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𝐋𝐞𝐭 𝐀𝐒 𝐩𝐫𝐨𝐝𝐮𝐜𝐞𝐝 𝐦𝐞𝐞𝐭 𝐁𝐂 𝒂𝐭 𝐗 𝒂𝐧𝐝 𝐦(∡𝐁𝐀𝐗) = 𝛂 𝒂𝐧𝐝 𝐦(∡𝐂𝐀𝐗) = 𝛃 (𝐬𝒂𝐲) 
𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 𝐨𝐟 ∆ 𝐃𝐄𝐅 = 𝐫′(𝐬𝒂𝐲) 

𝐍𝐨𝐰, 𝟏𝟔[𝐃𝐄𝐅]𝟐 = 𝟐 ∑ (
𝒂𝟐

𝟒
) (

𝐛𝟐

𝟒
) − ∑

𝒂𝟒

𝟏𝟔
=

𝟏

𝟏𝟔
(𝟐 ∑ 𝒂𝟐𝐛𝟐 − ∑ 𝒂𝟒) =

𝟏𝟔𝐫𝟐𝐬𝟐

𝟏𝟔
 

⇒ [𝐃𝐄𝐅] =
𝐫𝐬

𝟒
⇒ 𝐫′ (

𝒂

𝟐
+

𝐛

𝟐
+

𝐜

𝟐

𝟐
) =

𝐫𝐬

𝟒
⇒ 𝐫′ =

𝐫

𝟐
→ (𝟏) 

∵ 𝐒𝐩𝐢𝐞𝐤𝐞𝐫 𝐜𝐞𝐧𝐭𝐞𝐫 𝐢𝐬 𝐢𝐧𝐜𝐞𝐧𝐭𝐞𝐫 𝐨𝐟 ∆ 𝐃𝐄𝐅, ∴ 𝐦(∡𝐀𝐅𝐒) = 𝐁 +
𝐂

𝟐
=

𝟐𝐁 + 𝐂

𝟐
=

𝐁 + 𝛑 − 𝐀

𝟐
 

=
𝛑

𝟐
−

𝐀 − 𝐁

𝟐
 𝒂𝐧𝐝 𝐦(∡𝐀𝐄𝐒) = 𝐂 +

𝐁

𝟐
=

𝛑

𝟐
−

𝐀 − 𝐂

𝟐
→ (𝟐) 

𝐕𝐢𝒂 (𝟏), (𝟐) 𝒂𝐧𝐝 𝐮𝐬𝐢𝐧𝐠 𝐜𝐨𝐬𝐢𝐧𝐞 𝐥𝒂𝐰 𝐨𝐧 ∆ 𝐀𝐅𝐒 𝒂𝐧𝐝 ∆ 𝐀𝐄𝐒, 𝐰𝐞 𝒂𝐫𝐫𝐢𝐯𝐞 𝒂𝐭 ∶ 

𝐀𝐒𝟐 =
𝐫𝟐

𝟒𝐬𝐢𝐧𝟐 𝐂

𝟐

+
𝐜𝟐

𝟒
− (

𝟐𝐫

𝟐𝐬𝐢𝐧
𝐂

𝟐

) (
𝐜

𝟐
) 𝐬𝐢𝐧

𝐀 − 𝐁

𝟐
 

=
𝐫𝟐

𝟒𝐬𝐢𝐧𝟐 𝐁

𝟐

+
𝐛𝟐

𝟒
− (

𝟐𝐫

𝟐𝐬𝐢𝐧
𝐁

𝟐

) (
𝐛

𝟐
) 𝐬𝐢𝐧

𝐀 − 𝐂

𝟐
 



 

⇒ 𝟐𝐀𝐒𝟐 =
(𝐢) 𝐫𝟐

𝟒𝐬𝐢𝐧𝟐 𝐂

𝟐

+
𝐜𝟐

𝟒
− (

𝟐𝐫

𝟐𝐬𝐢𝐧
𝐂

𝟐

) (
𝐜

𝟐
) 𝐬𝐢𝐧

𝐀 − 𝐁

𝟐
+

𝐫𝟐

𝟒𝐬𝐢𝐧𝟐 𝐁

𝟐

+
𝐛𝟐

𝟒
 

− (
𝟐𝐫

𝟐𝐬𝐢𝐧
𝐁

𝟐

) (
𝐛

𝟐
) 𝐬𝐢𝐧

𝐀 − 𝐂

𝟐
 

𝐍𝐨𝐰, (
𝟐𝐫

𝟐𝐬𝐢𝐧
𝐂

𝟐

) (
𝐜

𝟐
) 𝐬𝐢𝐧

𝐀 − 𝐁

𝟐
+ (

𝟐𝐫

𝟐𝐬𝐢𝐧
𝐁

𝟐

) (
𝐛

𝟐
) 𝐬𝐢𝐧

𝐀 − 𝐂

𝟐
 

=
𝐫

𝟐
(𝟒𝐑𝐜𝐨𝐬

𝐂

𝟐
𝐬𝐢𝐧

𝐀 − 𝐁

𝟐
+ 𝟒𝐑𝐜𝐨𝐬

𝐁

𝟐
𝐬𝐢𝐧

𝐀 − 𝐂

𝟐
) 

