A PSEUDO-CEBYSHEV’S INEQUALITY AND APPLICATIONS
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ABSTRACT. In this paper it is proved a classical inequality and are given a few
applications.

MAIN PROBLEM: If 0 < a1 < as < ... < ap,n € N* then:
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We will use the mathematical induction to prove (1):
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Application 1: If 0 < z < 1 then:
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Proof.
0<z<1=20<20<2=0<2z<2’°+1<2

We take in (2) : a; = 2x,a9 = 2% + 1,03 = 2.
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Equality holds for x = 1.

Application 2: If 0 < a < b < ¢ then in AABC holds:
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Proof.
a. We take in (2) : a; = a,a2 = b,a3 = c.
b. We use: @ =2Rsin A,b=2Rsin B,¢ = 2RsinC in (5) and recall:

0<sinA<sinB <sinC
c. We take in (2) : a1 = p(A4), a2 = u(B), as = u(C) and recall:
0 < pu(A) < pu(B) < u(C)
d. We take in (2) : ay = me, a2 = myp, a3 = m, and recall:
0<me<my <myg
e. We take in (2) : a1 = he¢,ag = hy, a3 = h, and recall:
0<he<hy<hg

Application 3: If 0 < a < b <¢,n € N,n > 2 then in AABC holds:
a+b a-+c b+c>a+c b+c a+bd
at+c b+c a+b " a+b a+c biec

a+b a+c b+ ¢ a+c b+c a+b
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ZsinA+sinB S sin A +sinC
sinA+sinC — pv sin A + sin B

cyc
Proof.
at+c<b+c
(7) a.a<b<c=<a+b<c+b =a+b<a+c<b+c
b+a<c+a

b.By (7):a+b<a+c<b+c=Va+b<Vat+tc<Vb+ec

We take in (2) : a1 = Va + b,as = Va+ c,az = Vb +c.

c. By(M:a+b<a+c<b+tc=Ya+b< Yat+c< Yb+c

We take in (2) : a1 = Va +b,as = va+ c,az = Vb +c.

d. We replace in (6) : a = 2Rsin A,b = 2Rsin B,¢ = 2Rsin C' O

Application 4: If 0 < a <b <¢,n € N,n > 2 then in AABC holds:

A\ c a~ Va b c

b. » sin A 4+ sin B 4+ sin C > n sin B + v\L/sinC 4+ sin B

sin B sin C' sin A — sin A sin B sin C'

Proof.

a.a<b<c= {a< Vb< /e

We take in (2) : a; = {/a,as = Vb, a3 = {/c.

b. We take in (8) : @ = 2Rsin A,b = 2Rsin B, ¢ = 2R sin C' and recall:

0<sinAd<sinB<sinC= VsinA < VsinB < ¥VC

Application 5: f 0 < a < b < ¢,n € B,n > 2 then in acute AABC holds:
s C A B B Ye, A
B CosB T conC T cosA = cosC T con A T ‘cos

n [ cosC n/cos A n [ cos B n[cos B n/cosC n/cos A
b \/COSB + cos C + cos A 2 cos C + cos A + cos B

Proof.

a.a<b<c=cosC <cosB < cosA.

We take in (2) : a1 = cos C, as = cos B, a3 = cos A.
b.a<b<c¢= VcosC < VcosB < {cos A

We take in (2) : a1 = VcosC,ay = Vcos B,az = V/cos A.
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