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1101.  𝑰𝒇 𝒂, 𝒃, 𝒄 ≥ 𝟎 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒂 + 𝒃 + 𝒄 = 𝟏 𝒂𝒏𝒅 𝟎 ≤ 𝝀 ≤ 𝟏 𝒕𝒉𝒆𝒏 ∶ 

𝟏

𝒂𝟐 + 𝝀
+

𝟏

𝒃𝟐 + 𝝀
+

𝟏

𝒄𝟐 + 𝝀
≥

𝟑𝝀 + 𝟕

(𝟏 + 𝝀)𝟐
 

Proposed by Marin Chirciu-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒘𝒊𝒍𝒍 𝒑𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶   𝑰𝒇 𝟎 ≤ 𝒂, 𝝀 ≤ 𝟏 𝒕𝒉𝒆𝒏 ∶  
𝟏

𝒂𝟐 + 𝝀
≥
𝝀 + 𝟑 − 𝟐𝒂

(𝟏 + 𝝀)𝟐
. 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  
𝟏

𝒂𝟐 + 𝝀
≥
𝝀 + 𝟑 − 𝟐𝒂

(𝟏 + 𝝀)𝟐
 ⇔ (𝟏 + 𝝀)𝟐 ≥ (𝒂𝟐 + 𝝀)(𝝀 + 𝟑 − 𝟐𝒂) 

⇔ 𝟐𝒂𝟑 − (𝝀 + 𝟑)𝒂𝟐 + 𝟐𝝀𝒂 + 𝟏 − 𝝀 ≥ 𝟎 ⇔  (𝒂 − 𝟏)𝟐[𝟐𝒂 + (𝟏 − 𝝀)] ≥ 𝟎 

𝑾𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒃𝒆𝒄𝒂𝒖𝒔𝒆 ∶  𝒂,   𝟏 − 𝝀 ≥ 𝟎. 

𝑻𝒉𝒆𝒏 ∶  
𝟏

𝒂𝟐 + 𝝀
≥
𝝀 + 𝟑 − 𝟐𝒂

(𝟏 + 𝝀)𝟐
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   
𝟏

𝒂𝟐 + 𝝀
+

𝟏

𝒃𝟐 + 𝝀
+

𝟏

𝒄𝟐 + 𝝀
≥
𝟑𝝀 + 𝟗 − 𝟐(𝒂 + 𝒃 + 𝒄)

(𝟏 + 𝝀)𝟐
=

𝟑𝝀 + 𝟕

(𝟏 + 𝝀)𝟐
. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝝀 = 𝟏 𝒂𝒏𝒅 (𝒂 = 𝟏, 𝒃 = 𝒄 = 𝟎) 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 

1102. 𝑰𝒇 𝒂, 𝒃, 𝒄 > 0, 𝑡ℎ𝑒𝑛  

  ∑
𝒃 + 𝒄

√𝒂
𝒄𝒚𝒄

−∑√𝟐(𝒃 + 𝒄)

𝒄𝒚𝒄

≥
𝟏

𝟒(𝒂 + 𝒃 + 𝒄)√𝒂𝒃𝒄
∑𝒄(𝒂 − 𝒃)𝟐

𝒄𝒚𝒄

 

Proposed by Neculai Stanciu-Romania 
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  ∑
𝒃+ 𝒄

√𝒂
𝒄𝒚𝒄

−∑√𝟐(𝒃+ 𝒄)

𝒄𝒚𝒄

 ≥⏞
𝑨𝑴−𝑮𝑴

 ∑
𝒃 + 𝒄

√𝒂
𝒄𝒚𝒄

−∑(
𝒃 + 𝒄

𝟐√𝒂
+ √𝒂)

𝒄𝒚𝒄

= 

=∑(
𝒃 + 𝒄

𝟐√𝒂
− √𝒂)

𝒄𝒚𝒄

=∑(
𝒄 − 𝒂

𝟐√𝒂
−
𝒂− 𝒃

𝟐√𝒂
)

𝒄𝒚𝒄

=∑(
𝒂 − 𝒃

𝟐√𝒃
−
𝒂− 𝒃

𝟐√𝒂
)

𝒄𝒚𝒄

= 

∑
(𝒂 − 𝒃)(√𝒂 − √𝒃)

𝟐√𝒂𝒃
𝒄𝒚𝒄

=
𝟏

√𝒂𝒃𝒄
∑

𝒄(𝒂 − 𝒃)𝟐

𝟐√𝒄(√𝒂 + √𝒃)
𝒄𝒚𝒄

≥ 
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≥⏞
𝑨𝑴−𝑮𝑴

 
𝟏

√𝒂𝒃𝒄
∑

𝒄(𝒂 − 𝒃)𝟐

(𝒄 + 𝒂) + (𝒄 + 𝒃)
𝒄𝒚𝒄

≥
𝟏

𝟒(𝒂 + 𝒃 + 𝒄)√𝒂𝒃𝒄
∑𝒄(𝒂 − 𝒃)𝟐

𝒄𝒚𝒄

,   𝒂𝒔 𝒅𝒆𝒔𝒊𝒓𝒆𝒅. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄. 

Solution 2 by Soumava Chakraborty-Kolkata-India 

𝐀𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐛 + 𝐜 = 𝒙, 𝐜 + 𝒂 = 𝐲,𝒂 + 𝐛 = 𝐳 ⇒ 𝒙+ 𝐲 − 𝐳 = 𝟐𝐜 > 0, 𝑦 + 𝑧 − 𝒙 = 𝟐𝒂

> 0 𝒂𝐧𝐝 𝐳 + 𝒙 − 𝐲 = 𝟐𝐛 > 0 ⇒ 𝒙+ 𝐲 > 𝑧, 𝐲 + 𝐳 > 𝒙, 𝐳 + 𝒙 > 𝑦

⇒ 𝒙, 𝐲, 𝐳 𝐟𝐨𝐫𝐦 𝐬𝐢𝐝𝐞𝐬   
𝐨𝐟 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬

= 𝐬, 𝐑, 𝐫 (𝐬𝒂𝐲) 𝐲𝐢𝐞𝐥𝐝𝐢𝐧𝐠 𝟐∑𝒂

𝐜𝐲𝐜

=∑𝒙

𝐜𝐲𝐜

= 𝟐𝐬 ⇒ ∑𝒂

𝐜𝐲𝐜

=
(⦁)
𝐬 ⇒ 𝒂 = 𝐬 − 𝒙, 𝐛

= 𝐬 − 𝐲, 𝐜 = 𝐬 − 𝐳 ⇒ 𝒂𝐛𝐜 =
(⦁⦁)

𝐫𝟐𝐬  

𝐕𝐢𝒂 𝒂𝐟𝐨𝐫𝐞𝐦𝐞𝐧𝐭𝐢𝐨𝐧𝐞𝐝 𝐬𝐮𝐛𝐬𝐭𝐢𝐭𝐮𝐭𝐢𝐨𝐧𝐬,∑𝒂𝐛

𝐜𝐲𝐜

=∑(𝐬 − 𝒙)(𝐬 − 𝐲)

𝐜𝐲𝐜

= 𝟒𝐑𝐫 + 𝐫𝟐

⇒ ∑𝒂𝐛

𝐜𝐲𝐜

=
(⦁⦁⦁)

𝟒𝐑𝐫 + 𝐫𝟐  

∑
𝐛 + 𝐜

√𝒂
𝐜𝐲𝐜

−
𝟏

𝟒(𝒂 + 𝐛 + 𝐜). √𝒂𝐛𝐜
∑𝐜(𝒂 − 𝐛)𝟐

𝐜𝐲𝐜

=
𝟏

√𝒂𝐛𝐜
∑((𝐛+ 𝐜)√𝐛𝐜)

𝐜𝐲𝐜

−
𝟏

𝟒(𝒂 + 𝐛 + 𝐜). √𝒂𝐛𝐜
(∑(𝒂𝐛(∑𝒂

𝐜𝐲𝐜

− 𝐜))

𝐜𝐲𝐜

− 𝟔𝒂𝐛𝐜) 

≥
𝐆−𝐇 𝟒∑ 𝒂𝐜𝐲𝐜

𝟒(𝒂 + 𝐛 + 𝐜). √𝒂𝐛𝐜
∑((𝐛+ 𝐜) (

𝟐𝐛𝐜

𝐛 + 𝐜
))

𝐜𝐲𝐜

−
𝟏

𝟒(𝒂 + 𝐛 + 𝐜). √𝒂𝐛𝐜
.((∑𝒂

𝐜𝐲𝐜

)(∑𝒂𝐛

𝐜𝐲𝐜

)− 𝟗𝒂𝐛𝐜)

=
𝟖(∑ 𝒂𝐜𝐲𝐜 )(∑ 𝒂𝐛𝐜𝐲𝐜 ) − (∑ 𝒂𝐜𝐲𝐜 )(∑ 𝒂𝐛𝐜𝐲𝐜 ) + 𝟗𝒂𝐛𝐜

𝟒(∑ 𝒂𝐜𝐲𝐜 ).√𝒂𝐛𝐜
 

∴ ∑
𝐛+ 𝐜

√𝒂
𝐜𝐲𝐜

−
𝟏

𝟒(𝒂 + 𝐛+ 𝐜). √𝒂𝐛𝐜
∑𝐜(𝒂 − 𝐛)𝟐

𝐜𝐲𝐜

≥
(∗) 𝟕(∑ 𝒂𝐜𝐲𝐜 )(∑ 𝒂𝐛𝐜𝐲𝐜 ) + 𝟗𝒂𝐛𝐜

𝟒(∑ 𝒂𝐜𝐲𝐜 ). √𝒂𝐛𝐜
 𝒂𝐧𝐝 ∑√𝟐(𝐛 + 𝐜)

𝐜𝐲𝐜

≤
𝐂𝐁𝐒

√𝟔.√∑(𝐛 + 𝐜)

𝐜𝐲𝐜

∴ ∑√𝟐(𝐛 + 𝐜)

𝐜𝐲𝐜

≤
(∗∗)

√𝟏𝟐∑𝒂
𝐜𝐲𝐜
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∴ (∗), (∗∗) ⇒ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶∑
𝐛+ 𝐜

√𝒂
𝐜𝐲𝐜

−
𝟏

𝟒(𝒂 + 𝐛 + 𝐜). √𝒂𝐛𝐜
∑𝐜(𝒂 − 𝐛)𝟐

𝐜𝐲𝐜

≥∑√𝟐(𝐛 + 𝐜)

𝐜𝐲𝐜

, 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶
𝟕(∑ 𝒂𝐜𝐲𝐜 )(∑ 𝒂𝐛𝐜𝐲𝐜 ) + 𝟗𝒂𝐛𝐜

𝟒(∑ 𝒂𝐜𝐲𝐜 ).√𝒂𝐛𝐜
≥ √𝟏𝟐∑𝒂

𝐜𝐲𝐜

 

⇔
(𝟕(∑ 𝒂𝐜𝐲𝐜 )(∑ 𝒂𝐛𝐜𝐲𝐜 ) + 𝟗𝒂𝐛𝐜)

𝟐

𝟏𝟔𝒂𝐛𝐜(∑ 𝒂𝐜𝐲𝐜 )
𝟐 ≥ 𝟏𝟐∑𝒂

𝐜𝐲𝐜

⇔
𝐯𝐢𝒂 (⦁),(⦁⦁),(⦁⦁⦁)

(𝟕𝐬(𝟒𝐑𝐫 + 𝐫𝟐) + 𝟗𝐫𝟐𝐬)
𝟐

≥ 𝟏𝟗𝟐𝐫𝟐𝐬. 𝐬𝟑 ⇔ 𝟏𝟐𝐬𝟐 ≤
(𝐢)

𝟒𝟗𝐑𝟐 + 𝟓𝟔𝐑𝐫 + 𝟏𝟔𝐫𝟐 

𝐍𝐨𝐰, 𝟏𝟐𝐬𝟐 ≤
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟒𝟖𝐑𝟐 + 𝟒𝟖𝐑𝐫 + 𝟑𝟔𝐫𝟐 ≤
?
𝟒𝟗𝐑𝟐 + 𝟓𝟔𝐑𝐫 + 𝟏𝟔𝐫𝟐 ⇔ 𝐑𝟐 + 𝟖𝐑𝐫 − 𝟐𝟎𝐫𝟐 ≥

?
𝟎

⇔ (𝐑 − 𝟐𝐫)(𝐑 + 𝟏𝟎𝐫) ≥
?
𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐑 ≥

𝐄𝐮𝐥𝐞𝐫
𝟐𝐫 ⇒ (𝐢) 𝐢𝐬 𝐭𝐫𝐮𝐞 

∴ ∑
𝐛+ 𝐜

√𝒂
𝐜𝐲𝐜

−
𝟏

𝟒(𝒂 + 𝐛 + 𝐜). √𝒂𝐛𝐜
∑𝐜(𝒂 − 𝐛)𝟐

𝐜𝐲𝐜

≥∑√𝟐(𝐛 + 𝐜)

𝐜𝐲𝐜

⇒ ∀ 𝒂, 𝐛, 𝐜

> 0,∑
𝐛+ 𝐜

√𝒂
𝐜𝐲𝐜

−∑√𝟐(𝐛 + 𝐜)

𝐜𝐲𝐜

≥
𝟏

𝟒(𝒂 + 𝐛 + 𝐜). √𝒂𝐛𝐜
∑𝐜(𝒂 − 𝐛)𝟐

𝐜𝐲𝐜

, 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 (𝐐𝐄𝐃) 

1103. 𝑰𝒇 𝒂, 𝒃, 𝒄 > 𝟎 𝒕𝒉𝒆𝒏 ∶ 

  𝟏 <⏞
(𝟏)

√
𝒂

𝒂 + 𝟐𝒃 + 𝟐𝒄
+ √

𝒃

𝒃 + 𝟐𝒄 + 𝟐𝒂
+ √

𝒄

𝒄 + 𝟐𝒂 + 𝟐𝒃
 ≤⏞
(𝟐)

 
𝟑

√𝟓
. 

 
Proposed by Vasile Mircea Popa-Romania 

Solution  by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   √
𝒂

𝒂+ 𝟐𝒃 + 𝟐𝒄
=

𝟐𝒂

𝟐√𝒂(𝒂 + 𝟐𝒃 + 𝟐𝒄)
≥⏞

𝑨𝑴−𝑮𝑴 𝟐𝒂

𝒂 + (𝒂 + 𝟐𝒃 + 𝟐𝒄)
=

𝒂

𝒂 + 𝒃 + 𝒄
 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂 = 𝒂 + 𝟐𝒃 + 𝟐𝒄 𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒏𝒐𝒕 𝒑𝒐𝒔𝒔𝒊𝒃𝒍𝒆 ∴ 𝒃, 𝒄 > 0. 

𝑻𝒉𝒆𝒏 ∶  √
𝒂

𝒂 + 𝟐𝒃 + 𝟐𝒄
>

𝒂

𝒂 + 𝒃 + 𝒄
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   √
𝒂

𝒂 + 𝟐𝒃 + 𝟐𝒄
+ √

𝒃

𝒃 + 𝟐𝒄 + 𝟐𝒂
+√

𝒄

𝒄 + 𝟐𝒂 + 𝟐𝒃
>
𝒂 + 𝒃 + 𝒄

𝒂 + 𝒃 + 𝒄
= 𝟏. 

𝑾𝑳𝑶𝑮,𝒘𝒆 𝒂𝒔𝒔𝒖𝒎𝒆 𝒕𝒉𝒂𝒕 𝒂 + 𝒃 + 𝒄 = 𝟑 𝒂𝒏𝒅 𝒄 = 𝒎𝒂𝒙{𝒂, 𝒃, 𝒄}.  𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 
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  𝒂, 𝒃 <
𝒂 + 𝒃 + 𝒄

𝟐
=
𝟑

𝟐
.   

𝑻𝒉𝒆 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 (𝟐) 𝒃𝒆𝒄𝒐𝒎𝒆𝒔 ∶  𝒇(𝒂) + 𝒇(𝒃) + 𝒇(𝒄) ≤
𝟑

√𝟓
,   𝒘𝒉𝒆𝒓𝒆 

 𝒇(𝒙) = √
𝒙

𝟔 − 𝒙
,   𝒙 ∈ (𝟎, 𝟑). 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  𝒇′(𝒙) =
𝟑

√𝒙(𝟔 − 𝒙)𝟑
 𝒂𝒏𝒅 𝒇′′(𝒙) = −

𝟑(𝟑 − 𝟐𝒙)

√𝒙𝟑(𝟔 − 𝒙)𝟓
< 0,   𝑥 ∈ (𝟎,

𝟑

𝟐
). 

𝑻𝒉𝒆𝒏 𝒇 𝒊𝒔 𝒄𝒐𝒏𝒄𝒂𝒗𝒆 𝒐𝒏 (𝟎,
𝟑

𝟐
)  𝒂𝒏𝒅 𝒃𝒚 𝑱𝒆𝒏𝒔𝒆𝒏′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝒇(𝒂) + 𝒇(𝒃) ≤ 𝟐𝒇(
𝒂 + 𝒃

𝟐
) = 𝟐𝒇 (

𝟑 − 𝒄

𝟐
)   ∴ 𝟎 < 𝑎, 𝑏 <

𝟑

𝟐
. 

𝑺𝒐 𝒊𝒕 𝒔𝒖𝒇𝒇𝒊𝒄𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 ∶   𝟐𝒇 (
𝟑 − 𝒄

𝟐
) + 𝒇(𝒄) ≤

𝟑

√𝟓
 ⇔  𝟐√

𝟑 − 𝒄

𝟗 + 𝒄
+ √

𝒄

𝟔− 𝒄
≤

𝟑

√𝟓
 

⇔⏞
𝑺𝒒𝒖𝒂𝒓𝒊𝒏𝒈

 𝟒√
(𝟑 − 𝒄)𝒄

(𝟗 + 𝒄)(𝟔 − 𝒄)
≤
𝟗

𝟓
− (

𝟒(𝟑 − 𝒄)

𝟗 + 𝒄
+

𝒄

𝟔 − 𝒄
) =

𝟐(𝟔𝟑 + 𝟓𝟒𝒄 − 𝟏𝟕𝒄𝟐)

𝟓(𝟗 + 𝒄)(𝟔 − 𝒄)
 

⇔⏞
𝑺𝒒𝒖𝒂𝒓𝒊𝒏𝒈

 𝟒(𝟑 − 𝒄)𝒄 × 𝟐𝟓(𝟗 + 𝒄)(𝟔 − 𝒄) ≤ (𝟔𝟑 + 𝟓𝟒𝒄 − 𝟏𝟕𝒄𝟐)𝟐 

⇔  𝟕𝒄𝟒 − 𝟔𝟖𝒄𝟑 + 𝟐𝟔𝟐𝒄𝟐 − 𝟑𝟒𝟖𝒄 + 𝟏𝟒𝟕 ≥ 𝟎 ⇔  (𝒄 − 𝟏)𝟐 [𝟕 (𝒄 −
𝟐𝟕

𝟕
)
𝟐

+
𝟑𝟎𝟎

𝟕
] ≥ 𝟎. 

𝑾𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒂𝒏𝒅 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒐𝒇 (𝟐) 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄. 

1104.  𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 ≥ 𝟎 ∶  𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 = 𝟏.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝒂𝟒 − 𝒂𝟐

𝒃𝒄 − 𝟏
+
𝒃𝟒 − 𝒃𝟐

𝒄𝒂 − 𝟏
+
𝒄𝟒 − 𝒄𝟐

𝒂𝒃 − 𝟏
≤ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂. 

  Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 
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𝒂𝟒 − 𝒂𝟐

𝒃𝒄 − 𝟏
=

𝒂𝟐(𝒃𝟐 + 𝒄𝟐)

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 − 𝒃𝒄
 ≤⏞
𝑨𝑴−𝑮𝑴

 
𝒂𝟐(𝒃𝟐 + 𝒄𝟐)

𝟐𝒂√𝒃𝟐 + 𝒄𝟐 − 𝒃𝒄
= 

= 
𝒂(𝒃 + 𝒄)(𝒃𝟐 + 𝒄𝟐)

𝟐√(𝒃 + 𝒄)(𝒃𝟑 + 𝒄𝟑)
 ≤⏞
𝑪𝑩𝑺

 
𝒂(𝒃 + 𝒄)(𝒃𝟐 + 𝒄𝟐)

𝟐(𝒃𝟐 + 𝒄𝟐)
=
𝒄𝒂 + 𝒂𝒃

𝟐
. 

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝒃𝟒 − 𝒃𝟐

𝒄𝒂 − 𝟏
≤
𝒂𝒃 + 𝒃𝒄

𝟐
  𝒂𝒏𝒅  

𝒄𝟒 − 𝒄𝟐

𝒂𝒃 − 𝟏
≤
𝒃𝒄 + 𝒄𝒂

𝟐
. 

𝑺𝒖𝒎𝒎𝒊𝒏𝒈 𝒖𝒑 𝒕𝒉𝒆𝒔𝒆 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒊𝒆𝒔 𝒚𝒊𝒆𝒍𝒅𝒔 𝒕𝒉𝒆 𝒅𝒆𝒔𝒊𝒓𝒆𝒅 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂,𝒃, 𝒄)

= (
√𝟑

𝟑
,
√𝟑

𝟑
,
√𝟑

𝟑
) , (

√𝟐

𝟐
,
√𝟐

𝟐
, 𝟎)  𝒐𝒓 (𝟏,𝟎, 𝟎) 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏𝒔. 

1105.  𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 ≥ 𝟎 ∶ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝒂𝟐(𝟏 + 𝒃𝒄)

𝒃𝟐 + 𝒄𝟐
+
𝒃𝟐(𝟏 + 𝒄𝒂)

𝒄𝟐 + 𝒂𝟐
+
𝒄𝟐(𝟏 + 𝒂𝒃)

𝒂𝟐 + 𝒃𝟐
≥ (𝒂 − 𝒃)𝟐 + (𝒃 − 𝒄)𝟐 + (𝒄 − 𝒂)𝟐 

  Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝒂𝟐(𝟏 + 𝒃𝒄)

𝒃𝟐 + 𝒄𝟐
 ≥⏞
𝒃𝒄 ≥ 𝟎

 
𝒂𝟐[𝒂(𝒃 + 𝒄) + 𝟐𝒃𝒄]

(𝒃 + 𝒄)𝟐
 ≥⏞
𝒂𝒃𝒄 ≥ 𝟎

 
𝒂𝟐. 𝒂

𝒃 + 𝒄

= 𝒂(
𝒂𝟐

𝒃 + 𝒄
+ (𝒃 + 𝒄)) − 𝒂(𝒃 + 𝒄) ≥⏞

𝑨𝑴−𝑮𝑴

 𝒂. 𝟐𝒂 − 𝒂(𝒃 + 𝒄). 

  𝑻𝒉𝒆𝒏 ∶   
𝒂𝟐(𝟏 + 𝒃𝒄)

𝒃𝟐 + 𝒄𝟐
≥ 𝟐𝒂𝟐 − 𝒂(𝒃 + 𝒄)  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,  

  ∑
𝒂𝟐(𝟏 + 𝒃𝒄)

𝒃𝟐 + 𝒄𝟐
𝒄𝒚𝒄

≥∑[𝟐𝒂𝟐 − 𝒂(𝒃 + 𝒄)]

𝒄𝒚𝒄

= (𝒂 − 𝒃)𝟐 + (𝒃 − 𝒄)𝟐 + (𝒄 − 𝒂)𝟐. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂,𝒃, 𝒄) = (𝟏, 𝟏, 𝟎) 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 
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1106. 𝑰𝒇 𝒙, 𝒚, 𝒛 > 0 𝑎𝑛𝑑 0 ≤ 𝜆 ≤
𝟏

𝟐𝟓
 𝒕𝒉𝒆𝒏 ∶ 

  ∑
𝒙

√𝝀𝒚𝟑 + 𝒙𝒚𝒛 + 𝝀𝒛𝟑
𝟑

𝒄𝒚𝒄

≥⏞
(∗)

𝟑

√𝟐𝝀 + 𝟏
𝟑  

  Proposed by Marin Chirciu-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑳𝒆𝒕  𝒑 ≔ 𝒙 + 𝒚 + 𝒛 = 𝟑,   𝒒 ≔ 𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙 ≤
𝒑𝟐

𝟑
= 𝟑,   𝒓 ≔ 𝒙𝒚𝒛 ≤⏞

𝑨𝑴−𝑮𝑴

 (
𝒑

𝟑
)
𝟑

= 𝟏. 

𝑩𝒚 𝑯ӧ𝒍𝒅𝒆𝒓′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

 (𝑳𝑯𝑺(∗))
𝟑
.∑𝒙(𝝀𝒚𝟑 + 𝒙𝒚𝒛 + 𝝀𝒛𝟑)

𝒄𝒚𝒄

≥ (𝒙 + 𝒚 + 𝒛)𝟒 = 𝟖𝟏. 

𝑨𝒍𝒔𝒐 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   ∑𝒙(𝒚𝟑 + 𝒛𝟑)

𝒄𝒚𝒄

= 𝒑𝟐𝒒 − 𝟐𝒒𝟐 − 𝒑𝒓 = −𝟐𝒒𝟐 + 𝟗𝒒 − 𝟑𝒓. 

𝑻𝒉𝒆𝒏 ∶  (𝑳𝑯𝑺(∗))
𝟑
≥

𝟖𝟏

𝝀(−𝟐𝒒𝟐 + 𝟗𝒒 − 𝟑𝒓) + 𝟑𝒓
 ≥⏞
?

 (
𝟑

√𝟐𝝀 + 𝟏
𝟑 )

𝟑

 

⇔  𝟑(𝟐𝝀 + 𝟏) ≥ 𝝀(−𝟐𝒒𝟐 + 𝟗𝒒 − 𝟑𝒓) + 𝟑𝒓 ⇔ 𝟑(𝟏 − 𝒓) + 𝝀(𝟐𝒒𝟐 − 𝟗𝒒 + 𝟑𝒓 + 𝟔) ≥ 𝟎 (𝟏) 

𝑰𝒇 𝟐𝒒𝟐 − 𝟗𝒒 + 𝟑𝒓 + 𝟔 ≥ 𝟎 𝒕𝒉𝒆𝒏 ∶   𝑳𝑯𝑺(∗)  ≥⏞
𝒓 ≤ 𝟏 & 𝜆 ≥ 0

 𝟎. 

𝑰𝒇 𝟐𝒒𝟐 − 𝟗𝒒 + 𝟑𝒓 + 𝟔 ≤ 𝟎 𝒕𝒉𝒆𝒏 ∶   𝑳𝑯𝑺(∗)  ≥⏞

𝝀 ≤ 
𝟏
𝟐𝟓

 𝟑(𝟏 − 𝒓) +
𝟏

𝟐𝟓
(𝟐𝒒𝟐 − 𝟗𝒒 + 𝟑𝒓 + 𝟔) = 

=
𝟐𝒒𝟐 − 𝟗𝒒 − 𝟕𝟐𝒓 + 𝟖𝟏

𝟐𝟓
 ≥⏞
𝟗𝒓 ≤ 𝒑𝒒 = 𝟑𝒒

 
𝟐𝒒𝟐 − 𝟗𝒒 − 𝟐𝟒𝒒 + 𝟖𝟏

𝟐𝟓
=
(𝟑 − 𝒒)(𝟐𝟕 − 𝟐𝒒)

𝟐𝟓
 ≥⏞
𝒒 ≤ 𝟑

 𝟎. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒙 = 𝒚 = 𝒛. 

1107. 𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 > 𝟎 ∶ 𝒂 + 𝒃 + 𝒄 + 𝟐 = 𝒂𝒃𝒄.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

√𝟏 + 𝒂𝒃 + 𝒂𝒄

𝒂 + 𝟏
+
√𝟏 + 𝒃𝒄 + 𝒃𝒂

𝒃 + 𝟏
+
√𝟏 + 𝒄𝒂 + 𝒄𝒃

𝒄 + 𝟏
≥ 𝟑 

  Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
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Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 

 (𝒂 + 𝒃 + 𝒄)√𝟏 + 𝒂𝒃 + 𝒂𝒄 = √[(−𝒂+ 𝒃 + 𝒄)𝟐 + 𝟒𝒂(𝒃 + 𝒄)][𝟏 + 𝒂(𝒃 + 𝒄)] ≥ 

≥⏞
𝑪𝑩𝑺

 (−𝒂 + 𝒃 + 𝒄) + 𝟐𝒂(𝒃 + 𝒄) = (−𝒂 + 𝒃 + 𝒄)(𝒂 + 𝟏) + 𝒂(𝒂 + 𝒃 + 𝒄) 

𝑻𝒉𝒆𝒏 ∶   
√𝟏 + 𝒂𝒃 + 𝒂𝒄

𝒂 + 𝟏
≥
−𝒂 + 𝒃 + 𝒄

𝒂 + 𝒃 + 𝒄
+

𝒂

𝒂 + 𝟏
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   ∑
√𝟏 + 𝒂𝒃 + 𝒂𝒄

𝒂 + 𝟏
𝒄𝒚𝒄

≥∑(
−𝒂 + 𝒃 + 𝒄

𝒂 + 𝒃 + 𝒄
+ 𝟏 −

𝟏

𝒂 + 𝟏
)

𝒄𝒚𝒄

= 𝟏 + 𝟑 −∑
𝟏

𝒂+ 𝟏
𝒄𝒚𝒄

= 

= 𝟒 −
𝟐(𝒂 + 𝒃 + 𝒄) + (𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) + 𝟑

𝒂𝒃𝒄 + (𝒂 + 𝒃 + 𝒄) + (𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) + 𝟏
 =⏞
𝒂𝒃𝒄 = 𝒂+𝒃+𝒄+𝟐

𝟒 − 𝟏 = 𝟑. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄 = 𝟐. 

1108.  𝑰𝒇 𝒂, 𝒃, 𝒄 ≥ 𝟎 ∶ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 > 𝟎 𝒕𝒉𝒆𝒏 ∶ 

 
𝒂

𝟒𝒂𝟐 + 𝒃𝒄
+

𝒃

𝟒𝒃𝟐 + 𝒄𝒂
+

𝒄

𝟒𝒄𝟐 + 𝒂𝒃
≥

𝟏

𝒂 + 𝒃 + 𝒄
. 

𝑾𝒉𝒆𝒏 𝒅𝒐𝒆𝒔 𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔?       

  Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 

 √(𝟒𝒂𝟐 + 𝒃𝒄)[𝒂(𝒃 + 𝒄) + 𝒃𝒄]  ≥⏞
𝑪𝑩𝑺

𝟐𝒂√𝒂(𝒃 + 𝒄) + 𝒃𝒄 ≥⏞
𝑮𝑴−𝑯𝑴

𝟐𝒂.
𝟐𝒂. (𝒃 + 𝒄)

𝒂 + (𝒃 + 𝒄)
+ 𝒃𝒄 = 

=
(𝒃 + 𝒄)(𝟒𝒂𝟐 + 𝒃𝒄) + 𝒂𝒃𝒄

𝒂 + 𝒃 + 𝒄
 ≥⏞
𝒂𝒃𝒄 ≥ 𝟎

 
(𝒃 + 𝒄)(𝟒𝒂𝟐 + 𝒃𝒄)

𝒂 + 𝒃 + 𝒄
. 

𝑻𝒉𝒆𝒏 ∶  
𝟏

√𝟒𝒂𝟐 + 𝒃𝒄
≥

𝒃 + 𝒄

(𝒂 + 𝒃 + 𝒄)√𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, ∑
𝒂

𝟒𝒂𝟐 + 𝒃𝒄
𝒄𝒚𝒄

≥∑
𝒂(𝒃 + 𝒄)𝟐

(𝒂 + 𝒃 + 𝒄)𝟐(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)
𝒄𝒚𝒄

= 
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=
(𝒂+ 𝒃 + 𝒄)(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) + 𝟑𝒂𝒃𝒄

(𝒂 + 𝒃 + 𝒄)𝟐(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)
 ≥⏞
𝒂𝒃𝒄 ≥ 𝟎

 
𝟏

𝒂 + 𝒃 + 𝒄
,   𝒂𝒔 𝒅𝒆𝒔𝒊𝒓𝒆𝒅. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 ≠ 𝟎 𝒂𝒏𝒅 𝒄 = 𝟎 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 

Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco 
𝑻𝒉𝒆 𝒈𝒊𝒗𝒆𝒏 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒊𝒔 𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝒊𝒗𝒆𝒍𝒚 𝒆𝒒𝒖𝒊𝒗𝒂𝒍𝒆𝒏𝒕 𝒕𝒐 ∶ 

(𝒂 + 𝒃 + 𝒄).∑𝒂(𝟒𝒃𝟐 + 𝒄𝒂)(𝟒𝒄𝟐 + 𝒂𝒃)

𝒄𝒚𝒄

≥ (𝟒𝒂𝟐 + 𝒃𝒄)(𝟒𝒃𝟐 + 𝒄𝒂)(𝟒𝒄𝟐 + 𝒂𝒃) 

⇔⏞
𝒆𝒙𝒑𝒂𝒏𝒅𝒊𝒏𝒈

 𝟒∑𝒂𝟒𝒃𝟐

𝒔𝒚𝒎

+ 𝟐𝟏𝒂𝒃𝒄∑𝒂𝟐𝒃

𝒔𝒚𝒎

≥ 𝟖∑(𝒃𝒄)𝟑

𝒄𝒚𝒄

+ 𝟑𝒂𝒃𝒄∑𝒂𝟑

𝒄𝒚𝒄

+ 𝟏𝟕(𝒂𝒃𝒄)𝟐 

⇔ 𝟒(𝒂 − 𝒃)𝟐(𝒃 − 𝒄)𝟐(𝒄 − 𝒂)𝟐 + 𝟏𝟑𝒂𝒃𝒄∑𝒂𝟐𝒃

𝒔𝒚𝒎

+ 𝟓𝒂𝒃𝒄∑𝒂𝟑

𝒄𝒚𝒄

+ 𝟕(𝒂𝒃𝒄)𝟐 ≥ 𝟎. 

𝑾𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆.   

∴ (𝒂 − 𝒃)𝟐(𝒃 − 𝒄)𝟐(𝒄 − 𝒂)𝟐 = ∑𝒂𝟒𝒃𝟐

𝒔𝒚𝒎

+ 𝟐𝒂𝒃𝒄∑ 𝒂𝟐𝒃

𝒔𝒚𝒎

− 𝟐∑(𝒃𝒄)𝟑

𝒄𝒚𝒄

− 𝟐𝒂𝒃𝒄∑𝒂𝟑

𝒄𝒚𝒄

− 𝟔(𝒂𝒃𝒄)𝟐. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 ≠ 𝟎 𝒂𝒏𝒅 𝒄 = 𝟎 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 

1109.  𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 ≥ 𝟎 ∶ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝟏 − 𝒂𝟐

𝒂𝟐 + √𝒃𝒄
+

𝟏 − 𝒃𝟐

𝒃𝟐 + √𝒄𝒂
+

𝟏 − 𝒄𝟐

𝒄𝟐 + √𝒂𝒃
≥ 𝟏 

  Proposed by Phan Ngoc Chau-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 

  𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐  =⏞
𝒂𝒃+𝒃𝒄+𝒄𝒂 = 𝟏

√[(−𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)𝟐 + 𝟒𝒂𝟐(𝒃𝟐 + 𝒄𝟐)][𝒃𝒄 + 𝒂(𝒃 + 𝒄)] ≥⏞
𝑪𝑩𝑺

 

≥ (−𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)√𝒃𝒄 + 𝟐𝒂√𝒂(𝒃 + 𝒄)(𝒃𝟐 + 𝒄𝟐) ≥⏞
√𝒂𝒃+𝒃𝒄+𝒄𝒂  ≥ √𝒂(𝒃+𝒄)

 

≥ (−𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)√𝒃𝒄 +
𝟐𝒂𝟐(𝒃 + 𝒄)√𝒃𝟐 + 𝒄𝟐

√𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂
≥ 
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≥⏞
𝒃+𝒄 ≥√𝒃𝟐+𝒄𝟐 

 (−𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)√𝒃𝒄 + 𝟐𝒂𝟐(𝒃𝟐 + 𝒄𝟐)

= (−𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)(𝒂𝟐 + √𝒃𝒄) + 𝒂𝟐(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐). 

𝑻𝒉𝒆𝒏 ∶   
𝟏 − 𝒂𝟐

𝒂𝟐 + √𝒃𝒄
≥
−𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐
.  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   ∑
𝟏 − 𝒂𝟐

𝒂𝟐 + √𝒃𝒄
𝒄𝒚𝒄

≥∑
−𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐
𝒄𝒚𝒄

= 𝟏. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝟏, 𝒄 = 𝟎 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 

 1110.  𝑰𝒇 𝒂, 𝒃, 𝒄 > 0 𝑡ℎ𝑒𝑛 ∶ 

  ∑ 𝒍𝒏 (
𝒄 + 𝒂

𝒄
) 𝒍𝒏 (

𝒄 + 𝒃

𝒃
)

𝒄𝒚𝒄

<∑(
𝒂

𝒃
)
𝟐𝟎𝟐𝟐

𝒄𝒚𝒄

 

  Proposed by Daniel Sitaru-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒌𝒏𝒐𝒘 𝒕𝒉𝒂𝒕 ∶ 

  𝟎 ≤ 𝒍𝒏(𝟏 + 𝒙) ≤ 𝒙,   ∀𝒙 ≥ 𝟎 𝒘𝒊𝒕𝒉 𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒘𝒉𝒆𝒏 𝒙 = 𝟎. 