= 𝐑𝐫 (𝟐𝐬𝐢𝐧
𝐀 + 𝐁

𝟐
𝐬𝐢𝐧

𝐀 − 𝐁

𝟐
+ 𝟐𝐬𝐢𝐧

𝐀 + 𝐂

𝟐
𝐬𝐢𝐧

𝐀 − 𝐂

𝟐
) 

= 𝐑𝐫 (𝟏 − 𝟐𝐬𝐢𝐧𝟐
𝐁

𝟐
+ 𝟏 − 𝟐𝐬𝐢𝐧𝟐

𝐂

𝟐
− 𝟐 (𝟏 − 𝟐𝐬𝐢𝐧𝟐

𝐀

𝟐
)) 

= 𝟐𝐑𝐫 (
𝟐𝒂(𝐬 − 𝐛)(𝐬 − 𝐜) − 𝐛(𝐬 − 𝐜)(𝐬 − 𝒂) − 𝐜(𝐬 − 𝒂)(𝐬 − 𝐛)

𝒂𝐛𝐜
) 

=
𝐑𝐫

𝟖𝐑𝐫𝐬
(𝟐𝒂𝟑 + (𝐛 + 𝐜)𝒂𝟐 − 𝟐𝒂(𝐛𝟐 + 𝐜𝟐) − (𝐛 + 𝐜)(𝐛 − 𝐜)𝟐) 

=
𝟒(𝐛 + 𝐜)𝐛𝐜𝐬𝐢𝐧𝟐 𝐀

𝟐
− 𝟐𝒂. 𝟐𝐛𝐜𝐜𝐨𝐬𝐀

𝟖𝐬
=

𝐛𝐜 ((𝟐𝐬 − 𝒂)𝐬𝐢𝐧𝟐 𝐀

𝟐
− 𝒂 (𝟏 − 𝟐𝐬𝐢𝐧𝟐 𝐀

𝟐
))

𝟐𝐬
 

=
𝐛𝐜 ((𝟐𝐬 + 𝒂)𝐬𝐢𝐧𝟐 𝐀

𝟐
− 𝒂)

𝟐𝐬
=

(𝟐𝐬 + 𝒂)(𝐬 − 𝐛)(𝐬 − 𝐜)

𝟐𝐬
− 𝟐𝐑𝐫 

⇒ − (
𝟐𝐫

𝟐𝐬𝐢𝐧
𝐂

𝟐

) (
𝐜

𝟐
) 𝐬𝐢𝐧

𝐀 − 𝐁

𝟐
− (

𝟐𝐫

𝟐𝐬𝐢𝐧
𝐁

𝟐

) (
𝐛

𝟐
) 𝐬𝐢𝐧

𝐀 − 𝐂

𝟐
 

=
(∗) −(𝟐𝐬 + 𝒂)(𝐬 − 𝐛)(𝐬 − 𝐜)

𝟐𝐬
+ 𝟐𝐑𝐫 

𝐀𝐠𝒂𝐢𝐧,
𝐫𝟐

𝟒𝐬𝐢𝐧𝟐 𝐁

𝟐

+
𝐫𝟐

𝟒𝐬𝐢𝐧𝟐 𝐂

𝟐

=
𝐫𝟐

𝟒
(

𝐜𝒂

(𝐬 − 𝐜)(𝐬 − 𝒂)
+

𝒂𝐛

(𝐬 − 𝒂)(𝐬 − 𝐛)
) 

=
𝐫𝟐

𝟒𝐫𝟐𝐬
(𝐜𝒂(𝐬 − 𝐛) + 𝒂𝐛(𝐬 − 𝐜)) =

𝒂𝐛 + 𝐜𝒂

𝟒
− 𝟐𝐑𝐫 =

(∗∗) 𝐫𝟐

𝟒𝐬𝐢𝐧𝟐 𝐁

𝟐

+
𝐫𝟐

𝟒𝐬𝐢𝐧𝟐 𝐂

𝟐

 

(𝐢), (∗), (∗∗) ⇒ 𝟐𝐀𝐒𝟐 =
𝐛𝟐 + 𝐜𝟐 + 𝒂𝐛 + 𝐜𝒂

𝟒
−

(𝟐𝐬 + 𝒂)(𝐬 − 𝐛)(𝐬 − 𝐜)

𝟐𝐬
 

=
(𝒂 + 𝐛 + 𝐜)(𝐛𝟐 + 𝐜𝟐 + 𝒂𝐛 + 𝐜𝒂) − (𝟐𝒂 + 𝐛 + 𝐜)(𝐜 + 𝒂 − 𝐛)(𝒂 + 𝐛 − 𝐜)

