

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro A NEW SEQUENCE OF PRIME NUMBERS

By Mohammed Bouras-Morocco

ABSTRACT. In this paper, we discovered a new sequence of prime numbers, every term of this sequence is either a prime number or equal to 1.

Keywords. Prime numbers, sequence.

INTRODUCTION

A number is said to be a prime number if the number is divisible only by 1 and itself; otherwise it's composite. In this paper, we present two new sequences related with the continued fraction.

THE SEQUENCE b(n)

The sequence b(n) satisfy the following recursive formula

$$b(n) = (n-1)b(n-1) - nb(n-2)$$

With the starting conditions b(3) = 1, and b(4) = 7

Table 1. The first few values of b(n)

n	3	4	5	6	7	8	9	10	11
b (n)	1	7	23	73	277	1355	8347	61573	523913

Theorem 2.1 For $n \ge 3$.

i)
$$\frac{b(n)}{n^2 - n - 1} = \frac{1}{2 - \frac{3}{3 - \frac{4}{4 - 5}}}_{(n-1) - \frac{n}{n - (n+1)}}$$

For $n \geq 5$.

ii)
$$b(n) = (2n^2 - 6n + 3) \cdot A051403(n - 5) - (2n^2 - 5n + 2) \cdot A051403(n - 6)$$

Proof. By using some simplification of the denominator of the continued fraction.

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro

THE SEQUENCE a(n)

In this section, we present our sequence of prime numbers defined in the conjecture as follows

Conjecture 3.1. The sequence a(n) of the prime numbers satisfy the following formula

$$a(n) = \frac{n^2 - n - 1}{gcd(b(n), n^2 - n - 1)}$$

Table 2. The first few values of a(n)

n	3	4	5	6	7	8	9	10	11
a (n)	5	11	19	29	41	11	71	89	109

Also we have

$$a(37) = a(43) = a(48) = a(53) = 1$$

Conjecture 3.2. every term of this sequence is either a prime number or equal to 1.

References

[1] Richard Guy, Unsolved Problems in Number Theory, Springer science (2004).

[2] N. J. A. Sloane et al., The On-line Encyclopedia of integers sequences, https://oeis.org

(Concerned with the sequence *A*051403)