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Solution 2 by Exodo Halcalias-Angola 
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Solution 3 by Pham Duc Nam-Vietnam 
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𝟎⏟          
𝑪𝟐

= 

= 𝜷(𝟑) +
𝟕

𝟏𝟔
𝜻(𝟑) +

𝑮

𝟐
 

𝑰 = 𝑯− 𝑬 = 𝜷(𝟑) +
𝟕

𝟏𝟔
𝜻(𝟑)+

𝑮

𝟐
−
𝟕

𝟔𝟒
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