𝟖𝐬
 

=
𝐛𝟑 + 𝐜𝟑 − 𝒂𝐛𝐜 + 𝒂(𝟐𝐛𝟐 + 𝟐𝐜𝟐 − 𝒂𝟐)

𝟒𝐬
⇒ 𝟐𝐀𝐒𝟐 =

(𝐢𝐢) 𝐛𝟑 + 𝐜𝟑 − 𝒂𝐛𝐜 + 𝒂(𝟒𝐦𝒂
𝟐)

𝟒𝐬
 



 

𝐕𝐢𝒂 𝐬𝐢𝐧𝐞 𝐥𝒂𝐰 𝐨𝐧 ∆ 𝐀𝐅𝐒,
𝐫

𝟐𝐬𝐢𝐧
𝐂

𝟐
𝐬𝐢𝐧𝛂

=
𝐀𝐒

𝐜𝐨𝐬
𝐀−𝐁

𝟐

=
𝐜𝐀𝐒

(𝒂 + 𝐛)𝐬𝐢𝐧
𝐂

𝟐

 

⇒ 𝐜𝐬𝐢𝐧𝛂 =
(∗∗∗) 𝐫(𝒂 + 𝐛)

𝟐𝐀𝐒
 𝒂𝐧𝐝 𝐯𝐢𝒂 𝐬𝐢𝐧𝐞 𝐥𝒂𝐰 𝐨𝐧 ∆ 𝐀𝐄𝐒, 𝐛𝐬𝐢𝐧𝛃 =

(∗∗∗∗) 𝐫(𝒂 + 𝐜)

𝟐𝐀𝐒
 

𝐍𝐨𝐰, [𝐁𝐀𝐗] + [𝐁𝐀𝐗] = [𝐀𝐁𝐂] ⇒
𝟏

𝟐
𝐩𝒂𝐜𝐬𝐢𝐧𝛂 +

𝟏

𝟐
𝐩𝒂𝐛𝐬𝐢𝐧𝛃 = 𝐫𝐬 

⇒
𝐯𝐢𝒂 (∗∗∗) 𝒂𝐧𝐝 (∗∗∗∗) 𝐩𝒂(𝒂 + 𝐛 + 𝒂 + 𝐜)

𝟒𝐀𝐒
= 𝐬 ⇒ 𝐩𝒂 =

𝟒𝐬

𝟐𝐬 + 𝒂
𝐀𝐒 

⇒ 𝐩𝒂
𝟐 =

𝐯𝐢𝒂 (𝐢𝐢) 𝟏𝟔𝐬𝟐

(𝟐𝐬 + 𝒂)𝟐
.
𝐛𝟑 + 𝐜𝟑 − 𝒂𝐛𝐜 + 𝒂(𝟒𝐦𝒂

𝟐)

𝟖𝐬
 

∴ 𝐩𝒂
𝟐 =

(⦁) 𝟐𝐬

(𝟐𝐬 + 𝒂)𝟐
(𝐛𝟑 + 𝐜𝟑 − 𝒂𝐛𝐜 + 𝒂(𝟒𝐦𝒂

𝟐))  

𝐍𝐨𝐰, 𝐛𝟑 + 𝐜𝟑 − 𝒂𝐛𝐜 + 𝒂(𝟒𝐦𝒂
𝟐) = 𝐛𝟑 + 𝐜𝟑 − 𝒂𝐛𝐜 + 𝒂(𝟐𝐛𝟐 + 𝟐𝐜𝟐 − 𝒂𝟐) 

= (𝐛 + 𝐜)(𝐛𝟐 − 𝐛𝐜 + 𝐜𝟐) + 𝒂(𝐛𝟐 − 𝐛𝐜 + 𝐜𝟐) + 𝒂(𝐛𝟐 + 𝐜𝟐 − 𝒂𝟐) 
= 𝟐𝐬(𝐛𝟐 − 𝐛𝐜 + 𝐜𝟐) + 𝒂(𝐛𝟐 − 𝐛𝐜 + 𝐜𝟐 + 𝐛𝐜 − 𝒂𝟐) 

= (𝟐𝐬 + 𝒂)(𝐛𝟐 − 𝐛𝐜 + 𝐜𝟐) + 𝒂 (
(𝐛 + 𝐜)𝟐 − (𝐛 − 𝐜)𝟐

𝟒
− 𝒂𝟐) 

= (𝟐𝐬 + 𝒂)(𝐛𝟐 − 𝐛𝐜 + 𝐜𝟐) +
𝒂(𝐛 + 𝐜 + 𝟐𝒂)(𝐛 + 𝐜 − 𝟐𝒂)

𝟒
−

𝒂(𝐛 − 𝐜)𝟐

𝟒
 

= (𝟐𝐬 + 𝒂)(𝐛𝟐 − 𝐛𝐜 + 𝐜𝟐) +
𝒂(𝟐𝐬 − 𝒂 + 𝟐𝒂)(𝐛 + 𝐜 − 𝟐𝒂)

