
 
𝐈𝐧 𝒂𝐧𝐲 ∆ 𝐀𝐁𝐂 𝐰𝐢𝐭𝐡 𝐩𝒂, 𝐩𝐛, 𝐩𝐜

→ 𝐒𝐩𝐢𝐞𝐤𝐞𝐫 𝐜𝐞𝐯𝐢𝒂𝐧𝐬, 𝐭𝐡𝐞 𝐟𝐨𝒍𝒍𝐨𝐰𝐢𝐧𝐠 𝐫𝐞𝒍𝒂𝐭𝐢𝐨𝐧𝐬𝐡𝐢𝐩 𝐡𝐨𝒍𝐝𝐬 ∶ 

𝐩𝒂 + 𝐩𝐛 + 𝐩𝐜 ≥
𝟗

𝟐
. √𝟐𝐑𝐫 

  Proposed by Mohamed Amine Ben Ajiba-Tanger-Morocco 

Solution by Soumava Chakraborty-Kolkata-India 

 
 

𝐋𝐞𝐭 𝐀𝐒 𝐩𝐫𝐨𝐝𝐮𝐜𝐞𝐝 𝐦𝐞𝐞𝐭 𝐁𝐂 𝒂𝐭 𝐗 𝒂𝐧𝐝 𝐦(∡𝐁𝐀𝐗) = 𝛂 𝒂𝐧𝐝 𝐦(∡𝐂𝐀𝐗) = 𝛃 (𝐬𝒂𝐲) 
𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 𝐨𝐟 ∆ 𝐃𝐄𝐅 = 𝐫′(𝐬𝒂𝐲) 

𝐍𝐨𝐰, 𝟏𝟔[𝐃𝐄𝐅]𝟐 = 𝟐 ∑ (
𝒂𝟐

𝟒
) (

𝐛𝟐

𝟒
) − ∑

𝒂𝟒

𝟏𝟔
=

𝟏

𝟏𝟔
(𝟐 ∑ 𝒂𝟐𝐛𝟐 − ∑ 𝒂𝟒) =

𝟏𝟔𝐫𝟐𝐬𝟐

𝟏𝟔
 

⇒ [𝐃𝐄𝐅] =
𝐫𝐬

𝟒
⇒ 𝐫′ (

𝒂

𝟐
+

𝐛

𝟐
+

𝐜

𝟐

𝟐
) =

𝐫𝐬

𝟒
⇒ 𝐫′ =

𝐫

𝟐
→ (𝟏) 

∵ 𝐒𝐩𝐢𝐞𝐤𝐞𝐫 𝐜𝐞𝐧𝐭𝐞𝐫 𝐢𝐬 𝐢𝐧𝐜𝐞𝐧𝐭𝐞𝐫 𝐨𝐟 ∆ 𝐃𝐄𝐅, ∴ 𝐦(∡𝐀𝐅𝐒) = 𝐁 +
𝐂

𝟐
=

𝟐𝐁 + 𝐂

𝟐
=

𝐁 + 𝛑 − 𝐀

𝟐
 

=
𝛑

𝟐
−

𝐀 − 𝐁

𝟐
 𝒂𝐧𝐝 𝐦(∡𝐀𝐄𝐒) = 𝐂 +

𝐁

𝟐
=

𝛑

𝟐
−

𝐀 − 𝐂

𝟐
→ (𝟐) 

