
 
𝐈𝐧 ∆ 𝐀𝐁𝐂 𝐰𝐢𝐭𝐡 𝐧𝒂, 𝐧𝐛, 𝐧𝐜 → 𝐍𝒂𝐠𝐞𝒍 𝐜𝐞𝐯𝐢𝒂𝐧𝐬, 𝒈𝒂, 𝒈𝐛, 𝒈𝐜

→ 𝐆𝐞𝐫𝐠𝐨𝐧𝐧𝐞 𝐜𝐞𝐯𝐢𝒂𝐧𝐬, 𝐡𝐨𝒍𝐝𝐬 ∶ 

(√𝟑 − 𝟏)(𝐧𝒂 + 𝐧𝐛 + 𝐧𝐜) + (𝟐 − √𝟑)(𝒈𝒂 + 𝒈𝐛 + 𝒈𝐜) ≥ √𝟑𝐬 
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(√𝟑 − 𝟏)(𝐧𝒂 + 𝐧𝐛 + 𝐧𝐜) + (𝟐 − √𝟑)(𝒈𝒂 + 𝒈𝐛 + 𝒈𝐜) ≥ √𝟑𝐬 

⇔ (√𝟑 − 𝟏)(∑𝐧𝒂
𝐜𝐲𝐜

) +
(√𝟑 − 𝟏)

𝟐

𝟐
(∑𝒈𝒂
𝐜𝐲𝐜

) ≥ √𝟑𝐬 

⇔
(√𝟑 − 𝟏)

(√𝟑 − 𝟏)
𝟐
. (∑𝐧𝒂

𝐜𝐲𝐜

) +
𝟏

𝟐
(∑𝒈𝒂
𝐜𝐲𝐜

) ≥
√𝟑𝐬

𝟐(𝟐 − √𝟑)
 

⇔ (√𝟑 + 𝟏)(∑𝐧𝒂
𝐜𝐲𝐜

) +∑𝒈𝒂
𝐜𝐲𝐜

≥
(∗)

𝟐√𝟑𝐬 + 𝟑𝐬 𝒂𝐧𝐝 ∵∑𝐧𝒂
𝐜𝐲𝐜

+∑𝒈𝒂
𝐜𝐲𝐜

 

≥
𝐁𝐨𝐠𝐝𝒂𝐧 𝐅𝐮𝐬𝐭𝐞𝐢 (𝟐𝟎𝟏𝟗)

𝟐∑𝐦𝒂

𝐜𝐲𝐜

∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

√𝟑. (∑𝐧𝒂
𝐜𝐲𝐜

) + 𝟐∑𝐦𝒂

𝐜𝐲𝐜

≥
?
𝟐√𝟑𝐬 + 𝟑𝐬 ⇔

𝐬𝐪𝐮𝒂𝐫𝐢𝐧𝐠

 

𝟑(∑𝐧𝒂
𝐜𝐲𝐜

)

𝟐

+ 𝟒(∑𝐦𝒂

𝐜𝐲𝐜

)

𝟐

+ 𝟒√𝟑.(∑𝐧𝒂
𝐜𝐲𝐜

)(∑𝐦𝒂

𝐜𝐲𝐜

) ≥
?
⏟
(∗∗)

𝟐𝟏𝐬𝟐 + 𝟏𝟐√𝟑𝐬𝟐 

𝐍𝐨𝐰, 𝟑(∑𝐧𝒂
𝐜𝐲𝐜

)

𝟐

+ 𝟒(∑𝐦𝒂

𝐜𝐲𝐜

)

𝟐

− 𝟐𝟏𝐬𝟐 ≥ 𝟑(𝟗𝐬𝟐 − 𝟖𝟎𝐑𝐫 − 𝟐𝐫𝟐) + 

𝟒(𝟒𝐬𝟐 − 𝟐𝟖𝐑𝐫 + 𝟐𝟗𝐫𝟐) − 𝟐𝟏𝐬𝟐 = 𝟐𝟐(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 

(

 
 
 
 
 
 ∵ (∑𝐧𝒂

𝐜𝐲𝐜

)

