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𝒚 + 𝟏
𝒅𝒚 = −𝟒(

𝟏
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𝟏
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𝝅
𝟒
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𝒌
𝒅𝒙

𝒌∈𝑵

) =
𝝅𝟑

𝟏𝟐𝟖
𝐥𝐧(𝟐) − (

𝝅

𝟒
)
𝟑

𝐥𝐧(𝟐) + 

𝟑∑
(−𝟏)𝒌−𝟏

𝒌
∫ 𝒙𝟐 𝐜𝐨𝐬(𝟐𝒌𝒙)𝒅𝒙

𝝅
𝟒

𝟎𝒌∈𝑵

=
𝝅𝟑

𝟏𝟐𝟖
𝐥𝐧 (

𝟏

𝟐
) + 𝟑∑

(−𝟏)𝒌−𝟏

𝒌
𝒌∈𝑵

(
𝝅𝟐

𝟑𝟐𝒌
−
𝐬𝐢𝐧 (

𝝅𝒌
𝟐
)

𝟒𝒌𝟑
+
𝝅𝐜𝐨𝐬 (

𝝅𝒌
𝟐
)

𝟒𝒌𝟐
)

= 

𝝅𝟑

𝟏𝟐𝟖
𝐥𝐧 (

𝟏

𝟐
) +

𝟑𝝅𝟐

𝟑𝟐
∑

(−𝟏)𝒌−𝟏

𝒌𝟐
𝒌∈𝑵

−
𝟑

𝟒
∑

(−𝟏)𝒌−𝟏 𝐬𝐢𝐧 (
𝝅𝒌
𝟐
)

𝒌𝟒
𝒌∈𝑵

+
𝟑𝝅

𝟖
∑

(−𝟏)𝒌−𝟏𝐜𝐨𝐬

𝒌𝟑
𝒌∈𝑵

=
𝝅𝟑

𝟏𝟐𝟖
𝐥𝐧 (

𝟏

𝟐
) + 

𝟑𝝅𝟐

𝟑𝟐
.
𝟏

𝟐
∑

𝟏

𝒌𝟐
𝒌∈𝑵

−
𝟑

𝟒
∑

(−𝟏)𝒌−𝟏

(𝟐𝒌− 𝟏)𝟒
𝒌∈𝑵

+
𝟑𝝅

𝟖
∑

(−𝟏)𝒌−𝟏

(𝟐𝒌)𝟑
𝒌∈𝑵

= 

𝟑

𝟔𝟒
𝝅𝜻(𝟐) 𝐥𝐧 (

𝟏

𝟐
) +

𝟑𝝅𝟐

𝟔𝟒
.
𝝅𝟐

𝟔
−
𝟑

𝟒
𝜷(𝟒) +

𝟗

𝟐𝟓𝟔
𝝅𝜻(𝟐) 

(∴ 𝜷(𝒖) =
(−𝟏)𝒖𝟐𝟏−𝟐𝒖

(𝒖 − 𝟏)! 
𝝍(𝒖−𝟏) (

𝟏

𝟒
) + (

𝟏

𝟐𝒖
− 𝟏)𝜻(𝒖) , 𝒖 ∈ 𝒁+) 

𝟑

𝟔𝟒
𝝅𝜻(𝟐) 𝐥𝐧(

𝟏

𝟐
) +

𝜻(𝟒)

𝟖
−
𝟑

𝟒
(
𝟏

𝟕𝟔𝟖
𝝍(𝟑) (

𝟏

𝟒
) −

𝟏𝟓𝜻(𝟒)

𝟏𝟔
)+

𝟗

𝟏𝟐𝟖
𝝅𝜻(𝟑) 

𝑯 =
𝟑

𝟔𝟒
𝝅𝜻(𝟐) 𝐥𝐧 (

𝟏

𝟐
) +

𝟓𝟑𝜻(𝟒)

𝟖
−

𝟏

𝟏𝟎𝟐𝟒
𝝍(𝟑) (

𝟏

𝟒
) +

𝟗

𝟏𝟐𝟖
𝝅𝜻(𝟑) 

𝑰 = ∬
𝒙𝒚𝒍𝒏(𝒚)𝒂𝒓𝒄𝒕𝒂𝒏𝟑(𝒙)