𝑻𝒉𝒆𝒏 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶  

∑𝒍𝒏(
𝒄 + 𝒂

𝒄
) 𝒍𝒏(

𝒄 + 𝒃

𝒃
)

𝒄𝒚𝒄

=∑𝒍𝒏(𝟏 +
𝒂

𝒄
) 𝒍𝒏(𝟏 +

𝒄

𝒃
)

𝒄𝒚𝒄

<∑
𝒂

𝒄
.
𝒄

𝒃
𝒄𝒚𝒄

=∑
𝒂

𝒃
𝒄𝒚𝒄

. 

𝑨𝒍𝒔𝒐,   

   ∑(
𝒂

𝒃
)
𝟐𝟎𝟐𝟐

𝒄𝒚𝒄

 ≥⏞
𝑯ӧ𝒍𝒅𝒆𝒓

 𝟑−𝟐𝟎𝟐𝟏 . (∑
𝒂

𝒃
𝒄𝒚𝒄

)

𝟐𝟎𝟐𝟐

≥⏞
𝑨𝑴−𝑮𝑴

 𝟑−𝟐𝟎𝟐𝟏. (𝟑√
𝒂

𝒃
.
𝒃

𝒄
.
𝒄

𝒂

𝟑

)

𝟐𝟎𝟐𝟏

.∑
𝒂

𝒃
𝒄𝒚𝒄

=∑
𝒂

𝒃
𝒄𝒚𝒄

. 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   ∑ 𝒍𝒏(
𝒄 + 𝒂

𝒄
) 𝒍𝒏 (

𝒄 + 𝒃

𝒃
)

𝒄𝒚𝒄

<∑(
𝒂

𝒃
)
𝟐𝟎𝟐𝟐

𝒄𝒚𝒄

. 
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1111.   𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 ≥ 𝟎.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝟏𝟓(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)

𝒂 + 𝒃 + 𝒄
− 𝟐(𝒂 + 𝒃 + 𝒄) ≥ 𝟐√𝟖𝟏(𝒂𝟓 + 𝒃𝟓 + 𝒄𝟓)

𝟓
+ 𝟑√𝒂𝒃𝒄

𝟑
 

Proposed by Nguyen Van Canh-BenTre-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑺𝒊𝒏𝒄𝒆 ∶  𝟑√𝒂𝒃𝒄
𝟑

 ≤⏞
𝑨𝑴−𝑮𝑴

𝒂 + 𝒃 + 𝒄,   𝒊𝒕 𝒔𝒖𝒇𝒇𝒊𝒄𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 ∶ 

𝟏𝟓(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)

𝒂 + 𝒃 + 𝒄
− 𝟑(𝒂 + 𝒃 + 𝒄) ≥ 𝟐√𝟖𝟏(𝒂𝟓 + 𝒃𝟓 + 𝒄𝟓)

𝟓
  (∗) 

𝑾𝑳𝑶𝑮,𝒘𝒆 𝒎𝒂𝒚 𝒂𝒔𝒔𝒖𝒎𝒆 𝒕𝒉𝒂𝒕 𝒂 + 𝒃 + 𝒄 = 𝟏.   

𝑳𝒆𝒕 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 =
𝟏− 𝒒𝟐

𝟑
(𝒒 ∈ [𝟎,𝟏]) 𝒂𝒏𝒅 𝒂𝒃𝒄 = 𝒓. 

𝑼𝒔𝒊𝒏𝒈 𝒕𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒊𝒅𝒆𝒏𝒕𝒊𝒕𝒚 ∶ 

𝒂𝟓 + 𝒃𝟓 + 𝒄𝟓 = (𝒂 + 𝒃+ 𝒄)𝟓 − 𝟓[(𝒂 + 𝒃 + 𝒄)(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) − 𝒂𝒃𝒄][(𝒂 + 𝒃+ 𝒄)𝟐 − (𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂)], 

𝒘𝒆 𝒈𝒆𝒕 ∶   𝒂𝟓 + 𝒃𝟓 + 𝒄𝟓 =
𝟓𝒒𝟒 + 𝟓𝒒𝟐 − 𝟏

𝟗
+
𝟓(𝒒𝟐 + 𝟐)𝒓

𝟑
. 

𝑻𝒉𝒆𝒏 ∶  (∗)  ⇔ 𝟏+ 𝟓𝒒𝟐 ≥ √𝟗(𝟓𝒒𝟒 + 𝟓𝒒𝟐 − 𝟏) + 𝟏𝟑𝟓(𝒒𝟐 + 𝟐)𝒓
𝟓

 

⇔ 𝒓 ≤
(𝟏 + 𝟓𝒒𝟐)

𝟓
− 𝟗(𝟓𝒒𝟒 + 𝟓𝒒𝟐 − 𝟏)

𝟏𝟑𝟓(𝒒𝟐 + 𝟐)
=
𝟐 − 𝟒𝒒𝟐 + 𝟒𝟏𝒒𝟒 + 𝟐𝟓𝟎𝒒𝟔 + 𝟔𝟐𝟓𝒒𝟖 + 𝟔𝟐𝟓𝒒𝟏𝟎

𝟐𝟕(𝒒𝟐 + 𝟐)
. 

𝑩𝒚 𝑽𝒐 𝑸𝒖𝒐𝒄 𝑩𝒂 𝑪𝒂𝒏′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

  𝒓 ≤
(𝟏 − 𝒒)𝟐(𝟏 + 𝟐𝒒)

𝟐𝟕
, 𝒔𝒐 𝒊𝒕 𝒔𝒖𝒇𝒇𝒊𝒄𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 ∶ 

(𝟏 − 𝒒)𝟐(𝟏 + 𝟐𝒒)(𝒒𝟐 + 𝟐) ≤ 𝟐 − 𝟒𝒒𝟐 + 𝟒𝟏𝒒𝟒 + 𝟐𝟓𝟎𝒒𝟔 + 𝟔𝟐𝟓𝒒𝟖 + 𝟔𝟐𝟓𝒒𝟏𝟎 

⇔ 𝒒𝟐(𝟏 − 𝟐𝒒)𝟐 + 𝟑𝟗𝒒𝟒 + 𝒒𝟒(𝟏 − 𝒒)𝟐 + 𝟐𝟒𝟗𝒒𝟔 + 𝟔𝟐𝟓𝒒𝟖 + 𝟔𝟐𝟓𝒒𝟏𝟎 ≥ 𝟎. 

𝑾𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒂𝒏𝒅 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒒 = 𝟎 ⇔  𝒂 = 𝒃 = 𝒄. 
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1112.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

 √
𝒂 + 𝒃 + 𝟐𝒄

𝒄 + 𝟐
+ √

𝒃 + 𝒄 + 𝟐𝒂

𝒂 + 𝟐
+√

𝒄 + 𝒂 + 𝟐𝒃

𝒃 + 𝟐
≥ 𝟑√

(𝒌 + 𝟏)𝒂𝒃𝒄 − 𝟐

𝒌𝒂𝒃𝒄 − 𝟐
 

𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂, 𝒃, 𝒄 ≥ 𝟎, 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏 𝒂𝒏𝒅 𝒌 = 𝟔√𝟑 − 𝟗.    

Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 

 
(𝒂 + 𝒃 + 𝒄)(𝒂 + 𝒃 + 𝟐𝒄)

(𝒃 + 𝒄)(𝒄 + 𝒂)
= (𝒂 + 𝒃 + 𝒄) (

𝟏

𝒃 + 𝒄
+

𝟏

𝒄 + 𝒂
) = 𝟐 +

𝒂

𝒃 + 𝒄
+

𝒃

𝒄 + 𝒂
= 

= (𝒂(𝒃 + 𝒄) +
𝒂

𝒃 + 𝒄
) + (𝒃(𝒄 + 𝒂) +

𝒃

𝒄 + 𝒂
) + 𝒄(𝒂 + 𝒃) ≥⏞

𝑨𝑴−𝑮𝑴

 

≥  𝟐𝒂 + 𝟐𝒃 + 𝒄(𝒂 + 𝒃) = (𝒂 + 𝒃)(𝒄 + 𝟐) 

𝑻𝒉𝒆𝒏 ∶   
𝒂 + 𝒃 + 𝟐𝒄

𝒄 + 𝟐
≥
(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)

𝒂 + 𝒃 + 𝒄
  (𝟏). 

𝑵𝒐𝒘 𝒍𝒆𝒕′𝒔 𝒑𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶   
(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)

𝒂 + 𝒃 + 𝒄
≥
(𝒌 + 𝟏)𝒂𝒃𝒄 − 𝟐

𝒌𝒂𝒃𝒄 − 𝟐
  (𝟐) 

𝑳𝒆𝒕 𝒑 ≔ 𝒂 + 𝒃 + 𝒄,   𝒒 ≔ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏,   𝒓 ≔ 𝒂𝒃𝒄 ≤⏞
𝑨𝑴−𝑮𝑴

 √(
𝒒

𝟑
)
𝟑

=
√𝟑

𝟗
. 

(𝟐)  ⇔ 
𝒑𝒒 − 𝒓

𝒑
≥
(𝒌 + 𝟏)𝒓 − 𝟐

𝒌𝒓 − 𝟐
 ⇔ 𝟏 −

𝒓

𝒑
≥ 𝟏 −

𝒓

𝟐 − 𝒌𝒓
 ⇔  𝒑 + 𝒌𝒓 ≥ 𝟐.  ∴ 𝟐 − 𝒌𝒓 > 0. 

𝑰𝒇 𝒑 ≥ 𝟐 𝒕𝒉𝒆 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒊𝒔 𝒐𝒃𝒗𝒊𝒐𝒖𝒔.  𝑨𝒔𝒔𝒖𝒎𝒆 𝒏𝒐𝒘 𝒕𝒉𝒂𝒕 𝒑 ≤ 𝟐. 

𝑩𝒚 𝑺𝒄𝒉𝒖𝒓′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶  𝒓 ≥
𝟒𝒑𝒒 − 𝒑𝟑

𝟗
=
𝟒𝒑 − 𝒑𝟑

𝟗
, 𝒕𝒉𝒆𝒏 ∶ 

𝒑 + 𝒌𝒓 ≥ 𝒑 + 𝒌.
𝟒𝒑 − 𝒑𝟑

𝟗
= 𝟐 +

(𝟐 − 𝒑)(𝒑 − √𝟑)[(𝟐√𝟑 − 𝟑)𝒑 + √𝟑]

𝟑
≥ 𝟐, 
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𝒃𝒆𝒄𝒂𝒖𝒔𝒆 𝟐 ≥ 𝒑 ≥ √𝟑𝒒 = √𝟑.  (𝟏) & (𝟐)  ⇒  
𝒂 + 𝒃 + 𝟐𝒄

𝒄 + 𝟐

≥
(𝒌 + 𝟏)𝒂𝒃𝒄 − 𝟐

𝒌𝒂𝒃𝒄 − 𝟐
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   √
𝒂 + 𝒃 + 𝟐𝒄

𝒄 + 𝟐
+√

𝒃 + 𝒄 + 𝟐𝒂

𝒂 + 𝟐
+ √

𝒄 + 𝒂 + 𝟐𝒃

𝒃 + 𝟐
≥ 𝟑√

(𝒌 + 𝟏)𝒂𝒃𝒄 − 𝟐

𝒌𝒂𝒃𝒄 − 𝟐
. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂,𝒃, 𝒄) = (𝟏, 𝟏, 𝟎) 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 

1113.  𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 ≥ 𝟎 ∶ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

√
𝒄 + 𝟐

𝒂 + 𝒃 + 𝟐𝒄
+ √

𝒂 + 𝟐

𝒃 + 𝒄 + 𝟐𝒂
+ √

𝒃 + 𝟐

𝒄 + 𝒂 + 𝟐𝒃
≤ 𝟑√

𝒂 + 𝒃 + 𝒄

(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)
 

Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑾𝒆 𝒘𝒊𝒍𝒍 𝒑𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 𝒊𝒇 𝒂, 𝒃, 𝒄 ≥ 𝟎, 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏 ∶ 

  
𝒄 + 𝟐

𝒂 + 𝒃 + 𝟐𝒄
≤

𝒂 + 𝒃 + 𝒄

(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)
 (∗) 

(∗)  ⇔  (𝒄 + 𝟐)(𝒂 + 𝒃) ≤ (𝒂 + 𝒃 + 𝒄) (
𝟏

𝒃 + 𝒄
+

𝟏

𝒄 + 𝒂
) 

⇔ (𝒄 + 𝟐)(𝒂 + 𝒃) ≤ 𝟐 +
𝒂

𝒃 + 𝒄
+

𝒃

𝒄 + 𝒂
= 𝟐(𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂) +

𝒂

𝒃 + 𝒄
+

𝒃

𝒄 + 𝒂
 

⇔ 𝟐𝒂 + 𝟐𝒃 ≤ 𝒂 [(𝒃 + 𝒄) +
𝟏

𝒃 + 𝒄
] + 𝒃 [(𝒄 + 𝒂) +

𝟏

𝒄 + 𝒂
] 

𝑾𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒃𝒚 𝑨𝑴−𝑮𝑴.  ∴  (𝒃 + 𝒄) +
𝟏

𝒃 + 𝒄
, (𝒄 + 𝒂) +

𝟏

𝒄 + 𝒂
≥ 𝟐. 

𝑻𝒉𝒆𝒏,   
𝒄 + 𝟐

𝒂 + 𝒃 + 𝟐𝒄
≤

𝒂 + 𝒃 + 𝒄

(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   √
𝒄 + 𝟐

𝒂 + 𝒃 + 𝟐𝒄
+ √

𝒂+ 𝟐

𝒃 + 𝒄 + 𝟐𝒂
+√

𝒃 + 𝟐

𝒄 + 𝒂 + 𝟐𝒃
≤ 𝟑√

𝒂+ 𝒃 + 𝒄

(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)
. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂,𝒃, 𝒄) = (𝟏, 𝟏, 𝟎) 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 
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1114. 𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 ≥ 𝟎 ∶ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 > 𝟎.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

√
𝒂(𝒃 + 𝒄)

𝒃𝟐 + 𝒄𝟐
+√

𝒃(𝒄 + 𝒂)

𝒄𝟐 + 𝒂𝟐
+√

𝒄(𝒂 + 𝒃)

𝒂𝟐 + 𝒃𝟐
≥
𝟒√𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂

𝒂 + 𝒃 + 𝒄
 

Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution 1 by Vivek Kumar-India 

√
𝒂(𝒃 + 𝒄)

𝒃𝟐 + 𝒄𝟐
+ √

𝒃(𝒄 + 𝒂)

𝒄𝟐 + 𝒂𝟐
+√

𝒄(𝒂 + 𝒃)

𝒂𝟐 + 𝒃𝟐
≥
𝟒√𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂

𝒂 + 𝒃 + 𝒄
⟺ 

⟺∑
𝟐√𝒂(𝒃 + 𝒄)(𝒂 + 𝒃 + 𝒄)

𝟐√𝒃𝟐 + 𝒄𝟐√𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂
𝒄𝒚𝒄

≥ 𝟒 

∑
𝟐√𝒂(𝒃 + 𝒄)(𝒂 + 𝒃 + 𝒄)

𝟐√𝒃𝟐 + 𝒄𝟐√𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂𝒄𝒚𝒄

≥⏞
𝑨𝑴−𝑮𝑴

∑
𝟐√𝒂(𝒃+ 𝒄) ∙ 𝟐√𝒂(𝒃 + 𝒄)

𝒃𝟐 + 𝒄𝟐 + 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂
𝒄𝒚𝒄

= 

=∑
𝟒𝒂(𝒃 + 𝒄)

(𝒃 + 𝒄)𝟐 + 𝒂(𝒃 + 𝒄) − 𝒃𝒄
𝒄𝒚𝒄

≥∑
𝟒𝒂(𝒃 + 𝒄)

(𝒃 + 𝒄)𝟐 + 𝒂(𝒃 + 𝒄)
=

𝒄𝒚𝒄

 

=∑
𝟒𝒂

𝒂 + 𝒃 + 𝒄
𝒄𝒚𝒄

=
𝟒(𝒂+ 𝒃 + 𝒄)

𝒂 + 𝒃 + 𝒄
= 𝟒 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂 = 𝟎,𝒃 = 𝒄 > 0) 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 

Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco  

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 

 √
𝒂(𝒃 + 𝒄)

𝒃𝟐 + 𝒄𝟐
 ≥⏞
𝑮𝑴−𝑯𝑴

 
𝟐𝒂(𝒃 + 𝒄)

[𝒂 + (𝒃 + 𝒄)]√𝒃𝟐 + 𝒄𝟐
=
𝟐𝒂(𝒃+ 𝒄)(𝒂 + 𝒃 + 𝒄)

(𝒂 + 𝒃 + 𝒄)𝟐√𝒃𝟐 + 𝒄𝟐
= 

=
𝟐𝒂[(𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂) + (𝒃𝟐 + 𝒄𝟐) + 𝒃𝒄]

(𝒂 + 𝒃 + 𝒄)𝟐√𝒃𝟐 + 𝒄𝟐
 ≥⏞
𝑨𝑴−𝑮𝑴 & 𝑏𝑐 ≥ 0

 
𝟐𝒂.𝟐√(𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂)(𝒃𝟐 + 𝒄𝟐)

(𝒂 + 𝒃 + 𝒄)𝟐√𝒃𝟐 + 𝒄𝟐
. 

𝑻𝒉𝒆𝒏 ∶   √
𝒂(𝒃 + 𝒄)

𝒃𝟐 + 𝒄𝟐
≥
𝟒𝒂√𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂

(𝒂 + 𝒃 + 𝒄)𝟐
. 
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𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶  √
𝒃(𝒄 + 𝒂)

𝒄𝟐 + 𝒂𝟐
≥
𝟒𝒃√𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂

(𝒂 + 𝒃 + 𝒄)𝟐
  &  √

𝒄(𝒂 + 𝒃)

𝒂𝟐 + 𝒃𝟐
≥
𝟒𝒄√𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂

(𝒂 + 𝒃 + 𝒄)𝟐
. 

𝑨𝒅𝒅𝒊𝒏𝒈 𝒕𝒉𝒆𝒔𝒆 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒊𝒆𝒔 𝒚𝒊𝒆𝒍𝒅𝒔 𝒕𝒉𝒆 𝒅𝒆𝒔𝒊𝒓𝒆𝒅 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂 = 𝟎,𝒃 = 𝒄 > 0) 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 

1115. If 𝒙, 𝒚, 𝒛 > 0, 𝑥 + 𝑦 + 𝑧 = 3 then: 

𝟏

𝒙 + 𝒚
+

𝟏

𝒚 + 𝒛
+

𝟏

𝒛 + 𝒙
≤

𝟗

𝟐(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙)
 

Proposed by Dorina Goiceanu, Simona Dascălu – Romania  
Solution by Hikmat Mammadov-Azerbaijan 
 

𝒙; 𝒚; 𝒛 > 0 and 𝒙 + 𝒚 + 𝒛 = 𝟑 

𝟏

𝒙 + 𝒚
+

𝟏

𝒚 + 𝒙
+

𝟏

𝒛 + 𝒙
≤

𝟗

𝟐(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙)
 

The inequality is equivalent with 

𝑳𝑯𝑺 =
𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙

𝒙 + 𝒚
+
𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙

𝒚 + 𝒛
+
𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙

𝒛 + 𝒙
≤ 𝟔 

𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙

𝒙 + 𝒚
=

𝒙𝒚

𝒙 + 𝒚
+
𝒛(𝒙 + 𝒚)

𝒙 + 𝒚
=

𝒙𝒚

𝒙 + 𝒚
+ 𝒛 

But, 
𝒙𝒚

𝒙+𝒚
≤

𝒙+𝒚

𝟒
 

So, 𝑳𝑯𝑺 ≤
𝒙+𝒚

𝟒
+

𝒚+𝒛

𝟒
+

𝒛+𝒙

𝟒
+ 𝒙 + 𝒚 + 𝒛 = 𝟑 +

𝟑

𝟐
=

𝟗

𝟐
 

So, 𝑳𝑯𝑺 ≤
𝟗

𝟐
 

Equality ⇔ 𝒙 = 𝒚 = 𝒛 = 𝟏 

1116. In 𝒂, 𝒃, 𝒄 > 0 such that 𝒂 + 𝒃 + 𝒄 = 𝟏 and 𝝀 ≥ 𝟒 then 

𝝀(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)𝟐 ≤ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 + 𝟑(𝝀 − 𝟑)𝒂𝒃𝒄 

Proposed by Marin Chirciu-Romania 
Solution 1 by Vivek Kumar-India 

Let 𝝀 = 𝟔, 𝒂 =
𝟏

𝟐
, 𝒃 =

𝟏

𝟑
, 𝒄 =

𝟏

𝟔
 such that 𝒂 + 𝒃 + 𝒄 = 𝟏 and 𝝀 ≥ 𝟒 then 
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𝑳𝑯𝑺 = 𝝀(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)𝟐 = 𝟔(
𝟏

𝟐
⋅
𝟏

𝟑
+
𝟏

𝟑
⋅
𝟏

𝟔
+
𝟏

𝟔
⋅
𝟏

𝟐
)
𝟐

 

= 𝟔 (
𝟏

𝟔
+
𝟏

𝟏𝟖
+
𝟏

𝟏𝟐
)
𝟐

= 𝟔 ⋅ (
𝟏𝟏

𝟑𝟔
)
𝟐

=
𝟔 × 𝟏𝟐𝟏

𝟏𝟐𝟗𝟔
=
𝟏𝟐𝟏

𝟐𝟏𝟔
 

𝑹𝑯𝑺 = 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 + 𝟑(𝝀 − 𝟑) 𝒂𝒃𝒄 

=
𝟏

𝟔
+
𝟏

𝟏𝟖
+
𝟏

𝟏𝟐
+ 𝟑(𝟔 − 𝟑)

𝟏

𝟐
⋅
𝟏

𝟑
⋅
𝟏

𝟔
=
𝟏𝟏

𝟑𝟔
+
𝟗

𝟑𝟔
=
𝟐𝟎

𝟑𝟔
=
𝟓

𝟗
 

But 
𝟏𝟐𝟏

𝟐𝟏𝟔
>

𝟓

𝟗
⇒ 𝑳𝑯𝑺 > 𝑅𝐻𝑆 ⇒ 121 > 120 

Solution 2 by Soumava Chakraborty-Kolkata-India 

𝛌(𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂)𝟐 ≤ 𝒂𝐛+ 𝐛𝐜 + 𝐜𝒂 + 𝟑(𝛌 − 𝟑)𝒂𝐛𝐜 ⇔
𝟏=𝒂+𝐛+𝐜

 

𝛌(∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

≤ (∑𝒂𝐛

𝐜𝐲𝐜

)(∑𝒂

𝐜𝐲𝐜

)

𝟐

+ 𝟑(𝛌− 𝟑)𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

) 

= (∑𝒂𝐛

𝐜𝐲𝐜

)(∑𝒂𝟐

𝐜𝐲𝐜

+ 𝟐∑𝒂𝐛

𝐜𝐲𝐜

)+ 𝟑(𝛌 − 𝟑)𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

)⇔ 

(𝛌 − 𝟐)(∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

≤ (∑𝒂𝐛

𝐜𝐲𝐜

)(∑𝒂𝟐

𝐜𝐲𝐜

)+ 𝟑(𝛌 − 𝟑)𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

) 

⇔ (𝛌 − 𝟑)

(

 
 
(∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

− 𝟑𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

)

)

 
 
≤ (∑𝒂𝐛

𝐜𝐲𝐜

)(∑𝒂𝟐

𝐜𝐲𝐜

−∑𝒂𝐛

𝐜𝐲𝐜

) 

⇔ (𝛌 − 𝟒)

(

 
 
(∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

− 𝟑𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

)

)

 
 
+(∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

− 

−𝟑𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

) ≤
(∗)

(∑𝒂𝐛

𝐜𝐲𝐜

)(∑𝒂𝟐

𝐜𝐲𝐜

−∑𝒂𝐛

𝐜𝐲𝐜

) 

∵ (∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

− 𝟑𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

) ≥ 𝟎 ≥ 𝒂𝐧𝐝 𝛌 − 𝟒 ≤ 𝟎 

∴ (𝛌 − 𝟒)

(

 
 
(∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

− 𝟑𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

)

)

 
 
≤ 𝟎 ⇒ 𝐋𝐇𝐒 𝐨𝐟 (∗) ≤ (∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

− 𝟑𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

) 
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∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗), 

𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ (∑𝒂𝐛

𝐜𝐲𝐜

)(∑𝒂𝟐

𝐜𝐲𝐜

−∑𝒂𝐛

𝐜𝐲𝐜

) ≥
(∗∗)

(∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

− 𝟑𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

) 

𝐀𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐛 + 𝐜 = 𝒙, 𝐜 + 𝒂 = 𝐲,𝒂 + 𝐛 = 𝐳 ⇒ 𝒙+ 𝐲 − 𝐳 = 𝟐𝐜 > 0, 𝑦 + 𝑧 − 𝑥 = 𝟐𝒂 > 𝟎  
𝒂𝐧𝐝 𝐳 + 𝒙 − 𝐲 = 𝟐𝐛 > 0 ⇒ 𝑥 + 𝐲 > 𝑧, 𝐲 + 𝐳 > 𝒙, 𝐳 + 𝒙 > 𝒚 ⇒ 𝒙, 𝐲, 𝐳 𝐟𝐨𝐫𝐦 𝐬𝐢𝐝𝐞𝐬 𝐨𝐟 𝒂  
𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 = 𝐬, 𝐑, 𝐫 (𝐬𝒂𝐲) 𝐲𝐢𝐞𝐥𝐝𝐢𝐧𝐠  

𝟐∑𝒂

𝐜𝐲𝐜

=∑𝒙

𝐜𝐲𝐜

= 𝟐𝐬 ⇒ ∑𝒂

𝐜𝐲𝐜

=
(⦁)
𝐬 ⇒ 𝒂 = 𝐬 − 𝒙, 𝐛 = 𝐬 − 𝐲, 𝐜 = 𝐬 − 𝐳 ⇒ 𝒂𝐛𝐜 =

(⦁⦁)
𝐫𝟐𝐬  

𝐕𝐢𝒂 𝒂𝐟𝐨𝐫𝐞𝐦𝐞𝐧𝐭𝐢𝐨𝐧𝐞𝐝 𝐬𝐮𝐛𝐬𝐭𝐢𝐭𝐮𝐭𝐢𝐨𝐧𝐬,∑𝒂𝐛

𝐜𝐲𝐜

=∑(𝐬 − 𝒙)(𝐬 − 𝐲)

𝐜𝐲𝐜

= 𝟒𝐑𝐫 + 𝐫𝟐

⇒ ∑𝒂𝐛

𝐜𝐲𝐜

=
(⦁⦁⦁)

𝟒𝐑𝐫 + 𝐫𝟐  𝒂𝐧𝐝 ∑𝒂𝟐

𝐜𝐲𝐜

= (∑𝒂

𝐜𝐲𝐜

)

𝟐

− 𝟐∑𝒂𝐛

𝐜𝐲𝐜

=
𝐯𝐢𝒂(⦁),(⦁⦁⦁)

𝐬𝟐 − 𝟐(𝟒𝐑𝐫 + 𝐫𝟐) 

⇒∑𝒂𝟐

𝐜𝐲𝐜

=
(⦁⦁⦁⦁)

𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐 ∴ (⦁), (⦁⦁), (⦁⦁⦁), (⦁⦁⦁⦁) ⇒ (∗∗) 

⇔ (𝟒𝐑𝐫+ 𝐫𝟐) (𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐 − (𝟒𝐑𝐫 + 𝐫𝟐)) ≥ (𝟒𝐑𝐫 + 𝐫𝟐)
𝟐
− 𝟑𝐫𝟐𝐬𝟐 

⇔ (𝐑+ 𝐫)𝐬𝟐 ≥
(∗∗∗)

𝐫(𝟒𝐑 + 𝐫)𝟐 

𝐍𝐨𝐰, (𝐑 + 𝐫)𝐬𝟐 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

(𝐑 + 𝐫)(𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐) ≥
?
𝐫(𝟒𝐑+ 𝐫)𝟐 ⇔ 𝟑𝐫(𝐑 − 𝟐𝐫) ≥

?
𝟎

→ 𝐭𝐫𝐮𝐞, 𝐯𝐢𝒂 𝐄𝐮𝐥𝐞𝐫 ⇒ (∗∗∗) ⇒ (∗∗) ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

∴ ∀ 𝒂,𝐛, 𝐜 > 0│𝑎 + 𝐛 + 𝐜 = 𝟏 𝒂𝐧𝐝 𝛌 ≤ 𝟒, 

𝛌(𝒂𝐛+ 𝐛𝐜 + 𝐜𝒂)𝟐 ≤ 𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 + 𝟑(𝛌 − 𝟑)𝒂𝐛𝐜, 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 =
𝟏

𝟑
 (𝐐𝐄𝐃) 

 

1117. Find all 𝒙, 𝒚, 𝒛 ∈ (𝟎,
𝝅

𝟐
] such that: 

𝟏

𝟏 + 𝐬𝐢𝐧 𝒙 + 𝐬𝐢𝐧 𝒚 + 𝐬𝐢𝐧 𝒛
+∑

𝟏

(𝐬𝐢𝐧
𝒙
𝟐
+ 𝐜𝐨𝐬

𝒙
𝟐
)
𝟒

𝒄𝒚𝒄

= 𝟏 

Proposed by Daniel Sitaru – Romania  
Solution 1 by Florentin Vișescu-Romania 

The equality is equivalent with 

𝟏

𝟏 + 𝐬𝐢𝐧𝒙 + 𝐬𝐢𝐧 𝒚 + 𝐬𝐢𝐧 𝒛
+

𝟏

(𝟏 + 𝐬𝐢𝐧 𝒙)𝟐
+

𝟏

(𝟏 + 𝐬𝐢𝐧 𝒚)𝟐
+

𝟏

(𝟏 + 𝐬𝐢𝐧 𝒛)𝟐
= 𝟏 

We consider the function 𝒇: (𝟎; 𝟏] → ℝ, 𝒇(𝒕) =
𝟏

(𝟏+𝒕)𝟐
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𝒇′(𝒕) = −
𝟐

(𝟏+𝒕)𝟑
; 𝒇′′(𝒕) =

𝟔

(𝟏+𝒕)𝟒
> 0 ⇒ 𝑓 convex ⇒ 

𝒇(𝒕𝟏) + 𝒇(𝒕𝟐) + 𝒇(𝒕𝟑) ≥ 𝟑𝒇(
𝒕𝟏 + 𝒕𝟐 + 𝒕𝟑

𝟑
) 

Let be 𝒕𝟏 = 𝐬𝐢𝐧𝒙 , 𝒕𝟐 = 𝐬𝐢𝐧𝒚 , 𝒕𝟑 = 𝐬𝐢𝐧 𝒛. Then: 

𝟏

(𝟏 + 𝐬𝐢𝐧𝒙)𝟐
+

𝟏

(𝟏 + 𝐬𝐢𝐧𝒚)𝟐
+

𝟏

(𝟏 + 𝐬𝐢𝐧 𝒛)𝟐
≥ 𝟑

𝟏

(𝟏 +
𝐬𝐢𝐧𝒙 + 𝐬𝐢𝐧 𝒚 + 𝐬𝐢𝐧 𝒛

𝟑 )
𝟐 

or 𝟏 −
𝟏

𝟏+𝐬𝐢𝐧 𝒙+𝐬𝐢𝐧𝒚+𝐬𝐢𝐧𝒛
≥ 𝟑

𝟏

(𝟏+
𝐬𝐢𝐧 𝒙+𝐬𝐢𝐧𝒚+𝐬𝐢𝐧𝒛

𝟑
)
𝟐 

we denote 𝐬𝐢𝐧 𝒙 + 𝐬𝐢𝐧𝒚 + 𝐬𝐢𝐧 𝒛 = 𝒔 

𝟏 −
𝟏

𝟏 + 𝒔
≥ 𝟑

𝟏

(𝟏 +
𝒔
𝟑
)
𝟐 ⇔

𝒔

𝟏 + 𝒔
≥

𝟐𝟕

(𝟑 + 𝒔)𝟐
 

⇔ 𝟗𝒔 + 𝟔𝒔𝟐 + 𝒔𝟑 ≥ 𝟐𝟕 + 𝟐𝟕𝒔 ⇔ 𝒔𝟑 + 𝟔𝒔𝟐 − 𝟏𝟖𝒔 − 𝟐𝟕 ≥ 𝟎 

⇔ (𝒔 − 𝟑)(𝒔𝟐 + 𝟗𝒔 + 𝟗) ≥ 𝟎 

But 𝒔𝟐 + 𝟗𝒔 + 𝟗 > 0. Then 𝒔 − 𝟑 ≥ 𝟎 ⇔ 𝒔 ≥ 𝟑 ⇔ 𝐬𝐢𝐧 𝒙 + 𝐬𝐢𝐧 𝒚 + 𝐬𝐢𝐧 𝒛 ≥ 𝟑 ⇒ 

𝐬𝐢𝐧𝒙 = 𝐬𝐢𝐧𝒚 = 𝐬𝐢𝐧 𝒛 = 𝟏 ⇒ 𝒙 = 𝒚 = 𝒛 =
𝝅

𝟐
 

Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco  

𝑺𝒊𝒏𝒄𝒆 𝒙, 𝒚, 𝒛 ∈ (𝟎,
𝝅

𝟐
]  𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   𝟎 < 𝐬𝐢𝐧𝒙 , 𝐬𝐢𝐧 𝒚 , 𝐬𝐢𝐧 𝒛 ≤ 𝟏. 

𝑻𝒉𝒆𝒏 ∶   𝟏 =
𝟏

𝟏 + 𝐬𝐢𝐧𝒙 + 𝐬𝐢𝐧 𝒚 + 𝐬𝐢𝐧 𝒛
+∑

𝟏

(𝐬𝐢𝐧
𝒙
𝟐
+ 𝐜𝐨𝐬

𝒙
𝟐
)
𝟒

𝒄𝒚𝒄

= 

=
𝟏

𝟏 + 𝐬𝐢𝐧 𝒙 + 𝐬𝐢𝐧 𝒚 + 𝐬𝐢𝐧 𝒛
+∑

𝟏

(𝟏 + 𝐬𝐢𝐧𝒙)𝟐
𝒄𝒚𝒄

 ≥
𝟏

𝟏 + 𝟏 + 𝟏 + 𝟏
+∑

𝟏

(𝟏+ 𝟏)𝟐
𝒄𝒚𝒄

= 𝟏. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝐬𝐢𝐧 𝒙 = 𝐬𝐢𝐧𝒚 = 𝐬𝐢𝐧 𝒛 = 𝟏 ⇔  𝒙 = 𝒚 = 𝒛 =
𝝅

𝟐
. 

Solution 3 by Hikmat Mammadov-Azerbaijan 

(𝐬𝐢𝐧
𝒙

𝟐
+ 𝐜𝐨𝐬

𝒙

𝟐
)
𝟒

= (𝐬𝐢𝐧𝟐
𝒙

𝟐
+ 𝟐𝐬𝐢𝐧

𝒙

𝟐
𝐜𝐨𝐬

𝒙

𝟐
+ 𝐜𝐨𝐬𝟐

𝒙

𝟐
)
𝟐

= (𝟏 + 𝐬𝐢𝐧𝒙)𝟐 ≤ 𝟒    (1) 

And the similar 
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𝟏 ≤ 𝟏 + 𝐬𝐢𝐧𝒙 + 𝐬𝐢𝐧 𝒚 + 𝐬𝐢𝐧 𝒛 ≤ 𝟒   (2)   → ∀𝒙;𝒚; 𝒛 ∈ (𝟎,
𝝅

𝟐
] 

So, 𝑳𝑯𝑺 ≥
𝟏

𝟒
+

𝟏

𝟒
+

𝟏

𝟒
+

𝟏

𝟒
= 𝟏 

With equality iff in (1) and (2) we have equality, i.e., 𝒙 = 𝒚 = 𝒛 =
𝝅

𝟐
. 

1118.  𝑰𝒇 𝒙, 𝒚, 𝒛 > 𝟎 ∶ 𝒙 + 𝒚 + 𝒛 = 𝟑 𝒂𝒏𝒅 𝝀 ≥ 𝟕 𝒕𝒉𝒆𝒏 ∶ 

𝟏

𝒙𝟐 + 𝝀
+

𝟏

𝒚𝟐 + 𝝀
+

𝟏

𝒛𝟐 + 𝝀
≤

𝟑

𝟏 + 𝝀
 

Proposed by Marin Chirciu-Romania 

Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑳𝒆𝒎𝒎𝒂 ∶   𝑰𝒇 𝒙 ∈ (𝟎, 𝟑) 𝒂𝒏𝒅 𝝀 ≥ 𝟕 𝒕𝒉𝒆𝒏 ∶   
𝟏

𝒙𝟐 + 𝝀
≤
−𝟐𝒙 + 𝝀 + 𝟑

(𝟏 + 𝝀)𝟐
  (∗) 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   (∗)  ⇔  (−𝟐𝒙 + 𝝀 + 𝟑)(𝒙𝟐 + 𝝀) ≥ (𝟏 + 𝝀)𝟐 

⇔ −𝟐𝒙𝟑 + (𝝀 + 𝟑)𝒙𝟐 − 𝟐𝝀𝒙 + 𝝀 − 𝟏 ≥ 𝟎 ⇔ (𝒙 − 𝟏)𝟐(𝝀 − 𝟏 − 𝟐𝒙) ≥ 𝟎 

𝑾𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒃𝒆𝒄𝒂𝒖𝒔𝒆  𝝀 − 𝟏 − 𝟐𝒙 > 7 − 1 − 2.3 = 0. 

