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SUMMARY 

 

     In the present article it is given the proofs of several inequalities (T1, T2, T3) which are useful In proving of 

inequalities. The particular cases are discussed and an application to the solving of concrete examples is given. 

     There is no a universal method for proving of inequalities. However, one of the well known methods is the 

application of known inequalities. 

 

  

      Theorem 1.  if   niba ii ,...,2,1, are positive numbers, prove the inequalities. 
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       Proof.    Let's look at the function:. 0,0;)1()(
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Let's look at two cases 

1.   Suppose,     ;10; .    Then will be xy  , will be xyy  ;0)(/ , will be ;0)(/ y   xy  , will 

be 0)(/ y .  It means, xy    point is minimum point of )( y  function, that is )()( xy    .Then  
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If 0  and 1 , and since 0)( y , for any    ,;10;   that is for  1;0  
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          (1)        inequality is correct 

2.   Suppose )1;0( . Then  will be xy  , will be ;0)(/ y   xy  , will be ;0)(/ y   xy  , will be 0)(/ y    
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   (M)  let’s show that the inequality is true. For any  1;0p  and  0k  number 

 

Let’s apply inequality (1) to any of item in expression 
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If we divide both sides of inequality to  pk     
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  The  inequality (M) is proved. 

 

 Let’s show the correctness of  (F) inequality. For any ]1;0[p  and 0k  number  

     Let’s apply inequality (2) to any of item in expression      
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          The condition of equality in (M) and (F) inequalities is possible of 
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           Result 1. if 0ia  ),,2,1( ni  , prove the inequality. 
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           Proof.   in  (M) inequality if 121  nbbb , then the proof of inequality is clear. 

      

            Result 2.  if 0ia  ),,2,1( ni   prove the inequality. 

;)(
1

21121

p

np

p

n

pp aaa
n

aaa 


   1;0p                )( 1F  

            Proof.    in (F) inequality if 121  nbbb  then the proof of inequality is clear. 

       

   Theorem 2.  if  niba ii ,...,2,1,   are positive numbers, then prove the inequality.   
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     Proof.   Since 1p  , lets apply (M) inequality. 
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       According to condition as 10  pq  , will be  1
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                If we take (2) into account in (1), then the proof of given inequality is clear. The equality case is possible              

               when  naaa  21  ;   nbbb  21   . 

            

                 Special case:   if 1q , 
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      Theorem 3.  If  niba ii ,...,2,1,   are positive numbers, prove the inequality.   
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      Proof.   Since 10  p , let’s apply (F) inequality. 
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According to condition since 10  p  and 1 pq , it will be   1
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               If take into account (2) in (1), then the proof of given inequality is clear. The equality case is possible              

               when  naaa  21  ;   nbbb  21 . 

 
                Special case:   if 1q , 
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                Example 1.  a , b , c  are positive numbers. Prove that  

                                   3333 )(3694 cbacba   

              Solution. In )(M  inequality ,3p  if  ,3n  then 

3

2

3

2

3

2

3

2

3
333 )(

6

1

3

1

2

1

)(

6

1

3

1

2

1
3694 cba

cbacba
cba 










































  

               

                 Equality case is obtained when 3a ,   2b ,   1c . 
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                 Example 2.  a , b , c  are positive numbers. Prove that 
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                Example 3.  Sum of  cba ,,   positive numbers is equal to 3. Prove that 
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                Equality case is obtained when  1 cba . 

 

               Example 4. if 0a  ,  0b ,  0c , prove an inequality. 
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             Equality case is obtained when  cba   

 

Example 5.  In right-angled triangle if a ,b are cathetus and c - hypotenuse, then prove the inequality. 
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 ; 3,  nNn  

Solution. In right-angled triangle the inequality 2cba   is correct. Let’s see at cases of odd and 

even  n . 
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1. if 12  kn ;  Nk ,  let’s prove 
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                   Let’s apply )( 1A  inequality. 
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2.  if kn 2 ;  Nk ,  2k , let’s prove 
k

k
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(M) Let’s apply inequality  
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Thus, the given inequality is correct for any natural number )2( nn . If equality case is ba  , it is correct         

          

 

References 

      1.  V.A. Sadovnichiy, А.S. Podkolzin. Problems of Student Olympiads in Mathematics (in russian) 

      Мoskow «Nauka» 1978, 111 pgs.  

2.  F.Y.Maharramov. Inequalities. Baki, 2021  

3. Korovkin  P.P.  Neravenstva, Nauka, 1974

4. Solovyev Yu. P.  Neravenstva, MTSIMO, 200

5. Yakovlev I.V.  Dokazatelstvo neraventstva, 201

6. Maharramov F.Y.  Inequalities, Baku, SkyE, 202

7. Gornusha  P.P.  Svedem neravenstvo k izvestnomu, Kvant  N9, 198

8. Samin Piasat.  Basies of Olimpiad Inequalities

9. Blox A.Sh, Neverov G.S.  Reshenie neravenstv, Minsk, 196

10. Bakkenbakh  E, Bellmann P.  Neravenstva, MIR, 1965

11. Krechmar B.A.  Zadachnik po algebra, Nauka, 1972    