𝟒
−

𝒂(𝐛 − 𝐜)𝟐

𝟒
 

= (𝟐𝐬 + 𝒂).
𝟒𝐛𝟐 + 𝟒𝐜𝟐 − 𝟒𝐛𝐜 + 𝒂(𝐛 + 𝐜 − 𝟐𝒂)

𝟒
−

𝒂(𝐛 − 𝐜)𝟐

𝟒
 

= (𝟐𝐬 + 𝒂). 
𝟒(𝐳 + 𝒙)𝟐 + 𝟒(𝒙 + 𝐲)𝟐 − 𝟒(𝐳 + 𝒙)(𝒙 + 𝐲) + (𝐲 + 𝐳)((𝐳 + 𝒙) + (𝒙 + 𝐲) − 𝟐(𝐲 + 𝐳))

𝟒
 

−
𝒂(𝐛 − 𝐜)𝟐

𝟒
 (𝒂 = 𝐲 + 𝐳, 𝐛 = 𝐳 + 𝒙, 𝐜 = 𝒙 + 𝐲) 

= (𝟐𝐬 + 𝒂).
𝟒𝒙(𝒙 + 𝐲 + 𝐳) + 𝟐𝒙(𝐲 + 𝐳) + 𝟑(𝐲 − 𝐳)𝟐

𝟒
−

𝒂(𝐛 − 𝐜)𝟐

𝟒
 

= (𝟐𝐬 + 𝒂) (𝐬(𝐬 − 𝒂) +
𝟑

𝟒
(𝐛 − 𝐜)𝟐 +

𝒂(𝐬 − 𝒂)

𝟐
) −

𝒂(𝐛 − 𝐜)𝟐

𝟒
 

= (𝟐𝐬 + 𝒂) (𝐬(𝐬 − 𝒂) +
𝟑

𝟒
(𝐛 − 𝐜)𝟐 +

𝒂(𝐬 − 𝒂)

𝟐
) −

(𝒂 + 𝟐𝐬 − 𝟐𝐬)(𝐛 − 𝐜)𝟐

𝟒
 

= (𝟐𝐬 + 𝒂) (𝐬(𝐬 − 𝒂) +
(𝐛 − 𝐜)𝟐

𝟐
+

𝒂(𝐬 − 𝒂)

𝟐
) +

𝐬(𝐛 − 𝐜)𝟐

𝟐
 

∴ 𝐛𝟑 + 𝐜𝟑 − 𝒂𝐛𝐜 + 𝒂(𝟒𝐦𝒂
𝟐) =

(⦁⦁)
(𝟐𝐬 + 𝒂) (

(𝐬 − 𝒂)(𝟐𝐬 + 𝒂)

𝟐
+

(𝐛 − 𝐜)𝟐

𝟐
) +

𝐬(𝐛 − 𝐜)𝟐

𝟐
 

∴ (⦁), (⦁⦁) ⇒ 𝐩𝒂
𝟐 =

𝟐𝐬

(𝟐𝐬 + 𝒂)𝟐
(

(𝐬 − 𝒂)(𝟐𝐬 + 𝒂)𝟐

𝟐
+

(𝟐𝐬 + 𝒂)(𝐛 − 𝐜)𝟐

𝟐
+

𝐬(𝐛 − 𝐜)𝟐

𝟐
) 



 

= 𝐬(𝐬 − 𝒂) + (𝐛 − 𝐜)𝟐 ((
𝐬

𝟐𝐬 + 𝒂
)

𝟐

+
𝐬

𝟐𝐬 + 𝒂
+

𝟏

𝟒
−

𝟏

𝟒
) 

= 𝐬(𝐬 − 𝒂) −
(𝐛 − 𝐜)𝟐

𝟒
+ (𝐛 − 𝐜)𝟐. (

𝐬

𝟐𝐬 + 𝒂
+

𝟏

𝟐
)

𝟐

 

= 𝐬(𝐬 − 𝒂) +
(𝐛 − 𝐜)𝟐

𝟒
(

(𝟒𝐬 + 𝒂)𝟐

(𝟐𝐬 + 𝒂)𝟐
− 𝟏) 

⇒ 𝐩𝒂
𝟐 =

(⦁⦁⦁)
𝐬(𝐬 − 𝒂) +

𝐬(𝟑𝐬 + 𝒂)(𝐛 − 𝐜)𝟐

(𝟐𝐬 + 𝒂)𝟐
 

𝐍𝐨𝐰, 𝐩𝒂 − 𝐰𝒂 ≥
𝟐𝐬(𝐛 − 𝐜)𝟐

𝟒𝐬𝟐 − 𝒂𝟐
⇔ 𝐩𝒂

𝟐 − 𝐰𝒂
𝟐 ≥ 

𝟒𝐬𝟐(𝐛 − 𝐜)𝟒

(𝟒𝐬𝟐 − 𝒂𝟐)𝟐
+

𝟒𝐬. 𝐰𝒂 . (𝐛 − 𝐜)𝟐

𝟒𝐬𝟐 − 𝒂𝟐
⇔

𝐯𝐢𝒂 (⦁⦁⦁)

