Number 35

WINTER 2024

ROMANIAN MATHEMATICAL MAGAZINE

Founding Editor DANIEL SITARU

ROMANIAN MATHEMATICAL MAGAZINE

PROBLEMS FOR JUNIORS

JP.511. Let $n \in \mathbb{N}^{*}$. Prove that among the numbers $\binom{2 n}{1},\binom{2 n}{2}, \ldots,\binom{2 n}{n}$ exist at least one number which is not divisible with 16065.

Proposed by Mihály Bencze - Romania
JP.512. Solve the following equation:

$$
\begin{aligned}
& \log _{a+1}\left(a^{x}+2 a+1\right)=\log _{a}\left((a+1)^{x}-2 a-1\right), a>1 \\
& \text { Proposed by Mihály Bencze - Romania }
\end{aligned}
$$

JP.513. Solve for real numbers:
$\left\{\begin{array}{l}2 \log _{3}\left(2^{x_{1}}+5\right) \log _{2}\left(3^{x_{1}}-5\right)=\log _{3}\left(2^{x_{2}}+5\right)+\log _{2}^{2}\left(3^{x_{3}}-5\right) \\ 2 \log _{3}\left(2^{x_{2}}+5\right) \log _{2}\left(3^{x_{2}}-5\right)=\log _{3}\left(2^{x_{3}}+5\right)+\log _{2}^{2}\left(3^{x_{4}}-5\right) \\ \ldots \ldots\end{array}\right.$
Proposed by Mihály Bencze - Romania

JP.514. On the set $M=\left\{2 n+1 \mid n \in \mathbb{N}^{*}\right\}$ define

$$
a * b=a+(b-3) 2^{\left[\log _{2} a\right]-1}, \forall a, b \in M
$$

where [.] is the integer part. Prove that $(M, *)$ is a monoid.
Proposed by Mihály Bencze - Romania

JP.515. Solve for real numbers:

$$
\begin{gathered}
\sqrt{\left(\frac{3}{5} \sin x+\frac{101}{15} \cos y\right)\left(\frac{5}{3} \sin x+\frac{17}{3} \cos y\right)}+ \\
+\sqrt{\left(15-\frac{52}{15} \sin x-\frac{388}{15} \cos y\right)\left(-7+\frac{6}{5} \sin x+\frac{202}{15} \cos y\right)}=4
\end{gathered}
$$

Proposed by Mihály Bencze - Romania

JP.516. In $\triangle A B C$ the following relationship holds:

$$
(a b+b c+c a)^{2}+n\left(a^{2}+b^{2}+c^{2}\right)^{2} \geq(n+1)(18 R r)^{2}, n \in \mathbb{N}
$$

JP.517. If $x, y, z \in[0, k] ; k>0$, then $y(x-z)-z(x-k) \leq k^{2}$.
Proposed by Laura Molea and Gheorghe Molea - Romania

JP.518. Let $A B C D$ an convex quadrilateral, $\lambda \in \mathbb{R}$ and M, N be such that:

$$
\begin{gathered}
\overrightarrow{A M}=\lambda \cdot \overrightarrow{A B} ; \overrightarrow{D N}=\lambda \cdot \overrightarrow{D C}, \overrightarrow{A D}=3 \overrightarrow{B C} \\
\text { Find } \lambda \in \mathbb{R} \text { such that } \overrightarrow{M N}=7 \overrightarrow{B C}
\end{gathered}
$$

Proposed by Florică Anastase - Romania

JP.519. In $\triangle A B C, A A^{\prime}, B B^{\prime}, C C^{\prime}$ - internal bisectors, $A^{\prime \prime}$ - symmetric point of A to $B C, N \in(A B), M \in(A N)$ such that $\overrightarrow{C M}=x \cdot \overrightarrow{M N}, \overrightarrow{A B}=x \cdot \overrightarrow{A N}, x \in \mathbb{R}$. Prove that if $\overrightarrow{A A^{\prime}}+\overrightarrow{B B^{\prime}}+\overrightarrow{C C^{\prime}}=0$ then $A, M, A^{\prime \prime}$ are collinears.

