Number 35

WINTER 2024

ROMANIAN MATHEMATICAL MAGAZINE

Founding Editor DANIEL SITARU Available online ISSN-L 2501-0099 www.ssmrmh.ro

PROBLEMS FOR JUNIORS

JP.511. Let $n \in \mathbb{N}^*$. Prove that among the numbers $\binom{2n}{1}, \binom{2n}{2}, \dots, \binom{2n}{n}$ exist at least one number which is not divisible with 16065

Proposed by Mihály Bencze - Romania

JP.512. Solve the following equation:

$$\log_{a+1}(a^x+2a+1) = \log_a((a+1)^x-2a-1), a>1.$$

Proposed by Mihály Bencze - Romania

JP.513. Solve for real numbers:

$$\begin{cases} 2\log_3(2^{x_1} + 5)\log_2(3^{x_1} - 5) = \log_3(2^{x_2} + 5) + \log_2^2(3^{x_3} - 5) \\ 2\log_3(2^{x_2} + 5)\log_2(3^{x_2} - 5) = \log_3(2^{x_3} + 5) + \log_2^2(3^{x_4} - 5) \\ \dots \\ 2\log_3(2^{x_n} + 5)\log_2(3^{x_n} - 5) = \log_3(2^{x_1} + 5) + \log_2^2(3^{x_2} - 5) \end{cases}$$

Proposed by Mihály Bencze - Romania

JP.514. On the set $M = \{2n+1 | n \in \mathbb{N}^*\}$ define

$$a*b = a + (b-3)2^{[\log_2 a]-1}, \forall a,b \in M,$$

where [.] is the integer part. Prove that (M, *) is a monoid.

Proposed by Mihály Bencze - Romania

JP.515. Solve for real numbers:

$$\sqrt{\left(rac{3}{5}\sin x + rac{101}{15}\cos y
ight)\left(rac{5}{3}\sin x + rac{17}{3}\cos y
ight)} + \ + \sqrt{\left(15 - rac{52}{15}\sin x - rac{388}{15}\cos y
ight)\left(-7 + rac{6}{5}\sin x + rac{202}{15}\cos y
ight)} = 4} \ Proposed by Mihály Bencze - Romania$$

JP.516. In $\triangle ABC$ the following relationship holds:

$$(ab + bc + ca)^2 + n(a^2 + b^2 + c^2)^2 \ge (n+1)(18Rr)^2, n \in \mathbb{N}$$

Proposed by Marin Chirciu - Romania

JP.517. If $x, y, z \in [0, k]$; k > 0, then $y(x - z) - z(x - k) \le k^2$.

Proposed by Laura Molea and Gheorghe Molea – Romania

JP.518. Let ABCD an convex quadrilateral, $\lambda \in \mathbb{R}$ and M,N be such that:

$$\overrightarrow{AM} = \lambda \cdot \overrightarrow{AB}; \overrightarrow{DN} = \lambda \cdot \overrightarrow{DC}, \overrightarrow{AD} = 3\overrightarrow{BC}.$$

Find $\lambda \in \mathbb{R}$ such that $\overrightarrow{MN} = 7\overrightarrow{BC}$.

Proposed by Florică Anastase - Romania

JP.519. In $\triangle ABC, AA', BB', CC'$ - internal bisectors, A'' - symmetric point of A to $BC, N \in (AB), M \in (AN)$ such that $\overrightarrow{CM} = \overrightarrow{x \cdot MN}, \overrightarrow{AB} = x \cdot \overrightarrow{AN}, x \in \mathbb{R}$. Prove that if $\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} = 0$ then A, M, A'' are collinears.

Proposed by Florică Anastase - Romania

JP.520. Prove, that in any ΔABC triangle, the following inequality holds:

$$3\sqrt{\frac{2r}{R}} \leq \sin\Bigl(\frac{\widehat{A}}{2} + \widehat{B}\Bigr) + \sin\Bigl(\frac{\widehat{B}}{2} + \widehat{C}\Bigr) + \sin\Bigl(\frac{\widehat{C}}{2} + \widehat{A}\Bigr) \leq 3$$

Proposed by Radu Diaconu - Romania

JP.521. If a, b, c, d > 0 such that (a + b + c)(b + c + d) = 1, prove that:

$$\sqrt[3]{(a+b)(c+d)} + \sqrt[3]{(b+c)(d+a)} + \sqrt[3]{(c+d)(a+b)} +$$

$$+\sqrt[3]{(d+a)(b+c)} < \frac{1}{3} \left(\frac{a+b}{b+c} + \frac{b+c}{c+d} + \frac{c+d}{d+a} + \frac{d+a}{a+b} + 4 \right)$$