𝐕𝐢𝒂 (𝟏), (𝟐) 𝒂𝐧𝐝 𝐮𝐬𝐢𝐧𝐠 𝐜𝐨𝐬𝐢𝐧𝐞 𝐥𝒂𝐰 𝐨𝐧 ∆ 𝐀𝐅𝐒 𝒂𝐧𝐝 ∆ 𝐀𝐄𝐒, 𝐰𝐞 𝒂𝐫𝐫𝐢𝐯𝐞 𝒂𝐭 ∶ 

𝐀𝐒𝟐 =
𝐫𝟐

𝟒𝐬𝐢𝐧𝟐 𝐂

𝟐

+
𝐜𝟐

𝟒
− (

𝟐𝐫

𝟐𝐬𝐢𝐧
𝐂

𝟐

) (
𝐜

𝟐
) 𝐬𝐢𝐧

𝐀 − 𝐁

𝟐
 

=
𝐫𝟐

𝟒𝐬𝐢𝐧𝟐 𝐁

𝟐

+
𝐛𝟐

𝟒
− (

𝟐𝐫

𝟐𝐬𝐢𝐧
𝐁

𝟐

) (
𝐛

𝟐
) 𝐬𝐢𝐧

𝐀 − 𝐂

𝟐
 



 

⇒ 𝟐𝐀𝐒𝟐 =
(𝐢) 𝐫𝟐

𝟒𝐬𝐢𝐧𝟐 𝐂

𝟐

+
𝐜𝟐

𝟒
− (

𝟐𝐫

𝟐𝐬𝐢𝐧
𝐂

𝟐

) (
𝐜

𝟐
) 𝐬𝐢𝐧

𝐀 − 𝐁

𝟐
+

𝐫𝟐

𝟒𝐬𝐢𝐧𝟐 𝐁

𝟐

+
𝐛𝟐

𝟒
 

− (
𝟐𝐫

𝟐𝐬𝐢𝐧
𝐁

𝟐

) (
𝐛

𝟐
) 𝐬𝐢𝐧

𝐀 − 𝐂

𝟐
 

𝐍𝐨𝐰, (
𝟐𝐫

𝟐𝐬𝐢𝐧
𝐂

𝟐

) (
𝐜

𝟐
) 𝐬𝐢𝐧

𝐀 − 𝐁

𝟐
+ (

𝟐𝐫

𝟐𝐬𝐢𝐧
𝐁

𝟐

) (
𝐛

𝟐
) 𝐬𝐢𝐧

𝐀 − 𝐂

𝟐
 

=
𝐫

𝟐
(𝟒𝐑𝐜𝐨𝐬

𝐂

𝟐
𝐬𝐢𝐧

𝐀 − 𝐁

𝟐
+ 𝟒𝐑𝐜𝐨𝐬

𝐁

𝟐
𝐬𝐢𝐧

𝐀 − 𝐂

𝟐
) 

= 𝐑𝐫 (𝟐𝐬𝐢𝐧
𝐀 + 𝐁

𝟐
𝐬𝐢𝐧

𝐀 − 𝐁

𝟐
+ 𝟐𝐬𝐢𝐧

𝐀 + 𝐂

𝟐
𝐬𝐢𝐧

𝐀 − 𝐂

𝟐
) 

= 𝐑𝐫 (𝟏 − 𝟐𝐬𝐢𝐧𝟐
𝐁

𝟐
+ 𝟏 − 𝟐𝐬𝐢𝐧𝟐

𝐂

𝟐
− 𝟐 (𝟏 − 𝟐𝐬𝐢𝐧𝟐

𝐀

𝟐
)) 

= 𝟐𝐑𝐫 (
𝟐𝒂(𝐬 − 𝐛)(𝐬 − 𝐜) − 𝐛(𝐬 − 𝐜)(𝐬 − 𝒂) − 𝐜(𝐬 − 𝒂)(𝐬 − 𝐛)

𝒂𝐛𝐜
) 

=
𝐑𝐫

𝟖𝐑𝐫𝐬
(𝟐𝒂𝟑 + (𝐛 + 𝐜)𝒂𝟐 − 𝟐𝒂(𝐛𝟐 + 𝐜𝟐) − (𝐛 + 𝐜)(𝐛 − 𝐜)𝟐) 