 

𝐬(𝟑𝐬 + 𝒂)

(𝟐𝐬 + 𝒂)𝟐
+

𝐬(𝐬 − 𝒂)

(𝟐𝐬 − 𝒂)𝟐
−

𝟒𝐬𝟐(𝐛 − 𝐜)𝟐

(𝟒𝐬𝟐 − 𝒂𝟐)𝟐
≥

(∎) 𝟒𝐬. 𝐰𝒂

𝟒𝐬𝟐 − 𝒂𝟐
 (∵ (𝐛 − 𝐜)𝟐 ≥ 𝟎) 

𝐖𝐞 𝐡𝒂𝐯𝐞 ∶
𝐬(𝟑𝐬 + 𝒂)

(𝟐𝐬 + 𝒂)𝟐
+

𝐬(𝐬 − 𝒂)

(𝟐𝐬 − 𝒂)𝟐
−

𝟒𝐬𝟐(𝐛 − 𝐜)𝟐

(𝟒𝐬𝟐 − 𝒂𝟐)𝟐
> 

𝐬(𝟑𝐬 + 𝒂)

(𝟐𝐬 + 𝒂)𝟐
+

𝐬(𝐬 − 𝒂)

(𝟐𝐬 − 𝒂)𝟐
−

𝟒𝐬𝟐𝒂𝟐

(𝟒𝐬𝟐 − 𝒂𝟐)𝟐
 

=
𝐬(𝟑𝐬 + 𝒂)(𝟐𝐬 − 𝒂)𝟐 + 𝐬(𝐬 − 𝒂)(𝟐𝐬 + 𝒂)𝟐 − 𝟒𝐬𝟐𝒂𝟐

(𝟒𝐬𝟐 − 𝒂𝟐)𝟐
=

𝟖𝐬𝟐(𝟐𝐬 + 𝒂)(𝐬 − 𝒂)

(𝟒𝐬𝟐 − 𝒂𝟐)𝟐
> 𝟎 

∴ (∎) ⇔
(𝐬(𝟑𝐬 + 𝒂)(𝟐𝐬 − 𝒂)𝟐 + 𝐬(𝐬 − 𝒂)(𝟐𝐬 + 𝒂)𝟐 − 𝟒𝐬𝟐(𝐛 − 𝐜)𝟐)𝟐

(𝟒𝐬𝟐 − 𝒂𝟐)𝟒
 

≥
𝟏𝟔𝐬𝟐

(𝟒𝐬𝟐 − 𝒂𝟐)𝟐
. (𝐬(𝐬 − 𝒂) −

𝐬(𝐬 − 𝒂)(𝐛 − 𝐜)𝟐

(𝟐𝐬 − 𝒂)𝟐
) 

⇔

𝟏𝟔𝐬𝟒(𝐛 − 𝐜)𝟒 − 𝟖𝐬𝟐(𝐛 − 𝐜)𝟐(𝐬(𝟑𝐬 + 𝒂)(𝟐𝐬 − 𝒂)𝟐 + 𝐬(𝐬 − 𝒂)(𝟐𝐬 + 𝒂)𝟐) +

(𝐬(𝟑𝐬 + 𝒂)(𝟐𝐬 − 𝒂)𝟐 + 𝐬(𝐬 − 𝒂)(𝟐𝐬 + 𝒂)𝟐)𝟐

(𝟒𝐬𝟐 − 𝒂𝟐)𝟐
 

≥
𝟏𝟔𝐬𝟐(𝐬(𝐬 − 𝒂)(𝟐𝐬 − 𝒂)𝟐 − 𝐬(𝐬 − 𝒂)(𝐛 − 𝐜)𝟐)

(𝟐𝐬 − 𝒂)𝟐
 

⇔ 𝟏𝟔𝐬𝟒(𝐛 − 𝐜)𝟒 − 𝟖𝐬𝟐(𝐛 − 𝐜)𝟐 (
𝐬(𝟑𝐬 + 𝒂)(𝟐𝐬 − 𝒂)𝟐 + 𝐬(𝐬 − 𝒂)(𝟐𝐬 + 𝒂)𝟐

−𝟐𝐬(𝐬 − 𝒂)(𝟐𝐬 + 𝒂)𝟐
) 

+(𝐬(𝟑𝐬 + 𝒂)(𝟐𝐬 − 𝒂)𝟐 + 𝐬(𝐬 − 𝒂)(𝟐𝐬 + 𝒂)𝟐)𝟐 − 𝟏𝟔𝐬𝟑(𝐬 − 𝒂)(𝟒𝐬𝟐 − 𝒂𝟐)𝟐 ≥ 𝟎 
⇔ 𝟏𝟔𝐬𝟒(𝐛 − 𝐜)𝟒 − 𝟏𝟔𝐬𝟑(𝐛 − 𝐜)𝟐(𝟒𝐬𝟑 − 𝟒𝐬𝟐𝒂 + 𝐬𝒂𝟐 + 𝒂𝟑) 