𝑻𝒉𝒆𝒏 ∶   
𝟏

𝒙𝟐 + 𝝀
≤
−𝟐𝒙 + 𝝀 + 𝟑

(𝟏 + 𝝀)𝟐
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   
𝟏

𝒙𝟐 + 𝝀
+

𝟏

𝒚𝟐 + 𝝀
+

𝟏

𝒛𝟐 + 𝝀
≤
−𝟐.𝟑 + 𝟑(𝝀 + 𝟑)

(𝟏 + 𝝀)𝟐
=

𝟑

𝟏 + 𝝀
. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒙 = 𝒚 = 𝒛 = 𝟏. 

1119. Prove that if 𝒙, 𝒚, 𝒛 > 0 then: 

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐

𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙
+

𝟐𝟕𝒙

𝟒(𝟕𝒙 + 𝒚 + 𝒛)
+

𝟐𝟕𝒚

𝟒(𝒙 + 𝟕𝒚 + 𝒛)
+

𝟐𝟕𝒛

𝟒(𝒙 + 𝒚 + 𝟕𝒛)
≥
𝟏𝟑

𝟒
 

Proposed by Titu Zvonaru, Neculai Stanciu – Romania  
Solution 1 by Vivek Kumar-India 

𝑳𝑯𝑺 =
𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐

𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙
+
𝟐𝟕

𝟒
(

𝒙

𝟕𝒙 + 𝒚 + 𝒛
+

𝒚

𝒙 + 𝟕𝒚+ 𝒛
+

𝒛

𝒙 + 𝒚 + 𝟕𝒛
) 
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=
𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐

𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙
+
𝟐𝟕

𝟒
(

𝒙𝟐

𝟕𝒙𝟐 + 𝒙𝒚 + 𝒛𝒙
+

𝒚𝟐

𝒙𝒚 + 𝟕𝒚𝟐 + 𝒚𝒛
+

𝒛𝟐

𝒛𝒙 + 𝒚𝒛 + 𝟕𝒛𝟐
) 

≥
𝑪𝑩𝑺 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐

𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙
+
𝟐𝟕

𝟒

(𝒙 + 𝒚 + 𝒛)𝟐

𝟕(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐) + 𝟐(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙)
 

=
𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐

𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙
+
𝟐𝟕(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝟐𝒙𝒚 + 𝟐𝒚𝒛 + 𝟐𝒛𝒙)

𝟒(𝟕(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐) + 𝟐(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙))
 

Let 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝒂, 𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙 = 𝒃 then 𝒂 ≥ 𝒃 and it remains to prove that 

𝒂

𝒃
+
𝟐𝟕(𝒂 + 𝟐𝒃)

𝟒(𝟕𝒂 + 𝟐𝒃)
≥
𝟏𝟑

𝟒
 

⇔ 𝟒𝒂(𝟕𝒂+ 𝟐𝒃) + 𝟐𝟕𝒃(𝒂 + 𝟐𝒃) ≥ 𝟏𝟑𝒃(𝟕𝒂 + 𝟐𝒃) 

⇔ 𝟐𝟖𝒂𝟐 + 𝟖𝒂𝒃 + 𝟐𝟕𝒂𝒃 + 𝟓𝟒𝒃𝟐 ≥ 𝟗𝟏𝒂𝒃 + 𝟐𝟔𝒃𝟐 ⇔ 𝟐𝟖𝒂𝟐 − 𝟓𝟔𝒂𝒃 + 𝟐𝟕𝒃𝟐 ≥ 𝟎 

⇔ 𝟐𝟖(𝒂− 𝒃)𝟐 ≥ 𝟎 which is true 

Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 

 
𝟐𝟕𝒙

𝟒(𝟕𝒙 + 𝒚 + 𝒛)
+
𝟑𝒙(𝟕𝒙 + 𝒚 + 𝒛)

𝟒(𝒙 + 𝒚 + 𝒛)𝟐
 ≥⏞
𝑨𝑴−𝑮𝑴

 
𝟗𝒙

𝟐(𝒙 + 𝒚 + 𝒛)
. 

𝑻𝒉𝒆𝒏 ∶  
𝟐𝟕𝒙

𝟒(𝟕𝒙 + 𝒚 + 𝒛)
≥

𝟗𝒙

𝟐(𝒙 + 𝒚 + 𝒛)
−
𝟑𝒙(𝟕𝒙 + 𝒚 + 𝒛)

𝟒(𝒙 + 𝒚 + 𝒛)𝟐
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒖𝒔,   𝑳𝑯𝑺 ≥
𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐

𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙
+
𝟗(𝒙 + 𝒚 + 𝒛)

𝟐(𝒙 + 𝒚 + 𝒛)
−
𝟐𝟏(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐) + 𝟔(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙)

𝟒(𝒙 + 𝒚 + 𝒛)𝟐
= 

=
𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐

𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙
+
𝟗

𝟐
− (

𝟑

𝟒
+
𝟗(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐)

𝟐(𝒙 + 𝒚 + 𝒛)𝟐
)

=
𝟏𝟑

𝟒
+ (

𝟏

𝟐
+
𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐

𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙
−
𝟗(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐)

𝟐(𝒙 + 𝒚 + 𝒛)𝟐
) = 

=
𝟏𝟑

𝟒
+
𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐

𝟐
. (

𝟏

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐
+

𝟐

𝒙𝒚+ 𝒚𝒛 + 𝒛𝒙
−

𝟗

(𝒙 + 𝒚 + 𝒛)𝟐
) ≥ 

≥⏞
𝑪𝑩𝑺

 
𝟏𝟑

𝟒
+
𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐

𝟐
(

(𝟏 + 𝟐)𝟐

(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐) + 𝟐(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙)
−

𝟗

(𝒙 + 𝒚 + 𝒛)𝟐
) =

𝟏𝟑

𝟒
. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒙 = 𝒚 = 𝒛. 
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Solution 3 by Sakthi Vel-India 

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 ≥ 𝒙𝒚+ 𝒚𝒛 + 𝒛𝒙 

∴
𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐

𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙
+
𝟐𝟕

𝟒
∑

𝒙

𝟕𝒙 + 𝒚 + 𝒛
≥
𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙

𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙
+
𝟐𝟕

𝟒
∑

𝒙

𝟕𝒙 + 𝒚 + 𝒛
 

Assume: 𝒛 > 𝑦 > 𝑥, ∴ 7𝒛 + 𝒚 + 𝒙 > 7𝒚 + 𝒙 + 𝒛 > 7𝒙 + 𝒚 + 𝒛 

≥ 𝟏 +
𝟐𝟕

𝟒
∑

𝒙

𝟕𝒙+𝒚+𝒛
   [using Chebyshev inequality] 

≥ 𝟏 +
𝟐𝟕

𝟒
[∑𝒙∑

𝟏

𝟕𝒙 + 𝒚 + 𝒛
] ⋅
𝟏

𝟑
 

≥ 𝟏 +
𝟐𝟕

𝟒
⋅
𝟏

𝟑
(𝒙 + 𝒚 + 𝒛) (

𝟏

𝟕𝒙 + 𝒚 + 𝒛
+

𝟏

𝒙 + 𝟕𝒚 + 𝒛
+

𝟏

𝒙 + 𝒚 + 𝟕𝒛
) 

≥ 𝟏 +
𝟗

𝟒
(𝒙 + 𝒚 + 𝒛)

(𝟏 + 𝟏 + 𝟏)𝟐

𝟗𝒙 + 𝟗𝒚 + 𝟗𝒛
≥ 𝟏 +

𝟗

𝟒
(𝒙 + 𝒚 + 𝒛) ⋅

𝟗

𝟗(𝒙 + 𝒚 + 𝒛)
≥
𝟏𝟑

𝟒
 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒙 = 𝒚 = 𝒛. 

1120. Let 𝒂, 𝒃, 𝒄, 𝒅 > 0 such that 𝒂𝒃𝒄𝒅 = 𝟏. Prove that: 

√
𝒂

𝒃+ 𝟐𝟎𝟐𝟐

𝟑
+ √

𝒃

𝒄 + 𝟐𝟎𝟐𝟐

𝟑

+ √
𝒄

𝒅 + 𝟐𝟎𝟐𝟐

𝟑
+ √

𝒅

𝒂 + 𝟐𝟎𝟐𝟐

𝟑

≥
𝟒

√𝟐𝟎𝟐𝟑
𝟑  

Proposed by Nguyen Van Canh-BenTre-Vietnam 

Solution by Vivek Kumar-India 

We have 

(∑√
𝒂

𝒃 + 𝟐𝟎𝟐𝟐

𝟑
)

𝟑

(∑(𝒃 + 𝟐𝟎𝟐𝟐)) ≥
𝑯𝑶𝑳𝑫𝑬𝑹

(𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟒

 

⇒ (∑√
𝒂

𝒃 + 𝟐𝟎𝟐𝟐

𝟑
)

𝟑

≥
(𝒂

𝟏
𝟒 + 𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟒

𝒂 + 𝒃 + 𝒄 + 𝒅 + 𝟒 × 𝟐𝟎𝟐𝟐
 

⇒∑√
𝒂

𝒃 + 𝟐𝟎𝟐𝟐

𝟑
≥
√ (𝒂

𝟏
𝟒 + 𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟒

𝒂 + 𝒃 + 𝒄 + 𝒅 + 𝟒 × 𝟐𝟎𝟐𝟐

𝟑

 

Hence, it is enough to show that 
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√ (𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟒

𝒂 + 𝒃 + 𝒄 + 𝒅 + 𝟒 × 𝟐𝟎𝟐𝟐

𝟑

≥
𝟒

√𝟐𝟎𝟐𝟑
𝟑 ⇒

(𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟒

𝒂 + 𝒃 + 𝒄 + 𝒅 + 𝟒 × 𝟐𝟎𝟐𝟐
≥

𝟔𝟒

𝟐𝟎𝟐𝟑
 

Now, we have 

𝒂 + 𝒃 + 𝒄 + 𝒅 = (𝒂
𝟏
𝟐 + 𝒃

𝟏
𝟐)

𝟐

− 𝟐𝒂
𝟏
𝟐𝒃

𝟏
𝟐 + (𝒄

𝟏
𝟐 + 𝒅

𝟏
𝟐)

𝟐

− 𝟐𝒄
𝟏
𝟐𝒅

𝟏
𝟐 

= (𝒂
𝟏
𝟐 + 𝒃

𝟏
𝟐)

𝟐

+ (𝒄
𝟏
𝟐 + 𝒅

𝟏
𝟐)

𝟐

− 𝟐(𝒂
𝟏
𝟐𝒃

𝟏
𝟐 + 𝒄

𝟏
𝟐𝒅

𝟏
𝟐) 

≤
𝑨𝑴−𝑮𝑴

(𝒂
𝟏
𝟐 + 𝒃

𝟏
𝟐)

𝟐

+ (𝒄
𝟏
𝟐 + 𝒅

𝟏
𝟐)

𝟐

− 𝟒(𝒂𝒃𝒄𝒅)
𝟏
𝟒 = (𝒂

𝟏
𝟐 + 𝒃

𝟏
𝟐)

𝟐

+ (𝒄
𝟏
𝟐 + 𝒅

𝟏
𝟐)

𝟐

− 𝟒 

= (𝒂
𝟏
𝟐 + 𝒃

𝟏
𝟐 + 𝒄

𝟏
𝟐 + 𝒅

𝟏
𝟐)

𝟐

− 𝟐 (𝒂
𝟏
𝟐 + 𝒃

𝟏
𝟐) (𝒄

𝟏
𝟐 + 𝒅

𝟏
𝟐) − 𝟒 

≤
𝑨𝑴−𝑮𝑴

(𝒂
𝟏
𝟐 + 𝒃

𝟏
𝟐 + 𝒄

𝟏
𝟐 + 𝒅

𝟏
𝟐)

𝟐

− 𝟖(𝒂𝒃𝒄𝒅)
𝟏
𝟒 − 𝟒 = (𝒂

𝟏
𝟐 + 𝒃

𝟏
𝟐 + 𝒄

𝟏
𝟐 + 𝒅

𝟏
𝟐)

𝟐

− 𝟏𝟐 

= ((𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒)

𝟐

− 𝟐
𝟏
𝟒𝒃

𝟏
𝟒 + (𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟐

− 𝟐𝒄
𝟏
𝟒𝒅

𝟏
𝟒) − 𝟏𝟐 

= ((𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒)

𝟐

+ (𝒄
𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟐

− 𝟐(𝒂
𝟏
𝟒𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒𝒅

𝟏
𝟒))

𝟐

− 𝟏𝟐 

≤
𝑨𝑴−𝑮𝑴

((𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒)

𝟐

+ (𝒄
𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟐

− 𝟒(𝒂𝒃𝒄𝒅)
𝟏
𝟖)

𝟐

− 𝟏𝟐 

= ((𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒)

𝟐

+ (𝒄
𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟐

− 𝟒)

𝟐

− 𝟏𝟐 

= ((𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟐

− 𝟐(𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒) (𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒) − 𝟒)

𝟐

− 𝟏𝟐 

≤
𝑨𝑴−𝑮𝑴

((𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟐

− 𝟖(𝒂𝒃𝒄𝒅)
𝟏
𝟖 − 𝟒)

𝟐

− 𝟏𝟐 

= ((𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟐

− 𝟏𝟐)

𝟐

− 𝟏𝟐 

= (𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟒

− 𝟐𝟒 (𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟐

+ 𝟏𝟒𝟒 − 𝟏𝟐 
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≤
𝑨𝑴−𝑮𝑴

(𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟒

− 𝟐𝟒 × 𝟏𝟔(𝒂𝒃𝒄𝒅)
𝟏
𝟖 + 𝟏𝟑𝟐 

= (𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟒

− 𝟐𝟒 × 𝟏𝟔 + 𝟏𝟑𝟐 = (𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟒

− 𝟐𝟓𝟐 

So, 𝒂 + 𝒃 + 𝒄 + 𝒅 ≤ (𝒂
𝟏

𝟒 + 𝒃
𝟏

𝟒 + 𝒄
𝟏

𝟒 + 𝒅
𝟏

𝟒)
𝟒

− 𝟐𝟓𝟐 

(𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟒

𝒂 + 𝒃 + 𝒄 + 𝒅 + 𝟒 × 𝟐𝟎𝟐𝟐
≥

(𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟒

(𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟒

− 𝟐𝟓𝟐 + 𝟒 × 𝟐𝟎𝟐𝟐

 

⇒
(𝒂

𝟏
𝟒 + 𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟒

𝒂 + 𝒃 + 𝒄 + 𝒅 + 𝟒 × 𝟐𝟎𝟐𝟐
≥

(𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟒

(𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟒

+ 𝟒 × 𝟏𝟗𝟓𝟗

 

=
𝟏

𝟏 +
𝟒 × 𝟏𝟗𝟓𝟗

(𝒂
𝟏
𝟒 + 𝒃

𝟏
𝟒 + 𝒄

𝟏
𝟒 + 𝒅

𝟏
𝟒)

𝟒

≥
𝟏

𝟏 +
𝟒 × 𝟏𝟗𝟓𝟗

(𝟒(𝒂𝒃𝒄𝒅)
𝟏
𝟏𝟔)

𝟒

=
𝟏

𝟏 +
𝟒 × 𝟏𝟗𝟓𝟗
𝟐𝟓𝟔

 

=
𝟔𝟒

𝟔𝟒 + 𝟏𝟗𝟓𝟗
=

𝟔𝟒

𝟐𝟎𝟐𝟑
 

1121. If 𝒂, 𝒃 ≥ 𝟎 and 𝝀 > 0 then 

(𝒂 + 𝒃 + 𝝀)𝟑 >
𝟐𝟕𝝀

𝟖
(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐) 

Proposed by Marin Chirciu-Romania 
Solution 1 by Marian Dincă-Romania 

𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐 ≤ (𝒂 + 𝒃)𝟐 

(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐)
𝟐𝟕𝝀

𝟖
≤ (𝒂 + 𝒃)𝟐 ⋅

𝟐𝟕𝝀

𝟖
= (

𝒂 + 𝒃

𝟐
)
𝟐

⋅ 𝝀 ⋅
𝟐𝟕

𝟐
≤ 

≤ (

𝒂 + 𝒃
𝟐 +

𝒂 + 𝒃
𝟐 + 𝝀

𝟑
)

𝟑

⋅
𝟐𝟕

𝟐
=
(𝒂 + 𝒃 + 𝝀)𝟑

𝟐
< (𝒂 + 𝒃 + 𝝀)𝟑 

Solution 2 by Vivek Kumar-India 

(𝒂 + 𝒃 + 𝝀)𝟑 −
𝟐𝟕𝝀

𝟖
(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐) 
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= (𝒂 + 𝒃 + 𝝀)𝟐(𝒂 + 𝒃 + 𝝀) −
𝟐𝟕𝝀

𝟖
((𝒂 + 𝒃)𝟐 − 𝒂𝒃) 

≥
𝑨𝑴−𝑮𝑴

𝟒𝝀(𝒂 + 𝒃)(𝒂 + 𝒃 + 𝝀) −
𝟐𝟕𝝀

𝟖
(𝒂 + 𝒃)𝟐 +

𝟐𝟕𝝀

𝟖
𝒂𝒃 

= 𝟒𝝀(𝒂 + 𝒃)𝟐 + 𝟒𝝀𝟐(𝒂 + 𝒃) −
𝟐𝟕𝝀

𝟖
(𝒂 + 𝒃)𝟐 +

𝟐𝟕𝝀

𝟖
𝒂𝒃 

= (𝟒𝝀 −
𝟐𝟕𝝀

𝟖
) (𝒂 + 𝒃)𝟐 + 𝟒𝝀𝟐(𝒂 + 𝒃) +

𝟐𝟕𝝀

𝟖
𝒂𝒃 

=
𝟓𝝀

𝟖
(𝒂 + 𝒃)𝟐 + 𝟒𝝀𝟐(𝒂 + 𝒃) +

𝟐𝟕𝝀

𝟖
𝒂𝒃 > 0 

Solution 3 by Tapas Das-India 

𝟖(𝒂 + 𝒃 + 𝝀)𝟑 = (𝟐𝒂 + 𝟐𝒃 + 𝟐𝝀)𝟑 = [(𝒂 + 𝒃) + (𝒂 + 𝒃) + 𝟐𝝀]𝟑 

≥ (𝟑)𝟑(𝒂 + 𝒃)𝟐 ⋅ 𝟐𝝀     (AM-GM) = 𝟓𝟒𝝀(𝒂𝟐 + 𝟐𝒂𝒃 + 𝒃𝟐) > 54𝝀(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐) 

∴ (𝒂 + 𝒃 + 𝝀)𝟑 >
𝟓𝟒𝝀

𝟖
(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐) =

𝟐𝟕𝝀

𝟒
(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐) >

𝟐𝟕𝝀

𝟖
(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐) 

1122. If 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 > 𝜆 > 0 then: 

𝒙𝟏
𝟒

(𝒙𝟐 − 𝝀)𝟐
+

𝒙𝟐
𝟒

(𝒙𝟑 − 𝝀)𝟐
+⋯+

𝒙𝒏
𝟒

(𝒙𝟏 − 𝝀)𝟐
≥ 𝟏𝟔𝒏𝝀𝟐 

Proposed by Marin Chirciu-Romania 
Solution 1 by Vivek Kumar-India 

Let 𝒙𝟏 − 𝝀 = 𝒚𝟏, 𝒙𝟐 − 𝝀 = 𝒚𝟐, … , 𝒙𝒏 − 𝝀 = 𝒚𝒏 such that 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒏 > 0 as  

𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 > 𝜆 > 0 then, 

𝑳𝑯𝑺 =
(𝒚𝟏 + 𝝀)𝟒

𝒚𝟐
𝟐 +

(𝒚𝟐 + 𝝀)
𝟒

𝒚𝟑
𝟐 +⋯+

(𝒚𝒏−𝟏 + 𝝀)𝟒

𝒚𝒏𝟐
+
(𝒚𝒏 + 𝝀)

𝟒

𝒚𝟏
𝟐  

≥
𝑨𝑴−𝑮𝑴 (𝟒𝒚𝟏𝝀)

𝟐

𝒚𝟐
𝟐 +

(𝟒𝒚𝟐𝝀)
𝟐

𝒚𝟑
𝟐 +⋯+

(𝟒𝒚𝒏−𝟏𝝀)
𝟐

𝒚𝒏𝟐
+
(𝟒𝒚𝒏𝝀)

𝟐

𝒚𝟏
𝟐  

= 𝟏𝟔𝝀𝟐 (
𝒚𝟏
𝟐

𝒚𝟐
𝟐 +

𝒚𝟐
𝟐

𝒚𝟑
𝟐 +⋯+

𝒚𝒏−𝟏
𝟐

𝒚𝒏𝟐
+
𝒚𝒏
𝟐

𝒚𝟏
𝟐) 

≥
𝑨𝑴−𝑮𝑴

𝟏𝟔𝝀𝟐 ⋅ 𝒏(
𝒚𝟏
𝟐

𝒚𝟐
𝟐 ⋅
𝒚𝟐
𝟐

𝒚𝟑
𝟐 ⋅ … ⋅

𝒚𝒏−𝟏
𝟐

𝒚𝒏𝟐
⋅
𝒚𝒏
𝟐

𝒚𝟏
𝟐)

𝟏
𝒏

= 𝟏𝟔𝒏𝝀𝟐 ⋅ (𝟏)
𝟏
𝒏 = 𝟏𝟔𝒏𝝀𝟐 
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Solution 2 by Tapas Das-India 

𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 > 𝜆 

…𝒙𝟏 = (𝒙𝟏 − 𝝀) + 𝝀 ≥ 𝟐√(𝒙𝟏 − 𝝀) ⋅ 𝝀     (AM-GM) 

…𝒙𝟏
𝟒 ≥ 𝟏𝟔(𝒙𝟏 − 𝝀)

𝟐 ⋅ 𝝀𝟐     (analog) 

∴
𝒙𝟏
𝟒

(𝒙𝟐 − 𝝀)𝟐
+

𝒙𝟐
𝟒

(𝒙𝟑 − 𝝀)𝟐
+⋯+

𝒙𝒏
𝟒

(𝒙𝟏 − 𝝀)𝟐
 

≥
𝟏𝟔(𝒙𝟏 − 𝝀)𝟐 ⋅ 𝝀𝟐

(𝒙𝟐 − 𝝀)𝟐
+
𝟏𝟔(𝒙𝟐 − 𝝀)𝟐 ⋅ 𝝀𝟐

(𝒙𝟑 − 𝝀)𝟐
+⋯+

𝟏𝟔(𝒙𝒏 − 𝝀)𝟐 ⋅ 𝝀𝟐

(𝒙𝟏 − 𝝀)𝟐
 

≥ 𝟏𝟔𝝀𝟐 ⋅ 𝒏 [
(𝒙𝟏 − 𝝀)

𝟐

(𝒙𝟐 − 𝝀)𝟐
⋅
(𝒙𝟐 − 𝝀)

𝟐

(𝒙𝟑 − 𝝀)𝟐
…
(𝒙𝒏 − 𝝀)𝟐

(𝒙𝟏 − 𝝀)𝟐
]

𝟏
𝒏

 

(𝑨𝑴 ≥ 𝑮𝑴) 

= 𝟏𝟔𝝀𝟐 ⋅ 𝒏 ⋅ (𝟏) = 𝟏𝟔𝝀𝟐𝒏 

1123. If 𝒂, 𝒃, 𝒄 > 0 then: 

(𝟑𝒂𝒃)𝒄 ⋅ (𝟑𝒃𝒄)𝒂 ⋅ (𝟑𝒄𝒂)𝒃 ≤ (𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)𝒂+𝒃+𝒄 

Proposed by Daniel Sitaru – Romania 
Solution 1 by Michael Sterghiou-Greece 

(𝟑𝒂𝒃)𝒄 ⋅ (𝟑𝒃𝒄)𝒂 ⋅ (𝟑𝒄𝒂)𝒃 ≤ (𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)𝒂+𝒃+𝒄     (1) 

𝒄 ⋅ (𝟑𝒂𝒃) + 𝒂 ⋅ (𝟑𝒃𝒄) + 𝒃 ⋅ (𝟑𝒄𝒂) ≥
𝑨𝑴−𝑮𝑴

𝑮𝒆𝒏𝒆𝒓𝒂𝒍𝒊𝒛𝒆𝒅
(𝒂 + 𝒃 + 𝒄) ⋅ √𝑳𝑯𝑺 𝒐𝒇 (𝟏)

𝒂+𝒃+𝒄
 

So it suffices that (
𝟗𝒂𝒃𝒄

𝒂+𝒃+𝒄
)
𝒂+𝒃+𝒄

≤ (𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)𝒂+𝒃+𝒄 or 

(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)(𝒂 + 𝒃 + 𝒄) ≥ 𝟗𝒓 true as 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 ≥ 𝟑𝒓
𝟐

𝟑; 𝒂 + 𝒃 + 𝒄 ≥ 𝟑𝒓
𝟏

𝟑. 

Equality for 𝒂 = 𝒃 = 𝒄. 

Solution 2 by Ruxandra Daniela Tonilă-Romania 

We have 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 ≥
𝑩𝒆𝒓𝒈𝒔𝒕𝒓𝒐𝒎

(𝒂+𝒃+𝒄)𝟐

𝟑
≥

𝑨𝑴−𝑮𝑴
𝟑√𝒂𝟐𝒃𝟐𝒄𝟐
𝟑

 

So it is enough to prove that: 

(𝟑√𝒂𝟐𝒃𝟐𝒄𝟐
𝟑

)
𝒂+𝒃+𝒄

≥ (𝟑𝒂𝒃)𝒄 ⋅ (𝟑𝒃𝒄)𝟐 ⋅ (𝟑𝒄𝒂)𝒃 ⇔ (𝒂𝒃𝒄)
𝟐
𝟑
(𝒂+𝒃+𝒄) ≥ (𝒂𝒃)𝒄 ⋅ (𝒃𝒄)𝒂 ⋅ (𝒄𝒂)𝒃 
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⇔
(𝒂𝒃𝒄)𝒂+𝒃+𝒄

(𝒂𝒃𝒄)
𝒂+𝒃+𝒄

𝟑

≥
(𝒂𝒃𝒄)𝒂+𝒃+𝒄

𝒂𝒂 ⋅ 𝒃𝒃 ⋅ 𝒄𝒄
⇔ 𝒂𝒂 ⋅ 𝒃𝒃 ⋅ 𝒄𝒄 ≥ (𝒂𝒃𝒄)

𝒂+𝒃+𝒄
𝟑  

Let 𝒇: (𝟎,+∞) → ℝ, 𝒇(𝒙) = 𝒙 𝐥𝐨𝐠𝒙 with 𝒇′(𝒙) = 𝐥𝐨𝐠 𝒙 + 𝟏, 

𝒇′′(𝒙) >
𝟏

𝒙
> 0, ∀𝑥 > 0 ⇒ 𝑓 convex function. Then 

𝒇 (
𝒂 + 𝒃 + 𝒄

𝟑
) ≤
𝑱𝒆𝒏𝒔𝒆𝒏 𝒇(𝒂) + 𝒇(𝒃) + 𝒇(𝒄)

𝟑
 

𝒂 + 𝒃 + 𝒄

𝟑
𝐥𝐨𝐠

𝒂 + 𝒃 + 𝒄

𝟑
≤
𝒂 𝐥𝐨𝐠 𝒂 + 𝒃 𝐥𝐨𝐠 𝒃 + 𝒄 𝐥𝐨𝐠 𝒄

𝟑
 

𝟑 𝐥𝐨𝐠 (
𝒂 + 𝒃 + 𝒄

𝟑
)

𝒂+𝒃+𝒄
𝟑

≤ 𝐥𝐨𝐠(𝒂𝒂 ⋅ 𝒃𝒃 ⋅ 𝒄𝒄) 

𝟑 𝐥𝐨𝐠(√𝒂𝒃𝒄
𝟑

)
𝒂+𝒃+𝒄

𝟑 ≤
𝑨𝑴−𝑮𝑴

𝟑 𝐥𝐨𝐠 (
𝒂 + 𝒃 + 𝒄

𝟑
)

𝒂+𝒃+𝒄
𝟑

 

⇒ 𝐥𝐨𝐠(𝒂𝒃𝒄)
𝒂+𝒃+𝒄

𝟑 ≤ 𝐥𝐨𝐠(𝒂𝒂 ⋅ 𝒃𝒃 ⋅ 𝒄𝒄) ⇔ 𝒂𝒂 ⋅ 𝒃𝒃 ⋅ 𝒄𝒄 ≥ (𝒂𝒃𝒄)
𝒂+𝒃+𝒄

𝟑  

Therefore, 

(𝟑𝒂𝒃)𝒄 ⋅ (𝟑𝒃𝒄)𝒂 ⋅ (𝟑𝒄𝒂)𝒃 ≤ (𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)𝒂+𝒃+𝒄, ∀𝒂, 𝒃, 𝒄 > 0 

Solution 3 by Tapas Das-India 

(3𝑎𝑏)𝑐 ⋅ (𝟑𝒃𝒄)𝒂 ⋅ (𝟑𝒄𝒂)𝒃 = 𝟑𝒂+𝒃+𝒄 ⋅ 𝒂𝒃+𝒄 ⋅ 𝒃𝒄+𝒂 ⋅ 𝒄𝒂+𝒃 

Now we consider 3 positive numbers 𝒂, 𝒃, 𝒄 with associated weight (𝒃 + 𝒄), (𝒄 + 𝒂), (𝒂 +

𝒃) respectively, then 

[𝒂𝒃+𝒄 ⋅ 𝒃𝒄+𝒂 ⋅ 𝒄𝒂+𝒃] ≤ [
(𝒃 + 𝒄)𝒂 + (𝒄 + 𝒂)𝒃 + (𝒂 + 𝒃)𝒄

(𝒃 + 𝒄) + (𝒄 + 𝒂) + (𝒂 + 𝒃)
]

𝟐(𝒂+𝒃+𝒄)

 

= [
(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)

𝒂 + 𝒃 + 𝒄
]

𝟐(𝒂+𝒃+𝒄)

= [
(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)𝟐

(𝒂 + 𝒃 + 𝒄)𝟐
]

(𝒂+𝒃+𝒄)

≤ [
(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)𝟐

𝟑(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)
]

(𝒂+𝒃+𝒄)

 

= [
𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂

𝟑
]
𝒂+𝒃+𝒄

≤
(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)𝒂+𝒃+𝒄

𝟑𝒂+𝒃+𝒄
 

⇒ 𝟑𝒂+𝒃+𝒄 ⋅ 𝒂𝒃+𝒄 ⋅ 𝒃𝒄+𝒂 ⋅ 𝒄𝒂+𝒃 ≤ (𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)𝒂+𝒃+𝒄 

Note: 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐; (𝒂 + 𝒃 + 𝒄)𝟐 ≥ 𝟑(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) 

Equality when 𝒂 = 𝒃 = 𝒄. 
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Solution 4 by Sanong Huayrerai-Nakon Pathom-Thailand 

(𝟑𝒂𝒃)𝒄(𝟑𝒃𝒄)𝒂(𝟑𝒄𝒂)𝒃 = 𝟑𝒂+𝒃+𝒄𝒂𝒃+𝒄 ⋅ 𝒃𝒄+𝒂 ⋅ 𝒄𝒂+𝒃 

≤ 𝟑(𝒂+𝒃+𝒄) (
𝒂(𝒃 + 𝒄) + 𝒃(𝒄 + 𝒂) + 𝒄(𝒂 + 𝒃)

𝟐(𝒂 + 𝒃 + 𝒄)
)

𝟐𝒂+𝒃+𝒄

 

= 𝟑𝒂+𝒃+𝒄 (
𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂

𝒂 + 𝒃 + 𝒄
)
𝟐(𝒂+𝒃+𝒄)

≤ (𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)(𝒂+𝒃+𝒄) 

Iff 𝟑
(𝒂𝒃+𝒃𝒄+𝒄𝒂)𝟐

(𝒂+𝒃+𝒄)𝟐
≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 

Iff 𝟑
(𝒂𝒃+𝒃𝒄+𝒄𝒂)

(𝒂+𝒃+𝒄)𝟐
≤ 𝟏 

Iff 𝟑(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) ≤ (𝒂 + 𝒃 + 𝒄)𝟐 ok 

Therefore it is true. 

Solution 5 by Hikmat Mammadov-Azerbaijan 

𝒂; 𝒃; 𝒄 > 0 

(𝟑𝒂𝒃)𝒄 ⋅ (𝟑𝒃𝒄)𝒂 ⋅ (𝟑𝒄𝒂)𝒃 ≤ (𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)𝒂+𝒃+𝒄 

𝐥𝐨𝐠(⋅) is concave 

⇒
𝒄

𝒂 + 𝒃 + 𝒄
𝐥𝐨𝐠(𝟑𝒂𝒃) +

𝒂

𝒂 + 𝒃 + 𝒄
𝐥𝐨𝐠(𝟑𝒃𝒄) +

𝒃

𝒂 + 𝒃 + 𝒂
𝐥𝐨𝐠(𝟑𝒄𝒂) 

≤ 𝐥𝐨𝐠(
(𝒄) ⋅ (𝟑𝒂𝒃) + (𝒂) ⋅ (𝟑𝒃𝒄) + (𝒃) ⋅ (𝟑𝒄𝒂)

𝒂 + 𝒃 + 𝒄
) = 𝐥𝐨𝐠

𝟗𝒂𝒃𝒄

𝒂 + 𝒃 + 𝒄
 

⇒ 𝑳𝑯𝑺 ≤

𝟏
𝒂+𝒃+𝒄 𝟗𝒂𝒃𝒄

𝒂 + 𝒃 + 𝒄
≤

𝑨𝑴−𝑮𝑴 𝟗

𝒂 + 𝒃 + 𝒄
(
𝒂 + 𝒃 + 𝒄

𝟑
)
𝟑

 

=
𝟏

𝟑
(𝒂 + 𝒃 + 𝒄)𝟐 ≤

𝑪𝒂𝒖𝒄𝒉𝒚−𝑺𝒄𝒉𝒘𝒂𝒓𝒛 𝟏

𝟑
(𝟏𝟐 + 𝟏𝟐 + 𝟏𝟐)(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) = 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 

⇒ (𝟑𝒂𝒃)𝒄(𝟑𝒃𝒄)𝒂(𝟑𝒄𝒂)𝒃 ≤ (𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)𝒂+𝒃+𝒄.With equality iff 𝒂 = 𝒃 = 𝒄. 

1124. If 𝒂, 𝒃, 𝒄 > 0, 𝑎 + 𝑏 + 𝑐 = 3 then: 

√𝒂 + √𝒃 + √𝒄 + √𝒃 + √𝒄 + √𝒂 +√𝒄 + √𝒂 + √𝒃 ≤ 𝟑√𝟏 + √𝟐 

Proposed by Daniel Sitaru – Romania 
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âSolution 1 by Tapas Das-India 

√𝒂 +√𝒃 + √𝒄 + √𝒃 + √𝒄 + √𝒂 +√𝒄 + √𝒂+ √𝒃 ≤ 

≤ √𝟑 [𝒂 + 𝒃 + 𝒄 + (√𝒃+ √𝒄 + √𝒄+ √𝒂 +√𝒂 + √𝒃)]

𝟏
𝟐

 

= √𝟑 [𝟑 + (√𝒃 + √𝒄 + √𝒄 + √𝒂 +√𝒂 + √𝒃)]

𝟏
𝟐

 

(∵ 𝒂 + 𝒃 + 𝒄 = 𝟑)     (1) 

Now, √𝒃 + √𝒄 + √𝒄 + √𝒂 +√𝒂 + √𝒃 ≤ 

≤ √𝟑[(𝒂 + 𝒃 + 𝒄) + (√𝒄 + √𝒂 + √𝒃)]
𝟏
𝟐 = √𝟑[𝟑 + (√𝒄 + √𝒂 + √𝒃)]

𝟏
𝟐 

≤ √𝟑 [𝟑 + √𝟑(𝒂 + 𝒃 + 𝒄)
𝟏
𝟐]

𝟏
𝟐
≤ √𝟑[𝟑 + √𝟑 ⋅ √𝟑]

𝟏
𝟐 ≤ √𝟑(𝟔)

𝟏
𝟐 = √𝟑 ⋅ √𝟑 ⋅ √𝟐 = 𝟑√𝟐 

From (1) 

√𝒂 + √𝒃 + √𝒄 + √𝒃 + √𝒄 + √𝒂 + √𝒄 + √𝒂+ √𝒃 ≤ √𝟑[𝟑 + 𝟑√𝟐]
𝟏
𝟐 

= √𝟑 ⋅ √𝟑(𝟏 + √𝟐)
𝟏
𝟐 = 𝟑√𝟏+ √𝟐 

Note: 

𝒙𝟏
𝒎 + 𝒙𝟐

𝒎 +⋯+ 𝒙𝒏
𝒎

𝒏
≤ (

𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒏
𝒏

)
𝒎

 

when 𝒎 was between 𝟎 and 𝟏. 

