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In any A ABC with p,, pp, Pc
— Spieker cevians, the following relationship holds :
s(R—2r)
10R
Proposed by Mohamed Amine Ben Ajiba-Tanger-Morocco

Pa + Pp + Pc = M, + My, + m, +

Solution by Soumava Chakraborty-Kolkata-India
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Let AS produced meet BC at X and m(£BAX) = a and m(£CAX) = B (say)
and inradius of A DEF = r'(say)
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Via (1), (2) and using cosine law on A AFS and A AES, we arrive at :
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=) r(a+b) o e r(a+c)
a = “SAS and via sine law on A AES, bsinf = 2AS
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Gerretsen
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via (mmm) S(R _ Zl‘)
= pa+pb+pcZma+mb+mc+WVAABC,

with equality iff A ABC is equilateral (QED)