+𝟏𝟔𝒂𝟐𝐬𝟑(𝟒𝐬𝟑 − 𝟒𝐬𝟐𝒂 + 𝒂𝟑) ≥ 𝟎 

⇔ 𝐬(𝐛 − 𝐜)𝟒 − (𝟒𝐬𝟑 − 𝟒𝐬𝟐𝒂 + 𝐬𝒂𝟐 + 𝒂𝟑)(𝐛 − 𝐜)𝟐 + 𝒂𝟐(𝟒𝐬𝟑 − 𝟒𝐬𝟐𝒂 + 𝒂𝟑) ≥
(∎∎)

𝟎 
𝒂𝐧𝐝 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∎∎), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

(𝐛 − 𝐜)𝟐 ≤
(𝟒𝐬𝟑 − 𝟒𝐬𝟐𝒂 + 𝐬𝒂𝟐 + 𝒂𝟑) − √𝛅

𝟐𝐬
, 𝐰𝐡𝐞𝐫𝐞 𝛅 = 

(𝟒𝐬𝟑 − 𝟒𝐬𝟐𝒂 + 𝐬𝒂𝟐 + 𝒂𝟑)𝟐 − 𝟒𝐬𝒂𝟐(𝟒𝐬𝟑 − 𝟒𝐬𝟐𝒂 + 𝒂𝟑) 𝒂𝐧𝐝 ∵ (𝐛 − 𝐜)𝟐 < 𝒂𝟐 



 
∴ 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝟐𝐬𝒂𝟐 ≤ (𝟒𝐬𝟑 − 𝟒𝐬𝟐𝒂 + 𝐬𝒂𝟐 + 𝒂𝟑) 

−√(𝟒𝐬𝟑 − 𝟒𝐬𝟐𝒂 + 𝐬𝒂𝟐 + 𝒂𝟑)𝟐 − 𝟒𝐬𝒂𝟐(𝟒𝐬𝟑 − 𝟒𝐬𝟐𝒂 + 𝒂𝟑) 

⇔ √(𝐬 − 𝒂)𝟐(𝟒𝐬𝟐 − 𝒂𝟐)𝟐 ≤ 𝟒𝐬𝟑 − 𝟒𝐬𝟐𝒂 − 𝐬𝒂𝟐 + 𝒂𝟑 = (𝐬 − 𝒂)(𝟒𝐬𝟐 − 𝒂𝟐) → 𝐭𝐫𝐮𝐞 

⇒ (∎∎) ⇒ (∎) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴ 𝐩𝒂 − 𝐰𝒂 ≥
𝟐𝐬(𝐛 − 𝐜)𝟐

𝟒𝐬𝟐 − 𝒂𝟐
 𝒂𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐬 

∴ 𝐩𝒂 + 𝐩𝐛 + 𝐩𝐜 ≥
(∎∎∎)

𝐰𝒂 + 𝐰𝐛 + 𝐰𝐜 + ∑
𝟐𝐬(𝐛 − 𝐜)𝟐

𝟒𝐬𝟐 − 𝒂𝟐

𝐜𝐲𝐜

 

𝐍𝐨𝐰, ∑ ((𝐛 − 𝐜)𝟐(𝟒𝐬𝟐 − 𝐛𝟐)(𝟒𝐬𝟐 − 𝐜𝟐))

𝐜𝐲𝐜

= 

𝟏𝟔𝐬𝟒 ∑(𝐛 − 𝐜)𝟐

𝐜𝐲𝐜

− 𝟒𝐬𝟐 ∑ ((𝐛 − 𝐜)𝟐 (∑ 𝒂𝟐

𝐜𝐲𝐜

− 𝒂𝟐))

𝐜𝐲𝐜

 

+ ∑ (𝐛𝟐𝐜𝟐 (∑ 𝒂𝟐

𝐜𝐲𝐜

− 𝒂𝟐 − 𝟐𝐛𝐜))

𝐜𝐲𝐜

 

= 𝟑𝟐𝐬𝟒(𝐬𝟐 − 𝟏𝟐𝐑𝐫 − 𝟑𝐫𝟐) − 𝟏𝟔𝐬𝟐(𝐬𝟐 − 𝟒𝐑𝐫 − 𝐫𝟐)(𝐬𝟐 − 𝟏𝟐𝐑𝐫 − 𝟑𝐫𝟐) + 

𝟒𝐬𝟐 ∑ (𝒂𝟐(𝐛𝟐 + 𝐜𝟐 − 𝟐𝐛𝐜))

𝐜𝐲𝐜

+ 𝟐(𝐬𝟐 − 𝟒𝐑𝐫 − 𝐫𝟐)((𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)𝟐 − 𝟏𝟔𝐑𝐫𝐬𝟐) 

−𝟒𝟖𝐑𝟐𝐫𝟐𝐬𝟐 − 𝟐 ((𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)𝟑 − 𝟐𝟒𝐑𝐫𝐬𝟐(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)) 

