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In any A ABC with p, — Spieker cevian, the following relationship holds :
(b —¢)? alb — c|
————<p,—m < ——
2(2s +a) 2(2s+a)
Proposed by Mohamed Amine Ben Ajiba-Tanger-Morocco

Solution by Soumava Chakraborty-Kolkata-India
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Let AS produced meet BC at X and m(3BAX) = a and m(4CAX) = B (say)
and inradius of A DEF = r'(say)
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Via (1), (2) and using cosine law on A AFS and A AES, we arrive at :
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.. r AS cAS
Via sine law on A AFS, B = 5 = c
Zsinzsin(x cos —— (a+ b)sinE
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= csi - .. . -
csina “SAS and via sine law on A AES, bsinf AS
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vig-) (b—-1c)%(8s%2—a? - (b—-1¢)?) ('>') m,. (b — c)?
4(2s + a)? - 2s+a
We note that: 8s2 —a? —(b—-c)2 >8s2—-2a*?>0. (am) &
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e b-0)*-2@s+a)’*(b-c)?+a*(32s>+16sa+a?) > 0
Now, (mmm) is a quadrilateral in (b — ¢)? with discriminant =
4(4s + a)* — 4a*(32s? + 16sa + a?) = 256s%(2s + a)?

.~ in order to prove (mmm), it suffices to prove :

2(4s + a)? — 16s(2s + a)

(b-—c)? < 5 =a?->true= (mmm) = (mm) is true
. - (b—c)? d (b —c)? - - alb —c| v A ABC
P Ma = et ) %225 +a) P T M =325 1 a) ’

with equality iff A ABC is equilateral (QED)