(√𝒚 + 𝟏)(𝒙𝟐 + 𝟏)
𝒅𝒙𝒅𝒚 = 

𝟏

𝟎

𝑬.𝑯 

𝑰 = (𝟐𝜻(𝟐) −
𝟑𝟏

𝟗
)(

𝟑

𝟔𝟒
𝝅𝜻(𝟐) 𝐥𝐧 (

𝟏

𝟐
) +

𝟓𝟑𝜻(𝟒)

𝟖
−

𝟏

𝟏𝟎𝟐𝟒
𝝍(𝟑) (

𝟏

𝟒
) +

𝟗

𝟏𝟐𝟖
𝝅𝜻(𝟑)) 
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Ω =∬
𝒙𝒚𝒍𝒏(𝒚)𝒂𝒓𝒄𝒕𝒂𝒏𝟑(𝒙)

(√𝒚 + 𝟏)(𝒙𝟐 + 𝟏)
𝒅𝒙𝒅𝒚 

𝟏

𝟎

 



 

∬
𝒙𝒚𝒍𝒏(𝒚)𝒂𝒓𝒄𝒕𝒂𝒏𝟑(𝒙)

(√𝒚 + 𝟏)(𝒙𝟐 + 𝟏)
𝒅𝒙𝒅𝒚 

𝟏

𝟎

= (∫
𝒚𝒍𝒏(𝒚)

√𝒚 + 𝟏
𝒅𝒚

𝟏

𝟎

) . (∫
𝒙𝒂𝒓𝒄𝒕𝒂𝒏𝟑(𝒙)

𝒙𝟐 + 𝟏
𝒅𝒙

𝟏

𝟎

) = 𝜳.𝜱 

𝜳 = ∫
𝒚𝒍𝒏(𝒚)

√𝒚 + 𝟏
𝒅𝒚

𝟏

𝟎

=⏞

√𝒚→𝒚

𝟒∫
𝒚𝟑 𝐥𝐧(𝒚)

𝒚 + 𝟏

𝟏

𝟎

𝒅𝒚 = 𝟒∑(−𝟏)𝒏
∞

𝒏=𝟎

∫ 𝒚𝒏+𝟑 𝐥𝐧(𝒚)𝒅𝒚
𝟏

𝟎

= 

𝟒∑
(−𝟏)𝒏

(𝒏 + 𝟒)𝟐
= −

𝟑𝟏

𝟗
+ 𝟒.

𝝅𝟐

𝟏𝟐
= 𝟐𝜻(𝟐) −

𝟑𝟏

𝟗

∞

𝒏=𝟎

 

𝜱 = ∫
𝒙𝒂𝒓𝒄𝒕𝒂𝒏𝟑(𝒙)

𝒙𝟐 + 𝟏
𝒅𝒙

𝟏

𝟎

=⏞
𝐚𝐫𝐜𝐭𝐚𝐧(𝒙)→𝒙

∫ 𝒙𝟑 𝐭𝐚𝐧(𝒙) 𝒅𝒙

𝝅
𝟒

𝟎

=⏞
𝑰.𝑩.𝑷

−
𝝅𝟑

𝟔𝟒
𝐥𝐧 (

𝟏

√𝟐
) + 𝟑∫ 𝒙𝟐 𝐥𝐧(𝒄𝒐𝒔(𝒙))𝒅𝒙

𝝅
𝟒

𝟎⏟              
𝝃

= 

𝝅𝟑

𝟏𝟐𝟖
𝐥𝐧(𝟐) + 𝟑𝝃 

𝝃 = ∫ 𝒙𝟐 𝐥𝐧(𝒄𝒐𝒔(𝒙)) 𝒅𝒙

𝝅
𝟒

𝟎

= −𝒍𝒏(𝟐)∫ 𝒙𝟐𝒅𝒙

𝝅
𝟒

𝟎

−∑
(−𝟏)𝒏

𝒏

∞

𝒏=𝟏

∫ 𝒙𝟐 𝐜𝐨𝐬(𝟐𝒏𝒙)𝒅𝒙

𝝅
𝟒

𝟎

= −
𝝅𝟑

𝟏𝟗𝟐
𝐥𝐧(𝟐) − 

∑
(−𝟏)𝒏

𝟐𝒏𝟐

∞

𝒏=𝟏

∫ 𝒙𝟐𝒅(𝐬𝐢𝐧(𝟐𝒏𝒙)) =⏞
𝑰.𝑩.𝑷

−
𝝅𝟑

𝟏𝟗𝟐
𝐥𝐧(𝟐)