Proposed by Florică Anastase - Romania

JP.520. Prove, that in any $\triangle A B C$ triangle, the following inequality holds:

$$
3 \sqrt{\frac{2 r}{R}} \leq \sin \left(\frac{\widehat{A}}{2}+\widehat{B}\right)+\sin \left(\frac{\widehat{B}}{2}+\widehat{C}\right)+\sin \left(\frac{\widehat{C}}{2}+\widehat{A}\right) \leq 3
$$

Proposed by Radu Diaconu - Romania

JP.521. If $a, b, c, d>0$ such that $(a+b+c)(b+c+d)=1$, prove that:

$$
\begin{aligned}
\sqrt[3]{(a+b)(c+d)} & +\sqrt[3]{(b+c)(d+a)}+\sqrt[3]{(c+d)(a+b)}+ \\
+\sqrt[3]{(d+a)(b+c)} & <\frac{1}{3}\left(\frac{a+b}{b+c}+\frac{b+c}{c+d}+\frac{c+d}{d+a}+\frac{d+a}{a+b}+4\right)
\end{aligned}
$$

Proposed by Gheorghe Molea - Romania

JP.522. In acute triangle $A B C$ the following relationship holds:

$$
\left(\sum \frac{\sin ^{2} A}{\cos A}\right)\left(\sum \frac{\cos A}{\sin ^{2} A}\right) \geq 9+7\left(\frac{R-2 r}{R+r}\right)
$$

Proposed by Alexandru Szoros - Romania

JP.523. On the sides $A B$ and $A C$ of a triangle $A B C$, consider the interior pints E and D, respectively, such that $\left(\frac{A E}{E B}\right)^{2}+\left(\frac{A D^{2}}{D C}\right)^{2}=1$. The segments $B D$ and $C E$ intersect at point P. Find the ratio of the areas of quadrilateral $E B C D$ and triangle $P B C$.

Proposed by George Apostolopoulos - Greece

JP.524. Prove that in any $\triangle A B C$ the following inequality holds:

$$
\begin{aligned}
& \frac{\cot \frac{A}{2}}{h_{a}}+\frac{\cot \frac{B}{2}}{\boldsymbol{h}_{b}}+\frac{\cot \frac{C}{2}}{\boldsymbol{h}_{\boldsymbol{c}}} \geq \frac{4 \boldsymbol{R}+\boldsymbol{r}}{\boldsymbol{F}} \\
& \\
& \text { Proposed by Marian Ursărescu - Romania }
\end{aligned}
$$

JP.525. Prove that in any $\Delta A B C$ the following inequality holds:

$$
\frac{n_{a}^{2}}{h_{a}}+\frac{n_{b}^{2}}{h_{b}}+\frac{n_{c}^{2}}{h_{c}} \leq \frac{(2 R-r)^{2}}{r}
$$

where n_{a}, n_{b}, n_{c} are Nagel's cevians.
Proposed by Marian Ursărescu - Romania

PROBLEMS FOR SENIORS

SP.511. Let triangle $A B C$ with $\widehat{A}>90^{\circ}$ and let internal points $M_{1}, M_{2}, M_{3}, M_{4}$ on the side $B C$, such that $B M_{1}=M_{1} M_{2}=M_{2} M_{3}=M_{3} M_{4}=M_{4} C$. Also, R_{1}, R_{2} denote the circumradius of triangles $A M_{1} M_{2}, A M_{3} M_{4}$, respectively. Prove:

$$
B C>\frac{20 \sqrt{R_{1} R_{2}}}{3(\cot B+\cot C)}
$$

Proposed by George Apostolopoulos - Greece

SP.512. Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that for all integers x, y the number

$$
\begin{aligned}
& f^{2}(x)+2 x f(y)+y^{2} \text { is a perfect square. } \\
& \quad \text { Proposed by Baris Koyuncu - Turkiye }
\end{aligned}
$$

SP.513. Given $k \geq 4$. In any triangle $A B C$ prove that:

$$
\begin{aligned}
& \frac{\mathbf{3}}{k} \leq \sum_{\text {cyc }} \frac{\sin ^{2} A}{2 \sin ^{2} A+\sin ^{2} B+\sin ^{2} C} \leq \frac{9 k+12}{\mathbf{6 4}} \\
& \text { Proposed by George Apostolopoulos - Greece }
\end{aligned}
$$

SP.514. Let be $P(x)=x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-1} x+a_{n}$ with $n \in \mathbb{N}, n \geq 2, a_{i} \in \mathbb{R},(\forall) i=\overline{1, n}$. If the equation $P(x)=0$ has all the roots real, then $(\forall) k>\max \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}+1$ we have:

$$
(n-1) \cdot P(k)-P^{\prime}(k)+1>0
$$

SP.515. If $a, b, c, t, k>0$ such that $(t+a)(t+b)(t+c)=2 k$ and $k>\frac{t^{3}}{2}$, prove that:

$$
\frac{1}{b(t+a)^{2}}+\frac{1}{c(t+b)^{2}}+\frac{1}{a(t+c)^{2}} \geq \frac{3 t \sqrt[3]{4 k^{2}}}{k^{2}}
$$