=
𝟒(𝐛 + 𝐜)𝐛𝐜𝐬𝐢𝐧𝟐 𝐀

𝟐
− 𝟐𝒂. 𝟐𝐛𝐜𝐜𝐨𝐬𝐀

𝟖𝐬
=

𝐛𝐜 ((𝟐𝐬 − 𝒂)𝐬𝐢𝐧𝟐 𝐀

𝟐
− 𝒂 (𝟏 − 𝟐𝐬𝐢𝐧𝟐 𝐀

𝟐
))

𝟐𝐬
 

=
𝐛𝐜 ((𝟐𝐬 + 𝒂)𝐬𝐢𝐧𝟐 𝐀

𝟐
− 𝒂)

𝟐𝐬
=

(𝟐𝐬 + 𝒂)(𝐬 − 𝐛)(𝐬 − 𝐜)

𝟐𝐬
− 𝟐𝐑𝐫 

⇒ − (
𝟐𝐫

𝟐𝐬𝐢𝐧
𝐂

𝟐

) (
𝐜

𝟐
) 𝐬𝐢𝐧

𝐀 − 𝐁

𝟐
− (

𝟐𝐫

𝟐𝐬𝐢𝐧
𝐁

𝟐

) (
𝐛

𝟐
) 𝐬𝐢𝐧

𝐀 − 𝐂

𝟐
 

=
(∗) −(𝟐𝐬 + 𝒂)(𝐬 − 𝐛)(𝐬 − 𝐜)

𝟐𝐬
+ 𝟐𝐑𝐫 

𝐀𝐠𝒂𝐢𝐧,
𝐫𝟐

𝟒𝐬𝐢𝐧𝟐 𝐁

𝟐

+
𝐫𝟐

𝟒𝐬𝐢𝐧𝟐 𝐂

𝟐

=
𝐫𝟐

𝟒
(

𝐜𝒂

(𝐬 − 𝐜)(𝐬 − 𝒂)
+

𝒂𝐛

(𝐬 − 𝒂)(𝐬 − 𝐛)
) 

=
𝐫𝟐

𝟒𝐫𝟐𝐬
(𝐜𝒂(𝐬 − 𝐛) + 𝒂𝐛(𝐬 − 𝐜)) =

𝒂𝐛 + 𝐜𝒂

𝟒
− 𝟐𝐑𝐫 =

(∗∗) 𝐫𝟐

𝟒𝐬𝐢𝐧𝟐 𝐁

𝟐

+
𝐫𝟐

𝟒𝐬𝐢𝐧𝟐 𝐂

𝟐

 

(𝐢), (∗), (∗∗) ⇒ 𝟐𝐀𝐒𝟐 =
𝐛𝟐 + 𝐜𝟐 + 𝒂𝐛 + 𝐜𝒂

𝟒
−

(𝟐𝐬 + 𝒂)(𝐬 − 𝐛)(𝐬 − 𝐜)

𝟐𝐬
 

=
(𝒂 + 𝐛 + 𝐜)(𝐛𝟐 + 𝐜𝟐 + 𝒂𝐛 + 𝐜𝒂) − (𝟐𝒂 + 𝐛 + 𝐜)(𝐜 + 𝒂 − 𝐛)(𝒂 + 𝐛 − 𝐜)

𝟖𝐬
 

=
𝐛𝟑 + 𝐜𝟑 − 𝒂𝐛𝐜 + 𝒂(𝟐𝐛𝟐 + 𝟐𝐜𝟐 − 𝒂𝟐)

𝟒𝐬
⇒ 𝟐𝐀𝐒𝟐 =

(𝐢𝐢) 𝐛𝟑 + 𝐜𝟑 − 𝒂𝐛𝐜 + 𝒂(𝟒𝐦𝒂
𝟐)

