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Abstract. In this paper we present 7 new limits of sequences and functions.

Theorem 1.

lim
n→∞

ln(1 + n
√
n!)

n
√

(2n− 1)!!
= 0

Proof.

lim
x→∞

ln(1 + x)
1
x = lim

x→∞

1

x
ln(1 + x)

L’H
= lim

x→∞

1
1+x

1
= 0;

lim
n→∞

ln(1 + n
√
n!)

n
√

(2n− 1)!!
= lim
n→∞

n
√
n!

n
√

(2n− 1)!!
ln(1 +

n
√
n!)

1
n√

n! = 0 · lim
n→∞

n
√
n!

n
√

(2n− 1)!
=

= 0 · lim
n→∞

n
√
n!

n
· n

n
√

(2n− 1)!!
= 0 · 1

e
· e

2
= 0

�

Theorem 2.
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Theorem 4.
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