Proposed by Gheorghe Molea - Romania

SP.516.Let be the acuteangled $\Delta A B C$ and the points $B, A_{1}, A_{2}, \ldots, A_{n-1}, C$ collinears in this order. Let $R, R_{1}, R_{2}, \ldots, R_{n}$ be the circumradies of $\Delta A B C, \Delta A B A_{1}, \Delta A_{1} A A_{2}, \ldots, A_{n-1} A C$. Prove that:

$$
\begin{gathered}
\max \left(R_{1}, R_{2}, \ldots, R_{n}\right) \geq \frac{R \sin \widehat{A}}{n \cdot \sin \frac{\widehat{A}}{n}} \\
\text { and that } \min \left(R_{1}, R_{2}, \ldots, R_{n}\right)<\frac{\pi R \cdot \sin \widehat{A}}{2 \widehat{A}}
\end{gathered}
$$

Proposed by Radu Diaconu - Romania

SP.517. In acute $\triangle A B C, B B^{\prime}, C C^{\prime}$ - altitudes, $C^{\prime} \in(A B)$, $B^{\prime} \in(A C),\{H\}=B B^{\prime} \cap C C^{\prime}, E, F$ middle points of $[B H],[A C]$ respectively. Prove that:

$$
\begin{aligned}
\mathbf{4} \boldsymbol{E} \boldsymbol{F}^{\mathbf{2}} \geq\left(\boldsymbol{E} \boldsymbol{C}^{\prime}+\right. & \left.\boldsymbol{E} \boldsymbol{B}^{\prime}\right)^{2}+\left(\boldsymbol{C}^{\prime} \boldsymbol{F}+\boldsymbol{B}^{\prime} \boldsymbol{F}\right)^{\mathbf{2}} \\
& \text { Proposed by Florică Anastase - Romania }
\end{aligned}
$$

SP.518.Find:

$$
\Omega=\lim _{x \rightarrow 0}\left(\frac{1}{x} \cdot \lim _{n \rightarrow \infty} \sum_{k=1}^{n} 3^{k-1} \sin ^{3} \frac{x}{3^{k}}\right), a \in \mathbb{R}
$$

Proposed by Florică Anastase - Romania

SP.519. Let $x_{i}, i=1,2, \ldots, n$ be positive real numbers such that:

$$
\prod_{i=1}^{n} x_{i}=1
$$

Prove:

$$
\begin{array}{r}
\sum_{i=1}^{n}\left(\frac{\boldsymbol{x}_{\boldsymbol{i}}^{\mathbf{6}}+\mathbf{1}}{\boldsymbol{x}_{\boldsymbol{i}}+\mathbf{1}}\right)^{\mathbf{2}} \cdot \boldsymbol{x}_{\boldsymbol{i}+\mathbf{1}} \geq n, \text { where } \boldsymbol{x}_{\mathbf{1}}=\boldsymbol{x}_{\boldsymbol{n}+\mathbf{1}} \\
\text { Proposed by George Apostolopoulos - Greece } \\
\text { ©Daniel Sitaru, ISSN-L 2501-0099 }
\end{array}
$$

SP.520. Prove that in any acute triangle $A B C$:

$$
\sqrt{2}\left(13 k^{2}-3\right) \leq \sqrt{\pi\left(\cos ^{2} A+\cos ^{2} B\right)} \leq \frac{\sqrt{2}}{2} k
$$

where $k \in\left(0, \frac{1}{2}\right]$. The product is over all cyclic permutations of (A, B, C).

Proposed by George Apostolopoulos - Greece
SP.521. If $F_{0}=0, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}, \forall n \in \mathbb{N}$, i.e. $\left\{F_{n}\right\}_{n \geq 0}$ is Fibonacci's sequence, and $L_{0}=2, L_{1}=1$,
$L_{n+2}=L_{n+1}+L_{n}, \forall n \in \mathbb{N}$, i.e. $\left\{L_{n}\right\}_{n \geq 0}$ is Lucas' sequence, then prove that:

$$
\begin{aligned}
\frac{\boldsymbol{F}_{n} \boldsymbol{L}_{n+\mathbf{2}}^{2}}{\boldsymbol{F}_{n+\mathbf{3}}}+ & \frac{\boldsymbol{F}_{\boldsymbol{n + 1}} \boldsymbol{L}_{n+\mathbf{3}}^{2}}{\boldsymbol{F}_{\boldsymbol{n}}+\boldsymbol{F}_{n+\mathbf{2}}}+\left(\boldsymbol{L}_{n}+\boldsymbol{L}_{n+\mathbf{2}}\right)^{2}-\mathbf{2} \sqrt{\mathbf{6}} \cdot \sqrt{\boldsymbol{L}_{\boldsymbol{n}} \boldsymbol{L}_{n+\mathbf{1}}} \cdot \boldsymbol{L}_{\boldsymbol{n + 2}} \geq \mathbf{0}, \forall \boldsymbol{n} \in \mathbb{N}^{*} \\
& \text { Proposed by D.M. Bătineţu-Giurgiu, Neculai Stanciu - Romania }
\end{aligned}
$$

SP.522. If $\{\varphi\}_{n \geq 0}$ is the sequence of Fermat, i.e.
$\varphi_{n+2}-3 \varphi_{n+1}-2 \varphi_{n}=0, \varphi_{0}=0, \varphi_{1}=1$, then prove that:
$2\left(\varphi_{n}^{2}-\varphi_{n+1} \varphi_{n-1}\right)=2 \cdot(-2)^{n-1}$
Proposed by D.M. Bătineţu-Giurgiu, Neculai Stanciu - Romania
SP.523. Let be $\triangle A B C, D, E, F$ the points in which the internal bisectors intersect circumcenter. Prove that:

$$
\frac{4}{3} R^{2}(4 R+r)^{2} \leq D E^{4}+E F^{4}+F D^{4} \leq 4 R^{2}(4 R+r)(2 R-r)
$$

Proposed by Marian Ursărescu - Romania
SP.524. Let be $\triangle A B C$ and $A^{\prime}, B^{\prime}, C^{\prime}$ the tangent points of circumcenter with the sides $B C, A C$, respectively $A B$. Prove that:

$$
\frac{1}{A^{\prime} B^{\prime} \cdot A^{\prime} C^{\prime}}+\frac{1}{A^{\prime} B^{\prime} \cdot B^{\prime} C^{\prime}}+\frac{1}{A^{\prime} C^{\prime} \cdot B^{\prime} C^{\prime}} \leq\left(\frac{1}{r_{a}^{2}}+\frac{1}{r_{b}^{2}}+\frac{1}{r_{c}^{2}}\right)\left(\frac{R}{r}+1\right)
$$

Proposed by Marian Ursărescu - Romania

SP.525. If $a, b, c \geq 0, a+b+c=3$ then:

$$
\begin{aligned}
343(a b+b c+c a)^{3} \leq & 27(5+a b+c)(5+b c+a)(5+c a+b) \\
& \text { Proposed by Andrei Ştefan Mihalcea - Romania }
\end{aligned}
$$

UNDERGRADUATE PROBLEMS

UP.511. Prove that:

$$
\int_{0}^{\infty} t e^{2 t} e^{-e^{-2 t}} d t=-\frac{\gamma}{4}
$$

where γ is the Euler - Mascheroni constant.
Proposed by Said Attaoui - Algerie

UP.512. Find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\sqrt[n]{(2 n-1)!!}\left(\tan \frac{\pi \sqrt[n+1]{(n+1)!}}{4 \sqrt[n]{n!}}-1\right)\right)
$$

Proposed by D.M. Bătineţu-Giurgiu, Neculai Stanciu - Romania UP.513. Find:
$\Omega=\lim _{x \rightarrow \infty}\left((x+a) \sin \frac{1}{x+a} \sqrt[x+1]{\Gamma(x+2)}-x \sin \frac{1}{x} \sqrt[x]{\Gamma(x+1)}\right) ; a>\mathbf{0}$
Proposed by D.M. Bătinetu-Giurgiu, Neculai Stanciu - Romania

UP.514. If $f:(0, \infty) \rightarrow(0, \infty)$ is a convex function, $0<a \leq b$ then:

$$
\begin{aligned}
& \frac{1}{4 a} \int_{0}^{4 a} f(x) d x-\frac{1}{3 a+b} \int_{0}^{3 a+b} f(y) d y \geq \\
& \geq \frac{1}{a+3 b} \int_{0}^{a+3 b} f(z) d z-\frac{1}{4 b} \int_{0}^{4 b} f(t) d t
\end{aligned}
$$