Proposed by Gheorghe Molea - Romania

JP.522. In acute triangle ABC the following relationship holds:

$$\left(\sum \frac{\sin^2 A}{\cos A}\right) \left(\sum \frac{\cos A}{\sin^2 A}\right) \ge 9 + 7\left(\frac{R-2r}{R+r}\right)$$

Proposed by Alexandru Szoros - Romania

JP.523. On the sides AB and AC of a triangle ABC, consider the interior pints E and D, respectively, such that $(\frac{AE}{EB})^2 + (\frac{AD^2}{DC})^2 = 1$. The segments BD and CE intersect at point P. Find the ratio of the areas of quadrilateral EBCD and triangle PBC.

Proposed by George Apostolopoulos – Greece

JP.524. Prove that in any $\triangle ABC$ the following inequality holds:

$$\frac{\cot\frac{A}{2}}{h_a} + \frac{\cot\frac{B}{2}}{h_b} + \frac{\cot\frac{C}{2}}{h_c} \ge \frac{4R + r}{F}$$

Proposed by Marian Ursărescu - Romania

JP.525. Prove that in any $\triangle ABC$ the following inequality holds:

$$\frac{n_a^2}{h_a} + \frac{n_b^2}{h_b} + \frac{n_c^2}{h_c} \leq \frac{(2R-r)^2}{r}$$

where n_a, n_b, n_c are Nagel's cevians.

Proposed by Marian Ursărescu - Romania

PROBLEMS FOR SENIORS

SP.511. Let triangle ABC with $\widehat{A} > 90^{\circ}$ and let internal points M_1, M_2, M_3, M_4 on the side BC, such that

 $BM_1 = M_1M_2 = M_2M_3 = M_3M_4 = M_4C$. Also, R_1, R_2 denote the circumradius of triangles AM_1M_2, AM_3M_4 , respectively. Prove:

$$BC > \frac{20\sqrt{R_1R_2}}{3(\cot B + \cot C)}$$

Proposed by George Apostolopoulos - Greece

SP.512. Find all functions $f: \mathbb{Z} \to \mathbb{Z}$ such that for all integers x, y the number

$$f^{2}(x) + 2xf(y) + y^{2}$$
 is a perfect square.

Proposed by Baris Koyuncu - Turkiye

SP.513. Given $k \geq 4$. In any triangle ABC prove that:

$$\frac{3}{k} \leq \sum_{cyc} \frac{\sin^2 A}{2\sin^2 A + \sin^2 B + \sin^2 C} \leq \frac{9k+12}{64}$$

Proposed by George Apostolopoulos - Greece

SP.514. Let be $P(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_{n-1} x + a_n$ with $n \in \mathbb{N}, n \geq 2, a_i \in \mathbb{R}, (\forall) i = \overline{1, n}$. If the equation P(x) = 0 has all the roots real, then $(\forall) k > \max\{x_1, x_2, \ldots, x_n\} + 1$ we have:

$$(n-1) \cdot P(k) - P'(k) + 1 > 0$$

Proposed by Gheorghe Molea - Romania

SP.515. If a,b,c,t,k>0 such that (t+a)(t+b)(t+c)=2k and $k>\frac{t^3}{2},$ prove that:

$$\frac{1}{b(t+a)^2} + \frac{1}{c(t+b)^2} + \frac{1}{a(t+c)^2} \geq \frac{3t\sqrt[3]{4k^2}}{k^2}$$

Proposed by Gheorghe Molea - Romania

SP.516.Let be the acuteangled $\triangle ABC$ and the points $B, A_1, A_2, \ldots, A_{n-1}, C$ collinears in this order. Let R, R_1, R_2, \ldots, R_n be the circumradies of $\triangle ABC, \triangle ABA_1, \triangle A_1AA_2, \ldots, A_{n-1}AC$. Prove that:

$$\max(R_1, R_2, \dots, R_n) \ge \frac{R \sin \widehat{A}}{n \cdot \sin \frac{\widehat{A}}{n}}$$

and that
$$\min(R_1,R_2,\ldots,R_n)<rac{\pi R\cdot\sin\widehat{A}}{2\,\widehat{A}}$$

Proposed by Radu Diaconu - Romania

SP.517. In acute $\triangle ABC, BB', CC'$ - altitudes, $C' \in (AB)$, $B' \in (AC), \{H\} = BB' \cap CC', E, F \text{ middle points of } [BH], [AC]$ respectively. Prove that:

$$4EF^2 \ge (EC' + EB')^2 + (C'F + B'F)^2$$

Proposed by Florică Anastase - Romania

SP.518.Find:

$$\Omega = \lim_{x o 0} \Biggl(rac{1}{x} \cdot \lim_{n o \infty} \sum_{k=1}^n 3^{k-1} \sin^3 rac{x}{3^k} \Biggr), a \in \mathbb{R}$$

