
 
In ∆𝑨𝑩𝑪 the following relationship holds: 
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Lemma 1: In ∆𝑨𝑩𝑪 the following relationship holds: 
 

𝒄𝒐𝒔𝟐 (
𝑨 − 𝑩

𝟐
) + 𝒄𝒐𝒔𝟐 (

𝑩 − 𝑪

𝟐
) + 𝒄𝒐𝒔𝟐 (

𝑪 − 𝑨

𝟐
) =

𝒔𝟐 + 𝒓𝟐 + 𝟐𝑹𝒓

𝟒𝑹𝟐
+ 𝟏 

Proof: 

𝒄𝒐𝒔𝟐 (
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𝟐
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𝟐
) = ∑ 𝒄𝒐𝒔𝟐 (

𝑨 − 𝑩

𝟐
)

𝒄𝒚𝒄
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+
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𝟐
∑

𝒂𝒃

𝟒𝑹𝟐

𝒄𝒚𝒄

= 

=
𝟏𝟐𝑹𝟐 + 𝒔𝟐 + 𝒓𝟐 − 𝟒𝑹𝟐 + 𝒔𝟐 + 𝒓𝟐 + 𝟒𝑹𝒓

𝟖𝑹𝟐
=

𝒔𝟐 + 𝒓𝟐 + 𝟐𝑹𝒓

𝟒𝑹𝟐
+ 𝟏 

 
Lemma 2: In ∆𝑨𝑩𝑪 the following relationship holds: 
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Proof: 
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Using  Lemma 1 and Lemma 2 we must prove that: 
 

𝒔𝟐 + 𝒓𝟐 + 𝟐𝑹𝒓

𝟒𝑹𝟐
+ 𝟏 ≥ 𝟐𝟒 ∙

𝒓

𝟒𝑹
 

 



 
𝒔𝟐 + 𝒓𝟐 + 𝟐𝑹𝒓 + 𝟒𝑹𝟐 ≥ 𝟐𝟒𝑹𝒓 

 

𝒔𝟐 ≥ 𝟐𝟐𝑹𝒓 − 𝒓𝟐 − 𝟒𝑹𝟐 (to prove) 
 

𝒔𝟐 ≥⏞
𝑮𝑬𝑹𝑹𝑬𝑻𝑺𝑬𝑵

𝟏𝟔𝑹𝒓 − 𝟓𝒓𝟐 ≥ 𝟐𝟐𝑹𝒓 − 𝒓𝟐 − 𝟒𝑹𝟐 ⟺ 
 

⟺ 𝟒𝑹𝟐 − 𝟔𝑹𝒓 − 𝟒𝒓𝟐 ≥ 𝟎 ⟺ 𝟐𝑹𝟐 − 𝟑𝑹𝒓 − 𝟐𝒓𝟐 ≥ 𝟎 
 

𝟐𝑹𝟐 − 𝟒𝑹𝒓 + 𝑹𝒓 −  𝟐𝒓𝟐 ≥ 𝟎 
 

𝟐𝑹(𝑹 − 𝟐𝒓) + 𝒓(𝑹 − 𝟐𝒓) ≥ 𝟎 
 

(𝑹 − 𝟐𝒓)(𝟐𝑹 + 𝒓) ≥ 𝟎 
 

𝑹 − 𝟐𝒓 ≥ 𝟎 
𝑹 ≥ 𝟐𝒓 (𝑬𝒖𝒍𝒆𝒓) 

 
Equality holds for 𝒂 = 𝒃 = 𝒄. 


