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𝐬(𝐧𝒂 + 𝐧𝐛 + 𝐧𝐜) ≥ (𝟐 − √𝟑)(𝐧𝒂
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𝟐 + 𝐧𝐜
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𝐍𝐨𝐰, 𝐋𝐇𝐒 𝐨𝐟 (∗∗) ≥
𝐁𝐞𝐧 𝐀𝐣𝐢𝐛𝒂

𝟏𝟏𝐬𝟐(𝟗𝐬𝟐 − 𝟖𝟎𝐑𝐫 − 𝟐𝐫𝟐) −
((𝟑𝐑 − 𝐫)𝐬𝟐 − 𝐫(𝟒𝐑+ 𝐫)𝟐)

𝟐

𝐑𝟐
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𝟎 ⇔ 𝟏𝟏𝐬𝟐𝐑𝟐(𝟗𝐬𝟐 − 𝟖𝟎𝐑𝐫 − 𝟐𝐫𝟐) − 
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𝟎& ∵ 𝐏 



 
= (𝟒𝟐𝐑𝟐 + 𝟏𝟒𝐑𝐫 − 𝐫𝟐)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 + 𝟐𝐫(𝟑𝟒𝟒𝐑𝟑 + 𝟒𝟑𝐑𝟐𝐫 − 𝟖𝟕𝐑𝐫𝟐 + 𝟒𝐫𝟑) ∗ 

(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 ∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (𝟏), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 
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𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗∗∗), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗∗∗) ≥
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𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝐑𝐬𝟐(𝟗𝐬𝟐 − 𝟖𝟎𝐑𝐫 − 𝟐𝐫𝟐) − 𝐬𝟐 ((𝟑𝐑− 𝐫)𝐬𝟐 − 𝐫(𝟒𝐑+ 𝐫)𝟐) − 𝟐𝐑𝐬𝟒 

≥
?
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𝟎 𝒂𝐧𝐝 ∵ 𝐐 = 𝐬𝟐(𝟒𝐑+ 𝐫)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 ∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (𝟐), 

𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝐋𝐇𝐒 𝐨𝐟 (𝟐) ≥
?
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𝟐𝐫 

⇒ (𝟐) ⇒ (∗∗∗) ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴ 𝐜𝐨𝐦𝐛𝐢𝐧𝐢𝐧𝐠 𝐛𝐨𝐭𝐡 𝐜𝒂𝐬𝐞𝐬, (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∀ ∆ 𝐀𝐁𝐂 ∴ 

𝐬(𝐧𝒂 + 𝐧𝐛 + 𝐧𝐜) ≥ (𝟐 − √𝟑)(𝐧𝒂
𝟐 + 𝐧𝐛

𝟐 + 𝐧𝐜
𝟐) + 𝟐(√𝟑 − 𝟏)𝐬𝟐 ∀ ∆ 𝐀𝐁𝐂, 
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