Solution 2 by Vivek Kumar-India 

√𝒂 +√𝒃 + √𝒄 + √𝒃 + √𝒄 + √𝒂 +√𝒄 + √𝒂+ √𝒃 ≤ 

≤
𝑨𝑴−𝑮𝑴

√𝟑(𝒂 +√𝒃 + √𝒄 + 𝒃 +√𝒄 + √𝒂 + 𝒄 + √𝒂 + √𝒃) 
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= √𝟑(𝒂 + 𝒃 + 𝒄) + 𝟑(√𝒃+ √𝒄 + √𝒄+ √𝒂 +√𝒂 + √𝒃) 

= √𝟗 + 𝟑(√𝒃 + √𝒄 + √𝒄 + √𝒂 + √𝒂+ √𝒃) 

≤
𝑨𝑴−𝑮𝑴

√𝟗 + 𝟑√𝟑(𝒃 + √𝒄 + 𝒄 + √𝒂 + 𝒂 + √𝒃) 

= √𝟗 + 𝟑√𝟑(𝒂 + 𝒃 + 𝒄) + 𝟑(√𝒂 + √𝒃 + √𝒄) 

≤
𝑨𝑴−𝑮𝑴

√𝟗 + 𝟑√𝟗+ 𝟑√𝟑(𝒂 + 𝒃 + 𝒄) = √𝟗 + 𝟑√𝟗 + 𝟗 = 𝟑√𝟏 + √𝟐 

Solution 3 by Sanong Huayrerai-Nakon Pathom-Thailand 

For 𝒙 > 0 we give 𝒇(𝒙) = √𝒙 ⇒ 𝒇′(𝒙) =
𝟏

𝟐
𝒙−

𝟏

𝟐 ⇒ 𝒇′′(𝒙) = (
𝟏

𝟐
) (−

𝟏

𝟐
) 𝒙−

𝟑

𝟐 = −
𝟏

𝟒
𝒙𝟐
𝟑 

⇒ 𝒇′′(𝒙) < 0 for 𝒙 > 0 ⇒ 𝑓(𝒙) is concave function 

⇒ 𝒇(𝒙) + 𝒇(𝒚) ≤ 𝟐𝒇(
𝒙 + 𝒚

𝟐
) = 𝟐√(

𝒙 + 𝒚

𝟐
) 

Hence for 𝒂, 𝒃, 𝒄 > 0 and 𝒂 + 𝒃 + 𝒄 = 𝟑, we will get 

√𝒂 +√𝒃 + √𝒄 + √𝒃 + √𝒄 + √𝒂 +√𝒄 + √𝒂+ √𝒃 ≤ 

≤ 𝟑√
𝒂 + 𝒃 + 𝒄 + √𝒃 + √𝒄 + √𝒄 + √𝒂 +√𝒂 + √𝒃

𝟑
 

= 𝟑√
𝟑 +√𝒃 + √𝒄 + √𝒄 + √𝒂 +√𝒂 + √𝒃

𝟑
≤ 𝟑

√
𝟏 +

𝟑√
𝒂 + 𝒃 + 𝒄 + √𝒂 + √𝒃 + √𝒄

𝟑
𝟑
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= 𝟑√𝟏 +
𝟑√𝟐 + √𝒂 + √𝒃 + √𝒄

𝟑
≤ 𝟑

√
  
  
  
  
  

𝟏 +

𝟑
√
𝟏 +

𝟑√(
𝒂+ 𝒃 + 𝒄

𝟑 )

𝟑

𝟑
= 

= 𝟑
√
  
  
  
  
  

𝟏 +

𝟑
√
𝟏 +

𝟑√
𝟑
𝟑

𝟑

𝟑
= 𝟑√𝟏 +

𝟑√𝟐

𝟑
=  𝟑√𝟏 + √𝟐 

Therefore it is to be true. 

1125. If 𝒂, 𝒃, 𝒄, 𝝀 > 𝟎, 𝒂 + 𝒃 + 𝒄 = 𝟑 then: 

𝒂𝟐

𝒂 + 𝝀𝒃𝟐
+

𝒃𝟐

𝒃 + 𝝀𝒄𝟐
+

𝒄𝟐

𝒄 + 𝝀𝒂𝟐
≥ 𝟑 (𝟏 −

𝟏

𝟐
√𝝀) 

Proposed by Marin Chirciu – Romania  
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   
𝒂𝟐

𝒂 + 𝝀𝒃𝟐
= 𝒂 −

𝝀𝒂𝒃𝟐

𝒂 + 𝝀𝒃𝟐
≥⏞

𝑨𝑴−𝑮𝑴

𝒂 −
𝝀𝒂𝒃𝟐

𝟐√𝒂. 𝝀𝒃𝟐
= 

= 𝒂 −
√𝝀

𝟐
. √𝒂𝒃.√𝒃 ≥⏞

𝑨𝑴−𝑮𝑴

𝒂 −
√𝝀

𝟐
.
𝒂𝒃 + 𝒃

𝟐
. 

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   
𝒃𝟐

𝒃 + 𝝀𝒄𝟐
≥ 𝒃 −

√𝝀

𝟐
.
𝒃𝒄 + 𝒄

𝟐
  𝒂𝒏𝒅  

𝒄𝟐

𝒄 + 𝝀𝒂𝟐
≥ 𝒄 −

√𝝀

𝟐
.
𝒄𝒂 + 𝒂

𝟐
. 

𝑨𝒅𝒅𝒊𝒏𝒈 𝒕𝒉𝒆𝒔𝒆 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒊𝒆𝒔 𝒘𝒆 𝒈𝒆𝒕 ∶ 

𝒂𝟐

𝒂 + 𝝀𝒃𝟐
+

𝒃𝟐

𝒃 + 𝝀𝒄𝟐
+

𝒄𝟐

𝒄 + 𝝀𝒂𝟐
≥ 𝟑 −

√𝝀

𝟐
.
(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) + 𝟑

𝟐
≥ 

≥ 𝟑 −
√𝝀

𝟐
.

(𝒂 + 𝒃 + 𝒄)𝟐

𝟑 + 𝟑

𝟐
= 𝟑(𝟏 −

√𝝀

𝟐
). 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄 = 𝝀 = 𝟏. 

Solution 2 by Tapas Das-India 

We need to show 
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𝒂𝟐

𝒂 + 𝝀𝒃𝟐
+

𝒃𝟐

𝒃 + 𝝀𝒄𝟐
+

𝒄𝟐

𝒄 + 𝝀𝒂𝟐
≥ 𝟑(𝟏 −

√𝝀

𝟐
) 

or 
𝒂𝟐

𝒂+𝝀𝒃𝟐
+

𝒃𝟐

𝒃+𝝀𝒄𝟐
+

𝒄𝟐

𝒄+𝝀𝒂𝟐
≥ 𝟑 −

𝟑√𝝀

𝟐
 

or 
𝒂𝟐

𝒂+𝝀𝒃𝟐
+

𝒃𝟐

𝒃+𝝀𝒄𝟐
+

𝒄𝟐

𝒄+𝝀𝒂𝟐
≥ (𝒂 + 𝒃 + 𝒄) −

𝟑√𝝀

𝟐
 

[∵ 𝒂 + 𝒃 + 𝒄 = 𝟑] 

or (
𝒂𝟐

𝒂+𝝀𝒃𝟐
− 𝒂) + (

𝒃𝟐

𝒃+𝝀𝒄𝟐
− 𝒃) + (

𝒄𝟐

𝒄+𝝀𝒂𝟐
− 𝒄) ≥

−𝟑√𝝀

𝟐
 

or 
𝝀𝒂𝒃𝟐

𝒂+𝝀𝒃𝟐
+

𝝀𝒃𝒄𝟐

𝒃+𝝀𝒄𝟐
+

𝝀𝒂𝟐𝒄

𝒄+𝝀𝒂𝟐
≤

𝟑√𝝀

𝟐
 

Now,  

𝝀𝒂𝒃𝟐

𝒂 + 𝝀𝒃𝟐
+

𝝀𝒃𝒄𝟐

𝒃 + 𝝀𝒄𝟐
+

𝝀𝒂𝟐𝒄

𝒄 + 𝝀𝒂𝟐
≤

𝝀𝒂𝒃𝟐

𝟐√𝒂 ⋅ 𝒃√𝝀
+

𝝀𝒃𝒄𝟐

𝟐√𝒃√𝝀𝒄
+

𝝀𝒂𝟐𝒄

𝟐√𝒄√𝝀𝒂
 

(AM-GM) 

=
√𝝀

𝟐
(√𝒂𝒃 + √𝒃𝒄 + √𝒄𝒂) ≤

𝑨𝑴−𝑮𝑴 √𝝀

𝟐
[
𝒂𝒃 + 𝒃

𝟐
+
𝒃𝒄 + 𝒄

𝟐
+
𝒄𝒂 + 𝒂

𝟐
] 

≤
√𝝀

𝟐
(
𝒂 + 𝒃 + 𝒄

𝟐
+
𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂

𝟐
) 

≤
√𝝀

𝟐
[
𝟑

𝟐
+
(∑𝒂)𝟐

𝟔
] (∵ (∑𝒂)

𝟐

≥ 𝟑∑𝒂𝒃) =
√𝝀

𝟐
[
𝟑

𝟐
+
𝟑

𝟐
] =

𝟑√𝝀

𝟐
 

Solution 3 by Sakthi Vel-India 

𝒂𝟐

𝒂 + 𝝀𝒃𝟐
=

𝒂

𝟏 +
𝝀𝒃𝟐

𝒂

≥ 𝒂(𝟏 −
√𝝀𝒃

𝟐√𝒂
) ≥ 𝒂 −

√𝝀

𝟐
√𝒂𝒃 

≥ 𝒂 −
√𝝀

𝟐
(
𝒂 + 𝒃𝟐

𝟐
) 

∴
𝒃𝟐

𝒃 + 𝝀𝒄𝟐
≥ 𝒃−

√𝝀

𝟐
(
𝒃 + 𝒄𝟐

𝟐
) ,

𝒄𝟐

𝒄 + 𝝀𝒂𝟐
≥ 𝒄 −

√𝝀

𝟐
(
𝒄 + 𝒂𝟐

𝟐
) 

∴
𝒂𝟐

𝒂 + 𝝀𝒃𝟐
+

𝒃𝟐

𝒃 + 𝝀𝒄𝟐
+

𝒄𝟐

𝒄 + 𝝀𝒂𝟐
≥ 𝒂 + 𝒃 + 𝒄 −

√𝝀

𝟐
[
𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝒂 + 𝒃 + 𝒄

𝟐
] 
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≥ 𝟑 −
√𝝀

𝟐
[

(𝒂 + 𝒃 + 𝒄)𝟐

𝟑 + 𝒂 + 𝒃 + 𝒄

𝟐
] ≥ 𝟑 −

√𝝀

𝟐
[
𝟑 + 𝟑

𝟐
] ≥ 𝟑 −

𝟑√𝝀

𝟐
≥ 𝟑(𝟏−

√𝝀

𝟐
) 

Solution 4 by Soumava Chakraborty-Kolkata-India 

∑
𝒂𝟐

𝒂 + 𝛌𝐛𝟐
𝐜𝐲𝐜

=∑
𝒂(𝒂 + 𝛌𝐛𝟐 − 𝛌𝐛𝟐)

𝒂 + 𝛌𝐛𝟐
𝐜𝐲𝐜

=∑𝒂

𝐜𝐲𝐜

−∑
𝛌𝒂𝐛𝟐

𝒂 + 𝛌𝐛𝟐
𝐜𝐲𝐜

 

=
𝒂+𝐛+𝐜 = 𝟑

𝟑 −∑
𝛌𝒂𝐛𝟐

𝒂 + 𝛌𝐛𝟐
𝐜𝐲𝐜

≥
𝐀−𝐆

𝟑 −∑
𝛌𝒂𝐛𝟐

𝟐𝐛.√𝛌𝒂
𝐜𝐲𝐜

= 𝟑 −
√𝛌

𝟐
∑𝐛√𝒂

𝐜𝐲𝐜

 

= 𝟑 −
√𝛌

𝟐
∑√𝒂𝐛. √𝐛

𝐜𝐲𝐜

≥
𝐂𝐁𝐒

𝟑 −
√𝛌

𝟐
.√∑𝒂𝐛

𝐜𝐲𝐜

. √∑𝒂

𝐜𝐲𝐜

=
𝒂+𝐛+𝐜 = 𝟑

𝟑 −
√𝛌

𝟐
.√𝟑∑𝒂𝐛

𝐜𝐲𝐜

 

≥ 𝟑 −
√𝛌

𝟐
.√(∑𝒂

𝐜𝐲𝐜

)

𝟐

=
𝒂+𝐛+𝐜 = 𝟑

𝟑 −
𝟑.√𝛌

𝟐
= 𝟑(𝟏 −

𝟏

𝟐
√𝛌) (𝐐𝐄𝐃) 

1126. If 𝒂, 𝒃, 𝒄, 𝒅 > 0, 𝑎 + 𝑏 + 𝑐 + 𝑑 = 1 then: 

∑𝒂𝟐𝒄𝒅

𝒄𝒚𝒄

𝐜𝐨𝐭−𝟏(𝒃) ≥ 𝟒𝒂𝒃𝒄𝒅 𝐜𝐨𝐭−𝟏 (
𝟏

𝟒
) 

Proposed by Daniel Sitaru – Romania  
Solution 1 by Tapas Das-India 

∑𝒂𝟐𝒄𝒅 𝐜𝐨𝐭−𝟏(𝒃) = 

= 𝒂𝟐𝒄𝒅 𝐜𝐨𝐭−𝟏(𝒃) + 𝒃𝟐𝒅𝒂𝐜𝐨𝐭−𝟏(𝒄) + 𝒄𝟐𝒂𝒃 𝐜𝐨𝐭−𝟏(𝒅) + 𝒅𝟐𝒃𝒄 𝐜𝐨𝐭−𝟏(𝒂) 

= 𝒂𝒃𝒄𝒅 [
𝒂

𝒃
𝐜𝐨𝐭−𝟏(𝒃) +

𝒃

𝒄
𝐜𝐨𝐭−𝟏(𝒄) +

𝒄

𝒅
𝐜𝐨𝐭−𝟏(𝒅) +

𝒅

𝒂
𝐜𝐨𝐭−𝟏(𝒂)]    (1) 

Let 𝒇(𝒙) = 𝐜𝐨𝐭−𝟏 𝒙 , 𝒙 > 0 

∴ 𝒇′(𝒙) = −
𝟏

𝟏+𝒙𝟐
< 0 ∴ 𝐜𝐨𝐭−𝟏 𝒙 is a decreasing function 

Again,  

Let 𝒇(𝒕) = 𝐜𝐨𝐭−𝟏(𝒕) , 𝒕 > 0, ∴ 𝒇′(𝒕) = −
𝟏

𝟏+𝒕𝟐
, 𝒇′′(𝒕) =

𝟐𝒕

(𝟏+𝒕𝟐)
𝟐 > 0 

∴ 𝒇 is convex; using Jensen’s inequality 
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𝒂

𝒃
𝒇(𝒃) +

𝒃

𝒄
𝒇(𝒄) +

𝒄

𝒅
𝒇(𝒅) +

𝒅

𝒂
𝒇(𝒂) ≥ 

≥ (
𝒂

𝒃
+
𝒃

𝒄
+
𝒄

𝒅
+
𝒅

𝒂
) 𝒇(

𝒃 ⋅
𝒂
𝒃 + 𝒄 ⋅

𝒃
𝒄 + 𝒅 ⋅

𝒄
𝒅 + 𝒂 ⋅

𝒅
𝒂

𝒂
𝒃 +

𝒃
𝒄 +

𝒄
𝒅 +

𝒅
𝒂

) 

= (
𝒂

𝒃
+
𝒃

𝒄
+
𝒄

𝒅
+
𝒅

𝒂
) 𝒇(

𝒂 + 𝒃 + 𝒄 + 𝒅

𝒂
𝒃 +

𝒃
𝒄 +

𝒄
𝒅 +

𝒅
𝒂

) 

≥
𝑨𝑴−𝑮𝑴

𝟒(
𝒂

𝒃
⋅
𝒃

𝒄
⋅
𝒄

𝒅
⋅
𝒅

𝒂
)

𝟏
𝟒

𝐜𝐨𝐭−𝟏 (
𝟏

𝒂
𝒃 +

𝒃
𝒄 +

𝒄
𝒅 +

𝒅
𝒂

) 

[∵ 𝒂 + 𝒃 + 𝒄 + 𝒅 = 𝟏] 

= 𝟒 𝐜𝐨𝐭−𝟏(
𝟏

𝒂
𝒃 +

𝒃
𝒄 +

𝒄
𝒅 +

𝒅
𝒂

) ≥ 𝟒 𝐜𝐨𝐭−𝟏 (
𝟏

𝟒
) 

Since 𝐜𝐨𝐭−𝟏 𝒙 is decreasing function and 
𝒂

𝒃
+

𝒃

𝒄
+

𝒄

𝒅
+

𝒅

𝒂
≥ 𝟒 (AM-GM) 

𝒂

𝒃
𝒇(𝒃) +

𝒃

𝒄
𝒇(𝒄) +

𝒄

𝒅
𝒇(𝒅) +

𝒅

𝒂
𝒇(𝒂) ≥ 𝟒𝐜𝐨𝐭−𝟏 (

𝟏

𝟒
) 

⇒
𝒂

𝒃
𝐜𝐨𝐭−𝟏(𝒃) +

𝒃

𝒄
𝐜𝐨𝐭−𝟏(𝒄) +

𝒄

𝒅
𝐜𝐨𝐭−𝟏(𝒅) +

𝒅

𝒂
𝐜𝐨𝐭−𝟏(𝒂) ≥ 𝟒𝐜𝐨𝐭−𝟏 (

𝟏

𝟒
)    (2) 

Now, from (1) 

∑𝒂𝟐𝒄𝒅 𝐜𝐨𝐭−𝟏(𝒃) = 𝒂𝒃𝒄𝒅 [
𝒂

𝒃
𝐜𝐨𝐭−𝟏(𝒃) +

𝒃

𝒄
𝐜𝐨𝐭−𝟏 𝒄 +

𝒄

𝒅
𝐜𝐨𝐭−𝟏 𝒅 +

𝒅

𝒂
𝐜𝐨𝐭−𝟏(𝒂)] 

≥ 𝟒𝒂𝒃𝒄𝒅 𝐜𝐨𝐭−𝟏
𝟏

𝟒
    (using (2)) 

Solution 2 by Hikmat Mammadov-Azerbaijan 

𝒂, 𝒃, 𝒄, 𝒅 > 0 and 𝒂 + 𝒃 + 𝒄 + 𝒅 = 𝟏 

∑𝒂𝟐𝒄𝒅

𝒄𝒚𝒄

𝐜𝐨𝐭−𝟏(𝒃) ≥ 𝟒𝒂𝒃𝒄𝒅 𝐜𝐨𝐭−𝟏 (
𝟏

𝟒
) 

𝒅

𝒅𝒙
(
𝟏

𝒙
𝐜𝐨𝐭−𝟏 𝒙) = −

𝐜𝐨𝐭−𝟏 𝒙

𝒙𝟐
−

𝟏

𝒙(𝒙𝟐 + 𝟏)
< 0 

For 𝒙 > 0 ⇒
𝒅𝟐

𝒅𝒙𝟐
(
𝟏

𝒙
𝐜𝐨𝐭−𝟏 𝒙) =

𝟐 𝐜𝐨𝐭−𝟏 𝒙

𝒙𝟑
+

𝟐(𝟐𝒙𝟐+𝟏)

𝒙𝟐(𝒙𝟐+𝟏)
𝟐 > 0 
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Then 
𝟏

𝒙
𝐜𝐨𝐭−𝟏(𝒙) over (𝟎, 𝟏) is a decreasing, convex function 

Convexity implies that for nonnegative  

𝝀𝟏, 𝝀𝟐, 𝝀𝟑, 𝝀𝟒 and 𝝀𝟏 + 𝝀𝟐 + 𝝀𝟑 + 𝝀𝟒 = 𝟏 we’ve, 

𝝀𝟏
𝟏

𝒂
𝐜𝐨𝐭−𝟏 𝒂 + 𝝀𝟐

𝟏

𝒃
𝐜𝐨𝐭−𝟏 𝒃 + 𝝀𝟑

𝟏

𝒄
𝐜𝐨𝐭−𝟏 𝒄 + 𝝀𝟒

𝟏

𝒅
𝐜𝐨𝐭−𝟏 𝒅 ≥ 

≥
𝟏

𝝀𝟏𝒂 + 𝝀𝟐𝒃 + 𝝀𝟑𝒄 + 𝝀𝟒𝒅
𝐜𝐨𝐭−𝟏(𝝀𝟏𝒂 + 𝝀𝟐𝒃 + 𝝀𝟑𝒄 + 𝝀𝟒𝒅) 

If 𝝀𝟏, 𝝀𝟐, 𝝀𝟑 , 𝝀𝟒 ∈ (𝟎, 𝟏)  we’ve equality iff 𝒂 = 𝒃 = 𝒄 = 𝒅. 

Set 𝝀𝟏 = 𝒅, 𝝀𝟐 = 𝒂, 𝝀𝟑 = 𝒃, 𝝀𝟒 = 𝒄 

⇒
𝒅

𝒂
𝐜𝐨𝐭−𝟏 𝒂 +

𝟏

𝒃
𝐜𝐨𝐭−𝟏 𝒃 +

𝒃

𝒄
𝐜𝐨𝐭−𝟏 𝒄 +

𝒄

𝒅
𝐜𝐨𝐭−𝟏 𝒅 

≥
𝟏

𝒂𝒅 + 𝒃𝒂 + 𝒄𝒃 + 𝒅𝒄
𝐜𝐨𝐭−𝟏(𝒂𝒅 + 𝒃𝒂 + 𝒄𝒃 + 𝒅𝒄) 

Because 
𝟏

𝒙
𝐜𝐨𝐭−𝟏(𝒙) is decreasing 

Then 𝑹𝑯𝑺 ≥
𝟏

𝜼
𝐜𝐨𝐭−𝟏 𝜼 and 𝜼 = 𝐦𝐚𝐱   

𝒂𝒅 + 𝒃𝒂 + 𝒄𝒃 + 𝒅𝒄 subject to 𝒂, 𝒃, 𝒄, 𝒅 > 0 and 𝒂 + 𝒃 + 𝒄 + 𝒅 = 𝟏 

𝒂𝒅 + 𝒃𝒂 + 𝒄𝒃 + 𝒅𝒄 = (𝒂 + 𝒄)(𝒃 + 𝒅) ≤
𝑨𝑴−𝑮𝑴

(
𝒂 + 𝒃 + 𝒄 + 𝒅

𝟐
)
𝟐

=
𝟏

𝟒
 

Thus 
𝒅

𝒂
𝐜𝐨𝐭−𝟏 𝒂 +

𝒂

𝒃
𝐜𝐨𝐭−𝟏 𝒃 +

𝒃

𝒄
𝐜𝐨𝐭−𝟏 𝒄 +

𝒄

𝒅
𝐜𝐨𝐭−𝟏 𝒅 

≥
𝟏

𝟏
𝟒

𝐜𝐨𝐭−𝟏 (
𝟏

𝟒
) = 𝟒𝐜𝐨𝐭−𝟏 (

𝟏

𝟒
) 

So ⇓ 

𝟒𝒂𝒃𝒄𝒅 𝐜𝐨𝐭−𝟏 (
𝟏

𝟒
) ≤ 𝒃𝒄𝒅𝟐 𝐜𝐨𝐭−𝟏 𝒂 + 𝒂𝟐𝒄𝒅 𝐜𝐨𝐭−𝟏 𝒃 + 𝒂𝒃𝟐𝒄 𝐜𝐨𝐭−𝟏 𝒄 + 𝒂𝒃𝒄𝟐 𝐜𝐨𝐭−𝟏 𝒅 

Equality iff 𝒂 = 𝒃 = 𝒄 =
𝟏

𝟒
 

1127. 𝐈𝐟 𝒙, 𝒚, 𝒛 > 0, 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 ≥ 𝟑, 𝐭𝐡𝐞𝐧 ∶ 

𝒙𝟑 + 𝒚𝟑 + 𝒛𝟑 ≥ 𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙 

Proposed by Marin Chirciu-Romania 
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Solution 1 by Soumava Chakraborty-Kolkata-India  

𝒙𝟐 + 𝐲𝟐 + 𝐳𝟐 ≥ 𝟑 ⇒ (∑𝒙

𝐜𝐲𝐜

)

𝟐

− 𝟐∑𝒙𝐲

𝐜𝐲𝐜

≥ 𝟑 ⇒ (∑𝒙

𝐜𝐲𝐜

)

𝟐

≥ 𝟑 + 𝟐∑𝒙𝐲

𝐜𝐲𝐜

 

⇒∑𝒙

𝐜𝐲𝐜

≥
(⦁)

√𝟑 + 𝟐∑𝒙𝐲

𝐜𝐲𝐜

 

𝐂𝒂𝐬𝐞 𝟏  𝒙𝐲 + 𝐲𝐳 + 𝐳𝒙 ≤ 𝟑 

𝐍𝐨𝐰,𝒙𝟑 + 𝐲𝟑 + 𝐳𝟑 ≥
𝐂𝐡𝐞𝐛𝐲𝐬𝐡𝐞𝐯 𝟏

𝟑
(∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝟐

𝐜𝐲𝐜

) ≥
𝒙𝟐+𝐲𝟐+𝐳𝟐  ≥ 𝟑 𝟏

𝟑
(∑𝒙

𝐜𝐲𝐜

) .𝟑 

≥
𝐯𝐢𝒂 (⦁)

√𝟑 + 𝟐∑𝒙𝐲

𝐜𝐲𝐜

≥
?
∑𝒙𝐲

𝐜𝐲𝐜

⇔ 𝐭𝟐 − 𝟐𝐭 − 𝟑 ≤
?
𝟎 (𝐭 =∑𝒙𝐲

𝐜𝐲𝐜

) 

 

⇔ (𝐭 − 𝟑)(𝐭 + 𝟏) ≤
?
𝟎 ⇔ 𝐭 ≤

?
𝟑 ⇔ 𝒙𝐲 + 𝐲𝐳 + 𝐳𝒙 ≤ 𝟑 → 𝐭𝐫𝐮𝐞 

∴ 𝒙𝟑 + 𝐲𝟑 + 𝐳𝟑 ≥ 𝒙𝐲 + 𝐲𝐳 + 𝐳𝒙 
 

𝐂𝒂𝐬𝐞 𝟐  𝒙𝐲 + 𝐲𝐳 + 𝐳𝒙 > 3 
 

𝐀𝐠𝒂𝐢𝐧, 𝒙𝟑 + 𝐲𝟑 + 𝐳𝟑 ≥
𝐂𝐡𝐞𝐛𝐲𝐬𝐡𝐞𝐯 𝟏

𝟑
(∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝟐

𝐜𝐲𝐜

) ≥
𝟏

𝟑
(∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝐲

𝐜𝐲𝐜

) 

≥
𝐯𝐢𝒂 (⦁) 𝟏

𝟑
. √𝟑 + 𝟐∑𝒙𝐲

𝐜𝐲𝐜

. (∑𝒙𝐲

𝐜𝐲𝐜

) ≥
𝒙𝐲+𝐲𝐳+𝐳𝒙 > 3 𝟏

𝟑
. √𝟑 + 𝟔. (∑𝒙𝐲

𝐜𝐲𝐜

) =∑𝒙𝐲

𝐜𝐲𝐜

 

∴ 𝒙𝟑 + 𝐲𝟑 + 𝐳𝟑 ≥ 𝒙𝐲 + 𝐲𝐳 + 𝐳𝒙 ∴ 𝐜𝐨𝐦𝐛𝐢𝐧𝐢𝐧𝐠 𝐜𝒂𝐬𝐞𝐬 𝟏 𝒂𝐧𝐝 𝟐, 

𝒙𝟑 + 𝐲𝟑 + 𝐳𝟑 ≥ 𝒙𝐲 + 𝐲𝐳 + 𝐳𝒙 ∀ 𝒙, 𝐲, 𝐳 > 0│𝒙𝟐 + 𝐲𝟐 + 𝐳𝟐 ≥ 𝟑 (𝐐𝐄𝐃) 

 

Solution 2 by Michael Sterghiou-Greece 

∑𝒙𝟑

𝒄𝒚𝒄

≥∑𝒙𝒚

𝒄𝒚𝒄

;      (𝟏) 

𝐋𝐞𝐭: (𝒑, 𝒒, 𝒓) = (∑𝒙

𝒄𝒚𝒄

,∑𝒙𝒚

𝒄𝒚𝒄

,∏𝒙

𝒄𝒚𝒄

) , 𝐭𝐡𝐞𝐧 ∑𝒙𝟐

𝒄𝒚𝒄

= 𝒑𝟐 − 𝟐𝒒 ≥ 𝟑;   (𝟐) 

From Jensen’s inequality for the function 𝒇(𝒕) = 𝒕𝟑, we have: 
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∑ 𝒙𝟑𝒄𝒚𝒄 ≥
𝒑𝟑

𝟗
= 𝟑 ⋅ (

∑𝒙

𝟑
)
𝟑

≥
(?)

𝒒   or from (2) the stronger: 

(√𝟐𝒒 + 𝟑)
𝟑
≥ 𝟗𝒒 ⇔ (𝟐𝒒 + 𝟑)𝟑 − 𝟖𝟏𝒒𝟐 ≥ 𝟎 𝐨𝐫 

(𝒒 − 𝟑)𝟐(𝟖𝒒+ 𝟑) ≥ 𝟎, which is true. Equality holds for 𝒙 = 𝒚 = 𝒛 = 𝟏. 

1128. 𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 ≥ 𝟎 ∶ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

√𝟏 −
𝒂𝒃𝒄

𝒂𝒃 + 𝟏
+ √𝟏 −

𝒂𝒃𝒄

𝒃𝒄 + 𝟏
+ √𝟏 −

𝒂𝒃𝒄

𝒄𝒂 + 𝟏
≤ 𝟑√

𝒂 + 𝒃 + 𝒄

𝟐
 

Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑩𝒚 𝑪𝑩𝑺 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝑳𝑯𝑺 ≤ √𝟑(𝟑 − 𝒂𝒃𝒄∑
𝟏

𝒂𝒃 + 𝟏
𝒄𝒚𝒄

) ≤ √𝟑(𝟑 − 𝒂𝒃𝒄.
𝟑𝟐

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 + 𝟑
) = 𝟑√𝟏 −

𝟑𝒂𝒃𝒄

𝟒
. 

𝑺𝒐 𝒊𝒕 𝒔𝒖𝒇𝒇𝒊𝒄𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 ∶   𝟏 −
𝟑𝒂𝒃𝒄

𝟒
≤
𝒂 + 𝒃 + 𝒄

𝟐
  𝒐𝒓   𝟐𝒑 + 𝟑𝒓 ≥ 𝟒,  

𝒘𝒉𝒆𝒓𝒆 ∶ 𝒑 = 𝒂 + 𝒃 + 𝒄,   𝒓 = 𝒂𝒃𝒄  𝒂𝒏𝒅 𝒍𝒆𝒕 𝒒 = 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏. 

𝑰𝒇 𝒑 ≥ 𝟐 𝒕𝒉𝒆 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒊𝒔 𝒐𝒃𝒗𝒊𝒐𝒖𝒔.  𝑨𝒔𝒔𝒖𝒎𝒆 𝒏𝒐𝒘 𝒕𝒉𝒂𝒕 𝒑 ≤ 𝟐. 

𝑻𝒉𝒆𝒏 ∶   𝟐𝒑 + 𝟑𝒓 ≥⏞
𝑺𝒄𝒉𝒖𝒓

𝟐𝒑 +
𝟒𝒑 − 𝒑𝟑

𝟑
= 𝟒 +

(𝟐 − 𝒑)(𝒑𝟐 + 𝟐𝒑 − 𝟔)

𝟑
≥ 𝟒. 

𝑾𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒃𝒆𝒄𝒂𝒖𝒔𝒆 𝟐 ≥ 𝒑 ≥ √𝟑𝒒 = √𝟑.  𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒅. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂,𝒃, 𝒄) = (𝟏, 𝟏, 𝟎) 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 

1129. 𝑰𝒇 𝒂, 𝒃, 𝒄 > 0 𝑡ℎ𝑒𝑛 ∶ 

𝒂𝒃

𝒄
+
𝒃𝒄

𝒂
+
𝒄𝒂

𝒃
≥ √

𝒂𝟒 + 𝒃𝟒

𝟐

𝟒

+ √
𝒃𝟒 + 𝒄𝟒

𝟐

𝟒

+ √
𝒄𝟒 + 𝒂𝟒

𝟐

𝟒

 

Proposed by Tran Quoc Thinh-Vietnam 
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Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑳𝒆𝒎𝒎𝒂 ∶ 𝑰𝒇 𝒂, 𝒃 > 0 𝑡ℎ𝑒𝑛 ∶   √
𝒂𝟒 + 𝒃𝟒

𝟐

𝟒

≤ √𝒂𝟐 − 𝒂𝒃 + 𝒃𝟐  (𝟏) 

𝑷𝒓𝒐𝒐𝒇 ∶   𝑾𝒆 𝒉𝒂𝒗𝒆  (𝟏)  ⇔  𝟐(𝒂𝟐 − 𝒂𝒃 + 𝒃𝟐)𝟐 − (𝒂𝟒 + 𝒃𝟒) ≥ 𝟎 ⇔ (𝒂 − 𝒃)𝟒 ≥ 𝟎, 

𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒂𝒏𝒅 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒐𝒇 𝒕𝒉𝒆 𝒍𝒆𝒎𝒎𝒂 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆. 

𝑭𝒓𝒐𝒎 𝒕𝒉𝒆 𝒍𝒆𝒎𝒎𝒂, 𝒊𝒕 𝒔𝒖𝒇𝒇𝒊𝒄𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 ∶ 

𝒂𝒃

𝒄
+
𝒃𝒄

𝒂
+
𝒄𝒂

𝒃
≥ √𝒂𝟐 − 𝒂𝒃 + 𝒃𝟐 +√𝒃𝟐 − 𝒃𝒄 + 𝒄𝟐 + √𝒄𝟐 − 𝒄𝒂 + 𝒂𝟐. 

𝑳𝒆𝒕 𝒙 =
𝟏

𝒂
,   𝒚 =

𝟏

𝒃
,   𝒛 =

𝟏

𝒄
,   𝒕𝒉𝒆 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒃𝒆𝒄𝒐𝒎𝒆𝒔 ∶ 

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 ≥ 𝒛√𝒙𝟐 − 𝒙𝒚 + 𝒚𝟐 + 𝒙√𝒚𝟐 − 𝒚𝒛 + 𝒛𝟐 + 𝒚√𝒛𝟐 − 𝒛𝒙 + 𝒙𝟐 

𝑩𝒚 𝑪𝑩𝑺 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

∑𝒙√𝒚𝟐 − 𝒚𝒛 + 𝒛𝟐

𝒄𝒚𝒄

≤ √(∑𝒙) (∑𝒙(𝒚𝟐 − 𝒚𝒛 + 𝒛𝟐)) ≤⏞
?

 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 

⇔  𝒙𝒚(𝒙𝟐 + 𝒚𝟐) + 𝒚𝒛(𝒚𝟐 + 𝒛𝟐) + 𝒛𝒙(𝒛𝟐 + 𝒙𝟐) ≤ 𝒙𝟒 + 𝒚𝟒 + 𝒛𝟒 + 𝒙𝒚𝒛(𝒙 + 𝒚 + 𝒛), 

𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒉𝒆 𝒇𝒐𝒖𝒓𝒕𝒉 𝒅𝒆𝒈𝒓𝒆𝒆 𝑺𝒄𝒉𝒖𝒓′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒅.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄. 

1130. 𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 ≥ 𝟎 ∶ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏. 𝑺𝒆𝒕 𝒑 = 𝒂 + 𝒃 + 𝒄.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

√(𝟐𝒂 + 𝒃𝒄)(𝟐𝒃 + 𝒄𝒂)(𝟐𝒄 + 𝒂𝒃) ≤ 𝒑√
𝟐𝒑 + 𝟏

𝒑𝟐 + 𝟏
 

Proposed by Phan Ngoc Chau-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑩𝒚 𝑨𝑴−𝑮𝑴 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 
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𝟐𝒃+ 𝒄𝒂 ≤ (
𝒃

𝒄 + 𝒂
+ 𝒃(𝒄 + 𝒂)) + 𝒄𝒂 =

𝒃

𝒄 + 𝒂
+ 𝟏 =

𝒑

𝒄 + 𝒂
. 

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   𝟐𝒄 + 𝒂𝒃 ≤
𝒑

𝒂 + 𝒃
. 