= 𝟑𝟐𝐬𝟒(𝐬𝟐 − 𝟏𝟐𝐑𝐫 − 𝟑𝐫𝟐) − 𝟏𝟔𝐬𝟐(𝐬𝟐 − 𝟒𝐑𝐫 − 𝐫𝟐)(𝐬𝟐 − 𝟏𝟐𝐑𝐫 − 𝟑𝐫𝟐) + 
(𝟏𝟎𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐)((𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)𝟐 − 𝟏𝟔𝐑𝐫𝐬𝟐) − 𝟔𝟒𝐑𝐫𝐬𝟒 − 𝟒𝟖𝐑𝟐𝐫𝟐𝐬𝟐 

−𝟐 ((𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)𝟑 − 𝟐𝟒𝐑𝐫𝐬𝟐(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)) 

= 𝟒(𝟔𝐬𝟔 − (𝟔𝟒𝐑𝐫 + 𝟓𝐫𝟐)𝐬𝟒 − 𝐫𝟐𝐬𝟐(𝟏𝟒𝟖𝐑𝟐 + 𝟕𝟔𝐑𝐫 + 𝟏𝟐𝐫𝟐) − (𝟒𝐑𝐫 + 𝐫𝟐)𝟑) 

∴ ∑
𝟐𝐬(𝐛 − 𝐜)𝟐

𝟒𝐬𝟐 − 𝒂𝟐

𝐜𝐲𝐜

=

𝟖𝐬 (
𝟔𝐬𝟔 − (𝟔𝟒𝐑𝐫 + 𝟓𝐫𝟐)𝐬𝟒 − 𝐫𝟐𝐬𝟐(𝟏𝟒𝟖𝐑𝟐 + 𝟕𝟔𝐑𝐫 + 𝟏𝟐𝐫𝟐)

−(𝟒𝐑𝐫 + 𝐫𝟐)𝟑
)

𝟒𝐬𝟐(𝟗𝐬𝟐 + 𝟔𝐑𝐫 + 𝐫𝟐)(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)
 

≥
? 𝟏𝟔(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 − 𝒂𝐛 − 𝐛𝐜 − 𝐜𝒂)

𝟏𝟓𝐬
 

⇔ 𝟏𝟓(𝟔𝐬𝟔 − (𝟔𝟒𝐑𝐫 + 𝟓𝐫𝟐)𝐬𝟒 − 𝐫𝟐𝐬𝟐(𝟏𝟒𝟖𝐑𝟐 + 𝟕𝟔𝐑𝐫 + 𝟏𝟐𝐫𝟐) − (𝟒𝐑𝐫 + 𝐫𝟐)𝟑) 

≥
?

𝟖(𝐬𝟐 − 𝟏𝟐𝐑𝐫 − 𝟑𝐫𝟐)(𝟗𝐬𝟐 + 𝟔𝐑𝐫 + 𝐫𝟐)(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐) 
⇔ 𝟏𝟖𝐬𝟔 − (𝟐𝟖𝟖𝐑𝐫 − 𝟔𝟏𝐫𝟐)𝐬𝟒 − 𝐫𝟐𝐬𝟐(𝟏𝟐𝐑𝟐 − 𝟑𝟑𝟐𝐑𝐫 − 𝟓𝟐𝐫𝟐) + 

𝐫𝟑(𝟏𝟗𝟐𝐑𝟑 + 𝟑𝟑𝟔𝐑𝟐𝐫 + 𝟏𝟎𝟖𝐑𝐫𝟐 + 𝟗𝐫𝟑) ≥
?
⏟
①

𝟎 𝒂𝐧𝐝 ∵ 𝟏𝟖(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟑 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 

∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ①, 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝐋𝐇𝐒 𝐨𝐟 ① ≥ 𝟏𝟖(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟑 
⇔ (𝟓𝟕𝟔𝐑 − 𝟐𝟎𝟗𝐫)𝐬𝟒 − 𝐫(𝟏𝟑𝟖𝟑𝟔𝐑𝟐 − 𝟖𝟗𝟕𝟐𝐑𝐫 + 𝟏𝟐𝟗𝟖𝐫𝟐)𝐬𝟐 + 

𝐫𝟐(𝟕𝟑𝟗𝟐𝟎𝐑𝟑 − 𝟔𝟖𝟕𝟖𝟒𝐑𝟐𝐫 + 𝟐𝟏𝟕𝟎𝟖𝐑𝐫𝟐 − 𝟐𝟐𝟒𝟏𝐫𝟑) ≥
②

𝟎 𝒂𝐧𝐝 ∵ 



 

(𝟓𝟕𝟔𝐑 − 𝟐𝟎𝟗𝐫)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 ∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ②, 

𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝐋𝐇𝐒 𝐨𝐟 ② ≥ (𝟓𝟕𝟔𝐑 − 𝟐𝟎𝟗𝐫)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)𝟐 

⇔ (𝟏𝟏𝟒𝟗𝐑𝟐 − 𝟖𝟔𝟗𝐑𝐫 + 𝟏𝟗𝟖𝐫𝟐)𝐬𝟐 ≥
③

 

