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In any A ABC with p,, py, P
— Spieker cevians, the following relationship holds :
9
Pa + Pp + Pc = E.\/ZRr

Proposed by Mohamed Amine Ben Ajiba-Tanger-Morocco

Solution by Soumava Chakraborty-Kolkata-India
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Let AS produced meet BC at X and m(£BAX) = a and m(£CAX) = B (say)
and inradius of A DEF = r'(say)
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Via (1), (2) and using cosine law on A AFS and A AES, we arrive at :
2
r

2

AS? N c? 2r (c) _A-B
— — sin
4sin2 g 4 Zsing 2

- . »B - . B
4sm25 4 ZsmE

r? b? 2r (b) A-C
5)sin—



ROMANIAN MATHEMATICAL MAGAZINE

b

2 Zsm— (2

_r<4R C . A_B+4-R B A — C)

=3 coszsm > coszsm >
A—-B . A+C | A—C)

R (2' A+B +2
= Rr|( 2sin 2 sin 2 sin 2 sin >
2_

B C A
_ C 9cin? o  ein? o el
—Rr<1 2sin 2+1 2sin > 2(1 2sin 2))

<2a(s —b)(s—=c)—b(s—c)(s—a) —c(s—a)(s — b))

) sm2

Now,
ZsinE 2

abc

Rr
= BRrs (2a® + (b + c)a? — 2a(b? + c?) — (b+ c)(b —¢)?)
4(b + c)bcsin? % — 2a.2bccosA  bc ((25 — a)sin? % —-a (1 — 2sin® ;))
- 2s

8s
bc ((ZS + a)sin? % - a) _ 2s+a)(s—b)(s—c) SRy

R 2r (c) . A—-B 2r (b) . A-C
— —)sin — —|sin
2sin— 2 2 ZsinE 2 2
x —2s+a)(s—b)(s—c
() —( )( )( ) + 2Rr
2s
Avai r? N r? r2< ca ab )
ain,
g 4sin2 g 4$1n2 (s—o)(s— a) (s—a)(s—Db)
2 ab + ca () 12 r?
=-——(ca(s—-b)+ab(s—¢))=—————-2Rr = —5+——
4r’s 4 4sin? 3 4sin? 5
b?2+c2+ab+ca (2s+a)(s—b)(s—c
(@), (), (++) = 2AS% = 2 ! X 23 X )
(a+b+c)(b® +c2+ab+ca)— (2a+b+c)(c+a—b)(a+b—c)
B 8s
b3 + ¢3 — abc + a(2b? + 2¢? — a?) i) b3 + ¢ — abc + a(4m?)
= = 2AS? =
4s 4s
r AS cAS

Via sine law on A AFS, = =
(a+ b)sinE

. . A-B
2sin 7 sina cos -



ROMANIAN MATHEMATICAL MAGAZINE

(= r(a+b) d via sine 1 A AES bsing = r(a+c)
a = 2AS anda via sine iaw on ) smB = 2AS

1 1
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9S2 7S2 Gerretsen

Via Chu and Yang, Z mg | =+ 28Rr +29r2 >
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Gerretsen

> 0 - in order to prove (1), it suffices to prove : LHSof (1) > T
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R
< 9200t* — 3275583 + 34842t2 — 13060t + 1592 > 0 (t = ;) o

(t-2) ((t —2)(9200t% + 4045t + 14222) + 27648) > 0 - true = (1) is true
81Rr

9
=>(pu-l'pb'l'pc)z2 pa+pb+pc25.v2Rr
v A ABC, with equality iff A ABC is equilateral (QED)