𝟒𝐬
 

𝐕𝐢𝒂 𝐬𝐢𝐧𝐞 𝐥𝒂𝐰 𝐨𝐧 ∆ 𝐀𝐅𝐒,
𝐫

𝟐𝐬𝐢𝐧
𝐂

𝟐
𝐬𝐢𝐧𝛂

=
𝐀𝐒

𝐜𝐨𝐬
𝐀−𝐁

𝟐

=
𝐜𝐀𝐒

(𝒂 + 𝐛)𝐬𝐢𝐧
𝐂

𝟐

 



 

⇒ 𝐜𝐬𝐢𝐧𝛂 =
(∗∗∗) 𝐫(𝒂 + 𝐛)

𝟐𝐀𝐒
 𝒂𝐧𝐝 𝐯𝐢𝒂 𝐬𝐢𝐧𝐞 𝐥𝒂𝐰 𝐨𝐧 ∆ 𝐀𝐄𝐒, 𝐛𝐬𝐢𝐧𝛃 =

(∗∗∗∗) 𝐫(𝒂 + 𝐜)

𝟐𝐀𝐒
 

𝐍𝐨𝐰, [𝐁𝐀𝐗] + [𝐁𝐀𝐗] = [𝐀𝐁𝐂] ⇒
𝟏

𝟐
𝐩𝒂𝐜𝐬𝐢𝐧𝛂 +

𝟏

𝟐
𝐩𝒂𝐛𝐬𝐢𝐧𝛃 = 𝐫𝐬 

⇒
𝐯𝐢𝒂 (∗∗∗) 𝒂𝐧𝐝 (∗∗∗∗) 𝐩𝒂(𝒂 + 𝐛 + 𝒂 + 𝐜)

𝟒𝐀𝐒
= 𝐬 ⇒ 𝐩𝒂 =

𝟒𝐬

𝟐𝐬 + 𝒂
𝐀𝐒 

⇒ 𝐩𝒂
𝟐 =

𝐯𝐢𝒂 (𝐢𝐢) 𝟏𝟔𝐬𝟐

(𝟐𝐬 + 𝒂)𝟐
.
𝐛𝟑 + 𝐜𝟑 − 𝒂𝐛𝐜 + 𝒂(𝟒𝐦𝒂

𝟐)

𝟖𝐬
 

∴ 𝐩𝒂
𝟐 =

𝟐𝐬

(𝟐𝐬 + 𝒂)𝟐
(𝐛𝟑 + 𝐜𝟑 − 𝒂𝐛𝐜 + 𝒂(𝟒𝐦𝒂

𝟐)) ⇒ 𝐩𝒂
𝟐 − 𝐦𝒂

𝟐 = 

𝟐𝐬

(𝟐𝐬 + 𝒂)𝟐
(𝐛𝟑 + 𝐜𝟑 − 𝒂𝐛𝐜 + 𝒂(𝟒𝐦𝒂

𝟐)) − 𝐦𝒂
𝟐 

=
𝟐𝐬

(𝟐𝐬 + 𝒂)𝟐
(𝐛𝟑 + 𝐜𝟑 − 𝒂𝐛𝐜) − (𝟏 −

𝟖𝐬𝒂

(𝟐𝐬 + 𝒂)𝟐
) 𝐦𝒂

𝟐  

=
𝟒(𝒂 + 𝐛 + 𝐜)(𝐛𝟑 + 𝐜𝟑 − 𝒂𝐛𝐜) − (𝟐𝐛𝟐 + 𝟐𝐜𝟐 − 𝒂𝟐)(𝐛 + 𝐜)𝟐

𝟒(𝟐𝐬 + 𝒂)𝟐
 

=
𝒂𝟐(𝐛 − 𝐜)𝟐 + 𝟒𝒂(𝐛 + 𝐜)(𝐛 − 𝐜)𝟐 + 𝟐(𝐛𝟐 − 𝐜𝟐)𝟐

𝟒(𝟐𝐬 + 𝒂)𝟐
 

=
(𝐛 − 𝐜)𝟐

𝟒(𝟐𝐬 + 𝒂)𝟐
((𝒂𝟐 + 𝟐𝒂(𝐛 + 𝐜) + (𝐛 + 𝐜)𝟐) + ((𝐛 + 𝐜)𝟐 + 𝟐𝒂(𝐛 + 𝐜) + 𝒂𝟐) − 𝒂𝟐) 

