
 
𝐅𝐢𝐧𝐝 𝐚𝐥𝐥 𝐯𝐚𝐥𝐮𝐞𝐬 𝐨𝐟 𝒌 𝐬𝐮𝐜𝐡 𝐭𝐡𝐚𝐭 
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𝐢𝐬 𝐭𝐫𝐮𝐞 𝐟𝐨𝐫 𝐚𝐥𝐥 𝒂, 𝒃, 𝒄 > 𝟎.  
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𝐅𝐨𝐫 𝒃 = 𝒄 = 𝟏, 𝐰𝐞 𝐡𝐚𝐯𝐞 𝒌 ≤
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𝐋𝐞𝐭 𝐮𝐬 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝐚𝐭 𝐭𝐡𝐞 𝐠𝐢𝐯𝐞𝐧 𝐢𝐧𝐞𝐪𝐮𝐚𝐥𝐢𝐭𝐲 𝐢𝐬 𝐭𝐫𝐮𝐞 𝐟𝐨𝐫 𝒌 = 𝟐. 

𝐖𝐋𝐎𝐆, 𝐰𝐞 𝐚𝐬𝐬𝐮𝐦𝐞 𝐭𝐡𝐚𝐭 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏.  𝐖𝐞 𝐡𝐚𝐯𝐞 
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𝐍𝐨𝐰, 𝐛𝐲 𝐀𝐌 − 𝐆𝐌 𝐢𝐧𝐞𝐪𝐮𝐚𝐥𝐢𝐭𝐲, 𝐰𝐞 𝐡𝐚𝐯𝐞 
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𝐅𝐫𝐨𝐦 𝐭𝐡𝐞 𝐫𝐞𝐬𝐮𝐥𝐭𝐬 (𝟏) 𝐚𝐧𝐝 (𝟐), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 𝐭𝐡𝐚𝐭 
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≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝟐𝒂𝒃𝒄(𝒂 + 𝒃 + 𝒄). 

𝐒𝐨 𝐭𝐡𝐞 𝐠𝐢𝐯𝐞𝐧 𝐢𝐧𝐞𝐪𝐮𝐚𝐥𝐢𝐭𝐲 𝐢𝐬 𝐭𝐫𝐮𝐞 𝐟𝐨𝐫  

𝒌 = 𝟐.  𝐓𝐡𝐞𝐫𝐞𝐟𝐨𝐫𝐞, 𝐭𝐡𝐞 𝐠𝐢𝐯𝐞𝐧 𝐢𝐧𝐞𝐪𝐮𝐚𝐥𝐢𝐭𝐲 𝐢𝐬 𝐭𝐫𝐮𝐞 𝐟𝐨𝐫 𝐚𝐥𝐥  𝒌 ≤ 𝟐 . 

 