Proposed by Florică Anastase - Romania

SP.519. Let $x_i, i = 1, 2, ..., n$ be positive real numbers such that:

$$\prod_{i=1}^{n} x_i = 1$$

Prove:

$$\sum_{i=1}^{n} \left(\frac{x_i^6 + 1}{x_i + 1}\right)^2 \cdot x_{i+1} \ge n, \text{ where } x_1 = x_{n+1}$$

 $Proposed\ by\ George\ A postolopoulos-Greece$

SP.520. Prove that in any acute triangle ABC:

$$\sqrt{2}(13k^2-3) \leq \sqrt{\pi(\cos^2 A + \cos^2 B)} \leq \frac{\sqrt{2}}{2}k$$

where $k \in (0, \frac{1}{2}]$. The product is over all cyclic permutations of (A, B, C).

Proposed by George Apostolopoulos – Greece

SP.521. If $F_0=0, F_1=1, F_{n+2}=F_{n+1}+F_n, \forall n\in\mathbb{N}$, i.e. $\{F_n\}_{n\geq 0}$ is Fibonacci's sequence, and $L_0=2, L_1=1$,

 $L_{n+2} = L_{n+1} + L_n, \forall n \in \mathbb{N}$, i.e. $\{L_n\}_{n \geq 0}$ is Lucas' sequence, then prove that:

$$\frac{F_nL_{n+2}^2}{F_{n+3}} + \frac{F_{n+1}L_{n+3}^2}{F_n + F_{n+2}} + (L_n + L_{n+2})^2 - 2\sqrt{6} \cdot \sqrt{L_nL_{n+1}} \cdot L_{n+2} \geq 0, \forall n \in \mathbb{N}^*$$

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania

SP.522. If $\{\varphi\}_{n>0}$ is the sequence of Fermat, i.e.

$$\varphi_{n+2} - 3\varphi_{n+1} - 2\varphi_n = 0, \varphi_0 = 0, \varphi_1 = 1,$$
 then prove that: $2(\varphi_n^2 - \varphi_{n+1}\varphi_{n-1}) = 2 \cdot (-2)^{n-1}$

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu - Romania

SP.523. Let be $\Delta ABC, D, E, F$ the points in which the internal bisectors intersect circumcenter. Prove that:

$$\frac{4}{3}R^2(4R+r)^2 \le DE^4 + EF^4 + FD^4 \le 4R^2(4R+r)(2R-r)$$

Proposed by Marian Ursărescu - Romania

SP.524. Let be $\triangle ABC$ and A', B', C' the tangent points of circumcenter with the sides BC, AC, respectively AB. Prove that:

$$\frac{1}{A'B' \cdot A'C'} + \frac{1}{A'B' \cdot B'C'} + \frac{1}{A'C' \cdot B'C'} \leq \Big(\frac{1}{r_a^2} + \frac{1}{r_b^2} + \frac{1}{r_c^2}\Big)\Big(\frac{R}{r} + 1\Big)$$

Proposed by Marian Ursărescu - Romania

SP.525. If $a, b, c \ge 0, a + b + c = 3$ then:

$$343(ab+bc+ca)^3 \leq 27(5+ab+c)(5+bc+a)(5+ca+b)$$

Proposed by Andrei Stefan Mihalcea - Romania

UNDERGRADUATE PROBLEMS

UP.511. Prove that:

$$\int_0^\infty t e^{2t} e^{-e^{-2t}} dt = -\frac{\gamma}{4}$$

where γ is the Euler - Mascheroni constant.

Proposed by Said Attaoui - Algerie

UP.512. Find:

$$\Omega = \lim_{n o \infty} \Bigg(\sqrt[n]{(2n-1)!!} \Bigg(an rac{\pi^{-n+\sqrt[n]{(n+1)!}}}{4\sqrt[n]{n!}} - 1 \Bigg) \Bigg)$$

Proposed by D.M. Bătineţu-Giurgiu, Neculai Stanciu - Romania UP.513. Find:

$$\Omega = \lim_{x \to \infty} \Bigl((x+a) \sin \frac{1}{x+a} \sqrt[x+1]{\Gamma(x+2)} - x \sin \frac{1}{x} \sqrt[x]{\Gamma(x+1)} \Bigr); a > 0$$

