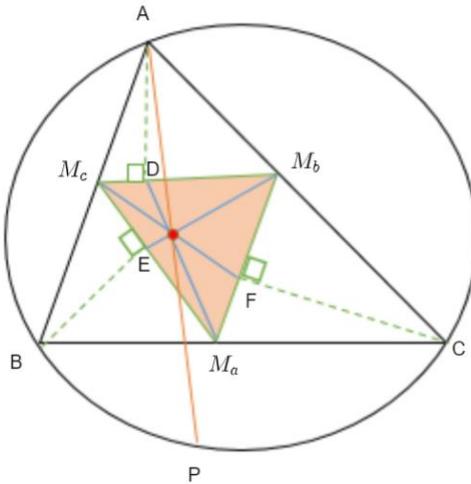


ROMANIAN MATHEMATICAL MAGAZINE

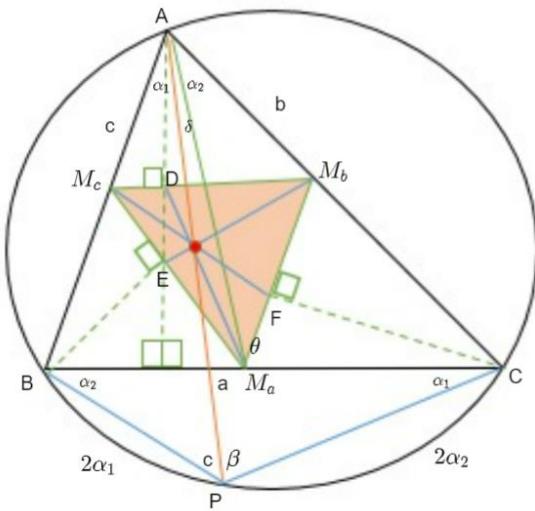


If $\Delta M_a M_b M_c$ is the medial triangle then prove that: DM_a, EM_b, FM_c are in concurrence and

$$AP = \frac{2bc}{\sqrt{-a^2 + 2b^2 + 2c^2}}$$

Proposed by Thanasis Gakopoulos-Greece

Solution by Mirsadix Muzafferov-Azerbaijan



Let $\angle BAP = \alpha_1$, $\angle CAP = \alpha_2$ and $\angle AM_aC = \theta$; $|\alpha_1 - \alpha_2| = \delta$

$$\text{In } \triangle ABM_a; \theta = \angle B + \alpha_1 + \delta; \angle BM_a A = \pi - \theta = \angle C + \alpha_2 - \delta \quad (1)$$

I case : if $\alpha_2 \geq \alpha_1 \Rightarrow \alpha_1 = \alpha_2 - \delta$ (2)

ROMANIAN MATHEMATICAL MAGAZINE

$$\text{In } \triangle BPC \text{ rule sine } \frac{BC}{\sin(B+C)} = \frac{PC}{\sin \alpha_2} \Rightarrow \frac{a}{\sin A} = \frac{PC}{\sin \alpha_2} \quad (3)$$

$$\text{In } \triangle APC \text{ rule sine } \frac{AP}{\sin(C+\alpha_1)} = \frac{PC}{\sin \alpha_2} \quad (4)$$

$$\begin{aligned} \text{From (3) and (4) we have } \frac{a}{\sin A} &= \frac{AP}{\sin(C+\alpha_1)} 2R \Rightarrow AP = 2R \sin(C+\alpha_1) = \\ &\stackrel{(2)}{=} 2R \sin(C+\alpha_2 - \delta) = 2R \sin(\pi - \theta) = 2R \sin \theta \end{aligned}$$

$$\text{In } \triangle AKM (\hat{K} = 90^\circ) \Rightarrow \sin \theta = \frac{h_a}{m_a} \quad (5)$$

$$AP = 2R \sin \theta \stackrel{(5)}{=} 2R \cdot \frac{h_a}{m_a} = \frac{2R \cdot \frac{bc}{2R}}{m_a} = \frac{bc}{m_a} \Rightarrow AP = \frac{bc}{m_a}$$

$$AP = \frac{2bc}{2m_a} = \frac{2bc}{\sqrt{-a^2 + 2b^2 + 2c^2}}$$

II case : if $\alpha_1 \geq \alpha_2$. The proof is performed analogously as in case I.

Let us prove that, DM_a, EM_b, FM_c are concurrent.

$$\left\{ \begin{array}{l} \frac{M_c D}{DM_b} = \frac{c \cos B}{b \cos C} = \frac{2R \sin C \cos B}{2R \sin B \cos C} = \frac{\cot B}{\cot C} \Rightarrow \frac{M_c D}{DM_b} \cdot \frac{M_b F}{FM_a} \cdot \frac{M_a E}{EM_c} = 1 \Rightarrow \\ \frac{M_b F}{FM_a} = \frac{\cot A}{\cot B}, \frac{M_a E}{EM_c} = \frac{\cot C}{\cot A} \\ \Rightarrow DM_a, EM_b, FM_c \text{ are concurrent.} \end{array} \right.$$