𝑻𝒉𝒆𝒏 ∶  √(𝟐𝒃 + 𝒄𝒂)(𝟐𝒄 + 𝒂𝒃) ≤
𝒑

√(𝒄 + 𝒂)(𝒂 + 𝒃)
=

𝒑

√𝒂𝟐 + 𝟏
. 

𝑺𝒐 𝒊𝒕 𝒔𝒖𝒇𝒇𝒊𝒄𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 ∶  
𝟐𝒂 + 𝒃𝒄

𝒂𝟐 + 𝟏
≤
𝟐𝒑+ 𝟏

𝒑𝟐 + 𝟏
  𝒐𝒓  

𝟐𝒂 + 𝟏 − 𝒂(𝒑 − 𝒂)

𝒂𝟐 + 𝟏
≤
𝟐𝒑+ 𝟏

𝒑𝟐 + 𝟏
 

𝒐𝒓  (𝟐𝒑 + 𝟏)(𝒂𝟐 + 𝟏) − (𝒑𝟐 + 𝟏)(𝒂𝟐 + 𝟐𝒂+ 𝟏 − 𝒂𝒑) ≥ 𝟎 

𝒐𝒓  (𝒑 − 𝟐)(𝒑 − 𝒂)(𝒂𝒑− 𝟏) ≥ 𝟎  𝒐𝒓  (𝒑− 𝟐)(𝒃 + 𝒄)(𝒂𝟐 − 𝒃𝒄) ≥ 𝟎 (𝟏) 

𝑾𝑳𝑶𝑮 𝒘𝒆 𝒄𝒂𝒏 𝒂𝒔𝒔𝒖𝒎𝒆 𝒕𝒉𝒂𝒕 𝒂 = 𝒎𝒊𝒏{𝒂,𝒃, 𝒄} 𝒐𝒓 𝒂 = 𝒎𝒂𝒙{𝒂,𝒃, 𝒄}, 𝒔𝒐 ∶ 

𝑰𝒇 𝒑 ≥ 𝟐 𝒘𝒆 𝒄𝒂𝒏 𝒄𝒉𝒐𝒐𝒔𝒆 𝒂 = 𝒎𝒂𝒙{𝒂,𝒃, 𝒄} 𝒕𝒉𝒆𝒏 (𝟏) 𝒊𝒔 𝒕𝒓𝒖𝒆, 

𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚 𝒊𝒇 𝒑 ≤ 𝟐 𝒘𝒆 𝒄𝒂𝒏 𝒄𝒉𝒐𝒐𝒔𝒆 𝒂 = 𝒎𝒊𝒏{𝒂,𝒃, 𝒄}.  𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒅.   

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂,𝒃, 𝒄) = (𝟏, 𝟏, 𝟎) 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 

1131. Let 𝒂, 𝒃, 𝒄 ≥ 𝟎 ∶ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏.  Prove that: 

√
𝒂

𝒃 − 𝒃𝒄 + 𝒄
+ √

𝒃

𝒄 − 𝒄𝒂 + 𝒂
+ √

𝒄

𝒂 − 𝒂𝒃 + 𝒃
≥

𝟐

√𝒂 + 𝒃 + 𝒄 − 𝟏
 

Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 

Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝐖𝐞 𝐡𝐚𝐯𝐞 ∶ 

  √
𝒂

𝒃 − 𝒃𝒄 + 𝒄
= √

𝒂

𝒃 + 𝒄 − 𝟏 + 𝒂(𝒃 + 𝒄)
= √

𝒂

(𝒃 + 𝒄)(𝟏 + 𝒂 + 𝒃 + 𝒄) − [(𝒃 + 𝒄)𝟐 + 𝟏]
≥ 

≥⏞
𝑨𝑴−𝑮𝑴

 √
𝒂

(𝒃 + 𝒄)(𝟏 + 𝒂 + 𝒃 + 𝒄) − 𝟐(𝒃 + 𝒄)
= 
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=
𝒂

√𝒂(𝒃 + 𝒄)(𝒂 + 𝒃 + 𝒄 − 𝟏)
≥⏞

𝑨𝑴−𝑮𝑴 𝟐𝒂

(𝒂 + 𝒃 + 𝒄)√𝒂 + 𝒃 + 𝒄 − 𝟏
. 

𝐒𝐢𝐦𝐢𝐥𝐚𝐫𝐥𝐲 𝐰𝐞 𝐡𝐚𝐯𝐞 ∶ 

√
𝒃

𝒄 − 𝒄𝒂 + 𝒂
≥

𝟐𝒃

(𝒂 + 𝒃 + 𝒄)√𝒂 + 𝒃 + 𝒄 − 𝟏
  𝒂𝒏𝒅  √

𝒄

𝒂 − 𝒂𝒃 + 𝒃

≥
𝟐𝒄

(𝒂 + 𝒃 + 𝒄)√𝒂 + 𝒃 + 𝒄 − 𝟏
. 

𝐀𝐝𝐝𝐢𝐧𝐠 𝐭𝐡𝐞𝐬𝐞 𝐢𝐧𝐞𝐪𝐮𝐚𝐥𝐢𝐭𝐢𝐞𝐬 𝐲𝐢𝐞𝐥𝐝𝐬 𝐭𝐡𝐞 𝐝𝐞𝐬𝐢𝐫𝐞𝐝 𝐫𝐞𝐬𝐮𝐥𝐭. 

𝐄𝐪𝐮𝐚𝐥𝐢𝐭𝐲 𝐡𝐨𝐥𝐝𝐬 𝐢𝐟𝐟 (𝒂, 𝒃, 𝒄) = (𝟏, 𝟏, 𝟎) 𝐚𝐧𝐝 𝐭𝐡𝐞𝐢𝐫 𝐩𝐞𝐫𝐦𝐮𝐭𝐚𝐭𝐢𝐨𝐧. 

Solution 2 by Michael Sterghiou-Greece 

√
𝒂

𝒃 − 𝒃𝒄 + 𝒄
+√

𝒃

𝒄 − 𝒄𝒂 + 𝒂
+ √

𝒄

𝒂 − 𝒂𝒃 + 𝒃
≥

𝟐

√𝒂 + 𝒃 + 𝒄 − 𝟏
;  (𝟏) 

Let (𝒑, 𝒒, 𝒓) = (∑𝒂, ∑𝒂𝒃,∏𝒂), 𝒒 = 𝟏 ⇒ 𝒑𝟐 ≥ 𝟑𝒒 ⇒ 𝒑 ≥ √𝟑, 𝒓 ≥ 𝟎 

(𝟏) ⇒∑
𝒂

√𝒂𝒃 + 𝒂𝒄 − 𝒓
𝒄𝒚𝒄

≥
𝟐

√𝒑 − 𝟏
 

which by Jensesn’s inequality for funtion 𝒕 →
𝟏

√𝒕
; 𝒕 > 0 with weights 𝒂, 𝒃, 𝒄 becomes the 

stronger : 

𝒑 ∙
𝟏

√
∑𝒂𝒃 + 𝒂𝒄 − 𝒓

𝒑

≥
? 𝒒

√𝒑 − 𝟏
;  (𝟐) 

But ∑𝒂(𝒃 + 𝒄) = 𝒑𝒒 − 𝟑𝒓 = 𝒑 − 𝟑𝒓 and by squarin (𝟐):
𝒑𝟑

𝒑−𝟑𝒓−𝒑𝒓
≥

𝟒

𝒑−𝟏
 or   

𝒇(𝒓) = 𝒑𝟑(𝒑 − 𝟏) − 𝟒(𝒑 − 𝟑𝒓 − 𝒑𝒓) ≥ 𝟎;  (𝟑) 

𝒇(𝒓) ↘. Assume 𝒑 ∈ [√𝟑, 𝟐] then by 3rd Schur’s inquality 

𝒓 ≥
𝟒𝒑𝒒 − 𝒑𝟑

𝟗
=
𝟒𝒑 − 𝒑𝟑

𝟗
= 𝒓𝟎 
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and 𝒇(𝒓) ≥ 𝒇(𝒓𝟎) = ⋯ =
𝟏

𝟗
(𝒑 − 𝟐)⏟    

≥𝟎

(𝟓𝒑𝟐 − 𝟏𝟏𝒑 − 𝟔) ≥ 𝟎 as  

𝟓𝒑𝟐 − 𝟏𝟏𝒑 − 𝟔 = (𝟓𝒑 − 𝟏)(𝒑 − 𝟐) − 𝟖 < 0 

Now, if 𝒑 ≥ 𝟐 then 𝒇(𝒓) ≥ 𝒇(𝟎) = (𝒑 − 𝟐)(𝒑𝟐 + 𝒑 + 𝟐) ≥ 𝟎 

Equality holds for 𝒑 = 𝟐 and 𝒓 = 𝟎 or (𝒂, 𝒃, 𝒄) = (𝟏, 𝟏, 𝟎). 

1132. 𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 𝒕𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 ∶ 

𝒙𝟐 + 𝟐𝒙 − 𝟒

𝒙
≥∑

𝒂𝟐

𝒂 + √𝒃𝒄
𝒄𝒚𝒄

≥
𝒚𝟐 + 𝟐𝒚 − 𝟕

𝒚 − 𝟑
 

𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒂, 𝒃, 𝒄 ≥ 𝟎,   𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏,  

𝒘𝒉𝒆𝒓𝒆 𝒙 = 𝒂 + 𝒃 + 𝒄 𝒂𝒏𝒅 𝒚 = √𝒂𝒃 + √𝒃𝒄 + √𝒄𝒂. 

Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑭𝒊𝒓𝒔𝒕𝒍𝒚,𝒘𝒆 𝒘𝒊𝒍𝒍 𝒑𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕  𝒙 + 𝒚 ≥ 𝟑 ∶ 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   𝟐 ≤⏞
𝑨𝑴−𝑮𝑴

 
𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂

𝒂 + √𝒃𝒄
+ (𝒂 + √𝒃𝒄) =

𝒂(𝒂 + 𝒃 + 𝒄)

𝒂 + √𝒃𝒄
+ 𝟐√𝒃𝒄. 

𝑻𝒉𝒆𝒏 ∶   𝟏 ≤
𝒙

𝟐
.

𝒂

𝒂 + √𝒃𝒄
+ √𝒃𝒄  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔)   (𝟏) 

𝑻𝒉𝒖𝒔,   𝟑 ≤
𝒙

𝟐
∑

𝒂

𝒂 + √𝒃𝒄
𝒄𝒚𝒄

+ 𝒚 =
𝒙

𝟐
(𝟑 −∑

√𝒃𝒄

𝒂 + √𝒃𝒄
𝒄𝒚𝒄

)+ 𝒚 ≤⏞
𝑪𝑩𝑺

 

≤ 
𝒙

𝟐
(𝟑 −

𝒚𝟐

𝒚𝟐 − √𝒂𝒃𝒄∑ √𝒂𝒄𝒚𝒄

) + 𝒚 ≤
𝒙

𝟐
(𝟑 − 𝟏) + 𝒚 = 𝒙 + 𝒚.  

  𝑯𝒆𝒏𝒄𝒆,   𝒙 + 𝒚 ≥ 𝟑  (𝟐) 

𝑵𝒐𝒘 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

 ∑
𝒂𝟐

𝒂 + √𝒃𝒄
𝒄𝒚𝒄

 ≥⏞
(𝟏)

 ∑𝒂.
𝟐(𝟏 − √𝒃𝒄)

𝒙
𝒄𝒚𝒄

= 𝟐 −
𝟐√𝒂𝒃𝒄∑ √𝒂𝒄𝒚𝒄

𝒙
= 𝟐 −

𝒚𝟐 − 𝟏

𝒙
≥ 
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 ≥⏞
(𝟐) 𝒂𝒏𝒅 𝒚 ≥ 𝟏

 𝟐 −
𝒚𝟐 − 𝟏

𝟑 − 𝒚
=
𝒚𝟐 + 𝟐𝒚− 𝟕

𝒚 − 𝟑
. 

𝑨𝒍𝒔𝒐 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

∑
𝒂𝟐

𝒂 + √𝒃𝒄
𝒄𝒚𝒄

=∑(𝒂 −
𝒂√𝒃𝒄

𝒂 + √𝒃𝒄
)

𝒄𝒚𝒄

 ≤⏞
(𝟏)

 𝒙 −∑√𝒃𝒄.
𝟐(𝟏− √𝒃𝒄)

𝒙
𝒄𝒚𝒄

= 𝒙 −
𝟐𝒚 − 𝟐

𝒙
≤ 

≤⏞
(𝟐)

 𝒙 −
𝟐(𝟑 − 𝒙) − 𝟐

𝒙
=
𝒙𝟐 + 𝟐𝒙− 𝟒

𝒙
. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂,𝒃, 𝒄) = (𝟏,𝟏, 𝟎) 𝒂𝒏𝒅 𝒕𝒉𝒆𝒊𝒓 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 

1133. 𝑰𝒇 𝒂, 𝒃, 𝒄 > 𝟎, 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏 𝒂𝒏𝒅 𝝀 ≥
𝟏

𝟑
 𝒕𝒉𝒆𝒏 ∶ 

∑
𝟏

𝝀 + 𝒂𝟐 + 𝒃𝟐
𝒄𝒚𝒄

≤
𝟗

𝟑𝝀 + 𝟐
 

Proposed by Marin Chirciu-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑳𝒆𝒕 𝒙 ≔ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 ≥ 𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂 = 𝟏. 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   ∑
𝟏

𝝀 + 𝒂𝟐 + 𝒃𝟐
𝒄𝒚𝒄

=∑
𝟏

𝝀
(𝟏 −

𝒂𝟐 + 𝒃𝟐

𝝀 + 𝒂𝟐 + 𝒃𝟐
)

𝒄𝒚𝒄

=
𝟑

𝝀
−
𝟏

𝝀
∑

√𝒂𝟐 + 𝒃𝟐
 𝟐

𝝀 + 𝒂𝟐 + 𝒃𝟐
𝒄𝒚𝒄

≤ 

≤⏞
𝑪𝑩𝑺

 
𝟑

𝝀
−
𝟏

𝝀
.
(∑ √𝒂𝟐 + 𝒃𝟐𝒄𝒚𝒄 )

𝟐

𝟑𝝀 + 𝟐𝒙
=
𝟑

𝝀
−
𝟐𝒙 + 𝟐∑ √(𝒂𝟐 + 𝒃𝟐)(𝒂𝟐 + 𝒄𝟐)𝒄𝒚𝒄

𝝀(𝟑𝝀 + 𝟐𝒙)
≤ 

≤⏞
𝑪𝑩𝑺

 
𝟑

𝝀
−
𝟐𝒙 + 𝟐∑ (𝒂𝟐 + 𝒃𝒄)𝒄𝒚𝒄

𝝀(𝟑𝝀 + 𝟐𝒙)
=
𝟑

𝝀
−

𝟒𝒙 + 𝟐

𝝀(𝟑𝝀 + 𝟐𝒙)
=
𝟏

𝝀
+
𝟐(𝟑𝝀 − 𝟏)

𝝀(𝟑𝝀 + 𝟐𝒙)
≤ 

≤⏞
𝒙 ≥𝟏 & 3𝝀 ≥ 𝟏

 
𝟏

𝝀
+
𝟐(𝟑𝝀 − 𝟏)

𝝀(𝟑𝝀 + 𝟐)
=

𝟗

𝟑𝝀 + 𝟐
. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒂 = 𝒃 = 𝒄 =
√𝟑

𝟑
. 
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1134. If 𝒂, 𝒃, 𝒄 > 0 and 𝒏 ∈ ℕ∗ then: 

∑
𝒂𝟐𝒏

(𝒃 + 𝒄)𝟑
𝒄𝒚𝒄

≥
𝟑

𝟖
(
𝟏

𝟑
⋅∑𝒂

𝒄𝒚𝒄

)

𝟐𝒏−𝟑

 

Proposed by Marin Chirciu-Romania 
Solution by Tran Quoc Anh-Vietnam 
 

WLOG, we can suppose: 𝒂 ≥ 𝒃 ≥ 𝒄 > 0 ⇒ 𝒂𝟐 ≥ 𝒃𝟐 ≥ 𝒄𝟐 

𝒂𝟐𝒏

(𝒃 + 𝒄)𝟑
≥

𝒃𝟐𝒏

(𝒄 + 𝒂)𝟑
≥

𝒄𝟐𝒏

(𝒂 + 𝒃)𝟑
 

         For 𝒏 = 𝟏: 

∑
𝒂𝟐

(𝒃 + 𝒄)𝟑
𝒄𝒚𝒄

≥
𝑪𝒉𝒆𝒃𝒚𝒔𝒉𝒆𝒗 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

𝟑
⋅ (∑

𝟏

(𝒃 + 𝒄)𝟑
𝒄𝒚𝒄

) = 

=
𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

𝟑
⋅ (∑

𝟏𝟒

(𝒃 + 𝒄)𝟑
𝒄𝒚𝒄

) ≥
𝑪𝑩𝑺; 𝑹𝒂𝒅𝒐𝒏

(
𝒂 + 𝒃 + 𝒄

𝟑
)
𝟐

⋅
𝟖𝟏

𝟖(𝒂 + 𝒃 + 𝒄)𝟑
= 

=
𝟗

𝟖(𝒂 + 𝒃 + 𝒄)
=
𝟑

𝟖
(
𝟏

𝟑
∑𝒂

𝒄𝒚𝒄

)

−𝟏

=
𝟑

𝟖
(
𝟏

𝟑
⋅∑𝒂

𝒄𝒚𝒄

)

𝟐⋅𝟏−𝟑

 

Thus inequality true with 𝒏 = 𝟏, suppose the inequality true to 𝒏, it mean: 

∑
𝒂𝟐𝒏

(𝒃 + 𝒄)𝟑
𝒄𝒚𝒄

≥
𝟑

𝟖
(
𝟏

𝟑
⋅∑𝒂

𝒄𝒚𝒄

)

𝟐𝒏−𝟑

 

We will prove that is true with 𝒏 + 𝟏. In fact: 

∑
𝒂𝟐(𝒏+𝟏)

(𝒃 + 𝒄)𝟑
𝒄𝒚𝒄

=∑𝒂𝟐 ⋅
𝒂𝟐𝒏

(𝒃 + 𝒄)𝟑
𝒄𝒚𝒄

≥
𝑪𝒉𝒆𝒃𝒚𝒔𝒉𝒆𝒗 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

𝟑
⋅ (∑

𝒂𝟐𝒏

(𝒃 + 𝒄)𝟑
𝒄𝒚𝒄

) ≥ 

≥
𝑪𝑩𝑺,𝒎𝒂𝒕𝒉.𝒊𝒏𝒅.

(
𝒂 + 𝒃 + 𝒄

𝟑
)
𝟐

⋅ [
𝟑

𝟖
(
𝟏

𝟑
⋅∑𝒂

𝒄𝒚𝒄

)

𝟐𝒏−𝟑

] =
𝟑

𝟖
(
𝟏

𝟑
⋅∑𝒂

𝒄𝒚𝒄

)

𝟐𝒏−𝟏
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Therefore the inequality is true with 𝒏 + 𝟏, thus is true with al positive 

integer.QED. 

1135. 𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 ≥ 𝟎 ∶ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝒂

𝟒𝒂𝟐 + 𝒂𝟐𝒃𝒄 + 𝒃𝒄
+

𝒃

𝟒𝒃𝟐 + 𝒃𝟐𝒄𝒂 + 𝒄𝒂
+

𝒄

𝟒𝒄𝟐 + 𝒄𝟐𝒂𝒃 + 𝒂𝒃
≥

𝟏

𝒂 + 𝒃 + 𝒄
 

Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

√𝟒𝒂𝟐 + 𝒂𝟐𝒃𝒄 + 𝒃𝒄 = √[𝟒𝒂𝟐 + 𝒃𝒄(𝒂𝟐 + 𝟏)][𝒂(𝒃 + 𝒄) + 𝒃𝒄] ≥⏞
𝑪𝑩𝑺

 

≥ 𝟐𝒂√𝒂(𝒃 + 𝒄) + 𝒃𝒄√𝒂𝟐 + 𝟏 ≥ 

≥⏞
𝑮𝑴−𝑯𝑴

𝟐𝒂.
𝟐𝒂. (𝒃 + 𝒄)

𝒂 + (𝒃 + 𝒄)
+
𝒃𝒄(𝒂𝟐 + 𝟏)

√𝒂𝟐 + 𝟏
 ≥⏞
𝒂(𝒃+𝒄) ≤ 𝟏

 
𝟒𝒂𝟐(𝒃 + 𝒄)

𝒂 + 𝒃 + 𝒄
+
𝒃𝒄(𝒂𝟐 + 𝟏)

√
𝒂

𝒃 + 𝒄 + 𝟏

≥ 

≥
𝟒𝒂𝟐(𝒃 + 𝒄)

𝒂 + 𝒃 + 𝒄
+
𝒃𝒄(𝒂𝟐 + 𝟏)
𝒂

𝒃 + 𝒄
+ 𝟏

=
(𝟒𝒂𝟐 + 𝒂𝟐𝒃𝒄 + 𝒃𝒄)(𝒃 + 𝒄)

𝒂 + 𝒃 + 𝒄
. 

𝑻𝒉𝒆𝒏 ∶  
𝟏

√𝟒𝒂𝟐 + 𝒂𝟐𝒃𝒄 + 𝒃𝒄
≥

𝒃 + 𝒄

𝒂 + 𝒃 + 𝒄
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   ∑
𝒂

𝟒𝒂𝟐 + 𝒂𝟐𝒃𝒄 + 𝒃𝒄
𝒄𝒚𝒄

≥∑
𝒂(𝒃 + 𝒄)𝟐

(𝒂 + 𝒃 + 𝒄)𝟐
𝒄𝒚𝒄

 

=
(𝒂 + 𝒃 + 𝒄)(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) + 𝟑𝒂𝒃𝒄

(𝒂 + 𝒃 + 𝒄)𝟐
≥  ≥⏞

𝒂𝒃𝒄 ≥ 𝟎

 
𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂

𝒂 + 𝒃 + 𝒄

=
𝟏

𝒂 + 𝒃 + 𝒄
,   𝒂𝒔 𝒅𝒆𝒔𝒊𝒓𝒆𝒅. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂,𝒃, 𝒄) = (𝟏, 𝟏, 𝟎) 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 

1136. 𝐋𝐞𝐭 𝒙𝒊 > 0 𝐚𝐧𝐝 ∏ 𝒙𝒊
𝒏
𝒊=𝟏 = 𝟏, 𝒏 ∈ ℕ, 𝒏 ≥ 𝟏. 𝐏𝐫𝐨𝐯𝐞 𝐭𝐡𝐚𝐭: 

∏(𝒙𝒊
𝟐 − 𝒙𝒊 + 𝟏)

𝒏

𝒊=𝟏

+∑𝒙𝒊
𝟐𝟎𝟐𝟐

𝒏

𝒊=𝟏

≥ 𝒏 + 𝟏 

Proposed by Nguyen Van Canh-Ben Tre-Vietnam 
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Solution by Tapas Das-India 
 

𝒙𝒊
𝟐 − 𝒙𝒊 + 𝟏 = 𝒙𝒊

𝟐 + 𝟏 − 𝒙𝒊 ≥
𝑨𝑴−𝑮𝑴

𝟐√𝒙𝒊
𝟐 ∙ 𝟏 − 𝒙𝒊 = 𝟐𝒙𝒊 − 𝒙𝒊 = 𝒙𝒊 

∏(𝒙𝒊
𝟐 − 𝒙𝒊 + 𝟏)

𝒏

𝒊=𝟏

≥ 𝒙𝟏 ∙ 𝒙𝟐 ∙ … ∙ 𝒙𝒏 = 𝟏 

∑𝒙𝒊
𝟐𝟎𝟐𝟐

𝒏

𝒊=𝟏

≥
𝑨𝑴−𝑮𝑴

𝒏√𝒙𝟏
𝟐𝟎𝟐𝟐 ∙ 𝒙𝟐

𝟐𝟎𝟐𝟐 ∙ … ∙ 𝒙𝒏𝟐𝟎𝟐𝟐
𝒏

= 𝒏√(𝒙𝟏 ∙ 𝒙𝟐 ∙ … ∙ 𝒙𝒏)𝟐𝟎𝟐𝟐
𝒏

= 𝒏 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, ∏(𝒙𝒊
𝟐 − 𝒙𝒊 + 𝟏)

𝒏

𝒊=𝟏

+∑𝒙𝒊
𝟐𝟎𝟐𝟐

𝒏

𝒊=𝟏

≥ 𝒏+ 𝟏 

1137. 𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 𝒊𝒇 𝒙, 𝒚, 𝒛 > 𝟎 𝒂𝒏𝒅 𝒙𝒚𝒛 = 𝟏 𝒕𝒉𝒆𝒏 ∶ 

𝒚𝒛

√𝟏 + 𝒚𝟐𝒛𝟐
+

𝒛𝒙

√𝟏 + 𝒛𝟐𝒙𝟐
+

𝒙𝒚

√𝟏 + 𝒙𝟐𝒚𝟐
≤

𝟑

√𝟐
 

Proposed by Nikos Ntorvas-Greece 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑺𝒊𝒏𝒄𝒆 𝒚𝟐𝒛𝟐. 𝒛𝟐𝒙𝟐. 𝒙𝟐𝒚𝟐 = 𝟏 𝒕𝒉𝒆𝒏 ∃𝒂,𝒃, 𝒄 > 𝟎 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 ∶ 

𝒚𝟐𝒛𝟐 =
𝒂

𝒃
, 𝒛𝟐𝒙𝟐 =

𝒃

𝒄
, 𝒙𝟐𝒚𝟐 =

𝒄

𝒂
. 

𝑻𝒉𝒆 𝒈𝒊𝒗𝒆𝒏 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒃𝒆𝒄𝒐𝒎𝒆𝒔 ∶  √
𝒂

𝒂 + 𝒃
+√

𝒃

𝒃 + 𝒄
+√

𝒄

𝒄 + 𝒂
≤

𝟑

√𝟐
  (𝟏) 

𝑩𝒚 𝑪𝑩𝑺 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝑳𝑯𝑺(𝟏) ≤ √(∑(𝒂+ 𝒄)) (∑
𝒂

(𝒂 + 𝒃)(𝒂 + 𝒄)
) = √

𝟒(𝒂 + 𝒃 + 𝒄)(𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂)

(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)
= 

= √𝟒+
𝟒𝒂𝒃𝒄

(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)
 ≤⏞
𝑪𝒆𝒔𝒂𝒓𝒐

 √𝟒 +
𝟏

𝟐
=

𝟑

√𝟐
. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒙 = 𝒚 = 𝒛 = 𝟏. 
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1138. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 0, 𝒂𝐛𝐜 = 𝟏 𝒂𝐧𝐝 𝐧 ∈ ℕ∗, 𝐭𝐡𝐞𝐧 ∶ 

∑
(𝟑𝒂 − 𝟐𝐛)𝟐𝐧

𝟐𝒂 + 𝟑𝐛
𝐜𝐲𝐜

≥
𝟑

𝟓
 

Proposed by Marin Chirciu-Romania 
Solution by Soumava Chakraborty-Kolkata-India 

∑
(𝟑𝒂− 𝟐𝐛)𝟐𝐧

𝟐𝒂 + 𝟑𝐛
𝐜𝐲𝐜

=∑
(|𝟑𝒂 − 𝟐𝐛|𝐧)𝟐

𝟐𝒂 + 𝟑𝐛
𝐜𝐲𝐜

≥
𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦 (∑ |𝟑𝒂 − 𝟐𝐛|𝐧𝐜𝐲𝐜 )

𝟐

∑ (𝟐𝒂 + 𝟑𝐛)𝐜𝐲𝐜
 

≥
𝐂𝐡𝐞𝐛𝐲𝐬𝐡𝐞𝐯 (𝐧−𝟏) 𝐭𝐢𝐦𝐞𝐬 (

𝟏
𝟑𝐧−𝟏

(∑ |𝟑𝒂 − 𝟐𝐛|𝐜𝐲𝐜 )
𝐧
)
𝟐

𝟐∑ 𝒂𝐜𝐲𝐜 + 𝟑∑ 𝒂𝐜𝐲𝐜
 (∵ 𝐧 ∈ ℕ∗) 

≥
(
𝟏

𝟑𝐧−𝟏
|∑ (𝟑𝒂 − 𝟐𝐛)𝐜𝐲𝐜 |

𝐧
)
𝟐

𝟓∑ 𝒂𝐜𝐲𝐜
 

(∵ |𝒙| + |𝐲| + |𝐳| ≥
𝐓𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐢𝐧𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲

|𝒙 + 𝐲| + |𝐳| ≥
𝐓𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐢𝐧𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲

|𝒙 + 𝐲 + 𝐳|) 

=
(
𝟏

𝟑𝐧−𝟏
(∑ 𝒂𝐜𝐲𝐜 )

𝐧
)
𝟐

𝟓∑ 𝒂𝐜𝐲𝐜
=
(∑ 𝒂𝐜𝐲𝐜 ).

𝟏
𝟑𝟐𝐧−𝟐

. (∑ 𝒂𝐜𝐲𝐜 )
𝟐𝐧−𝟏

𝟓∑ 𝒂𝐜𝐲𝐜
≥
𝐀−𝐆 (∑ 𝒂𝐜𝐲𝐜 ).

𝟏
𝟑𝟐𝐧−𝟐

(𝟑. √𝒂𝐛𝐜
𝟑

)
𝟐𝐧−𝟏

𝟓∑ 𝒂𝐜𝐲𝐜
 

=
𝟑

𝟓
=

𝒂𝐛𝐜=𝟏

𝟑𝟐𝐧−𝟏

𝟑𝟐𝐧−𝟐

𝟓
∴ ∑

(𝟑𝒂− 𝟐𝐛)𝟐𝐧

𝟐𝒂 + 𝟑𝐛
𝐜𝐲𝐜

≥
𝟑

𝟓
 ∀ 𝒂, 𝐛, 𝐜 > 0│𝒂𝐛𝐜 = 𝟏 𝒂𝐧𝐝 𝐧 ∈ ℕ∗, 

𝐰𝐢𝐭𝐡 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
 

1139. If 𝒂, 𝒃, 𝒄 > 0, 𝑎 + 𝑏 + 𝑐 = 3 and 𝝀 ≥ 𝟎 then: 

𝟏

𝒂𝟐
+
𝟏

𝒃𝟐
+
𝟏

𝒄𝟐
+ 𝝀(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) ≥ 𝟑(𝝀 + 𝟏) 

Proposed by Marin Chirciu-Romania 
Solution 1 by Tapas Das-India 

𝒂 + 𝒃 + 𝒄 = 𝟑; √𝒂𝒃𝒄
𝟑

≤
𝑨𝑴−𝑮𝑴 𝒂 + 𝒃 + 𝒄

𝟑
= 𝟏 

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 = (𝒂 + 𝒃 + 𝒄)𝟐 − 𝟐(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) ≥
(𝟏)

 

≥ (𝒂 + 𝒃 + 𝒄)𝟐 −
𝟐(𝒂 + 𝒃 + 𝒄)𝟐

𝟑
= 𝟑𝟐 −

𝟐

𝟑
∙ 𝟑𝟐 = 𝟑; 
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(𝟏) ⇔ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤
𝟏

𝟑
(𝒂 + 𝒃 + 𝒄)𝟐 

𝟏

𝒂𝟐
+
𝟏

𝒃𝟐
+
𝟏

𝒄𝟐
≥ 𝟑 ∙

𝟏

√(𝒂𝒃𝒄)𝟐
𝟑

≥
(𝑨𝑴−𝑮𝑴)

𝟑; (∵ 𝒂𝒃𝒄 ≤ 𝟏) 

Therefore, 

𝟏

𝒂𝟐
+
𝟏

𝒃𝟐
+
𝟏

𝒄𝟐
+ 𝝀(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) ≥ 𝟑(𝝀 + 𝟏)   

Solution 2 by Ravi Prakash-New Delhi-India 

                                
𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

𝟑
≥ (

𝒂 + 𝒃 + 𝒄

𝟑
)
𝟐

⇒ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟑 ≥ 𝟑;                             (𝟏) 

𝐀𝐥𝐬𝐨,
𝟏

𝟑
(
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) ≥

𝟑

𝒂 + 𝒃 + 𝒄
= 𝟏 

                      ⇒
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
≥ 𝟑 ⇒

𝟏

𝟑
(
𝟏

𝒂𝟐
+
𝟏

𝒃𝟐
+
𝟏

𝒄𝟐
) ≥ [

𝟏

𝟑
(
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
)]
𝟐

≥ 𝟏;                 (𝟐)    

From (1) and (2), we get: 

𝟏

𝒂𝟐
+
𝟏

𝒃𝟐
+
𝟏

𝒄𝟐
+ 𝝀(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) ≥ 𝟑(𝝀 + 𝟏) 

1140. 𝐈𝐟 𝒂, 𝐛, 𝐜 >
𝟏

𝟐𝛌
, 𝒂 + 𝐛 + 𝐜 = 𝟑 𝒂𝐧𝐝 𝛌 > 0, 𝑡ℎ𝑒𝑛 ∶ 

∑
𝟏

𝛌𝒂𝟐 + 𝛌 + 𝟏
𝐜𝐲𝐜

≥
𝟑

𝟐𝛌 + 𝟏
 

  Proposed by Marin Chirciu-Romania 
Solution by Soumava Chakraborty-Kolkata-India 
 

𝟏

𝛌𝒂𝟐 + 𝛌 + 𝟏
≥

𝟏

𝟐𝛌 + 𝟏
+
𝟐𝛌(𝟏 − 𝒂)

(𝟐𝛌 + 𝟏)𝟐
⇔

𝟏

𝛌𝒂𝟐 + 𝛌 + 𝟏
−

𝟏

𝟐𝛌 + 𝟏
−
𝟐𝛌(𝟏 − 𝒂)

(𝟐𝛌 + 𝟏)𝟐
≥ 𝟎 

⇔
𝟐𝛌 + 𝟏 − 𝛌𝒂𝟐 − 𝛌 − 𝟏

(𝟐𝛌 + 𝟏)(𝛌𝒂𝟐 + 𝛌 + 𝟏)
−
𝟐𝛌(𝟏 − 𝒂)

(𝟐𝛌 + 𝟏)𝟐
≥ 𝟎 

⇔
𝛌(𝟏 − 𝒂)(𝟏 + 𝒂)

(𝟐𝛌 + 𝟏)(𝛌𝒂𝟐 + 𝛌 + 𝟏)
−
𝟐𝛌(𝟏 − 𝒂)

(𝟐𝛌 + 𝟏)𝟐
≥ 𝟎 

⇔
𝛌(𝟏 − 𝒂)

𝟐𝛌 + 𝟏
. (

𝟏 + 𝒂

𝛌𝒂𝟐 + 𝛌 + 𝟏
−

𝟐

𝟐𝛌+ 𝟏
) ≥ 𝟎 ⇔

𝛌(𝟏 − 𝒂)

𝟐𝛌 + 𝟏
.
𝟐𝛌𝒂(𝟏 − 𝒂) − (𝟏 − 𝒂)

(𝟐𝛌 + 𝟏)(𝛌𝒂𝟐 + 𝛌 + 𝟏)
≥ 𝟎 

⇔
𝛌(𝟏 − 𝒂)𝟐(𝟐𝛌𝒂 − 𝟏)

(𝛌𝒂𝟐 + 𝛌 + 𝟏)(𝟐𝛌 + 𝟏)𝟐
≥ 𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝒂 >

𝟏

𝟐𝛌
⇒ 𝟐𝛌𝒂 − 𝟏 > 0 𝑎𝐧𝐝 𝛌 > 0 
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∴
𝟏

𝛌𝒂𝟐 + 𝛌 + 𝟏
≥

𝟏

𝟐𝛌 + 𝟏
+
𝟐𝛌(𝟏 − 𝒂)

(𝟐𝛌 + 𝟏)𝟐
 𝒂𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐬 

⇒
𝐯𝐢𝒂 𝐜𝐲𝐜𝐥𝐢𝐜 𝐬𝐮𝐦𝐦𝒂𝐭𝐢𝐨𝐧

∑
𝟏

𝛌𝒂𝟐 + 𝛌 + 𝟏
𝐜𝐲𝐜

≥
𝟑

𝟐𝛌 + 𝟏
+

𝟐𝛌

(𝟐𝛌 + 𝟏)𝟐
.∑(𝟏 − 𝒂)

𝐜𝐲𝐜

 

=
𝟑

𝟐𝛌+ 𝟏
+

𝟐𝛌

(𝟐𝛌+ 𝟏)𝟐
. (𝟑 −∑𝒂

𝐜𝐲𝐜

) =
𝒂+𝐛+𝐜 = 𝟑 𝟑

𝟐𝛌+ 𝟏
 

∴ ∑
𝟏

𝛌𝒂𝟐 + 𝛌 + 𝟏
𝐜𝐲𝐜

≥
𝟑

𝟐𝛌 + 𝟏
 ∀ 𝒂, 𝐛, 𝐜 >

𝟏

𝟐𝛌
, 𝒂 + 𝐛 + 𝐜 = 𝟑 𝒂𝐧𝐝 𝛌 > 0, 

𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
  

1141. 𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

  
𝟏 + 𝒂√𝒃𝒄

𝒂 + √𝒃𝒄
+
𝟏 + 𝒃√𝒄𝒂

𝒃 + √𝒄𝒂
+
𝟏 + 𝒄√𝒂𝒃

𝒄 + √𝒂𝒃
≥ 𝟏 +

𝟒

𝒂 + 𝒃 + 𝒄
, 

𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒂, 𝒃, 𝒄 ≥ 𝟎, 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏 

Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑩𝒚 𝑪𝑩𝑺 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝒂 + 𝒃 + 𝒄 = √[(−𝒂 + 𝒃 + 𝒄)𝟐 + 𝟒𝒂(𝒃 + 𝒄)][𝒃𝒄 + 𝒂(𝒃 + 𝒄)]

≥ (−𝒂 + 𝒃 + 𝒄)√𝒃𝒄 + 𝟐𝒂(𝒃 + 𝒄). 