𝐫(𝟏𝟖𝟑𝟖𝟒𝐑𝟑 − 𝟏𝟗𝟐𝟐𝟎𝐑𝟐𝐫 + 𝟔𝟓𝟑𝟑𝐑𝐫𝟐 − 𝟕𝟒𝟔𝐫𝟑) 

𝐅𝐢𝐧𝒂𝒍𝒍𝐲, 𝐋𝐇𝐒 𝐨𝐟 ③ ≥
𝐑𝐨𝐮𝐜𝐡𝐞

(𝟏𝟏𝟒𝟗𝐑𝟐 − 𝟖𝟔𝟗𝐑𝐫 + 𝟏𝟗𝟖𝐫𝟐) (
𝟐𝐑𝟐 + 𝟏𝟎𝐑𝐫 − 𝐫𝟐

−𝟐(𝐑 − 𝟐𝐫). √𝐑𝟐 − 𝟐𝐑𝐫
) 

≥
?

𝐫(𝟏𝟖𝟑𝟖𝟒𝐑𝟑 − 𝟏𝟗𝟐𝟐𝟎𝐑𝟐𝐫 + 𝟔𝟓𝟑𝟑𝐑𝐫𝟐 − 𝟕𝟒𝟔𝐫𝟑) 

⇔ (𝐑 − 𝟐𝐫)(𝟐𝟐𝟗𝟖𝐑𝟑 − 𝟒𝟎𝟑𝟔𝐑𝟐𝐫 + 𝟏𝟕𝟎𝟓𝐑𝐫𝟐 − 𝟐𝟕𝟒𝐫𝟑) ≥
?

 

𝟐(𝐑 − 𝟐𝐫). √𝐑𝟐 − 𝟐𝐑𝐫. (𝟏𝟏𝟒𝟗𝐑𝟐 − 𝟖𝟔𝟗𝐑𝐫 + 𝟏𝟗𝟖𝐫𝟐) 𝒂𝐧𝐝 ∵ (𝐑 − 𝟐𝐫) ≥
𝐄𝐮𝐥𝐞𝐫

𝟎 
∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝐢𝐬, 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

(𝟐𝟐𝟗𝟖𝐑𝟑 − 𝟒𝟎𝟑𝟔𝐑𝟐𝐫 + 𝟏𝟕𝟎𝟓𝐑𝐫𝟐 − 𝟐𝟕𝟒𝐫𝟑)𝟐 
> 𝟒(𝐑𝟐 − 𝟐𝐑𝐫)(𝟏𝟏𝟒𝟗𝐑𝟐 − 𝟖𝟔𝟗𝐑𝐫 + 𝟏𝟗𝟖𝐫𝟐)𝟐 

⇔ 𝟑𝟑𝟎𝟗𝟏𝟐𝟎𝐭𝟒 − 𝟑𝟗𝟔𝟒𝟐𝟒𝟖𝐭𝟑 + 𝟐𝟐𝟎𝟖𝟗𝟒𝟓𝐭𝟐 − 𝟔𝟐𝟎𝟕𝟎𝟖𝐭 + 𝟕𝟓𝟎𝟕𝟔 > 𝟎 (𝐭 =
𝐑

𝐫
) 

⇔ 𝟏𝟑𝟐𝟔𝟗𝟗𝟔𝐭𝟒 + 𝟏𝟗𝟖𝟐𝟏𝟐𝟒𝐭𝟑(𝐭 − 𝟐) + 𝟏𝟖𝟗𝟖𝟓𝟗𝟏𝐭𝟐 + 𝟑𝟏𝟎𝟑𝟓𝟒𝐭(𝐭 − 𝟐) + 𝟕𝟓𝟎𝟕𝟔 > 𝟎 

→ 𝐭𝐫𝐮𝐞 ∵ 𝐭 ≥
𝐄𝐮𝐥𝐞𝐫

𝟐 ⇒ ③ ⇒ ② ⇒ ① 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴ ∑
𝟐𝐬(𝐛 − 𝐜)𝟐

𝟒𝐬𝟐 − 𝒂𝟐

𝐜𝐲𝐜

≥  

𝟏𝟔(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 − 𝒂𝐛 − 𝐛𝐜 − 𝐜𝒂)

𝟏𝟓𝐬
⇒

𝐯𝐢𝒂 (∎∎∎)

𝐩𝒂 + 𝐩𝐛 + 𝐩𝐜 ≥ 

𝐰𝒂 + 𝐰𝐛 + 𝐰𝐜 +
𝟏𝟔(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 − 𝒂𝐛 − 𝐛𝐜 − 𝐜𝒂)

𝟏𝟓𝐬
∀ ∆ 𝐀𝐁𝐂, 

𝐰𝐢𝐭𝐡 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐟𝐟 ∆ 𝐀𝐁𝐂 𝐢𝐬 𝐞𝐪𝐮𝐢𝒍𝒂𝐭𝐞𝐫𝒂𝒍 (𝐐𝐄𝐃) 
 