=
(𝐛 − 𝐜)𝟐

𝟒(𝟐𝐬 + 𝒂)𝟐
(𝟐(𝒂 + 𝐛 + 𝐜)𝟐 − 𝒂𝟐) =

(𝐛 − 𝐜)𝟐(𝟖𝐬𝟐 − 𝒂𝟐)

𝟒(𝟐𝐬 + 𝒂)𝟐
 

∴ 𝐩𝒂
𝟐 − 𝐦𝒂

𝟐 =
(⦁) (𝐛 − 𝐜)𝟐(𝟖𝐬𝟐 − 𝒂𝟐)

𝟒(𝟐𝐬 + 𝒂)𝟐
 

𝐍𝐨𝐰, 𝐩𝒂 − 𝐦𝒂 ≥
(𝐛 − 𝐜)𝟐

𝟐(𝟐𝐬 + 𝒂)
⇔ 𝐩𝒂

𝟐 ≥ 𝐦𝒂
𝟐 +

(𝐛 − 𝐜)𝟒

𝟒(𝟐𝐬 + 𝒂)𝟐
+

𝐦𝒂. (𝐛 − 𝐜)𝟐

𝟐𝐬 + 𝒂
 

⇔
𝐯𝐢𝒂 (⦁) (𝐛 − 𝐜)𝟐(𝟖𝐬𝟐 − 𝒂𝟐 − (𝐛 − 𝐜)𝟐)

𝟒(𝟐𝐬 + 𝒂)𝟐
≥

(∎) 𝐦𝒂. (𝐛 − 𝐜)𝟐

𝟐𝐬 + 𝒂
 

𝐖𝐞 𝐧𝐨𝐭𝐞 𝐭𝐡𝒂𝐭 ∶ 𝟖𝐬𝟐 − 𝒂𝟐 − (𝐛 − 𝐜)𝟐 > 𝟖𝐬𝟐 − 𝟐𝒂𝟐 > 𝟎 ∴ (∎) ⇔ 
(𝟖𝐬𝟐 − 𝒂𝟐)𝟐 + (𝐛 − 𝐜)𝟒 − 𝟐(𝟖𝐬𝟐 − 𝒂𝟐)(𝐛 − 𝐜)𝟐

𝟏𝟔(𝟐𝐬 + 𝒂)𝟐
 

≥ (𝐬(𝐬 − 𝒂) +
(𝐛 − 𝐜)𝟐

𝟒
) (∵ (𝐛 − 𝐜)𝟐 ≥ 𝟎) 

⇔ (𝟖𝐬𝟐 − 𝒂𝟐)𝟐 − 𝟏𝟔𝐬(𝐬 − 𝒂)(𝟐𝐬 + 𝒂)𝟐 + (𝐛 − 𝐜)𝟒 − 
𝟐(𝐛 − 𝐜)𝟐(𝟖𝐬𝟐 − 𝒂𝟐 + 𝟐(𝟐𝐬 + 𝒂)𝟐) ≥ 𝟎 

⇔ (𝐛 − 𝐜)𝟒 − 𝟐(𝟒𝐬 + 𝒂)𝟐(𝐛 − 𝐜)𝟐 + 𝒂𝟐(𝟑𝟐𝐬𝟐 + 𝟏𝟔𝐬𝒂 + 𝒂𝟐) ≥
(∎∎)

