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Abstract. In this paper it is proved a classical inequality and are given a few

applications.

MAIN PROBLEM: If 0 < a1 ≤ a2 ≤ . . . ≤ an, n ∈ N∗ then:
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Proof.

For n = 2⇒ a1
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. True.

For n = 3:
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a21a3 + a22a1 + a23a2 ≥ a22a3 + a23a2 + a21a2

a21(a3 − a2)− a1(a23 − a22) + a3a2(a3 − a2) ≥ 0

(a3 − a2)(a21 − a1a3 − a1a2 + a3a2) ≥ 0

(3) (a3 − a2)(a2 − a1)(a3 − a1) ≥ 0

By 0 < a1 ≤ a2 ≤ a3 ⇒


a3 − a2 ≥ 0

a2 − a1 ≥ 0

a3 − a1 ≥ 0

⇒ (3)

We will use the mathematical induction to prove (1):
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By adding (1), (4):
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P (n)⇒ P (n+ 1)
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Application 1: If 0 < x ≤ 1 then:

2x

x2 + 1
+
x2 + 1

2
+

1

x
≥ x2 + 1

2x
+

2

x2 + 1
+ x

Proof.

0 < x ≤ 1⇒ 0 < 2x ≤ 2⇒ 0 < 2x < x2 + 1 ≤ 2

We take in (2) : a1 = 2x, a2 = x2 + 1, a3 = 2.
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Equality holds for x = 1. �

Application 2: If 0 < a ≤ b ≤ c then in ∆ABC holds:
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Proof.
a. We take in (2) : a1 = a, a2 = b, a3 = c.
b. We use: a = 2R sinA, b = 2R sinB, c = 2R sinC in (5) and recall:

0 < sinA ≤ sinB ≤ sinC

c. We take in (2) : a1 = µ(A), a2 = µ(B), a3 = µ(C) and recall:

0 < µ(A) ≤ µ(B) ≤ µ(C)

d. We take in (2) : a1 = mc, a2 = mb, a3 = ma and recall:

0 < mc ≤ mb ≤ ma

e. We take in (2) : a1 = hc, a2 = hb, a3 = ha and recall:

0 < hc ≤ hb ≤ ha
�

Application 3: If 0 < a ≤ b ≤ c, n ∈ N, n ≥ 2 then in ∆ABC holds:
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d.
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Proof.

(7) a. a ≤ b ≤ c⇒


a+ c ≤ b+ c

a+ b ≤ c+ b

b+ a ≤ c+ a

⇒ a+ b ≤ a+ c ≤ b+ c

b. By (7) : a+ b ≤ a+ c ≤ b+ c⇒
√
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We take in (2) : a1 =
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a+ b, a2 =

√
a+ c, a3 =

√
b+ c.

c. By (7) : a+ b ≤ a+ c ≤ b+ c⇒ n
√
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√
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We take in (2) : a1 =
√
a+ b, a2 =

√
a+ c, a3 =

√
b+ c.

d. We replace in (6) : a = 2R sinA, b = 2R sinB, c = 2R sinC �

Application 4: If 0 < a ≤ b ≤ c, n ∈ N, n ≥ 2 then in ∆ABC holds:

(8) a. n
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Proof.
a. a ≤ b ≤ c⇒ n

√
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√
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We take in (2) : a1 = n
√
a, a2 = n

√
b, a3 = n

√
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b. We take in (8) : a = 2R sinA, b = 2R sinB, c = 2R sinC and recall:

0 < sinA ≤ sinB ≤ sinC ⇒ n
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√
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Application 5: If 0 < a ≤ b ≤ c, n ∈ B, n ≥ 2 then in acute ∆ABC holds:
a. cosC
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Proof.
a. a ≤ b ≤ c⇒ cosC ≤ cosB ≤ cosA.
We take in (2) : a1 = cosC, a2 = cosB, a3 = cosA.

b. a ≤ b ≤ c⇒ n
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We take in (2) : a1 = n
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