Proposed by Daniel Sitaru - Romania

UP.515. Find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\frac{1}{2^{n}} \cdot \lim _{x \rightarrow \frac{\pi}{n}}\left(\sum_{k=0}^{n}\binom{n}{k} \sin (k+1) x\right)\right)
$$

Proposed by Florică Anastase - Romania

UP.516. Prove that:

$$
\int_{0}^{1} \frac{1}{(1-x(1-x))} d x=2 \sum_{n=1}^{\infty} \frac{1}{n\binom{2 n}{n}}
$$

Deduce the value of the series $\sum_{n=1}^{\infty} \frac{1}{n\binom{2 n}{n}}$

UP.517. Prove the equality:

$$
\begin{array}{r}
\int_{0}^{\infty} \frac{\ln x}{x^{3}-3 \sqrt{x}+1} d x=\frac{8 \pi^{2}}{81}\left(5 \sin \frac{\pi}{18}-\sqrt{3} \cos \frac{\pi}{18}\right) \\
\text { Proposed by Vasile Mircea Popa - Romania }
\end{array}
$$

UP.518. Let $F, f, g:[0,1] \rightarrow \mathbb{R}$ such as $g^{\prime}(x)>0$ for every $x \in[0,1]$ and $F^{\prime}(x), \frac{f^{\prime}(x)}{g^{\prime}(x)}$ are Riemann integrable. Find:

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(F\left(\frac{k}{n}\right)-F\left(\frac{k-1}{n}\right)\right) \frac{f^{\prime}\left(\frac{k}{n}\right)+f^{\prime}\left(\frac{k-1}{n}\right)}{g^{\prime}\left(\frac{k}{n}\right)+g^{\prime}\left(\frac{k-1}{n}\right)}
$$

Proposed by Cristian Miu - Romania
UP.519. In triangle $A B C_{\Delta}$ we note H the orthocentre and O the circumcentre of the triangle. Let D, E, F be the midpoints of [$B C],[A C]$ and $[A B]$ and let A_{1}, B_{1}, C_{1} be the points symmetric to H with respect to D, E and F, and let H_{1} be the orthocentre of the triangle $A_{1} B_{1} C_{1}$. Prove that $H H_{1}=2 O H$

Proposed by Pal Orban - Romania
UP.520.If $a_{n}>0 ; n \in \mathbb{N}^{*}$ is such that:

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a n_{n}}=a>0
$$

then find:

$$
\Omega(a)=\lim _{n \rightarrow \infty}\left(H_{n}-\log \sqrt[n]{a_{n}}\right)
$$

Proposed by D.M. Bătineţu-Giurgiu, Daniel Sitaru - Romania
UP.521. If $a_{1}=1, a_{n+1}=a_{n}+e^{H_{n}} \cdot \sin \frac{\pi}{n} ; n \in \mathbb{N}^{*}$ then find:

$$
\Omega=\lim _{n \rightarrow \infty} \frac{a_{n}}{\sqrt[n]{n!}}
$$

Proposed by D.M. Bătineţu-Giurgiu, Daniel Sitaru - Romania

UP.522. Find $x, y>0$ such that:

$$
\begin{aligned}
& 81 x^{2}+x+\frac{1}{2 x+y}=16 x+1 \\
& \quad \text { Proposed by Daniel Sitaru - Romania }
\end{aligned}
$$

UP.523. If $x, y, z>0, x y z=x+y+z+2$ then:

$$
\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}} \geq \frac{6}{\sqrt{x y z}}
$$

UP.524. In $\Delta A B C$ then:

$$
\begin{aligned}
\sum \frac{\left(m_{\boldsymbol{b}}+m_{c}\right)^{n+1}}{\left(m_{\boldsymbol{a}}+\sqrt{m_{\boldsymbol{b}} m_{\boldsymbol{c}}}\right)^{n}} & \geq \frac{12 r}{\boldsymbol{R}}(2 R-r), n \in \mathbb{N} \\
& \text { Proposed by Marin Chirciu - Romania }
\end{aligned}
$$

UP.525. In acute $\Delta A B C$ the following relationship holds:

$$
2 s\left(2+\frac{3 R}{r}-\frac{R^{2}}{r^{2}}\right) \leq \sum \frac{b+c}{\cos A} \leq \frac{4 s}{3} \sum \sec A
$$

Proposed by Marin Chirciu - Romania

Mathematics Department, "Theodor Costescu" National Economic, College Drobeta Turnu - Severin, ROMANiA