𝟎 
𝐍𝐨𝐰, (∎∎) 𝐢𝐬 𝒂 𝐪𝐮𝒂𝐝𝐫𝐢𝒍𝒂𝐭𝐞𝐫𝒂𝒍 𝐢𝐧 (𝐛 − 𝐜)𝟐 𝐰𝐢𝐭𝐡 𝐝𝐢𝐬𝐜𝐫𝐢𝐦𝐢𝐧𝒂𝐧𝐭 = 

𝟒(𝟒𝐬 + 𝒂)𝟒 − 𝟒𝒂𝟐(𝟑𝟐𝐬𝟐 + 𝟏𝟔𝐬𝒂 + 𝒂𝟐) = 𝟐𝟓𝟔𝐬𝟐(𝟐𝐬 + 𝒂)𝟐 ∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 

𝐩𝐫𝐨𝐯𝐞 (∎∎), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ (𝐛 − 𝐜)𝟐 ≤
𝟐(𝟒𝐬 + 𝒂)𝟐 − 𝟏𝟔𝐬(𝟐𝐬 + 𝒂)

𝟐
 

= 𝒂𝟐 → 𝐭𝐫𝐮𝐞 ⇒ (∎∎) ⇒ (∎) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴ 𝐩𝒂 − 𝐦𝒂 ≥
(⦁⦁) (𝐛 − 𝐜)𝟐

𝟐(𝟐𝐬 + 𝒂)
 𝒂𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐬 



 

𝐕𝐢𝒂 𝐂𝐡𝐮 𝒂𝐧𝐝 𝐘𝒂𝐧𝐠, (∑ 𝐦𝒂

𝐜𝐲𝐜

)

𝟐

≥
𝟗𝐬𝟐

𝟒
+

𝟕𝐬𝟐

𝟒
− 𝟐𝟖𝐑𝐫 + 𝟐𝟗𝐫𝟐 ≥

𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧
 

𝟗𝐬𝟐

𝟒
+

𝟕(𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐)

𝟒
− 𝟐𝟖𝐑𝐫 + 𝟐𝟗𝐫𝟐 =

𝟗𝐬𝟐

𝟒
+ (𝟐𝟗 −

𝟑𝟓

𝟒
) 𝐫𝟐 >

𝟗𝐬𝟐

𝟒
⇒ ∑ 𝐦𝒂

𝐜𝐲𝐜

>
(⦁⦁⦁) 𝟑𝐬

𝟐
 

𝐖𝐞 𝐡𝒂𝐯𝐞 ∶ ∑
(𝐛 − 𝐜)𝟐

(𝟐𝐬 + 𝒂)
𝐜𝐲𝐜

=
(𝒍) 𝟏

𝟐𝐬(𝟗𝐬𝟐 + 𝟔𝐑𝐫 + 𝐫𝟐)
. ∑ ((𝐛 − 𝐜)𝟐(𝟖𝐬𝟐 − 𝟐𝐬𝒂 + 𝐛𝐜))

𝐜𝐲𝐜

 

𝒂𝐧𝐝, ∑ ((𝐛 − 𝐜)𝟐(𝟖𝐬𝟐 − 𝟐𝐬𝒂 + 𝐛𝐜))

𝐜𝐲𝐜

= 𝟖𝐬𝟐 ∑(𝐛 − 𝐜)𝟐

𝐜𝐲𝐜

− 𝟐𝐬. ∑ 𝒂(𝐛𝟐 + 𝐜𝟐 − 𝟐𝐛𝐜)

𝐜𝐲𝐜

 

+ ∑ (𝐛𝐜 (∑ 𝒂𝟐

𝐜𝐲𝐜

− 𝒂𝟐 − 𝟐𝐛𝐜))

𝐜𝐲𝐜

 