𝟐

≥ 𝟗𝐬𝟐 − 𝟖𝟎𝐑𝐫 − 𝟐𝐫𝟐; 𝐫𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞 ∶ 𝐈𝐧𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐧 𝐓𝐫𝐢𝒂𝐧𝐠𝒍𝐞 𝐛𝐲 𝐌𝐨𝐡𝒂𝐦𝐞𝐝 𝐀𝐦𝐢𝐧𝐞

𝐁𝐞𝐧 𝐀𝐣𝐢𝐛𝒂 − 𝟕𝟒, 𝐩𝐮𝐛𝐥𝐢𝐬𝐡𝐞𝐝 𝒂𝐭 𝐰𝐰𝐰. 𝐬𝐬𝐦𝐫𝐦𝐡. 𝐫𝐨 𝒂𝐧𝐝

∵ (∑𝐦𝒂

𝐜𝐲𝐜

)

𝟐

≥
𝐂𝐡𝐮 𝒂𝐧𝐝 𝐘𝒂𝐧𝐠

𝟒𝐬𝟐 − 𝟐𝟖𝐑𝐫 + 𝟐𝟗𝐫𝟐

)

 
 
 
 
 
 

 



 

∴ 𝟑(∑𝐧𝒂
𝐜𝐲𝐜

)

𝟐

+ 𝟒(∑𝐦𝒂

𝐜𝐲𝐜

)

𝟐

≥
①

𝟐𝟏𝐬𝟐 & 𝒂𝒍𝐬𝐨, (∑𝐧𝒂
𝐜𝐲𝐜

)

𝟐

. (∑𝐦𝒂

𝐜𝐲𝐜

)

𝟐

− 𝟗𝐬𝟒 

≥

𝐁𝐞𝐧 𝑨𝒋𝒊𝒃𝒂
𝒂𝐧𝐝

𝐂𝐡𝐮 𝒂𝐧𝐝 𝐘𝒂𝐧𝐠

(𝟗𝐬𝟐 − 𝟖𝟎𝐑𝐫 − 𝟐𝐫𝟐)(𝟒𝐬𝟐 − 𝟐𝟖𝐑𝐫 + 𝟐𝟗𝐫𝟐) − 𝟗𝐬𝟒 𝒂𝐧𝐝 ∵ 𝐏 = 

𝟐𝟕(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 + 𝐫(𝟐𝟗𝟐𝐑 − 𝟏𝟕𝐫)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 ∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫  

𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ (∑𝐧𝒂
𝐜𝐲𝐜

)

𝟐

. (∑𝐦𝒂

𝐜𝐲𝐜

)

𝟐

− 𝟗𝐬𝟒 ≥
?
𝟎, 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

(𝟗𝐬𝟐 − 𝟖𝟎𝐑𝐫 − 𝟐𝐫𝟐)(𝟒𝐬𝟐 − 𝟐𝟖𝐑𝐫 + 𝟐𝟗𝐫𝟐) − 𝟗𝐬𝟒 ≥
?
𝐏 ⇔ 𝟑𝟐𝟒𝐫𝟑(𝐑 − 𝟐𝐫) ≥

?
𝟎 

→ 𝐭𝐫𝐮𝐞 𝐯𝐢𝒂 𝐄𝐮𝐥𝐞𝐫 ∴ (∑𝐧𝒂
𝐜𝐲𝐜

)

𝟐

. (∑𝐦𝒂

𝐜𝐲𝐜

)

𝟐

≥ 𝟗𝐬𝟒 

⇒ 𝟒√𝟑. (∑𝐧𝒂
𝐜𝐲𝐜

)(∑𝐦𝒂

𝐜𝐲𝐜

) ≥
②

𝟏𝟐√𝟑𝐬𝟐 ∴ ①+②⇒ (∗∗) ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

∴ (√𝟑 − 𝟏)(𝐧𝒂 + 𝐧𝐛 + 𝐧𝐜) + (𝟐 − √𝟑)(𝒈𝒂 + 𝒈𝐛 + 𝒈𝐜) ≥ √𝟑𝐬 ∀ ∆ 𝐀𝐁𝐂, 

′′ =′′  𝐢𝐟𝐟 ∆ 𝐀𝐁𝐂 𝐢𝐬 𝐞𝐪𝐮𝐢𝒍𝒂𝐭𝐞𝐫𝒂𝒍 (𝐐𝐄𝐃) 
 


