𝐒 ≥ (𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 

⇔ (𝟑𝟐𝐑 − 𝟗𝟏𝐫)𝐬𝟐 ≥
(∗∗∗)

𝐫(𝟐𝟓𝟔𝐑𝟐 − 𝟖𝟎𝟖𝐑𝐫 − 𝟏𝟑𝟕𝐫𝟐) 

𝐂𝒂𝐬𝐞 𝟏  𝟑𝟐𝐑 − 𝟗𝟏𝐫 ≥ 𝟎 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗∗∗) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

(𝟑𝟐𝐑 − 𝟗𝟏𝐫)(𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐) 

≥
?

𝐫(𝟐𝟓𝟔𝐑𝟐 − 𝟖𝟎𝟖𝐑𝐫 − 𝟏𝟑𝟕𝐫𝟐) ⇔ 𝟑𝟐𝐑𝟐 − 𝟏𝟎𝟏𝐑𝐫 + 𝟕𝟒𝐫𝟐 ≥
?

𝟎 

⇔ (𝐑 − 𝟐𝐫)(𝟑𝟐𝐑 − 𝟑𝟕𝐫) ≥
?

𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐑 ≥
𝟗𝟏𝐫

𝟑𝟐
> 𝟐𝐫 

⇒ (∗∗∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 (𝐬𝐭𝐫𝐢𝐜𝐭 𝐢𝐧𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲) 

𝐂𝒂𝐬𝐞 𝟐  𝟑𝟐𝐑 − 𝟗𝟏𝐫 < 𝟎 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗∗∗) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

 

(𝟑𝟐𝐑 − 𝟗𝟏𝐫)(𝟒𝐑𝟐 + 𝟒𝐑𝐫 + 𝟑𝐫𝟐) ≥
?

𝐫(𝟐𝟓𝟔𝐑𝟐 − 𝟖𝟎𝟖𝐑𝐫 − 𝟏𝟑𝟕𝐫𝟐) 

⇔ 𝟑𝟐𝐭𝟑 − 𝟏𝟐𝟑𝐭𝟐 + 𝟏𝟑𝟓𝐭 − 𝟑𝟒 ≥
?

𝟎 (𝐭 =
𝐑

𝐫
) 

⇔ (𝐭 − 𝟐)(𝟑𝟎𝐭(𝐭 − 𝟐) + 𝟐𝐭𝟐 + 𝐭 + 𝟏𝟕) ≥
?

𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐭 ≥
𝐄𝐮𝐥𝐞𝐫

𝟐𝐫 
⇒ (∗∗∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 𝒂𝐧𝐝 𝐜𝐨𝐦𝐛𝐢𝐧𝐢𝐧𝐠 𝐛𝐨𝐭𝐡 𝐜𝒂𝐬𝐞𝐬, (∗∗∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∀ ∆ 𝐀𝐁𝐂 

∴ 𝐬𝟒 ≥ 𝟖𝟏𝐫𝟐(𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐) ⇒ (∗∗) ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴
𝐰𝒂 + 𝐰𝐛 + 𝐰𝐜

𝟔
 

≥ √
𝐬𝟐𝐑𝐫𝟐(𝟑𝟐𝐑𝟐𝐬𝟐𝐫𝟐 + 𝟏𝟔𝐑𝟐𝐫𝟒 + 𝟒𝟎𝐑𝐬𝟐𝐫𝟑 + 𝟖𝐑𝐫𝟓 + 𝐬𝟔 + 𝟑𝐬𝟒𝐫𝟐 + 𝟑𝐬𝟐𝐫𝟒 + 𝐫𝟔)

𝟔(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)𝟑

𝟓

  

∀ ∆ 𝐀𝐁𝐂,′′ =′′  𝐢𝐟𝐟 ∆ 𝐀𝐁𝐂 𝐢𝐬 𝐞𝐪𝐮𝐢𝒍𝒂𝐭𝐞𝐫𝒂𝒍 (𝐐𝐄𝐃) 
 