= 𝟏𝟔𝐬𝟐(𝐬𝟐 − 𝟏𝟐𝐑𝐫 − 𝟑𝐫𝟐) − 𝟐𝐬. ((∑ 𝒂

𝐜𝐲𝐜

) (∑ 𝒂𝐛

𝐜𝐲𝐜

) − 𝟗𝒂𝐛𝐜) + 

𝟐(𝐬𝟐 − 𝟒𝐑𝐫 − 𝐫𝟐)(𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐) − 𝟐((𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)𝟐 − 𝟏𝟔𝐑𝐫𝐬𝟐) − 𝟖𝐑𝐫𝐬𝟐 
= 𝟏𝟔𝐬𝟐(𝐬𝟐 − 𝟏𝟐𝐑𝐫 − 𝟑𝐫𝟐) − 𝟒𝐬𝟐(𝐬𝟐 − 𝟏𝟒𝐑𝐫 + 𝐫𝟐) + 

𝟐(𝐬𝟐 − 𝟒𝐑𝐫 − 𝐫𝟐)(𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐) − 𝟐((𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)𝟐 − 𝟏𝟔𝐑𝐫𝐬𝟐) − 𝟖𝐑𝐫𝐬𝟐 ⇒
𝐯𝐢𝒂 (𝒍)

 

∑
(𝐛 − 𝐜)𝟐

𝟐(𝟐𝐬 + 𝒂)
𝐜𝐲𝐜

=
(𝐦) 𝟒𝐬𝟐(𝐬𝟐 − 𝟏𝟐𝐑𝐫 − 𝟑𝐫𝟐) − 𝐬𝟐(𝐬𝟐 − 𝟏𝟒𝐑𝐫 + 𝐫𝟐) + 𝐫 ((𝟐𝐑 − 𝐫)𝐬𝟐 − 𝐫(𝟒𝐑 + 𝐫)𝟐)

𝐬(𝟗𝐬𝟐 + 𝟔𝐑𝐫 + 𝐫𝟐)
 

=
𝛔

𝐬(𝟗𝐬𝟐 + 𝟔𝐑𝐫 + 𝐫𝟐)
 (𝐬𝒂𝐲) ∴ (⦁⦁) 𝒂𝐧𝐝 (𝐦) ⇒ 

𝐩𝒂 + 𝐩𝐛 + 𝐩𝐜 ≥ ∑ 𝐦𝒂

𝐜𝐲𝐜

+
𝛔

𝐬(𝟗𝐬𝟐 + 𝟔𝐑𝐫 + 𝐫𝟐)
⇒ (𝐩𝒂 + 𝐩𝐛 + 𝐩𝐜)𝟐 ≥ 

(∑ 𝐦𝒂

𝐜𝐲𝐜

)

𝟐

+
𝛔𝟐

𝐬𝟐(𝟗𝐬𝟐 + 𝟔𝐑𝐫 + 𝐫𝟐)𝟐
+

𝟐𝛔

𝐬(𝟗𝐬𝟐 + 𝟔𝐑𝐫 + 𝐫𝟐)
. (∑ 𝐦𝒂

𝐜𝐲𝐜

) 

≥
𝐯𝐢𝒂 𝐂𝐡𝐮 𝒂𝐧𝐝 𝐘𝒂𝐧𝐠,𝒂𝐧𝐝 (⦁⦁⦁)

𝟒𝐬𝟐 − 𝟐𝟖𝐑𝐫 + 𝟐𝟗𝐫𝟐 +
𝛔𝟐

𝐬𝟐(𝟗𝐬𝟐 + 𝟔𝐑𝐫 + 𝐫𝟐)𝟐
+

𝟑𝛔

𝟗𝐬𝟐 + 𝟔𝐑𝐫 + 𝐫𝟐
 

=
𝐬𝟐(𝟒𝐬𝟐 − 𝟐𝟖𝐑𝐫 + 𝟐𝟗𝐫𝟐)(𝟗𝐬𝟐 + 𝟔𝐑𝐫 + 𝐫𝟐)𝟐 + 𝛔𝟐 + 𝟑𝛔. 𝐬𝟐(𝟗𝐬𝟐 + 𝟔𝐑𝐫 + 𝐫𝟐)

