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Solution 1 by Soumava Chakraborty-Kolkata-India 
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≈ 𝟎. 𝟏𝟑𝟖𝟑 > 0 ⇒ 𝐟 ′(𝐭) > 0 ∀ 𝐭 ≥ 𝟐 ⇒ 𝐟(𝐭) 𝐢𝐬 ↑ 𝐨𝐧 [𝟐,∞) ⇒ 𝐟(𝐭) ≥ 𝐟(𝟐) = 𝟎 ∀ 𝐭 ≥ 𝟐 
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∀ ∆ 𝐀𝐁𝐂,′′=′′  𝐢𝐟𝐟 ∆ 𝐀𝐁𝐂 𝐢𝐬 𝐞𝐪𝐮𝐢𝒍𝒂𝐭𝐞𝐫𝒂𝒍 (𝐐𝐄𝐃) 

 



 
Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco 
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𝐄𝐪𝐮𝐚𝐥𝐢𝐭𝐲 𝐡𝐨𝐥𝐝𝐬 𝐢𝐟𝐟 ∆𝐀𝐁𝐂 𝐢𝐬 𝐞𝐪𝐮𝐢𝐥𝐚𝐭𝐞𝐫𝐚𝐥. 
 
 