Proposed by D.M. Bătineţu-Giurgiu, Neculai Stanciu - Romania

UP.514. If $f:(0,\infty)\to (0,\infty)$ is a convex function, $0< a\leq b$ then:

$$egin{split} rac{1}{4a} \int_0^{4a} f(x) dx - rac{1}{3a+b} \int_0^{3a+b} f(y) dy & \geq \ & \geq rac{1}{a+3b} \int_0^{a+3b} f(z) dz - rac{1}{4b} \int_0^{4b} f(t) dt \end{split}$$

Proposed by Daniel Sitaru - Romania

UP.515. Find:

$$\Omega = \lim_{n o \infty} \left(rac{1}{2^n} \cdot \lim_{x o rac{\pi}{n}} \left(\sum_{k=0}^n inom{n}{k} \sin(k+1)x
ight)
ight)$$

Proposed by Florică Anastase - Romania

UP.516. Prove that:

$$\int_{0}^{1} \frac{1}{(1 - x(1 - x))} dx = 2 \sum_{n=1}^{\infty} \frac{1}{n \binom{2n}{n}}$$

Deduce the value of the series $\sum_{n=1}^{\infty} \frac{1}{n \binom{2n}{n}}$

Proposed by Said Attaoui – Algeria

UP.517. Prove the equality:

$$\int_{0}^{\infty} \frac{\ln x}{x^3 - 3\sqrt{x} + 1} dx = \frac{8\pi^2}{81} \left(5\sin\frac{\pi}{18} - \sqrt{3}\cos\frac{\pi}{18} \right)$$

Proposed by Vasile Mircea Popa - Romania

UP.518. Let $F, f, g : [0, 1] \to \mathbb{R}$ such as g'(x) > 0 for every $x \in [0, 1]$ and $F'(x), \frac{f'(x)}{g'(x)}$ are Riemann integrable. Find:

$$\lim_{n\to\infty}\sum_{k=1}^n \Biggl(F\Bigl(\frac{k}{n}\Bigr) - F\Bigl(\frac{k-1}{n}\Bigr)\Biggr) \frac{f'(\frac{k}{n}) + f'(\frac{k-1}{n})}{g'(\frac{k}{n}) + g'(\frac{k-1}{n})}$$

Proposed by Cristian Miu - Romania

UP.519. In triangle ABC_{Δ} we note H the orthocentre and O the circumcentre of the triangle. Let D, E, F be the midpoints of [BC], [AC] and [AB] and let A_1, B_1, C_1 be the points symmetric to H with respect to D, E and F, and let H_1 be the orthocentre of the triangle $A_1B_1C_1$. Prove that $HH_1 = 2OH$

Proposed by Pal Orban - Romania

UP.520.If $a_n > 0$; $n \in \mathbb{N}^*$ is such that:

$$\lim_{n\to\infty}\frac{a_{n+1}}{an_n}=a>0$$

then find:

$$\Omega(a) = \lim_{n \to \infty} (H_n - \log \sqrt[n]{a_n})$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania

UP.521. If $a_1 = 1, a_{n+1} = a_n + e^{H_n} \cdot \sin \frac{\pi}{n}; n \in \mathbb{N}^*$ then find:

$$\Omega = \lim_{n \to \infty} \frac{a_n}{\sqrt[n]{n!}}$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania

UP.522. Find x, y > 0 such that:

$$81x^2 + x + \frac{1}{2x + y} = 16x + 1$$

Proposed by Daniel Sitaru - Romania

UP.523. If x, y, z > 0, xyz = x + y + z + 2 then:

$$\frac{1}{\sqrt{x}} + \frac{1}{\sqrt{y}} + \frac{1}{\sqrt{z}} \ge \frac{6}{\sqrt{xyz}}$$

Proposed by Marin Chirciu - Romania

UP.524. In $\triangle ABC$ then:

$$\sum rac{(m_b+m_c)^{n+1}}{(m_a+\sqrt{m_bm_c})^n} \geq rac{12r}{R}(2R-r), n \in \mathbb{N}$$

Proposed by Marin Chirciu - Romania

UP.525. In acute ΔABC the following relationship holds:

$$2s\Big(2+\frac{3R}{r}-\frac{R^2}{r^2}\Big) \leq \sum \frac{b+c}{\cos A} \leq \frac{4s}{3} \sum \sec A$$

Proposed by Marin Chirciu - Romania

MATHEMATICS DEPARTMENT, "THEODOR COSTESCU" NATIONAL ECONOMIC, COLLEGE DROBETA TURNU - SEVERIN, ROMANIA