𝐬𝟐(𝟗𝐬𝟐 + 𝟔𝐑𝐫 + 𝐫𝟐)𝟐
≥
? 𝟖𝟏𝐑𝐫

𝟐
 

⇔ 𝟖𝟐𝟖𝐬𝟖 − (𝟏𝟐𝟐𝟑𝟕𝐑𝐫 − 𝟑𝟗𝟑𝟔𝐫𝟐)𝐬𝟔 − 𝐫𝟐(𝟏𝟒𝟔𝟔𝟖𝐑𝟐 − 𝟒𝟒𝟔𝟐𝐑𝐫 − 𝟏𝟐𝟗𝟒𝐫𝟐)𝐬𝟒 

−𝐫𝟑(𝟑𝟒𝟔𝟎𝐑𝟑 − 𝟏𝟗𝟖𝟎𝐑𝟐𝐫 − 𝟏𝟎𝟓𝟏𝐑𝐫𝟐 − 𝟏𝟎𝟖𝐫𝟑)𝐬𝟐 + 𝟐𝐫𝟒(𝟒𝐑 + 𝐫)𝟒 ≥
?
⏟
①

𝟎 

𝐍𝐨𝐰, 𝐓 = 𝟖𝟐𝟖(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟒 + (𝟒𝟎𝟕𝟓𝟓𝐑𝐫 − 𝟏𝟐𝟔𝟐𝟒𝐫𝟐)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟑 
+𝐫𝟐(𝟔𝟔𝟗𝟕𝟔𝟒𝐑𝟐 − 𝟒𝟏𝟕𝟗𝟑𝟓𝐑𝐫 + 𝟔𝟔𝟒𝟓𝟒𝐫𝟐)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 + 

𝟒𝐫𝟑(𝟗𝟐𝟑𝟕𝟕𝟓𝐑𝟑 − 𝟖𝟖𝟐𝟓𝟎𝟕𝐑𝟐𝐫 + 𝟐𝟗𝟏𝟐𝟗𝟔𝐑𝐫𝟐 − 𝟑𝟐𝟗𝟎𝟖𝐫𝟑)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐) 

≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 ∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ①, 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝐋𝐇𝐒 𝐨𝐟 ① ≥ 𝐓 



 

⇔ 𝟗𝟐𝟎𝟎𝐭𝟒 − 𝟑𝟐𝟕𝟓𝟓𝐭𝟑 + 𝟑𝟒𝟖𝟒𝟐𝐭𝟐 − 𝟏𝟑𝟎𝟔𝟎𝐭 + 𝟏𝟓𝟗𝟐 ≥ 𝟎 (𝐭 =
𝐑

𝐫
) ⇔ 

(𝐭 − 𝟐) ((𝐭 − 𝟐)(𝟗𝟐𝟎𝟎𝐭𝟐 + 𝟒𝟎𝟒𝟓𝐭 + 𝟏𝟒𝟐𝟐𝟐) + 𝟐𝟕𝟔𝟒𝟖) ≥ 𝟎 → 𝐭𝐫𝐮𝐞 ⇒ ① 𝐢𝐬 𝐭𝐫𝐮𝐞 

⇒ (𝐩𝒂 + 𝐩𝐛 + 𝐩𝐜)𝟐 ≥
𝟖𝟏𝐑𝐫

𝟐
∴ 𝐩𝒂 + 𝐩𝐛 + 𝐩𝐜 ≥

𝟗

𝟐
. √𝟐𝐑𝐫 

∀ ∆ 𝐀𝐁𝐂, 𝐰𝐢𝐭𝐡 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐟𝐟 ∆ 𝐀𝐁𝐂 𝐢𝐬 𝐞𝐪𝐮𝐢𝒍𝒂𝐭𝐞𝐫𝒂𝒍 (𝐐𝐄𝐃) 
 