𝝅
𝟒

𝟎

−
𝝅𝟐

𝟑𝟐
∑

(−𝟏)𝒏 𝐬𝐢𝐧 (
𝝅𝒏
𝟐
)

𝒏𝟐

∞

𝒏=𝟏

+ 

∑
(−𝟏)𝒏

𝒏𝟐

∞

𝒏=𝟏

∫ 𝒙𝒔𝒊𝒏(𝟐𝒏𝒙)𝒅𝒙

𝝅
𝟒

𝟎

= −
𝝅𝟑

𝟏𝟗𝟐
𝐥𝐧(𝟐) +

𝝅𝟐

𝟑𝟐
𝑮 −∑

(−𝟏)𝒏

𝟐𝒏𝟑

∞

𝒏=𝟏

∫ 𝒙𝒅(𝐜𝐨𝐬(𝟐𝒏𝒙)) =

𝝅
𝟒

𝟎

 

−
𝝅𝟑

𝟏𝟗𝟐
𝐥𝐧(𝟐) +

𝝅𝟐

𝟑𝟐
𝑮 −

𝝅

𝟖
∑

(−𝟏)𝒏 𝐜𝐨𝐬 (
𝝅𝒏
𝟐
)

𝒏𝟑

∞

𝒏=𝟏

+∑
(−𝟏)𝒏

𝟐𝒏𝟑

∞

𝒏=𝟏

∫ 𝐜𝐨𝐬(𝟐𝒏𝒙)𝒅𝒙 =

𝝅
𝟒

𝟎

−
𝝅𝟑

𝟏𝟗𝟐
𝐥𝐧(𝟐) +

𝝅𝟐

𝟑𝟐
𝑮 + 

𝟏

𝟔𝟒
∑

(−𝟏)𝒏−𝟏

𝒏𝟑

∞

𝒏=𝟏

+∑
(−𝟏)𝒏 𝐬𝐢𝐧 (

𝝅𝒏
𝟐
)

𝟒𝒏𝟒

∞

𝒏=𝟏

= −
𝝅𝟑

𝟏𝟗𝟐
𝐥𝐧(𝟐) +

𝝅𝟐

𝟑𝟐
𝑮 +

𝟑

𝟐𝟓𝟔
𝜻(𝟑) −

𝟏

𝟒
𝜷(𝟒) 

𝝃 = −
𝝅𝟑

𝟏𝟗𝟐
𝐥𝐧(𝟐) +

𝝅𝟐

𝟑𝟐
𝑮 +

𝟑

𝟐𝟓𝟔
𝜻(𝟑) −

𝟏

𝟒
(
𝝍(𝟑) (

𝟏
𝟒
)

𝟕𝟔𝟖
−
𝝅𝟒

𝟗𝟔
) 

𝜱 =
𝝅𝟑

𝟏𝟐𝟖
𝐥𝐧(𝟐) + 𝟑𝝃 =

𝝅𝟑

𝟏𝟐𝟖
𝐥𝐧(𝟐) +

𝟗

𝟐𝟓𝟔
𝝅𝜻(𝟑) +

𝝅𝟒

𝟏𝟐𝟖
+
𝟑𝝅𝟐

𝟑𝟐
𝑮 −

𝝍(𝟑) (
𝟏
𝟒
)

𝟏𝟎𝟐𝟒
 

Ω = 𝜳.𝜱 = (𝟐𝜻(𝟐) −
𝟑𝟏

𝟗
)(

𝟑

𝟔𝟒
𝝅𝜻(𝟐) 𝐥𝐧 (

𝟏

𝟐
) +

𝟓𝟑𝜻(𝟒)

𝟖
−

𝟏

𝟏𝟎𝟐𝟒
𝝍(𝟑) (

𝟏

𝟒
) +

𝟗

𝟏𝟐𝟖
𝝅𝜻(𝟑)) 