𝑻𝒉𝒆𝒏 ∶   𝟏 ≥
(−𝒂 + 𝒃 + 𝒄)√𝒃𝒄 + 𝟐𝒂(𝒃 + 𝒄)

𝒂 + 𝒃 + 𝒄
=
(−𝒂 + 𝒃 + 𝒄)(𝒂 + √𝒃𝒄)

𝒂 + 𝒃 + 𝒄
+ 𝒂. 

𝑯𝒆𝒏𝒄𝒆,   
𝟏 + 𝒂√𝒃𝒄

𝒂 + √𝒃𝒄
≥

(
(−𝒂 + 𝒃 + 𝒄)(𝒂 + √𝒃𝒄)

𝒂 + 𝒃 + 𝒄 + 𝒂) + 𝒂√𝒃𝒄

𝒂 + √𝒃𝒄

=
−𝒂 + 𝒃 + 𝒄

𝒂 + 𝒃 + 𝒄
+ 𝒂.

𝟏 + √𝒃𝒄

𝒂 + √𝒃𝒄
≥ 

≥
−𝒂 + 𝒃 + 𝒄

𝒂 + 𝒃 + 𝒄
+ 𝒂. (

−𝒂 + 𝒃 + 𝒄

𝒂 + 𝒃 + 𝒄
+ 𝟏) =

−𝒂 + 𝒃 + 𝒄

𝒂 + 𝒃 + 𝒄
+
𝟐𝒂(𝒃 + 𝒄)

𝒂 + 𝒃 + 𝒄
. 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   ∑
𝟏 + 𝒂√𝒃𝒄

𝒂 + √𝒃𝒄
𝒄𝒚𝒄

≥∑(
−𝒂 + 𝒃 + 𝒄

𝒂 + 𝒃 + 𝒄
+
𝟐𝒂(𝒃 + 𝒄)

𝒂 + 𝒃 + 𝒄
)

𝒄𝒚𝒄

= 𝟏 +
𝟒

𝒂 + 𝒃 + 𝒄
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𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂,𝒃, 𝒄) = (𝟏, 𝟏, 𝟎) 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 

1142. 𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 > 𝟎 ∶ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 + 𝟐𝒂𝒃𝒄 = 𝟏.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

√
𝟏

𝒂𝒃
+
𝟏

𝒃𝒄
+
𝟏

𝒄𝒂
+ √

𝟏

𝟐
(
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) ≥ 𝟐∑

√𝒂 + 𝟏

√𝒂𝒃𝒄 + √𝒃 + 𝒄 + 𝒂𝒃𝒄
𝒄𝒚𝒄

 

Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑩𝒚 𝒕𝒉𝒆 𝑨𝑴 − 𝑮𝑴 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝟐√𝒃 + 𝒄 + 𝒂𝒃𝒄 ≤
(𝒃 + 𝒄 + 𝒂𝒃𝒄)𝒂

(𝒂 + 𝟏)√𝒂𝒃𝒄
+
(𝒂 + 𝟏)√𝒂𝒃𝒄

𝒂
=
𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂

(𝒂 + 𝟏)√𝒂𝒃𝒄
+ 𝟐√𝒂𝒃𝒄. 

𝑻𝒉𝒆𝒏 ∶ 

  
𝟐√𝒂 + 𝟏

√𝒂𝒃𝒄 + √𝒃 + 𝒄 + 𝒂𝒃𝒄
=
(𝟐√𝒃 + 𝒄 + 𝒂𝒃𝒄 − 𝟐√𝒂𝒃𝒄)√𝒂 + 𝟏

𝒃 + 𝒄
≤

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂

(𝒃 + 𝒄)√(𝒂 + 𝟏)𝒂𝒃𝒄
. 

𝑻𝒉𝒖𝒔,   𝟐∑
√𝒂 + 𝟏

√𝒂𝒃𝒄 + √𝒃 + 𝒄 + 𝒂𝒃𝒄
𝒄𝒚𝒄

≤∑
𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂

(𝒃 + 𝒄)√(𝒂 + 𝟏)𝒂𝒃𝒄
𝒄𝒚𝒄

=∑(√
𝒂

(𝒂 + 𝟏)𝒃𝒄
+

√𝒃𝒄

(𝒃 + 𝒄)√(𝒂 + 𝟏)𝒂
)

𝒄𝒚𝒄

≤ 

≤⏞
𝑨𝑴−𝑮𝑴

 ∑(√
𝒂

(𝒂+ 𝟏)𝒃𝒄
+

𝟏

𝟐√(𝒂 + 𝟏)𝒂
)

𝒄𝒚𝒄

 ≤⏞
𝑪𝑩𝑺

√∑
𝒂

𝒂 + 𝟏
.∑

𝟏

𝒃𝒄
+
𝟏

𝟐
√∑

𝟏

𝒂 + 𝟏
.∑

𝟏

𝒂
. 

𝑺𝒊𝒏𝒄𝒆 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 + 𝟐𝒂𝒃𝒄 = 𝟏 𝒕𝒉𝒆𝒏 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

 ∑
𝟏

𝒂 + 𝟏
= 𝟐  𝒂𝒏𝒅  ∑

𝒂

𝒂 + 𝟏
= 𝟏, 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   𝟐∑
√𝒂 + 𝟏

√𝒂𝒃𝒄 + √𝒃 + 𝒄 + 𝒂𝒃𝒄
𝒄𝒚𝒄

≤ √
𝟏

𝒂𝒃
+
𝟏

𝒃𝒄
+
𝟏

𝒄𝒂
+√

𝟏

𝟐
(
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
). 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄 =
𝟏

𝟐
. 
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1143. 𝑰𝒇 𝒂, 𝒃, 𝒄 > 𝟎, 𝒂 + 𝒃 + 𝒄 = 𝟑 𝒂𝒏𝒅 𝝀 ≥ 𝟐 𝒕𝒉𝒆𝒏 ∶ 

(𝟐𝝀 + 𝟏)𝒂𝟑 − 𝒃𝟑

𝒂𝒃 + (𝟐𝝀 − 𝟏)𝒂𝟐
+
(𝟐𝝀 + 𝟏)𝒃𝟑 − 𝒄𝟑

𝒃𝒄 + (𝟐𝝀 − 𝟏)𝒃𝟐
+
(𝟐𝝀 + 𝟏)𝒄𝟑 − 𝒂𝟑

𝒄𝒂 + (𝟐𝝀 − 𝟏)𝒄𝟐
≤ 𝟑 

Proposed by Marin Chirciu-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑳𝒆𝒎𝒎𝒂 ∶  𝑰𝒇 𝒂, 𝒃 > 0 𝑡ℎ𝑒𝑛  
(𝟐𝝀 + 𝟏)𝒂𝟑 − 𝒃𝟑

𝒂𝒃+ (𝟐𝝀 − 𝟏)𝒂𝟐
≤ 𝒂 +

𝟐(𝒂 − 𝒃)

𝝀
 (𝟏) 

𝑷𝒓𝒐𝒐𝒇 ∶   (𝟏)  ⇔  𝝀[(𝟐𝝀 + 𝟏)𝒂𝟑 − 𝒃𝟑] ≤ [𝒂𝒃 + (𝟐𝝀 − 𝟏)𝒂𝟐][(𝝀 + 𝟐)𝒂 − 𝟐𝒃] 

⇔  𝟐(𝝀 − 𝟏)𝒂𝟑 − (𝟑𝝀− 𝟒)𝒂𝟐𝒃− 𝟐𝒂𝒃𝟐 + 𝝀𝒃𝟑 ≥ 𝟎 ⇔ (𝒂 − 𝒃)𝟐[𝟐(𝝀 − 𝟏)𝒂 + 𝝀𝒃] ≥ 𝟎 

𝑾𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒂𝒏𝒅 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒐𝒇 𝒕𝒉𝒆 𝒍𝒆𝒎𝒎𝒂 𝒊𝒔 𝒅𝒐𝒏𝒆.𝑼𝒔𝒊𝒏𝒈 𝒕𝒉𝒆 𝒍𝒆𝒎𝒎𝒂,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

∑
(𝟐𝝀 + 𝟏)𝒂𝟑 − 𝒃𝟑

𝒂𝒃+ (𝟐𝝀 − 𝟏)𝒂𝟐
𝒄𝒚𝒄

≤∑(𝒂 +
𝟐(𝒂 − 𝒃)

𝝀
)

𝒄𝒚𝒄

= 𝒂 + 𝒃 + 𝒄 = 𝟑. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄 = 𝟏. 

1144. 𝐅𝐨𝐫 𝒂𝒍𝒍 𝒂, 𝐛, 𝐜 > 𝟎, 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝐭 𝒂𝐛𝐜 = 𝟏, 

𝟏𝟓 + 𝟏𝟐(𝒂𝟒 + 𝐛𝟒 + 𝐜𝟒)(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐) ≥ 𝟏𝟏(𝒂𝟔 + 𝐛𝟔 + 𝐜𝟔) + 𝟑𝟎(𝒂𝟑 + 𝐛𝟑 + 𝐜𝟑) 

Proposed by Nguyen Van Canh-BenTre-Vietnam 
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑻𝒉𝒆 𝒈𝒊𝒗𝒆𝒏 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒊𝒔 𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝒊𝒗𝒆𝒍𝒚 𝒆𝒒𝒖𝒊𝒗𝒂𝒍𝒆𝒏𝒕 𝒕𝒐 ∶ 

𝟏𝟓(𝒂𝒃𝒄)𝟐 + 𝟏𝟐(𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒)(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) ≥ 𝟏𝟏(𝒂𝟔 + 𝒃𝟔 + 𝒄𝟔) + 𝟑𝟎𝒂𝒃𝒄(𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑) 

⇔ ∑𝒂𝟔

𝒄𝒚𝒄

+ 𝟏𝟐∑(𝒂𝟒𝒃𝟐 + 𝒂𝟐𝒃𝟒)

𝒄𝒚𝒄

+ 𝟏𝟓(𝒂𝒃𝒄)𝟐 ≥ 𝟑𝟎𝒂𝒃𝒄(𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑) 

⇔ 
𝟏

𝟐
∑(𝒂𝟔 + 𝒃𝟔 − 𝒂𝟒𝒃𝟐 − 𝒂𝟐𝒃𝟒)

𝒄𝒚𝒄

+ 𝟏𝟓∑(𝒄𝟒𝒂𝟐 + 𝒄𝟒𝒃𝟐 − 𝟐𝒂𝒃𝒄. 𝒄𝟑)

𝒄𝒚𝒄

−
𝟓

𝟐
∑(𝒂𝟒𝒄𝟐 + 𝒃𝟒𝒄𝟐 − 𝟐(𝒂𝒃𝒄)𝟐)

𝒄𝒚𝒄

≥ 𝟎 
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⇔ 
𝟏

𝟐
∑(𝒂𝟐 + 𝒃𝟐)(𝒂𝟐 − 𝒃𝟐)

𝟐

𝒄𝒚𝒄

+ 𝟏𝟓∑𝒄𝟒(𝒂 − 𝒃)𝟐

𝒄𝒚𝒄

−
𝟓

𝟐
∑𝒄𝟐(𝒂𝟐 − 𝒃𝟐)

𝟐

𝒄𝒚𝒄

≥ 𝟎 

⇔ ∑(
(𝒂𝟐 + 𝒃𝟐)(𝒂 + 𝒃)𝟐

𝟐
+ 𝟏𝟓𝒄𝟒 −

𝟓

𝟐
𝒄𝟐(𝒂 + 𝒃)𝟐) (𝒂 − 𝒃)𝟐

𝒄𝒚𝒄

≥ 𝟎,   𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒃𝒆𝒄𝒂𝒖𝒔𝒆 ∶ 

(𝒂𝟐 + 𝒃𝟐)(𝒂 + 𝒃)𝟐

𝟐
+ 𝟏𝟓𝒄𝟒 ≥⏞

𝑪𝑩𝑺 (𝒂 + 𝒃)𝟒

𝟒
+ 𝟏𝟓𝒄𝟒 ≥⏞

𝑨𝑴−𝑮𝑴

√𝟏𝟓𝒄𝟐(𝒂 + 𝒃)𝟐

≥
𝟓

𝟐
𝒄𝟐(𝒂 + 𝒃)𝟐 (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄 = 𝟏. 

Solution 2 by Soumava Chakraborty-Kolkata-India 

𝐀𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐛 + 𝐜 = 𝒙, 𝐜 + 𝒂 = 𝐲,𝒂 + 𝐛 = 𝐳 ⇒ 𝒙+ 𝐲 − 𝐳 = 𝟐𝐜 > 0, 
𝐲 + 𝐳 − 𝒙 = 𝟐𝒂 > 0 𝒂𝐧𝐝 𝐳 + 𝒙 − 𝐲 = 𝟐𝐛 > 0 ⇒ 𝒙+ 𝐲 > 𝑧, 𝐲 + 𝐳 > 𝒙, 𝐳 + 𝒙 > 𝑦 

⇒ 𝒙, 𝐲, 𝐳 𝐟𝐨𝐫𝐦 𝐬𝐢𝐝𝐞𝐬 𝐨𝐟 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 

= 𝐬,𝐑, 𝐫 (𝐬𝒂𝐲) 𝐲𝐢𝐞𝐥𝐝𝐢𝐧𝐠 𝟐∑𝒂

𝐜𝐲𝐜

=∑𝒙

𝐜𝐲𝐜

= 𝟐𝐬 ⇒∑𝒂

𝐜𝐲𝐜

= 𝐬 

⇒ 𝒂 = 𝐬 − 𝒙,𝐛 = 𝐬 − 𝐲, 𝐜 = 𝐬 − 𝐳 

𝐕𝐢𝒂 𝒂𝐟𝐨𝐫𝐞𝐦𝐞𝐧𝐭𝐢𝐨𝐧𝐞𝐝 𝐬𝐮𝐛𝐬𝐭𝐢𝐭𝐮𝐭𝐢𝐨𝐧𝐬,∑𝒂𝟐

𝐜𝐲𝐜

= (∑𝒂

𝐜𝐲𝐜

)

𝟐

− 𝟐∑𝒂𝐛

𝐜𝐲𝐜

  

= 𝐬𝟐 − 𝟐∑(𝐬 − 𝒙)(𝐬 − 𝐲)

𝐜𝐲𝐜

= 𝐬𝟐 − 𝟐(𝟒𝐑𝐫 + 𝐫𝟐) ⇒∑𝒂𝟐

𝐜𝐲𝐜

=
(𝐢)
𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐 𝒂𝐧𝐝 

∑𝒂𝟑

𝐜𝐲𝐜

= (∑𝒂

𝐜𝐲𝐜

)

𝟑

− 𝟑(𝒂𝐛+ 𝐛𝐜)(𝐛𝐜 + 𝐜𝒂)(𝐜𝒂 + 𝒂𝐛) = 𝐬𝟑 − 𝟑𝐫𝟐𝐬. 𝟒𝐑𝐫𝐬 

⇒∑𝒂𝟑

𝐜𝐲𝐜

=
(𝐢𝐢)

𝐬(𝐬𝟐 − 𝟏𝟐𝐑𝐫) 𝒂𝐧𝐝 ∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

= (∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

− 𝟐𝒂𝐛𝐜(∑𝒂

𝐜𝐲𝐜

) 

= (𝟒𝐑𝐫 + 𝐫𝟐)
𝟐
− 𝟐𝐫𝟐𝐬. 𝐬 ⇒∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

=
(𝐢𝐢𝐢)

(𝟒𝐑𝐫 + 𝐫𝟐)
𝟐
− 𝟐𝐫𝟐𝐬𝟐 

∵ 𝒂𝐛𝐜 = 𝟏 ∴ 𝟏𝟓 + 𝟏𝟐(𝒂𝟒 + 𝐛𝟒 + 𝐜𝟒)(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐) 

≥ 𝟏𝟏(𝒂𝟔 + 𝐛𝟔 + 𝐜𝟔) + 𝟑𝟎(𝒂𝟑 + 𝐛𝟑 + 𝐜𝟑) 

⇔ 𝟏𝟓𝒂𝟐𝐛𝟐𝐜𝟐 + 𝟏𝟐(∑𝒂𝟐

𝐜𝐲𝐜

)(∑𝒂𝟒

𝐜𝐲𝐜

) 

≥ 𝟏𝟏(𝟑𝒂𝟐𝐛𝟐𝐜𝟐 +(∑𝒂𝟐

𝐜𝐲𝐜

)(∑𝒂𝟒

𝐜𝐲𝐜

−∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

))+ 𝟑𝟎𝒂𝐛𝐜(∑𝒂𝟑

𝐜𝐲𝐜

) 
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⇔ (∑𝒂𝟐

𝐜𝐲𝐜

)(∑𝒂𝟒

𝐜𝐲𝐜

)+ 𝟏𝟏(∑𝒂𝟐

𝐜𝐲𝐜

)(∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

) ≥ 𝟏𝟖𝒂𝟐𝐛𝟐𝐜𝟐 + 𝟑𝟎𝒂𝐛𝐜(∑𝒂𝟑

𝐜𝐲𝐜

) 

⇔ (∑𝒂𝟐

𝐜𝐲𝐜

)((∑𝒂𝟒

𝐜𝐲𝐜

+ 𝟐∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

)+ 𝟗∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

) ≥ 𝟏𝟖𝒂𝟐𝐛𝟐𝐜𝟐 + 𝟑𝟎𝒂𝐛𝐜(∑𝒂𝟑

𝐜𝐲𝐜

) 

⇔ (∑𝒂𝟐

𝐜𝐲𝐜

)

𝟑

+ 𝟗(∑𝒂𝟐

𝐜𝐲𝐜

)(∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

) ≥ 𝟏𝟖𝒂𝟐𝐛𝟐𝐜𝟐 + 𝟑𝟎𝒂𝐛𝐜(∑𝒂𝟑

𝐜𝐲𝐜

) 

⇔
𝐯𝐢𝒂 (𝐢),(𝐢𝐢),(𝐢𝐢𝐢)

(𝐬𝟐 − 𝟖𝐑𝐫− 𝟐𝐫𝟐)
𝟑
+ 𝟗(𝐬𝟐 − 𝟖𝐑𝐫 − 𝟐𝐫𝟐)((𝟒𝐑𝐫 + 𝐫𝟐)

𝟐
− 𝟐𝐫𝟐𝐬𝟐) 

≥ 𝟏𝟖𝐫𝟒𝐬𝟐 + 𝟑𝟎𝐫𝟐𝐬𝟐(𝐬𝟐 − 𝟏𝟐𝐑𝐫) 

⇔ 𝐬𝟔 − (𝟐𝟒𝐑𝐫 + 𝟓𝟒𝐫𝟐)𝐬𝟒 + 𝐫𝟐𝐬𝟐(𝟑𝟑𝟔𝐑𝟐 + 𝟔𝟕𝟐𝐑𝐫 + 𝟑𝟗𝐫𝟐) 

−𝐫𝟑(𝟏𝟔𝟔𝟒𝐑𝟑 + 𝟏𝟐𝟒𝟖𝐑𝟐𝐫 + 𝟑𝟏𝟐𝐑𝐫𝟐 + 𝟐𝟔𝐫𝟑) ≥
(∗)

𝟎 𝒂𝐧𝐝  

∵ (𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)
𝟑

≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 ∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨𝐩𝐫𝐨𝐯𝐞 (∗), 

𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗) ≥ (𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)
𝟑

 

⇔ (𝟐𝟒𝐑𝐫 − 𝟔𝟗𝐫𝟐)𝐬𝟒 − 𝐫𝟐𝐬𝟐(𝟒𝟑𝟐𝐑𝟐 − 𝟏𝟏𝟓𝟐𝐑𝐫 + 𝟑𝟔𝐫𝟐) 

+𝐫𝟑(𝟐𝟒𝟑𝟐𝐑𝟑 − 𝟓𝟎𝟖𝟖𝐑𝟐𝐫 + 𝟖𝟖𝟖𝐑𝐫𝟐 − 𝟏𝟓𝟏𝐫𝟑) ≥
(∗∗)

𝟎 

𝐂𝒂𝐬𝐞 𝟏  𝟐𝟒𝐑 − 𝟔𝟗𝐫 > 0 𝒂𝐧𝐝 ∵ (𝟐𝟒𝐑𝐫 − 𝟔𝟗𝐫𝟐)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)
𝟐

≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎 

∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨𝐩𝐫𝐨𝐯𝐞 (∗), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

𝐋𝐇𝐒 𝐨𝐟 (∗∗) ≥ (𝟐𝟒𝐑𝐫 − 𝟔𝟗𝐫𝟐)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)
𝟐

 

⇔ (𝟑𝟑𝟔𝐑− 𝟔𝟐𝟒𝐫)(𝐑− 𝟐𝐫)𝐬𝟐 − 𝟓𝟗𝟒𝐫𝟐𝐬𝟐 

−𝐫(𝟑𝟕𝟏𝟐𝐑𝟑 − 𝟏𝟔𝟒𝟏𝟔𝐑𝟐𝐫 + 𝟏𝟎𝟕𝟓𝟐𝐑𝐫𝟐 − 𝟏𝟓𝟕𝟒𝐫𝟑) ≥
(∗∗∗)

𝟎 

𝐍𝐨𝐰,𝐋𝐇𝐒 𝐨𝐟 (∗∗∗) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

(𝟑𝟑𝟔𝐑− 𝟔𝟐𝟒𝐫)(𝐑− 𝟐𝐫)(𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐) 

−𝟓𝟗𝟒𝐫𝟐(𝟒𝐑𝟐 + 𝟒𝐑𝐫+ 𝟑𝐫𝟐) − 𝐫(𝟑𝟕𝟏𝟐𝐑𝟑 − 𝟏𝟔𝟒𝟏𝟔𝐑𝟐𝐫 + 𝟏𝟎𝟕𝟓𝟐𝐑𝐫𝟐 − 𝟏𝟓𝟕𝟒𝐫𝟑) ≥
?
𝟎 

⇔ 𝟏𝟔𝟔𝟒𝐭𝟑 − 𝟖𝟑𝟕𝟔𝐭𝟐 + 𝟏𝟑𝟑𝟐𝟎𝐭 − 𝟔𝟒𝟒𝟖 ≥
?
𝟎 (𝐭 =

𝐑

𝐫
) 

⇔ (𝐭 − 𝟐)((
𝟐𝟎𝟖𝐭

𝟑
− 𝟏𝟏) (𝟐𝟒𝐭 − 𝟔𝟗) + 𝟐𝟒𝟔𝟓) ≥

?
𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐭 >

𝟔𝟗

𝟐𝟒
⇒ (∗∗∗) 

⇒ (∗∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 (𝐬𝐭𝐫𝐢𝐜𝐭 𝐢𝐧𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲) 
𝐂𝒂𝐬𝐞 𝟐  𝟐𝟒𝐑− 𝟔𝟗𝐫 ≤ 𝟎 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧, (∗∗) 

⇔ (𝟔𝟗𝐫𝟐 − 𝟐𝟒𝐑𝐫)𝐬𝟒 + 𝐫𝟐𝐬𝟐(𝟒𝟑𝟐𝐑𝟐 − 𝟏𝟏𝟓𝟐𝐑𝐫 + 𝟑𝟔𝐫𝟐) 

−𝐫𝟑(𝟐𝟒𝟑𝟐𝐑𝟑 − 𝟓𝟎𝟖𝟖𝐑𝟐𝐫 + 𝟖𝟖𝟖𝐑𝐫𝟐 − 𝟏𝟓𝟏𝐫𝟑) ≤
(⦁)

𝟎 

𝐍𝐨𝐰,𝐑𝐨𝐮𝐜𝐡𝐞 ⇒ 𝐬𝟐 − (𝐦− 𝐧) ≥ 𝟎 𝐚𝐧𝐝 𝐬𝟐 − (𝐦+ 𝐧) ≤ 𝟎, 

𝐰𝐡𝐞𝐫𝐞 𝐦 = 𝟐𝐑𝟐 + 𝟏𝟎𝐑𝐫 − 𝐫𝟐 𝐚𝐧𝐝 𝐧 = 𝟐(𝐑 − 𝟐𝐫). √𝐑𝟐 − 𝟐𝐑𝐫 

∴ (𝐬𝟐 − (𝐦+ 𝐧)) (𝐬𝟐 − (𝐦 − 𝐧)) ≤ 𝟎 

⇒ 𝐬𝟒 − 𝐬𝟐(𝟐𝐦) +𝐦𝟐 − 𝐧𝟐 ≤ 𝟎 ⇒ 𝐬𝟒 − 𝐬𝟐(𝟒𝐑𝟐 + 𝟐𝟎𝐑𝐫 − 𝟐𝐫𝟐) + 𝐫(𝟒𝐑 + 𝐫)𝟑 ≤ 𝟎 

⇒ (𝟔𝟗𝐫𝟐 − 𝟐𝟒𝐑𝐫)𝐬𝟒 − 𝐬𝟐(𝟒𝐑𝟐 + 𝟐𝟎𝐑𝐫 − 𝟐𝐫𝟐)(𝟔𝟗𝐫𝟐 − 𝟐𝟒𝐑𝐫) 
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+𝐫(𝟔𝟗𝐫𝟐 − 𝟐𝟒𝐑𝐫)(𝟒𝐑+ 𝐫)𝟑 ≤ 𝟎 ∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨𝐩𝐫𝐨𝐯𝐞 (⦁), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

𝐋𝐇𝐒 𝐨𝐟 (⦁) ≤ (𝟔𝟗𝐫𝟐 − 𝟐𝟒𝐑𝐫)𝐬𝟒 − 𝐬𝟐(𝟒𝐑𝟐 + 𝟐𝟎𝐑𝐫 − 𝟐𝐫𝟐)(𝟔𝟗𝐫𝟐 − 𝟐𝟒𝐑𝐫) 

+𝐫(𝟔𝟗𝐫𝟐 − 𝟐𝟒𝐑𝐫)(𝟒𝐑 + 𝐫)𝟑 

⇔ (𝟗𝟔𝐑𝟑 − 𝟐𝟐𝟖𝐑𝟐𝐫 − 𝟐𝟕𝟔𝐑𝐫𝟐 + 𝟏𝟎𝟐𝐫𝟑)𝐬𝟐 

+𝐫𝟐(𝟐𝟒𝟑𝟐𝐑𝟑 − 𝟓𝟎𝟖𝟖𝐑𝟐𝐫 + 𝟖𝟖𝟖𝐑𝐫𝟐 − 𝟏𝟓𝟏𝐫𝟑) − 𝐫(𝟐𝟒𝐑− 𝟔𝟗𝐫)(𝟒𝐑+ 𝐫)𝟑 ≥
(⦁⦁)

𝟎 

𝐋𝐞𝐭 𝐟(𝐭) = 𝟗𝟔𝐭𝟑 − 𝟐𝟐𝟖𝐭𝟐 − 𝟐𝟕𝟔𝐭+ 𝟏𝟎𝟐 ∀ 𝐭 ∈ [𝟐,
𝟔𝟗

𝟐𝟒
] (𝐭 =

𝐑

𝐫
) ; 𝐭𝐡𝐞𝐧 ∶  

𝐟(𝐭) = (𝟐𝟒𝐭 − 𝟔𝟗)(
𝟏𝟔𝐭𝟐 + 𝟖𝐭 − 𝟐𝟑

𝟒
) −

𝟏𝟏𝟕𝟗

𝟒
≤ −

𝟏𝟏𝟕𝟗

𝟒
< 0 

(∵ 𝟐𝟒𝐭 − 𝟔𝟗 ≤ 𝟎 𝒂𝐧𝐝 𝟏𝟔𝐭𝟐 + 𝟖𝐭 − 𝟐𝟑 ≥
𝐄𝐮𝐥𝐞𝐫

𝟏𝟔(𝟒) + 𝟖(𝟐) − 𝟐𝟑 > 0

⇒ (𝟐𝟒𝐭 − 𝟔𝟗)(
𝟏𝟔𝐭𝟐 + 𝟖𝐭 − 𝟐𝟑

𝟒
) ≤ 𝟎) 

∴ 𝟗𝟔𝐑𝟑 − 𝟐𝟐𝟖𝐑𝟐𝐫 − 𝟐𝟕𝟔𝐑𝐫𝟐 + 𝟏𝟎𝟐𝐫𝟑 < 0 𝐟𝐨𝐫 𝟐𝟒𝐑− 𝟔𝟗𝐫 ≤ 𝟎 

⇒ 𝐋𝐇𝐒 𝐨𝐟 (⦁⦁) = −(−(𝟗𝟔𝐑𝟑 − 𝟐𝟐𝟖𝐑𝟐𝐫 − 𝟐𝟕𝟔𝐑𝐫𝟐 + 𝟏𝟎𝟐𝐫𝟑))𝐬𝟐 

+𝐫𝟐(𝟐𝟒𝟑𝟐𝐑𝟑 − 𝟓𝟎𝟖𝟖𝐑𝟐𝐫 + 𝟖𝟖𝟖𝐑𝐫𝟐 − 𝟏𝟓𝟏𝐫𝟑) − 𝐫(𝟐𝟒𝐑− 𝟔𝟗𝐫)(𝟒𝐑 + 𝐫)𝟑 

≥
𝐑𝐨𝐮𝐜𝐡𝐞

− (−(𝟗𝟔𝐑𝟑 − 𝟐𝟐𝟖𝐑𝟐𝐫 − 𝟐𝟕𝟔𝐑𝐫𝟐 + 𝟏𝟎𝟐𝐫𝟑))(𝟐𝐑𝟐 + 𝟏𝟎𝐑𝐫 − 𝐫𝟐 + 𝟐(𝐑 − 𝟐𝐫).√𝐑𝟐 − 𝟐𝐑𝐫) 

+𝐫𝟐(𝟐𝟒𝟑𝟐𝐑𝟑 − 𝟓𝟎𝟖𝟖𝐑𝟐𝐫 + 𝟖𝟖𝟖𝐑𝐫𝟐 − 𝟏𝟓𝟏𝐫𝟑) − 𝐫(𝟐𝟒𝐑− 𝟔𝟗𝐫)(𝟒𝐑+ 𝐫)𝟑 ≥
?
𝟎 

⇔ (𝐑 − 𝟐𝐫)(𝟒𝟖𝐑𝟒 − 𝟏𝟔𝟐𝐑𝟑𝐫 + 𝟑𝟔𝟖𝐑𝟐𝐫𝟐 − 𝟑𝟔𝟐𝐑𝐫𝟑 + 𝟐𝟑𝐫𝟒) 

≥ (𝐑 − 𝟐𝐫).√𝐑𝟐 − 𝟐𝐑𝐫. (−(𝟒𝟖𝐑𝟑 − 𝟏𝟏𝟒𝐑𝟐𝐫 − 𝟏𝟑𝟖𝐑𝐫𝟐 + 𝟓𝟏𝐫𝟑)) 

⇔ (𝐑 − 𝟐𝐫)((𝐑 − 𝟐𝐫)(𝟏𝟓𝐑𝟑 + 𝟑𝟑𝐑𝟐(𝐑− 𝟐𝐫) + 𝟐𝟑𝟔𝐑𝐫𝟐 + 𝟏𝟏𝟎𝐫𝟑) + 𝟐𝟒𝟑𝐫𝟒) 

≥ (𝐑 − 𝟐𝐫).√𝐑𝟐 − 𝟐𝐑𝐫. (−(𝟒𝟖𝐑𝟑 − 𝟏𝟏𝟒𝐑𝟐𝐫 − 𝟏𝟑𝟖𝐑𝐫𝟐 + 𝟓𝟏𝐫𝟑)) 

⇔
∵𝐑−𝟐𝐫 ≥ 𝟎

((𝐑 − 𝟐𝐫)(𝟏𝟓𝐑𝟑 + 𝟑𝟑𝐑𝟐(𝐑− 𝟐𝐫) + 𝟐𝟑𝟔𝐑𝐫𝟐 + 𝟏𝟏𝟎𝐫𝟑) + 𝟐𝟒𝟑𝐫𝟒)
𝟐

 

> (𝐑𝟐 − 𝟐𝐑𝐫)(𝟒𝟖𝐑𝟑 − 𝟏𝟏𝟒𝐑𝟐𝐫 − 𝟏𝟑𝟖𝐑𝐫𝟐 + 𝟓𝟏𝐫𝟑)
𝟐
⇔ 

𝟑𝟗𝟗𝟑𝟔𝐭𝟔 − 𝟏𝟗𝟎𝟖𝟒𝟖𝐭𝟓 + 𝟑𝟐𝟎𝟐𝟐𝟒𝐭𝟒 − 𝟐𝟒𝟒𝟗𝟕𝟔𝐭𝟑 + 𝟏𝟏𝟕𝟐𝟏𝟗𝐭𝟐 − 𝟏𝟏𝟒𝟓𝟎𝐭 + 𝟓𝟐𝟗 > 𝟎 

⇔ (𝐭 − 𝟐) ((𝐭 − 𝟐)(𝟑𝟗𝟗𝟑𝟔𝐭𝟒 − 𝟑𝟏𝟏𝟎𝟒𝐭𝟑 + 𝟑𝟔𝟎𝟔𝟒𝐭𝟐 + 𝟐𝟑𝟔𝟗𝟔𝐭 + 𝟔𝟕𝟕𝟒𝟕) + 𝟏𝟔𝟒𝟕𝟓𝟒) 

+𝟓𝟗𝟎𝟒𝟗 > 𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐭 ≥
𝐄𝐮𝐥𝐞𝐫

𝟐 ⇒ (⦁⦁) ⇒ (⦁) ⇒ (∗∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 
∴ 𝐜𝐨𝐦𝐛𝐢𝐧𝐢𝐧𝐠 𝐜𝒂𝐬𝐞𝐬 𝟏 𝒂𝐧𝐝 𝟐, (∗∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 𝐟𝐨𝐫 𝒂𝒍𝒍 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞𝐬 

⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 𝐟𝐨𝐫 𝒂𝒍𝒍 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞𝐬, 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐟𝐟 𝐜𝐨𝐧𝐜𝐞𝐫𝐧𝐞𝐝 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐢𝐬 𝐞𝐪𝐮𝐢𝒍𝒂𝐭𝐞𝐫𝒂𝒍 

⇒ 𝟏𝟓 + 𝟏𝟐(𝒂𝟒 + 𝐛𝟒 + 𝐜𝟒)(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐) ≥ 𝟏𝟏(𝒂𝟔 + 𝐛𝟔 + 𝐜𝟔) + 𝟑𝟎(𝒂𝟑 + 𝐛𝟑 + 𝐜𝟑)  

∀ 𝒂, 𝐛, 𝐜 > 0│𝒂𝐛𝐜 = 𝟏, 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 

1145. If 𝒂, 𝒃 > 0 then: 

𝟏𝟔(√𝒂𝒃 −
𝒂 + 𝒃

𝟐
+ √

𝒂𝟐 + 𝒃𝟐

𝟐
)

𝟒

+ (𝒂 + 𝒃)𝟒 ≤ 𝟏𝟔𝒂𝟐𝒃𝟐 + 𝟒(𝒂𝟐 + 𝒃𝟐)𝟐 

Proposed by Daniel Sitaru-Romania 



 
www.ssmrmh.ro 

54 RMM-CYCLIC INEQUALITIES MARATHON 1101-1200 

 

Solution by Tapas Das-India 

√𝒂𝒃 +√
𝒂𝟐 + 𝒃𝟐

𝟐
≤
𝑪𝑩𝑺

√𝟐(𝒂𝒃 +
𝒂𝟐 + 𝒃𝟐

𝟐
) = √

𝟐(𝒂𝟐 + 𝒃𝟐 + 𝟐𝒂𝒃)

𝟐
= 

= √(𝒂 + 𝒃)𝟐 = 𝒂 + 𝒃;     (𝟏) 

  𝟏𝟔(√𝒂𝒃 −
𝒂 + 𝒃

𝟐
+ √

𝒂𝟐 + 𝒃𝟐

𝟐
)

𝟒

+ (𝒂 + 𝒃)𝟒 ≤ 𝟏𝟔 (𝒂+ 𝒃 −
𝒂 + 𝒃

𝟐
)
𝟒

+ (𝒂 + 𝒃)𝟒 =
(𝟏)

 

= 𝟏𝟔 ⋅
(𝒂+𝒃)𝟒

𝟏𝟔
+ (𝒂+ 𝒃)𝟒 = 𝟐(𝒂 + 𝒃)𝟒. 

We need to prove: 

𝟐(𝒂 + 𝒃)𝟒 ≤ 𝟏𝟔𝒂𝟐𝒃𝟐 + 𝟒(𝒂𝟐 + 𝒃𝟐)𝟐 ⇔ (𝒂 + 𝒃)𝟒 + 𝟖𝒂𝟐𝒃𝟐 + 𝟐(𝒂𝟐 + 𝒃𝟐)𝟐 ⇔ 

𝒂𝟒 + 𝟒𝒂𝟑𝒃 + 𝟔𝒂𝟐𝒃𝟐 + 𝟒𝒂𝒃𝟑 + 𝒃𝟒 ≤ 𝟖𝒂𝟐𝒃𝟐 + 𝟐(𝒂𝟒 + 𝒃𝟒) + 𝟒𝒂𝟐𝒃𝟐 ⇔ 

𝒂𝟒 + 𝒃𝟒 − 𝟒𝒂𝟑𝒃 + 𝟔𝒂𝟐𝒃𝟐 − 𝟒𝒂𝒃𝟑 ≥ 𝟎 ⇔ (𝒂 − 𝒃)𝟒 ≥ 𝟎 𝐭𝐫𝐮𝐞. 

1146. 𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 ≥ 𝟎 ∶ (𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂) = 𝟖.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝟐√𝟐(√𝒂𝒃 + √𝒃𝒄 + √𝒄𝒂) ≥ 𝒂𝒃√𝒂 + 𝒃 + 𝒃𝒄√𝒃 + 𝒄 + 𝒄𝒂√𝒄 + 𝒂 + 𝟑√𝟐𝒂𝒃𝒄 

Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 

  𝟐√𝟐𝒃𝒄 − 𝒃𝒄√𝒃 + 𝒄 = √𝒃𝒄(𝒃 + 𝒄) (√(𝒂 + 𝒃)(𝒄 + 𝒂) − √𝒃𝒄) = 

=
√𝒃𝒄(𝒃 + 𝒄). 𝒂(𝒂 + 𝒃 + 𝒄)

√(𝒂 + 𝒃)(𝒄 + 𝒂) + √𝒃𝒄
≥⏞
𝑪𝑩𝑺

 
𝒂(𝒂 + 𝒃 + 𝒄)√𝒃𝒄(𝒃 + 𝒄)

√[(𝒂 + 𝒃) + 𝒄][(𝒄 + 𝒂) + 𝒃]
= 𝒂√𝒃𝒄(𝒃 + 𝒄). 

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝟐√𝟐𝒂𝒃− 𝒂𝒃√𝒂+ 𝒃 ≥ 𝒄√𝒂𝒃(𝒂 + 𝒃)  𝒂𝒏𝒅  𝟐√𝟐𝒄𝒂 − 𝒄𝒂√𝒄 + 𝒂 ≥ 𝒃√𝒄𝒂(𝒄 + 𝒂). 

𝑨𝒅𝒅𝒊𝒏𝒈 𝒕𝒉𝒆𝒔𝒆 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒊𝒆𝒔,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝟐√𝟐∑√𝒂𝒃

𝒄𝒚𝒄

−∑𝒂𝒃√𝒂+ 𝒃

𝒄𝒚𝒄

≥∑𝒂√𝒃𝒄(𝒃 + 𝒄)

𝒄𝒚𝒄

 ≥⏞
𝑨𝑴−𝑮𝑴

 𝟑√(𝒂𝒃𝒄)𝟒. (𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)
𝟔

= 
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= 𝟑√𝟐. √(𝒂𝒃𝒄)𝟐
𝟑

 ≥⏞
?

 𝟑√𝟐𝒂𝒃𝒄 ⇔ 𝒂𝒃𝒄 ≤ 𝟏 𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒃𝒆𝒄𝒂𝒖𝒔𝒆 ∶ 

𝒂𝒃𝒄 ≤⏞
𝑪𝒆𝒔𝒂𝒓𝒐

 
(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)

𝟖
= 𝟏. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄 = 𝟏. 

1147. 𝐈𝐟 𝒙, 𝐲 > 0, 𝒙 + 𝐲 = 𝟐, 𝛌 ≥ 𝟎, 𝐤 ≥ 𝐧 ≥ 𝟎, 𝐭𝐡𝐞𝐧 ∶ 

𝛌(𝒙𝟐 + 𝐲𝟐) − 𝐧 (
𝒙

𝐲
+
𝐲

𝒙
) + 𝐤(

𝟏

𝒙𝟐
+
𝟏

𝐲𝟐
) ≥ 𝟐(𝛌 − 𝐧 + 𝐤) 

  Proposed by Marin Chirciu-Romania 
Solution by Soumava Chakraborty-Kolkata-India 
 

𝟐 = 𝒙 + 𝐲 ≥
𝐀−𝐆

𝟐. √𝒙𝐲 ⇒ √𝒙𝐲 ≤ 𝟏 ⇒ (√𝒙𝐲 − 𝟏)(√𝒙𝐲 + 𝟏) ≤ 𝟎 

⇒ 𝒙𝐲 ≤ 𝟏 ⇒ 𝒙𝟐𝐲𝟐 ≤
(∗)

𝒙𝐲 

𝟏

𝒙𝟐
+
𝟏

𝐲𝟐
=
𝒙𝟐 + 𝐲𝟐

𝒙𝟐𝐲𝟐
≥

𝐯𝐢𝒂 (∗) 𝒙𝟐 + 𝐲𝟐

𝒙𝐲
⇒

𝟏

𝒙𝟐
+
𝟏

𝐲𝟐
− (

𝒙

𝐲
+
𝐲

𝒙
) ≥ 𝟎 

⇒
∵ 𝐤 ≥ 𝟎

𝐤(
𝟏

𝒙𝟐
+
𝟏

𝐲𝟐
− (

𝒙

𝐲
+
𝐲

𝒙
)) ≥ 𝟎 ⇒ 𝐤(

𝟏

𝒙𝟐
+
𝟏

𝐲𝟐
) ≥ 𝐤(

𝒙

𝐲
+
𝐲

𝒙
) 

⇒ 𝐤 (
𝟏

𝒙𝟐
+
𝟏

𝐲𝟐
) − 𝐧(

𝒙

𝐲
+
𝐲

𝒙
) ≥ (𝐤 − 𝐧) (

𝒙

𝐲
+
𝐲

𝒙
) 

≥
𝐀−𝐆

(𝐤 − 𝐧)(𝟐.√
𝒙

𝐲
.
𝐲

𝒙
) (∵ 𝐤 − 𝐧 ≥ 𝟎) ∴ 𝐤 (

𝟏

𝒙𝟐
+
𝟏

𝐲𝟐
) − 𝐧(

𝒙

𝐲
+
𝐲

𝒙
) ≥
(∗∗)

𝟐(𝐤 − 𝐧) 

𝐀𝐠𝒂𝐢𝐧, 𝛌(𝒙𝟐 + 𝐲𝟐) ≥
𝛌

𝟐
(𝒙 + 𝐲)𝟐 (∵ 𝛌 ≥ 𝟎) =

𝒙 + 𝐲 = 𝟐
𝟐𝛌 ∴ 𝛌(𝒙𝟐 + 𝐲𝟐) ≥

(∗∗∗)

𝟐𝛌 

∴ (∗∗) + (∗∗∗) ⇒ 𝐤 (
𝟏

𝒙𝟐
+
𝟏

𝐲𝟐
) − 𝐧 (

𝒙

𝐲
+
𝐲

𝒙
) + 𝛌(𝒙𝟐 + 𝐲𝟐) ≥ 𝟐(𝐤 − 𝐧) + 𝟐𝛌 

⇒ 𝛌(𝒙𝟐 + 𝐲𝟐) − 𝐧(
𝒙

𝐲
+
𝐲

𝒙
) + 𝐤 (

𝟏

𝒙𝟐
+
𝟏

𝐲𝟐
) ≥ 𝟐(𝛌 − 𝐧 + 𝐤)  

∀ 𝒙, 𝐲 > 0│𝒙 + 𝐲 = 𝟐, 𝛌 ≥ 𝟎, 𝐤 ≥ 𝐧 ≥ 𝟎 (𝐐𝐄𝐃) 
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1148. 𝐈𝐟 𝒂, 𝒃, 𝒄 > 0 𝐚𝐧𝐝 𝝀 ≥ 𝟎 𝐭𝐡𝐞𝐧: 

∑
𝒃+ 𝒄

√𝒂𝟐 + 𝝀
𝒄𝒚𝒄

≥∑
𝒃+ 𝒄

√𝒃𝒄 + 𝝀
𝒄𝒚𝒄

 

Proposed by Marin Chirciu-Romania 
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 

 ∑
𝒃 + 𝒄

√𝒂𝟐 + 𝝀𝒄𝒚𝒄

=∑(
𝒃

√𝒄𝟐 + 𝝀
+

𝒄

√𝒃𝟐 + 𝝀
)

𝒄𝒚𝒄

=∑(
𝒃
𝟑
𝟐

(𝒃𝒄𝟐 + 𝝀𝒃)
𝟏
𝟐

+
𝒄
𝟑
𝟐

(𝒃𝟐𝒄 + 𝝀𝒄)
𝟏
𝟐

)

𝒄𝒚𝒄

≥ 

≥⏞
𝑯ӧ𝒍𝒅𝒆𝒓

 ∑
(𝒃 + 𝒄)

𝟑
𝟐

[(𝒃𝒄𝟐 + 𝝀𝒃) + (𝒃𝟐𝒄 + 𝝀𝒄)]
𝟏
𝟐𝒄𝒚𝒄

=∑
(𝒃+ 𝒄)

𝟑
𝟐

[(𝒃 + 𝒄)(𝒃𝒄 + 𝝀)]
𝟏
𝟐𝒄𝒚𝒄

=∑
𝒃 + 𝒄

√𝒃𝒄 + 𝝀
𝒄𝒚𝒄

. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄. 

Solution 2 by Hikmat Mammadov-Azerbaijan 

𝑭𝒐𝒓 𝒂 𝒄𝒐𝒏𝒗𝒆𝒙 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒈, 𝝁𝟏,𝟐, 𝝁𝟏 + 𝝁𝟐 = 𝟏: 

𝝁𝟏𝒈(𝒙) + 𝝁𝟐𝒈(𝒚) ≥ 𝒈(𝝁𝟏𝒙 + 𝝁𝟐𝒚) 

𝒈(𝒙) =
𝟏

√𝒙
− 𝒊𝒔 𝒄𝒐𝒏𝒗𝒆𝒙 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏, 𝒕𝒉𝒆𝒏: 

𝒃

𝒃 + 𝒄
⋅

𝟏

√𝒄𝟐 + 𝝀
+

𝒄

𝒃 + 𝒄
⋅

𝟏

√𝒃𝟐 + 𝝀
≥

𝟏

√ 𝒃
𝒃 + 𝒄

(𝒄𝟐 + 𝝀) +
𝒄

𝒃 + 𝒄
(𝒃𝟐 + 𝝀)

= 

=
√𝒃 + 𝒄

√𝒃𝒄(𝒃 + 𝒄) + 𝝀(𝒃 + 𝒄)
=

𝟏

√𝒃𝒄 + 𝝀
 

𝑻𝒉𝒖𝒔, 

𝒃

√𝒄𝟐 + 𝝀
+

𝒄

√𝒃𝟐 + 𝝀
≥

𝒃 + 𝒄

√𝒃𝒄 + 𝝀
 

  
𝒄

√𝒂𝟐 + 𝝀
+

𝒂

√𝒄𝟐 + 𝝀
≥

𝒂 + 𝒄

√𝒂𝒄 + 𝝀
 

𝒂

√𝒃𝟐 + 𝝀
+

𝒃

√𝒂𝟐 + 𝝀
≥

𝒂 + 𝒃

√𝒂𝒃 + 𝝀
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𝑩𝒚 𝒂𝒅𝒅𝒊𝒏𝒈: ∑
𝒃+ 𝒄

√𝒂𝟐 + 𝝀
𝒄𝒚𝒄

≥∑
𝒃+ 𝒄

√𝒃𝒄 + 𝝀
𝒄𝒚𝒄

 

1149. If 𝒂, 𝒃, 𝒄, 𝒅 > 0, 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝒅𝟐 = 𝟒 then: 

∑√𝒂𝟐 + 𝒃 + 𝒄 + 𝟐𝟎𝟐𝟐

𝒄𝒚𝒄

≤ 𝟏𝟖𝟎 

Proposed by Zaza Mzhavanadze-Georgia 
Solution 1 by Tapas Das-India 

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝒅𝟐

𝟒
≥

𝑸𝑴−𝑨𝑴

(
𝒂 + 𝒃 + 𝒄 + 𝒅

𝟒
)
𝟐

⇔ 

𝟏 ≥ (
𝒂 + 𝒃 + 𝒄 + 𝒅

𝟒
)
𝟐

⇔ 𝟏𝟔 ≥ (𝒂 + 𝒃 + 𝒄 + 𝒅)𝟐 ⇔ 𝟒 ≥ 𝒂 + 𝒃 + 𝒄 + 𝒅) 

∑√𝒂𝟐 + 𝒃+ 𝒄 + 𝟐𝟎𝟐𝟐

𝒄𝒚𝒄

≤
𝑪𝑩𝑺

√𝟒 [∑𝒂𝟐

𝒄𝒚𝒄

+ 𝟐∑𝒂

𝒄𝒚𝒄

+ 𝟒 ⋅ 𝟐𝟎𝟐𝟐] ≤ 

≤ √𝟒(𝟒 + 𝟐 ⋅ 𝟒 + 𝟖𝟎𝟖𝟖) = 𝟐√𝟖𝟏𝟎𝟎 = 𝟐 ⋅ 𝟗𝟎 = 𝟏𝟖𝟎 

Solution 2 by Tran Quoc Anh-Vietnam 

∑√𝒂𝟐 + 𝒃 + 𝒄 + 𝟐𝟎𝟐𝟐

𝒄𝒚𝒄

=∑
(𝒂𝟐 + 𝒃+ 𝒄 + 𝟐𝟎𝟐𝟐)

𝟏
𝟐

𝟏−
𝟏
𝟐𝒄𝒚𝒄

≤
𝑹𝒂𝒅𝒐𝒏

 

≤
(∑𝒂𝟐 + 𝟐∑𝒂 + 𝟖𝟎𝟖𝟖)

𝟏
𝟐

𝟒−
𝟏
𝟐

= 𝟐(𝟒 + 𝟐∑𝒂

𝒄𝒚𝒄

+ 𝟖𝟎𝟖𝟖)

𝟏
𝟐

 

Alternatively: 

𝟒 = √𝟒(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝒅𝟐) ≥
𝑪𝑩𝑺

√(𝒂 + 𝒃 + 𝒄 + 𝒅)𝟐 = 𝒂 + 𝒃 + 𝒄 + 𝒅 

Thus: 

𝟐(𝟒 + 𝟐∑𝒂

𝒄𝒚𝒄

+ 𝟖𝟎𝟖𝟖)

𝟏
𝟐

≤ 𝟐(𝟒 + 𝟐 ⋅ 𝟒 + 𝟖𝟎𝟖𝟖)
𝟏
𝟐 = 𝟏𝟖𝟎 

Therefore, 
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∑√𝒂𝟐 + 𝒃+ 𝒄 + 𝟐𝟎𝟐𝟐

𝒄𝒚𝒄

≤ 𝟏𝟖𝟎 

Equality holds for 𝒂 = 𝒃 = 𝒄 = 𝒅 = 𝟏. 

1150. If 𝒂, 𝒃, 𝒄, 𝝀 > 0 such that 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 = 𝝀, then: 

∑(
𝝀 − 𝒃𝒄

𝒃 + 𝒄
)

𝟐

𝒄𝒚𝒄

≥ 𝝀 

Proposed by Marin Chirciu-Romania 
Solution by Tapas Das-India 

𝑾𝒆 𝒌𝒏𝒐𝒘 𝒕𝒉𝒂𝒕:  𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐, 𝒕𝒉𝒆𝒏 

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ 𝝀 

(𝒂 + 𝒃)𝟐 + (𝒃 + 𝒄)𝟐 + (𝒄 + 𝒂)𝟐 = 𝟐(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) + 𝟐(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) ≤ 

                ≤ 𝟐(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) + 𝟐(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) = 𝟒(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) = 𝟒𝝀;            (𝟏) 

∑
(𝝀− 𝒃𝒄)𝟐

(𝒃 + 𝒄)𝟐
𝒄𝒚𝒄

≥
𝑨𝑴−𝑮𝑴

∑
(𝝀−

𝒃𝟐 + 𝒄𝟐

𝟐 )
𝟐

(𝒃 + 𝒄)𝟐
𝒄𝒚𝒄

≥
(𝟑𝝀 −

𝒂𝟐 + 𝒃𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝒄𝟐 + 𝒂𝟐

𝟐 )
𝟐

(𝒃 + 𝒄)𝟐 + (𝒄 + 𝒂)𝟐 + (𝒂 + 𝒃)𝟐
≥ 

≥
(𝟑𝝀 − (𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐))

𝟐

𝒂𝟐 + 𝒃𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝒄𝟐 + 𝒂𝟐 + 𝟐(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)
≥
(𝟑𝝀 − 𝝀)𝟐

𝟒𝝀
= 𝝀   

1151. 𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 > 𝟎 ∶ 𝒂 + 𝒃 + 𝒄 = 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝒂 + 𝒃

𝟒𝒃 + 𝒄 + 𝒂
+

𝒃 + 𝒄

𝟒𝒄 + 𝒂 + 𝒃
+

𝒄 + 𝒂

𝟒𝒂 + 𝒃 + 𝒄
≤
𝒂 + 𝒃 + 𝒄 + 𝟏

𝟒
 

Proposed by Phan Ngoc Chau-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   𝟒𝒃 + (𝒄 + 𝒂) ≥⏞
𝑨𝑴−𝑯𝑴

 𝟒𝒃 +
𝟒𝒄𝒂

𝒄 + 𝒂
=
𝟒(𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂)

𝒄 + 𝒂
. 

𝑻𝒉𝒆𝒏 ∶  
𝒂 + 𝒃

𝟒𝒃+ 𝒄 + 𝒂
≤

(𝒂 + 𝒃)(𝒂 + 𝒄)

𝟒(𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂)
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,  
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∑
𝒂+𝒃

𝟒𝒃 + 𝒄 + 𝒂
𝒄𝒚𝒄

≤∑
(𝒂+ 𝒃)(𝒂 + 𝒄)

𝟒(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)
𝒄𝒚𝒄

=
(𝒂 + 𝒃 + 𝒄)𝟐 + (𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂)

𝟒(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)
=
𝒂+ 𝒃 + 𝒄 + 𝟏

𝟒
. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄 = 𝟏. 

1152. 𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 ≥ 𝟎, 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝒃𝒄 + 𝟏

𝒂𝟐 + 𝟑𝒂√𝒃𝒄 + 𝟐𝒃𝒄
+

𝒄𝒂 + 𝟏

𝒃𝟐 + 𝟑𝒃√𝒄𝒂 + 𝟐𝒄𝒂
+

𝒂𝒃 + 𝟏

𝒄𝟐 + 𝟑𝒄√𝒂𝒃 + 𝟐𝒂𝒃
≥ 𝟐 

Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  

 𝟑√𝒃𝒄 = √𝒃𝒄 + 𝟐√𝒃𝒄 ≤⏞
𝑨𝑴−𝑮𝑴

 
𝒃 + 𝒄

𝟐
+ (

𝒃 + 𝒄

𝟐
+
𝟐𝒃𝒄

𝒃 + 𝒄
) = 𝒃 + 𝒄 +

𝟐𝒃𝒄

𝒃 + 𝒄
. 

𝑻𝒉𝒆𝒏 ∶   
𝒃𝒄 + 𝟏

𝒂𝟐 + 𝟑𝒂√𝒃𝒄+ 𝟐𝒃𝒄
≥

𝒃𝒄 + 𝟏

𝒂𝟐 + 𝒂(𝒃 + 𝒄 +
𝟐𝒃𝒄
𝒃 + 𝒄

) + 𝟐𝒃𝒄
=

𝒃𝒄 + 𝟏

(𝒂 + 𝒃 + 𝒄) (𝒂 +
𝟐𝒃𝒄
𝒃 + 𝒄

)
= 

=
(𝒃𝒄 + 𝟏)(𝒃 + 𝒄)

(𝒂 + 𝒃 + 𝒄)(𝒂𝒃+ 𝟐𝒃𝒄 + 𝒄𝒂)
=

𝒃 + 𝒄

𝒂 + 𝒃 + 𝒄
. 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   ∑
𝒃𝒄 + 𝟏

𝒂𝟐 + 𝟑𝒂√𝒃𝒄+ 𝟐𝒃𝒄
𝒄𝒚𝒄

≥∑
𝒃 + 𝒄

𝒂 + 𝒃 + 𝒄
𝒄𝒚𝒄

= 𝟐. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄 =
√𝟑

𝟑
. 

1153. 𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 ≥ 𝟎 ∶ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝟏

√𝟒𝒂𝟐 + 𝒂𝟐𝒃𝒄+ 𝒃𝒄
+

𝟏

√𝟒𝒃𝟐 + 𝒂𝒃𝟐𝒄 + 𝒄𝒂
+

𝟏

√𝟒𝒄𝟐 + 𝒂𝒃𝒄𝟐 + 𝒂𝒃
≥ 𝟐√

𝒂+ 𝒃 + 𝒄

(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)
 

Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 

  
𝟏

𝟒𝒂𝟐 + 𝒂𝟐𝒃𝒄 + 𝒃𝒄
=

𝒃 + 𝒄

(𝒃 + 𝒄)(𝟒𝒂𝟐 + 𝒃𝒄) + (𝒂𝒃 + 𝒄𝒂). 𝒂𝒃𝒄
 ≥⏞
𝒂𝒃+𝒄𝒂 ≤ 𝟏

 
𝒃 + 𝒄

(𝒃 + 𝒄)(𝟒𝒂𝟐 + 𝒃𝒄) + 𝒂𝒃𝒄
= 
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=
𝒃 + 𝒄

𝟒𝒂(𝒃 + 𝒄). 𝒂 + (𝒂 + 𝒃 + 𝒄)𝒃𝒄
 ≥⏞
𝑨𝑴−𝑮𝑴

 
𝒃 + 𝒄

[𝒂 + (𝒃 + 𝒄)]𝟐. 𝒂 + (𝒂 + 𝒃 + 𝒄)𝒃𝒄

=
𝒃 + 𝒄

(𝒂 + 𝒃 + 𝒄)(𝒂 + 𝒃)(𝒂 + 𝒄)
. 

𝑻𝒉𝒆𝒏 ∶   
𝟏

√𝟒𝒂𝟐 + 𝒂𝟐𝒃𝒄+ 𝒃𝒄
≥

𝒃 + 𝒄

√(𝒂 + 𝒃 + 𝒄)(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)
.  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,  

∑
𝟏

√𝟒𝒂𝟐 + 𝒂𝟐𝒃𝒄 + 𝒃𝒄𝒄𝒚𝒄

≥∑
𝒃+ 𝒄

√(𝒂 + 𝒃 + 𝒄)(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)𝒄𝒚𝒄

= 𝟐√
𝒂+ 𝒃 + 𝒄

(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)
. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂,𝒃, 𝒄) = (𝟏, 𝟏, 𝟎) 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 

1154. If 𝒂, 𝒃, 𝒄 > 0, 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 = 𝟑 then: 

√𝒂𝟐 + 𝟐𝒃𝒄 + 𝟏𝟎𝟐𝟏
𝟓

+ √𝒃𝟐 + 𝟐𝒄𝒂 + 𝟏𝟎𝟐𝟏
𝟓

+ √𝒄𝟐 + 𝟐𝒂𝒃 + 𝟏𝟎𝟐𝟏
𝟓

≤ 𝟏𝟐 

Proposed by Zaza Mzhavanadze-Georgia 
Solution 1 by Ravi Prakash-New Delhi-India 

𝟐𝒃𝒄 ≤ 𝒃𝟐 + 𝒄𝟐 ⇒ 𝒂𝟐 + 𝟐𝒃𝒄 + 𝟏𝟎𝟐𝟏 ≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝟏𝟎𝟐𝟏 = 𝟏𝟎𝟐𝟒 = 𝟐𝟏𝟎 

⇒ √𝒂𝟐 + 𝟐𝒃𝒄 + 𝟏𝟎𝟐𝟏
𝟓

≤ √𝟐𝟏𝟎
𝟓

= 𝟒 

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚 𝒇𝒐𝒓 𝒕𝒉𝒆 𝒐𝒕𝒉𝒆𝒓 𝒕𝒘𝒐 𝒕𝒆𝒓𝒎𝒔: 

√𝒂𝟐 + 𝟐𝒃𝒄 + 𝟏𝟎𝟐𝟏
𝟓

+ √𝒃𝟐 + 𝟐𝒄𝒂 + 𝟏𝟎𝟐𝟏
𝟓

+ √𝒄𝟐 + 𝟐𝒂𝒃 + 𝟏𝟎𝟐𝟏
𝟓

≤ 𝟒 + 𝟒 + 𝟒 = 𝟏𝟐 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂 = 𝒃 = 𝒄.   

Solution 2 by Tapas Das-India 

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 = 𝟑,𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 

⇒ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≤ 𝟑 

√𝒂𝟐 + 𝟐𝒃𝒄 + 𝟏𝟎𝟐𝟏
𝟓

+ √𝒃𝟐 + 𝟐𝒄𝒂 + 𝟏𝟎𝟐𝟏
𝟓

+ √𝒄𝟐 + 𝟐𝒂𝒃 + 𝟏𝟎𝟐𝟏
𝟓

≤ 

≤ 𝟑 ⋅ √
𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝟐(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) + 𝟑 ⋅ 𝟏𝟎𝟐𝟏

𝟑

𝟓

≤ 

≤ 𝟑 ⋅ √
𝟑 + 𝟐 ⋅ 𝟑 + 𝟑𝟎𝟔𝟑

𝟑

𝟓

= 𝟑 ⋅ √𝟏𝟎𝟐𝟒
𝟓

= 𝟑 ⋅ 𝟐𝟐 = 𝟏𝟐   
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𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂 = 𝒃 = 𝒄. 

Solution 3 by Max Wong-Hong Kong 

√𝒂𝟐 + 𝟐𝒃𝒄 + 𝟏𝟎𝟐𝟏
𝟓

+ √𝒃𝟐 + 𝟐𝒄𝒂 + 𝟏𝟎𝟐𝟏
𝟓

+ √𝒄𝟐 + 𝟐𝒂𝒃 + 𝟏𝟎𝟐𝟏
𝟓

= 

= √𝟏𝟎𝟐𝟒 − (𝒃 − 𝒄)𝟐
𝟓

+ √𝟏𝟎𝟐𝟒 − (𝒄 − 𝒂)𝟐
𝟓

+ √𝟏𝟎𝟐𝟒 − (𝒂 − 𝒃)𝟐
𝟓

≤ 𝟑 ⋅ √𝟏𝟎𝟐𝟒
𝟓

= 𝟏𝟐 

𝑬𝒒𝒖𝒂𝒍𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂 = 𝒃 = 𝒄.    

Solution 4 by Tran Quoc Anh-Vietnam 

∑√𝒂𝟐 + 𝟐𝒃𝒄 + 𝟏𝟎𝟐𝟏
𝟓

𝒄𝒚𝒄

=∑
(𝒂𝟐 + 𝟐𝒃𝒄 + 𝟏𝟎𝟐𝟏)

𝟏
𝟓

𝟏−
𝟒
𝟓𝒄𝒚𝒄

≤
𝑹𝒂𝒅𝒐𝒏

 

≤
(∑𝒂𝟐 + 𝟐∑𝒂𝒃 + 𝟑𝟎𝟔𝟑)

𝟏
𝟓

𝟑−
𝟒
𝟓

= 𝟖𝟏
𝟏
𝟓 (𝟑 + 𝟐∑𝒂𝒃

𝒄𝒚𝒄

+ 𝟑𝟎𝟔𝟑)

𝟏
𝟓

 

𝑨𝒍𝒕𝒆𝒓𝒏𝒂𝒕𝒊𝒗𝒆𝒍𝒚: 

𝟐(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) ≤ 𝟐(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) = 𝟔 

⇒ 𝟖𝟏
𝟏
𝟓(𝟑 + 𝟐∑𝒂𝒃

𝒄𝒚𝒄

+ 𝟑𝟎𝟔𝟑)

𝟏
𝟓

≤ 𝟖𝟏
𝟏
𝟓(𝟑 + 𝟔 + 𝟑𝟎𝟔𝟑)

𝟏
𝟓 = 𝟏𝟐 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 

 ∑ √𝒂𝟐 + 𝟐𝒃𝒄 + 𝟏𝟎𝟐𝟏
𝟓

𝒄𝒚𝒄

≤ 𝟏𝟐 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂 = 𝒃 = 𝒄.  

1155. 𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 ≥ 𝟎 ∶ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

 
𝒂 + 𝒃 + 𝒄

𝟐
≥ √

(𝟐𝒂 + 𝒃𝒄)(𝟐𝒃 + 𝒄𝒂)(𝟐𝒄 + 𝒂𝒃)

(𝟐𝒂 + √𝒃𝒄)(𝟐𝒃 + √𝒄𝒂)(𝟐𝒄 + √𝒂𝒃)
 

Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

(∗) ∶  
𝒂 + 𝒃 + 𝒄

𝟐
≥ √

(𝟐𝒂 + 𝒃𝒄)(𝟐𝒃 + 𝒄𝒂)(𝟐𝒄 + 𝒂𝒃)

(𝟐𝒂 + √𝒃𝒄)(𝟐𝒃 + √𝒄𝒂)(𝟐𝒄 + √𝒂𝒃)
 

𝑳𝒆𝒕 𝒑 ≔ 𝒂 + 𝒃 + 𝒄.   𝑰𝒇 𝒑 ≥ 𝟐,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   
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𝑹𝑯𝑺(∗) ≤⏞
𝒃𝒄 ≤ 𝟏 (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔)

√
(𝟐𝒂 + 𝒃𝒄)(𝟐𝒃 + 𝒄𝒂)(𝟐𝒄 + 𝒂𝒃)

(𝟐𝒂 + 𝒃𝒄)(𝟐𝒃 + 𝒄𝒂)(𝟐𝒄 + 𝒂𝒃)
= 𝟏 ≤ 𝑳𝑯𝑺(∗). 

𝑨𝒔𝒔𝒖𝒎𝒆 𝒏𝒐𝒘 𝒕𝒉𝒂𝒕 𝒑 ≤ 𝟐.  𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝟐𝒂 + 𝒃𝒄 ≤⏞
𝑨𝑴−𝑮𝑴

(
𝒂

𝒃 + 𝒄
+ 𝒂(𝒃 + 𝒄)) + 𝒃𝒄 =

𝒂

𝒃 + 𝒄
+ 𝟏 =

𝒑

𝒃 + 𝒄
 

𝒂𝒏𝒅  𝟐𝒂 + √𝒃𝒄 ≥⏞
𝑮𝑴−𝑯𝑴

𝟐𝒂 +
𝟐𝒃𝒄

𝒃 + 𝒄
=
𝟐(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)

𝒃 + 𝒄
=

𝟐

𝒃 + 𝒄
. 

𝑻𝒉𝒆𝒏 ∶   
𝟐𝒂 + 𝒃𝒄

𝟐𝒂 + √𝒃𝒄
≤
𝒑

𝟐
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔)  ⇒  𝑹𝑯𝑺(∗) ≤ √(

𝒑

𝟐
)
𝟑

 ≤⏞
𝒑 ≤ 𝟐

 
𝒑

𝟐
= 𝑳𝑯𝑺(∗). 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂, 𝒃, 𝒄) = (𝟏, 𝟏, 𝟎) 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 
 

Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑳𝒆𝒕 𝒑 ≔ 𝒂 + 𝒃 + 𝒄. 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   𝟐𝒂 + 𝒃𝒄 ≤⏞
𝑨𝑴−𝑮𝑴

(
𝒂

𝒃 + 𝒄
+ 𝒂(𝒃 + 𝒄)) + 𝒃𝒄 =

𝒂

𝒃 + 𝒄
+ 𝟏 =

𝒑

𝒃 + 𝒄
. 

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   𝟐𝒃 + 𝒄𝒂 ≤
𝒑

𝒄 + 𝒂
. 

𝑻𝒉𝒆𝒏 ∶   
𝟏

(𝟐𝒂 + 𝒃𝒄)(𝟐𝒃 + 𝒄𝒂)
≥
(𝒃 + 𝒄)(𝒄 + 𝒂)

𝒑𝟐
  (𝒂𝒏𝒂 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

⇒  ∑
𝟏

(𝟐𝒂 + 𝒃𝒄)(𝟐𝒃 + 𝒄𝒂)
𝒄𝒚𝒄

≥∑
(𝒃 + 𝒄)(𝒄 + 𝒂)

𝒑𝟐
𝒄𝒚𝒄

 

⇔
𝟐𝒑 + (𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)

(𝟐𝒂 + 𝒃𝒄)(𝟐𝒃 + 𝒄𝒂)(𝟐𝒄 + 𝒂𝒃)
≥
𝒑𝟐 + (𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)

𝒑𝟐
 

𝑻𝒉𝒆𝒏 ∶  (𝟐𝒂 + 𝒃𝒄)(𝟐𝒃 + 𝒄𝒂)(𝟐𝒄 + 𝒂𝒃) ≤
𝒑𝟐(𝟐𝒑 + 𝟏)

𝒑𝟐 + 𝟏
  (𝟏) 

𝑵𝒐𝒘 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 𝟐𝒂 + √𝒃𝒄 ≥⏞
𝑮𝑴−𝑯𝑴

𝟐𝒂 +
𝟐𝒃𝒄

𝒃 + 𝒄
=
𝟐(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)

𝒃 + 𝒄
=

𝟐

𝒃 + 𝒄
. 

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   𝟐𝒃 + √𝒄𝒂 ≥
𝟐

𝒄 + 𝒂
. 

𝑻𝒉𝒆𝒏 ∶   
𝟏

(𝟐𝒂 + √𝒃𝒄)(𝟐𝒃 + √𝒄𝒂)
≤
(𝒃 + 𝒄)(𝒄 + 𝒂)

𝟒
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

⇒  ∑
𝟏

(𝟐𝒂 + √𝒃𝒄)(𝟐𝒃 + √𝒄𝒂)
𝒄𝒚𝒄

≤∑
(𝒃 + 𝒄)(𝒄 + 𝒂)

𝟒
𝒄𝒚𝒄

 

⇔ 
𝟐𝒑 + (√𝒂𝒃 + √𝒃𝒄 + √𝒄𝒂)

(𝟐𝒂 + √𝒃𝒄)(𝟐𝒃 + √𝒄𝒂)(𝟐𝒄 + √𝒂𝒃)
≤
𝒑𝟐 + (𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)

𝟒
 

𝑻𝒉𝒆𝒏 ∶  
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 (𝟐𝒂 + √𝒃𝒄)(𝟐𝒃 + √𝒄𝒂)(𝟐𝒄 + √𝒂𝒃) ≥
𝟒[𝟐𝒑 + (√𝒂𝒃 + √𝒃𝒄 + √𝒄𝒂)]

𝒑𝟐 + 𝟏
≥
𝟒(𝟐𝒑+ 𝟏)

𝒑𝟐 + 𝟏
 (𝟐) 

𝑭𝒓𝒐𝒎 (𝟏) 𝒂𝒏𝒅 (𝟐) 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

√
(𝟐𝒂 + 𝒃𝒄)(𝟐𝒃 + 𝒄𝒂)(𝟐𝒄 + 𝒂𝒃)

(𝟐𝒂 + √𝒃𝒄)(𝟐𝒃 + √𝒄𝒂)(𝟐𝒄 + √𝒂𝒃)
≤
𝒑

𝟐
=
𝒂 + 𝒃 + 𝒄

𝟐
. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂,𝒃, 𝒄) = (𝟏, 𝟏, 𝟎) 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 
 

1156. 𝑰𝒇 𝒂, 𝒃, 𝒄 > 0 𝑎𝑛𝑑 
𝟏

𝟒
≤ 𝝀 ≤

𝟓

𝟒
 𝒕𝒉𝒆𝒏 ∶ 

∑
𝒂(𝒃 + 𝒄)

𝒂𝟐 + 𝝀(𝒃 + 𝒄)𝟐
𝒄𝒚𝒄

≤
𝟔

𝟒𝝀 + 𝟏
 

Proposed by Marin Chirciu-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑳𝒆𝒎𝒎𝒂 ∶   𝑰𝒇 𝒙, 𝒚 > 0 𝑡ℎ𝑒𝑛 ∶  
𝒙𝒚

𝒙𝟐 + 𝝀𝒚𝟐
≤
𝟒(𝟖𝝀 − 𝟏)𝒙 + (𝟓 − 𝟒𝝀)𝒚

(𝟒𝝀 + 𝟏)𝟐(𝒙 + 𝒚)
  (𝟏) 

𝑷𝒓𝒐𝒐𝒇 ∶   (𝟏)  ⇔  (𝒙𝟐 + 𝝀𝒚𝟐)[𝟒(𝟖𝝀 − 𝟏)𝒙 + (𝟓 − 𝟒𝝀)𝒚] − (𝟒𝝀 + 𝟏)𝟐(𝒙+ 𝒚)𝒙𝒚 ≥ 𝟎 

⇔  𝟒(𝟖𝝀 − 𝟏)𝒙𝟑 − 𝟒(𝟒𝝀𝟐 + 𝟑𝝀− 𝟏)𝒙𝟐𝒚+ (𝟏𝟔𝝀𝟐 − 𝟏𝟐𝝀− 𝟏)𝒙𝒚𝟐 + 𝝀(𝟓 − 𝟒𝝀)𝒚𝟑 ≥ 𝟎 

⇔ (𝟐𝒙 − 𝒚)𝟐[(𝟖𝝀 − 𝟏)𝒙 + 𝝀(𝟓 − 𝟒𝝀)𝒚] ≥ 𝟎,   𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆. (∴
𝟏

𝟒
≤ 𝝀 ≤

𝟓

𝟒
) 

𝑳𝒆𝒕 𝒙 = 𝒂 𝒂𝒏𝒅 𝒚 = 𝒃 + 𝒄,   𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝒂(𝒃 + 𝒄)

𝒂𝟐 + 𝝀(𝒃 + 𝒄)𝟐
≤
𝟒(𝟖𝝀 − 𝟏)𝒂 + (𝟓 − 𝟒𝝀)(𝒃 + 𝒄)

(𝟒𝝀 + 𝟏)𝟐(𝒂+ 𝒃 + 𝒄)
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   ∑
𝒂(𝒃 + 𝒄)

𝒂𝟐 + 𝝀(𝒃 + 𝒄)𝟐
𝒄𝒚𝒄

≤∑
𝟒(𝟖𝝀− 𝟏)𝒂 + (𝟓 − 𝟒𝝀)(𝒃 + 𝒄)

(𝟒𝝀 + 𝟏)𝟐(𝒂 + 𝒃 + 𝒄)
𝒄𝒚𝒄

= 

=
𝟒(𝟖𝝀 − 𝟏)(𝒂 + 𝒃 + 𝒄) + (𝟓 − 𝟒𝝀).𝟐(𝒂 + 𝒃 + 𝒄)

(𝟒𝝀 + 𝟏)𝟐(𝒂 + 𝒃 + 𝒄)
=

𝟔

𝟒𝝀+ 𝟏
. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒅.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄. 
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1157. 𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 > 𝟎 ∶ 𝒂𝒃𝒄 = 𝟏.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝟒

(𝒂 + 𝟏)(𝒃 + 𝟏)(𝒄 + 𝟏)
+
𝟏

𝟒
≥

𝒂

(𝒂 + 𝟏)𝟐
+

𝒃

(𝒃 + 𝟏)𝟐
+

𝒄

(𝒄 + 𝟏)𝟐
 

Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑳𝒆𝒕 𝒙 ≔
𝟏

𝒂 + 𝟏
,   𝒚 ≔

𝟏

𝒃 + 𝟏
,   𝒛 ≔

𝟏

𝒄 + 𝟏
. 

𝑻𝒉𝒆 𝒑𝒓𝒐𝒃𝒍𝒆𝒎 𝒃𝒆𝒄𝒐𝒎𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 ∶ 

𝟒𝒙𝒚𝒛 +
𝟏

𝟒
≥ (𝒙 − 𝒙𝟐) + (𝒚 − 𝒚𝟐) + (𝒛 − 𝒛𝟐)  𝒐𝒓  𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝟒𝒙𝒚𝒛 +

𝟏

𝟒
≥ 𝒙+ 𝒚+ 𝒛  (𝟏) 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 𝒂 =
𝟏

𝒙
− 𝟏 =

𝟏 − 𝒙

𝒙
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 𝒕𝒉𝒆𝒏 𝒇𝒓𝒐𝒎 𝒕𝒉𝒆 𝒈𝒊𝒗𝒆𝒏 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏, 

𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   
(𝟏 − 𝒙)(𝟏 − 𝒚)(𝟏 − 𝒛)

𝒙𝒚𝒛
= 𝟏  𝒐𝒓  𝟐𝒙𝒚𝒛 = 𝟏 − (𝒙 + 𝒚 + 𝒛) + (𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙) 

𝑻𝒉𝒆𝒏 (𝟏)  ⇔  𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝟐(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙) +
𝟗

𝟒
≥ 𝟑(𝒙 + 𝒚 + 𝒛) 

⇔ (𝒙 + 𝒚 + 𝒛)𝟐 − 𝟑(𝒙 + 𝒚 + 𝒛) +
𝟗

𝟒
≥ 𝟎 ⇔ (𝒙 + 𝒚 + 𝒛 −

𝟑

𝟐
)
𝟐

≥ 𝟎, 

𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒂𝒏𝒅 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆. 

1158. 𝑰𝒇 𝒂, 𝒃, 𝒄, 𝝀 > 0 𝑡ℎ𝑒𝑛 ∶ 

(𝝀 + 𝟏) (
𝒂

𝒃
+
𝒃

𝒄
+
𝒄

𝒂
) ≥ 𝟑(𝝀 − 𝟏) +

(𝒂 + 𝒃)𝟐

𝒂𝟐 + 𝒃𝒄
+
(𝒃 + 𝒄)𝟐

𝒃𝟐 + 𝒄𝒂
+
(𝒄 + 𝒂)𝟐

𝒄𝟐 + 𝒂𝒃
 

Proposed by Marin Chirciu, Octavian Stroe-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑩𝒚 𝑪𝑩𝑺 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

 
(𝒂 + 𝒃)𝟐

𝒂𝟐 + 𝒃𝒄
≤
𝒂𝟐

𝒂𝟐
+
𝒃𝟐

𝒃𝒄
= 𝟏 +

𝒃

𝒄
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 
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𝑻𝒉𝒆𝒏 ∶   𝑹𝑯𝑺 ≤ 𝟑(𝝀 − 𝟏) + 𝟑 + (
𝒂

𝒃
+
𝒃

𝒄
+
𝒄

𝒂
) = 𝝀. 𝟑 + (

𝒂

𝒃
+
𝒃

𝒄
+
𝒄

𝒂
) ≤ 

≤⏞
𝑨𝑴−𝑮𝑴

 𝝀. (
𝒂

𝒃
+
𝒃

𝒄
+
𝒄

𝒂
) + (

𝒂

𝒃
+
𝒃

𝒄
+
𝒄

𝒂
) = (𝝀 + 𝟏)(

𝒂

𝒃
+
𝒃

𝒄
+
𝒄

𝒂
) = 𝑳𝑯𝑺. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄. 

1159. 𝑰𝒇 𝒂, 𝒃, 𝒄 > 𝟎 𝒂𝒏𝒅 𝝀 ≥ 𝟎 𝒕𝒉𝒆𝒏 ∶ 

∑
𝟏

𝒂𝟑 + 𝝀𝒂𝒃𝒄
𝒄𝒚𝒄

≥
𝟑(𝒂 + 𝒃 + 𝒄)

(𝝀 + 𝟏)(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐)
 

Proposed by Marin Chirciu-Romania 
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑳𝒆𝒕 𝒙 ≔
𝟏

𝒂
,   𝒚 ≔

𝟏

𝒃
,   𝒛 ≔

𝟏

𝒄
.  𝑻𝒉𝒆 𝒑𝒓𝒐𝒃𝒍𝒆𝒎 𝒃𝒆𝒄𝒐𝒎𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 ∶ 

∑
𝒙𝟐

𝒚𝒛 + 𝝀𝒙𝟐
𝒄𝒚𝒄

≥
𝟑(𝒙𝒚+ 𝒚𝒛 + 𝒛𝒙)

(𝝀 + 𝟏)(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐)
. 

𝑩𝒚 𝑩𝒆𝒓𝒈𝒔𝒕𝒓ӧ𝒎′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

∑
𝒙𝟐

𝒚𝒛 + 𝝀𝒙𝟐
𝒄𝒚𝒄

≥
(𝒙 + 𝒚 + 𝒛)𝟐

(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙) + 𝝀(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐)
≥

𝟑(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙)

(𝝀 + 𝟏)(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐)
, 

𝒃𝒆𝒄𝒂𝒖𝒔𝒆 ∶   (𝒙 + 𝒚 + 𝒛)𝟐 ≥ 𝟑(𝒙𝒚+ 𝒚𝒛 + 𝒛𝒙)  𝒂𝒏𝒅  𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙 ≤ 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒙 = 𝒚 = 𝒛 ⇔  𝒂 = 𝒃 = 𝒄. 

Solution 2 by Tapas Das-India 

∑
𝟏

𝒂𝟑 + 𝝀𝒂𝒃𝒄
𝒄𝒚𝒄

=∑

𝟏
𝒂𝟐

𝒂 + 𝝀 ⋅
𝒃𝒄
𝒂𝒄𝒚𝒄

≥
(
𝟏
𝒂 +

𝟏
𝒃 +

𝟏
𝒄)

𝟐

(𝒂 + 𝒃 + 𝒄) + 𝝀(
𝒃𝒄
𝒂 +

𝒄𝒂
𝒃 +

𝒂𝒃
𝒄 )

= 

=
(
𝟏
𝒂
+
𝟏
𝒃
+
𝟏
𝒄
)
𝟐

(𝒂 + 𝒃 + 𝒄) + 𝝀 ⋅
𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐 + 𝒂𝟐𝒃𝟐

𝒂𝒃𝒄

=
𝒂𝒃𝒄 (

𝟏
𝒂
+
𝟏
𝒃
+
𝟏
𝒄
)
𝟐

𝒂𝒃𝒄(𝒂 + 𝒃 + 𝒄) + 𝝀(𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐 + 𝒂𝟐𝒃𝟐)
= 
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=

(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)𝟐

𝒂𝒃𝒄
𝒂𝒃 ⋅ 𝒂𝒄 + 𝒂𝒃 ⋅ 𝒃𝒄 + 𝒃𝒄 ⋅ 𝒄𝒂 + 𝝀(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐)

≥ 

≥

(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)𝟐

𝒂𝒃𝒄
(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐) + 𝝀(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐)

= 

=

(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)𝟐

𝒂𝒃𝒄
(𝝀 + 𝟏)(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐)

≥
𝟑(𝒂𝒃 ⋅ 𝒃𝒄 + 𝒃𝒄 ⋅ 𝒄𝒂 + 𝒄𝒂 ⋅ 𝒂𝒃)

(𝝀 + 𝟏)(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐)𝒂𝒃𝒄
= 

=
𝟑(𝒂 + 𝒃 + 𝒄)

(𝝀 + 𝟏)(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐)
    

Solution 3 by Soumitra Mandal-Chandar Nagore-India 

∑
𝟏

𝒂𝟑 + 𝝀𝒂𝒃𝒄
𝒄𝒚𝒄

=∑

𝟏
𝒂

𝒂𝟐 + 𝝀𝒃𝒄
𝒄𝒚𝒄

=∑

𝟏
𝒂𝟐

𝒂 + 𝝀 ⋅
𝒃𝒄
𝒂𝒄𝒚𝒄

≥
𝑪𝑩𝑺

 

≥
(
𝟏
𝒂+

𝟏
𝒃 +

𝟏
𝒄)

𝟐

∑𝒂 + 𝝀∑
𝒃𝒄
𝒂

=
𝒂𝒃𝒄 (

𝟏
𝒂 +

𝟏
𝒃 +

𝟏
𝒄)

𝟐

𝒂𝒃𝒄∑𝒂 + 𝝀∑𝒂𝟐𝒃𝟐
≥

𝟑𝒂𝒃𝒄 ∑
𝟏
𝒂𝒃

(𝝀 + 𝟏)∑𝒂𝟐𝒃𝟐
= 

=
𝟑(𝒂 + 𝒃 + 𝒄)

(𝝀 + 𝟏)∑𝒂𝟐𝒃𝟐
 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂 = 𝒃 = 𝒄.   

1160. 𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 > 𝟎.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝒃

(𝟐𝒂 + 𝒃)(𝟐𝒂 + 𝒄)
+

𝒄

(𝟐𝒃 + 𝒄)(𝟐𝒃 + 𝒂)
+

𝒂

(𝟐𝒄 + 𝒂)(𝟐𝒄 + 𝒃)
≥

𝟏

𝒂 + 𝒃 + 𝒄
 

Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution 1 by Sanong Huayrerai-Nakon Pathom-Thailand 

∑
𝒂

(𝒂+ 𝟐𝒄)(𝒃 + 𝟐𝒄)
𝒄𝒚𝒄

≥
𝟏

𝒂 + 𝒃 + 𝒄
⇔∑

𝒙

(𝒙 + 𝟐𝒛)(𝒚 + 𝟐𝒛)
𝒄𝒚𝒄

≥ 𝟏; (𝒙 + 𝒚 + 𝒛 = 𝟏) 

(𝒙 + 𝒚 + 𝒛)𝟐

∑𝒙(𝒙 + 𝟐𝒛)(𝒚 + 𝟐𝒛)
≥ 𝟏 

∑𝒙(𝒙𝒚+ 𝟐𝒙𝒛 + 𝟐𝒚𝒛 + 𝟒𝒛𝟐)

𝒄𝒚𝒄

≥ 𝟏 
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𝒙𝟑 + 𝒚𝟑 + 𝒛𝟑 + 𝒙𝟐𝒛 + 𝒛𝟐𝒚 + 𝒚𝟐𝒙 ≥ 𝟐(𝒙𝟐𝒚 + 𝒚𝟐𝒛 + 𝒛𝟐𝒙) 𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆, 𝒃𝒆𝒄𝒂𝒖𝒔𝒆: 

𝒙𝟑 + 𝒙𝒚𝟐 ≥ 𝟐𝒙𝟐𝒚, 𝒚𝟑 + 𝒛𝟐𝒚 ≥ 𝟐𝒚𝟐𝒛, 𝒛𝟑 + 𝒛𝒙𝟐 ≥ 𝟐𝒛𝟐𝒙   

Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑩𝒚 𝑯ӧ𝒍𝒅𝒆𝒓′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

∑
𝒃

(𝟐𝒂+ 𝒃)(𝟐𝒂 + 𝒄)
𝒄𝒚𝒄

≥
(∑ 𝒃𝒄𝒚𝒄 )

𝟑

[∑ 𝒃(𝟐𝒂 + 𝒃)𝒄𝒚𝒄 ][∑ 𝒃(𝟐𝒂+ 𝒄)𝒄𝒚𝒄 ]
=

(∑ 𝒂𝒄𝒚𝒄 )
𝟑

(∑ 𝒂𝒄𝒚𝒄 )
𝟐
. 𝟑∑ 𝒃𝒄𝒄𝒚𝒄

= 

=
𝒂 + 𝒃 + 𝒄

𝟑(𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂)
≥⏞

𝟑∑ 𝒃𝒄 ≤ (∑𝒂)𝟐

 
𝟏

𝒂 + 𝒃 + 𝒄
,   𝒂𝒔 𝒅𝒆𝒔𝒊𝒓𝒆𝒅. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄. 

Solution 3 by Tran Quoc Anh-Vietnam 

∑
𝒃

(𝟐𝒂+ 𝒃)(𝟐𝒂 + 𝒄)
𝒄𝒚𝒄

≥
𝑪𝑩𝑺

∑
𝟒𝒃

(𝟒𝒂+ 𝒃+ 𝒄)𝟐
𝒄𝒚𝒄

= 𝟒∑
𝒃𝟑

𝟒𝒂𝒃+ 𝒃𝒄 + 𝒃𝟐𝒄𝒚𝒄

≥
𝑹𝒂𝒅𝒐𝒏

 

≥
𝟒(𝒂 + 𝒃 + 𝒄)𝟑

(∑𝒂 + 𝟓∑𝒂𝒃)𝟐
;         (𝟏) 

𝑨𝒍𝒕𝒆𝒓𝒏𝒂𝒕𝒊𝒗𝒆𝒍𝒚: 

𝑳𝒆𝒕 𝒂 + 𝒃 + 𝒄 = 𝒑 > 0 𝑎𝑛𝑑 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 = 𝑞 > 0, 𝑡ℎ𝑒𝑛 𝒑𝟐 ≥ 𝟑𝒒 

𝟒𝒑𝟒 − (𝒑𝟐 + 𝟑𝒒)𝟐 = 𝟑(𝒑𝟐 − 𝟑𝒒)(𝒑𝟐 + 𝒒) ≥ 𝟎 

𝟒𝒑𝟒 ≥ (𝒑𝟐 + 𝟑𝒒)𝟐 ⇒
𝟒𝒑𝟑

(𝒑𝟐 + 𝟑𝒒)𝟐
≥
𝟏

𝒑
 

𝟒(𝒂 + 𝒃 + 𝒄)𝟑

(∑𝒂𝟐 + 𝟓∑𝒂𝒃)𝟐
≥

𝟏

𝒂 + 𝒃 + 𝒄
;       (𝟐) 

𝑭𝒓𝒐𝒎 (𝟏) 𝒂𝒏𝒅 (𝟐) 𝒘𝒆 𝒉𝒂𝒗𝒆: 

∑
𝒃

(𝟐𝒂 + 𝒃)(𝟐𝒂 + 𝒄)
𝒄𝒚𝒄

≥
𝟏

𝒂 + 𝒃 + 𝒄
   

1161. If 𝒙, 𝒚, 𝒛 > 0, 𝑥𝑦𝑧 = 1 then: 

(𝒚𝟐 + 𝒛𝟐) (
𝒚𝒛

𝒙
)
𝐥𝐨𝐠(

𝒚
𝒛
)

+ (𝒛𝟐 + 𝒙𝟐) (
𝒛𝒙

𝒚
)
𝐥𝐨𝐠(

𝒛
𝒙
)

+ (𝒙𝟐 + 𝒚𝟐) (
𝒙𝒚

𝒛
)
𝐥𝐨𝐠(

𝒙
𝒚
)

≥ 𝟔 

Proposed by Daniel Sitaru-Romania 
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Solution 1 by Ravi Prakash-New Delhi-India 

𝑳𝒆𝒕 𝑨 = (𝒚𝟐 + 𝒛𝟐) (
𝒚𝒛

𝒙
)
𝐥𝐨𝐠(

𝒚
𝒛
)

+ (𝒛𝟐 + 𝒙𝟐) (
𝒛𝒙

𝒚
)
𝐥𝐨𝐠(

𝒛
𝒙
)

+ (𝒙𝟐 + 𝒚𝟐) (
𝒙𝒚

𝒛
)
𝐥𝐨𝐠(

𝒙
𝒚
)

≥ 

≥ 𝟐𝒚𝒛 (
𝒚𝒛

𝒙
)
𝐥𝐨𝐠(

𝒚
𝒛
)

+ 𝟐𝒛𝒙 (
𝒛𝒙

𝒚
)
𝐥𝐨𝐠(

𝒛
𝒙
)

+ 𝟐𝒙𝒚(
𝒙𝒚

𝒛
)
𝐥𝐨𝐠(

𝒙
𝒚
)

≥ 

≥ 𝟐 ⋅ 𝟑 ⋅ (𝒙𝟐𝒚𝟐𝒛𝟐 ⋅ 𝑬)
𝟏
𝟑 = 𝟔𝑬

𝟏
𝟑, 𝒘𝒉𝒆𝒓𝒆 

𝑬 = (
𝒚𝒛

𝒙
)
𝐥𝐨𝐠(

𝒚
𝒛
)

(
𝒛𝒙

𝒚
)
𝐥𝐨𝐠(

𝒛
𝒙
)

(
𝒙𝒚

𝒛
)
𝐥𝐨𝐠(

𝒙
𝒚
)

= 𝒙−𝟐 𝐥𝐨𝐠(
𝒚
𝒛
)𝒚−𝟐 𝐥𝐨𝐠(

𝒛
𝒙
)𝒛
−𝟐 𝐥𝐨𝐠(

𝒙
𝒚
)
; 𝒙𝒚𝒛 = 𝟏 

𝑯𝒆𝒏𝒄𝒆, 

𝐥𝐨𝐠𝑬 = −𝟐[(𝐥𝐨𝐠𝒚 − 𝐥𝐨𝐠 𝒛) 𝐥𝐨𝐠 𝒙 + (𝐥𝐨𝐠 𝒛 − 𝐥𝐨𝐠 𝒙) 𝐥𝐨𝐠𝒚 + (𝐥𝐨𝐠𝒙 − 𝐥𝐨𝐠𝒚) 𝐥𝐨𝐠 𝒛]

= −𝟐 ⋅ 𝟎 = 𝟎, 𝒕𝒉𝒆𝒏 𝑬 = 𝟏 𝒂𝒏𝒅 𝑨 ≥ 𝟔.    

Solution 2 by Hikmat Mammadov-Azerbaijan 

𝚿 = (𝒚𝟐 + 𝒛𝟐) (
𝒚𝒛

𝒙
)
𝐥𝐨𝐠(

𝒚
𝒛
)

+ (𝒛𝟐 + 𝒙𝟐) (
𝒛𝒙

𝒚
)
𝐥𝐨𝐠(

𝒛
𝒙
)

+ (𝒙𝟐 + 𝒚𝟐) (
𝒙𝒚

𝒛
)
𝐥𝐨𝐠(

𝒙
𝒚
)

≥ 

≥ 𝟐𝒚𝒛 (
𝒚𝒛

𝒙
)
𝐥𝐨𝐠(

𝒚
𝒛
)

+ 𝟐𝒛𝒙(
𝒛𝒙

𝒚
)
𝐥𝐨𝐠(

𝒛
𝒙
)

+ 𝟐𝒙𝒚(
𝒙𝒚

𝒛
)
𝐥𝐨𝐠(

𝒙
𝒚
)

≥
𝑨𝑴−𝑮𝑴

 

≥ 𝟔 ⋅ √
𝟏

𝒙𝟏+𝟐 𝐥𝐨𝐠(
𝒚
𝒛
)𝒚𝟏+𝟐 𝐥𝐨𝐠(

𝒛
𝒙
)𝒛

𝟏+𝟐 𝐥𝐨𝐠(
𝒙
𝒚
)

𝟑
= 

= 𝟔 ⋅ √𝐞𝐱𝐩(−(∑(𝐥𝐨𝐠 𝒙 + 𝟐 𝐥𝐨𝐠 𝒙 𝐥𝐨𝐠 𝒚 − 𝟐 𝐥𝐨𝐠𝒙 𝐥𝐨𝐠 𝒛)

𝒄𝒚𝒄

))
𝟑

= 

= 𝟔 ⋅ √𝐞𝐱𝐩(− 𝒍𝒐𝒈(𝒙𝒚𝒛))
𝟑

≥ 𝟔 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 

  (𝒚𝟐 + 𝒛𝟐) (
𝒚𝒛

𝒙
)
𝐥𝐨𝐠(

𝒚
𝒛
)

+ (𝒛𝟐 + 𝒙𝟐) (
𝒛𝒙

𝒚
)
𝐥𝐨𝐠(

𝒛
𝒙
)

+ (𝒙𝟐 + 𝒚𝟐) (
𝒙𝒚

𝒛
)
𝐥𝐨𝐠(

𝒙
𝒚
)

≥ 𝟔 
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1162. 𝑰𝒇 𝒙, 𝒚, 𝒛 > 𝟎, 𝒙 + 𝒚 + 𝒛 = 𝟑 𝒂𝒏𝒅 𝒏 ∈ 𝑵, 𝒕𝒉𝒆𝒏 ∶ 

∑
𝒙𝒏(𝒙 + 𝒚)

(𝒚 + √𝒛𝒙)
𝟐

𝒄𝒚𝒄

≥
𝟑

𝟐
 

Proposed by Marin Chirciu-Romania 
Solution 1 by Sanong Huayrerai-Nakon Pathom-Thailand 

𝑭𝒐𝒓 𝒙, 𝒚, 𝒛 > 0, 𝑥 + 𝑦 + 𝑧 = 3,𝑤𝑒 𝑔𝑖𝑣𝑒: 𝒂𝟐 = 𝒙,𝒃𝟐 = 𝒚, 𝒄𝟐 = 𝒛, 𝒕𝒉𝒆𝒏: 

∑
𝒙𝒏(𝒙 + 𝒚)

(𝒚 + √𝒛𝒙)
𝟐

𝒄𝒚𝒄

≥
𝒙𝒏 + 𝒚𝒏 + 𝒛𝒏

𝟑
∑

𝒙 + 𝒚

(𝒚 + √𝒛𝒙)
𝟐

𝒄𝒚𝒄

= 

=∑

(
𝒙 + 𝒚

𝒚 +√𝒚𝒛
)

𝟐

𝒙 + 𝒚
𝒄𝒚𝒄

≥

(∑
𝒙 + 𝒚

𝒚 + √𝒛𝒙
)

𝟐

𝟐(∑𝒙)
≥
𝟑

𝟐
 

𝑰𝒇𝒇 (∑
𝒙 + 𝒚

𝒚 + √𝒛𝒙
)

𝟐

≥ 𝟗 ⇔∑
𝒙+ 𝒚

𝒚 + √𝒛𝒙
≥ 𝟑 

𝟑√
(𝒂𝟐 + 𝒃𝟐)(𝒃𝟐 + 𝒄𝟐)(𝒄𝟐 + 𝒂𝟐)

(𝒂𝟐 + 𝒃𝒄)(𝒃𝟐 + 𝒄𝒂)(𝒄𝟐 + 𝒂𝒃)

𝟑

≥ 𝟑 

(𝒂𝟐 + 𝒃𝟐)(𝒃𝟐 + 𝒄𝟐)(𝒄𝟐 + 𝒂𝟐) ≥ (𝒂𝟐 + 𝒃𝒄)(𝒃𝟐 + 𝒄𝒂)(𝒄𝟐 + 𝒂𝒃) 

𝒂𝟒𝒃𝟐 + 𝒃𝟒𝒄𝟐 + 𝒄𝟒𝒂𝟐 + 𝒄𝟒𝒂𝟐 + 𝒄𝟒𝒃𝟐 + 𝒃𝟒𝒂𝟐 + 𝟐𝒂𝟐𝒃𝟐𝒄𝟐 ≥ 

𝒂𝟑𝒃𝟑 + 𝒃𝟑𝒄𝟑 + 𝒄𝟑𝒂𝟑 + 𝒂𝟒𝒃𝒄 + 𝒃𝟒𝒄𝒂 + 𝒄𝟒𝒂𝒃 + 𝟐𝒂𝟐𝒃𝟐𝒄𝟐 

   𝒂𝟒𝒃𝟐 + 𝒃𝟒𝒄𝟐 + 𝒄𝟒𝒂𝟐 + 𝒄𝟒𝒂𝟐 + 𝒄𝟒𝒃𝟐 + 𝒃𝟒𝒂𝟐 ≥ 𝟐(𝒂𝟒𝒃𝒄 + 𝒃𝟒𝒄𝒂 + 𝒄𝟒𝒂𝒃) 𝒕𝒓𝒖𝒆. 

Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco  

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  

 ∑
𝒙𝒏(𝒙 + 𝒚)

(𝒚 + √𝒛𝒙)
𝟐

𝒄𝒚𝒄

 ≥⏞
𝑪𝑩𝑺

 ∑
𝒙𝒏(𝒙 + 𝒚)

(𝒚 + 𝒛)(𝒚 + 𝒙)
𝒄𝒚𝒄

=∑
𝒙𝒏

𝒚 + 𝒛
𝒄𝒚𝒄

≥ 

≥⏞
𝑯ӧ𝒍𝒅𝒆𝒓 𝒊𝒇 𝒏 ≥ 𝟐 𝒐𝒓 𝑵𝒆𝒔𝒃𝒊𝒕𝒕 𝒊𝒇 𝒏 = 𝟏

 
(𝒙 + 𝒚 + 𝒛)𝒏

𝟑𝒏−𝟐. 𝟐(𝒙 + 𝒚 + 𝒛)
=
𝟑

𝟐
. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒙 = 𝒚 = 𝒛 = 𝟏. 
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1163. 𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 > 𝟎 ∶ 𝒂𝒃𝒄 = 𝟏.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

√
𝒂

𝒃 + 𝒄
+ √

𝒃

𝒄 + 𝒂
+ √

𝒄

𝒂 + 𝒃
≥

𝟑

√𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑 − 𝟏
 

Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 

 𝑳𝑯𝑺𝟐  ≥⏞
𝑯ӧ𝒍𝒅𝒆𝒓

 
(𝟏 + 𝟏 + 𝟏)𝟑

∑ 𝒃𝒄(𝒃 + 𝒄)𝒄𝒚𝒄
≥⏞

𝑨𝑴−𝑮𝑴 𝟐𝟕

∑ (𝒃𝟑 + 𝒄𝟑)𝒄𝒚𝒄 + 𝟑𝒂𝒃𝒄 − 𝟑
≥ 

≥⏞
𝑨𝑴−𝑮𝑴 𝟐𝟕

𝟐∑ 𝒂𝟑𝒄𝒚𝒄 +∑ 𝒂𝟑𝒄𝒚𝒄 − 𝟑
=

𝟗

𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑 − 𝟏
= 𝑹𝑯𝑺𝟐. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄 = 𝟏. 

1164. 𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 ≥ 𝟎, 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 > 𝟎 𝒕𝒉𝒆𝒏 ∶ 

(𝟏 +
𝒂

𝒃 + 𝒄
)
𝟐

+ (𝟏 +
𝒃

𝒄 + 𝒂
)

𝟐

+ (𝟏 +
𝒄

𝒂 + 𝒃
)
𝟐

≥ 𝟏 +
𝟒(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂
. 

Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑫𝒖𝒆 𝒕𝒐 𝒉𝒐𝒎𝒐𝒈𝒆𝒏𝒊𝒕𝒚,𝒘𝒆 𝒎𝒂𝒚 𝒂𝒔𝒔𝒖𝒎𝒆 𝒕𝒉𝒂𝒕 ∶   𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏. 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  
𝒂

𝒃 + 𝒄
= 𝒂𝟐 +

𝒂𝒃𝒄

𝒃 + 𝒄
≥ 𝒂𝟐,   𝒕𝒉𝒆𝒏 ∶ 

(𝟏 +
𝒂

𝒃 + 𝒄
)
𝟐

= 𝟏 +
𝟐𝒂

𝒃 + 𝒄
+

𝒂𝟐

(𝒃 + 𝒄)𝟐
≥ 𝟏+ 𝟐𝒂𝟐 +

𝒂𝟑

𝒃 + 𝒄
= 

= 𝟐𝒂𝟐 + 𝒃𝒄 + (𝒂(𝒃 + 𝒄) +
𝒂𝟑

𝒃 + 𝒄
) ≥⏞
𝑨𝑴−𝑮𝑴

𝟐𝒂𝟐 + 𝒃𝒄 + 𝟐𝒂𝟐 = 𝒃𝒄 + 𝟒𝒂𝟐. 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 
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∑(𝟏+
𝒂

𝒃 + 𝒄
)
𝟐

𝒄𝒚𝒄

≥∑(𝒃𝒄+ 𝟒𝒂𝟐)

𝒄𝒚𝒄

= 𝟏+ 𝟒(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) = 𝟏 +
𝟒(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂
. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂 = 𝒃 𝒂𝒏𝒅 𝒄 = 𝟎) 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 

Solution 2 by Sanong Huayrerai-Nakon Pathom-Thailand 
𝑭𝒐𝒓 𝒂,𝒃, 𝒄 ≥ 𝟎,𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 > 0,𝑤𝑒 𝑔𝑒𝑡: 

∑(𝟏+
𝒂

𝒃 + 𝒄
)
𝟐

𝒄𝒚𝒄

≥ 𝟏 + 𝟒 ⋅
𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂
 

𝟑 +∑(
𝒂

𝒃 + 𝒄
)
𝟐

𝒄𝒚𝒄

+ 𝟐∑
𝒂

𝒃 + 𝒄
𝒄𝒚𝒄

≥ 𝟏 + 𝟒 ⋅
𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂
 

𝟖∑𝒂𝒃

𝒄𝒚𝒄

+ 𝟐 [∑𝒂𝟐

𝒄𝒚𝒄

+ 𝒂𝒃𝒄∑
𝟏

𝒂 + 𝒃
𝒄𝒚𝒄

] +∑
𝒂

𝒃 + 𝒄
⋅ (𝒂𝟐 +

𝒂𝒃𝒄

𝒃 + 𝒄
)

𝒄𝒚𝒄

≥ 𝟒∑𝒂𝟐

𝒄𝒚𝒄

 

𝟐∑𝒂𝒃

𝒄𝒚𝒄

+ 𝟐𝒂𝒃𝒄∑
𝟏

𝒂 + 𝒃
𝒄𝒚𝒄

+∑
𝒂𝟑

𝒃 + 𝒄
𝒄𝒚𝒄

+∑
𝒂𝟐𝒃𝒄

(𝒃 + 𝒄)𝟐
𝒄𝒚𝒄

≥ 𝟐∑𝒂𝟐

𝒄𝒚𝒄

 

𝟐∑𝒂𝟐

𝒄𝒚𝒄

≥ 𝟐∑𝒂𝟐

𝒄𝒚𝒄

 𝒕𝒓𝒖𝒆.   

1165. If 𝒎,𝒏, 𝒙, 𝒚, 𝒛 > 0 then: 

∑(𝟏 +
𝒙

𝒎𝒚 + 𝒏𝒛
)
𝒕+𝟏

𝒄𝒚𝒄

≥ 𝟑(
𝒎 + 𝒏+ 𝟏

𝒎+ 𝒏
)
𝒕+𝟏

;  𝒕 ≥ 𝟎 

Proposed by D.M. Bătineţu-Giurgiu, Florică Anastase-Romania 
Solution by Tapas Das-India 

∑(𝟏+
𝒙

𝒎𝒚 + 𝒏𝒛
)
𝒕+𝟏

𝒄𝒚𝒄

≥
𝑹𝒂𝒅𝒐𝒏 𝟏

𝟑𝒕
(𝟑 +∑

𝒙

𝒎𝒚 + 𝒏𝒛
𝒄𝒚𝒄

)

𝒕+𝟏

= 

=
𝟏

𝟑𝒕
(𝟑 +∑

𝒙𝟐

𝒎𝒙𝒚 + 𝒏𝒙𝒛
𝒄𝒚𝒄

)

𝒕+𝟏

≥
𝟏

𝟑𝒕
(𝟑 +

(𝒙 + 𝒚 + 𝒛)𝟐

(𝒎 + 𝒏)(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙)
)

𝒕+𝟏

≥ 
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≥
𝟏

𝟑𝒕
(𝟑 +

𝟑(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙)

(𝒎 + 𝒏)(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙)
)

𝒕+𝟏

=
𝟏

𝟑𝒕
(𝟑 +

𝟑

𝒎+ 𝒏
)
𝒕+𝟏

= 

= 𝟑𝒕+𝟏 (
𝒎+ 𝒏+ 𝟏

𝒎+ 𝒏
)
𝒕+𝟏

⋅
𝟏

𝟑𝒕
= 𝟑(

𝒎+ 𝒏 + 𝟏

𝒎+ 𝒏
)
𝒕+𝟏

  

1166. 𝐈𝐟 𝐚, 𝐛, 𝐜 > 0 𝐬𝐮𝐜𝐡 𝐭𝐡𝒂𝐭 ∶ 𝒂 + 𝐛 + 𝐜 − 𝒂𝐛𝐜 = 𝟓 𝐭𝐡𝐞𝐧: 

(𝒂𝟐 + 𝟏)(𝐛𝟐 + 𝟏)(𝐜𝟐 + 𝟏) ≥ 𝟐𝟓 

  Proposed by Marin Chirciu-Romania 
Solution 1 by Ravi Prakash-New Delhi-India 

𝒂 + 𝒃 + 𝒄 − 𝒂𝒃𝒄 = 𝟓 
(𝒂𝟐 + 𝟏)(𝒃𝟐 + 𝟏)(𝒄𝟐 + 𝟏) = |𝒂 + 𝒊|𝟐 ⋅ |𝒃 + 𝒊|𝟐 ⋅ |𝒄 + 𝒊|𝟐 = 

= |(𝒂 + 𝒊)(𝒃 + 𝒊)(𝒄 + 𝒊)|𝟐 = 
= |𝒊𝟑 + 𝒊𝟐(𝒂 + 𝒃 + 𝒄) + 𝒊(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) + 𝒂𝒃𝒄| = 
= |(𝒂𝒃𝒄 − (𝒂 + 𝒃 + 𝒄)) + 𝒊(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 − 𝟏)| = 

= (𝒂 + 𝒃 + 𝒄 − 𝒂𝒃𝒄)𝟐 + (𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 − 𝟏)𝟐 ≥ 𝟓𝟐 = 𝟐𝟓 
𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏.   

Solution 2 by Soumava Chakraborty-Kolkata-India 

(𝒂𝟐 + 𝟏)(𝐛𝟐 + 𝟏)(𝐜𝟐 + 𝟏) ≥ 𝟐𝟓 = (𝒂 + 𝐛 + 𝐜 − 𝒂𝐛𝐜)𝟐 

⇔ 𝒂𝟐𝐛𝟐𝐜𝟐 +∑𝒂𝟐

𝐜𝐲𝐜

+∑𝒂𝟐𝐛𝟐

𝐜𝐲𝐜

+ 𝟏 ≥ (∑𝒂

𝐜𝐲𝐜

)

𝟐

+ 𝒂𝟐𝐛𝟐𝐜𝟐 − 𝟐𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

 

⇔∑𝒂𝟐

𝐜𝐲𝐜

+(∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

− 𝟐𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

+ 𝟏 ≥∑𝒂𝟐

𝐜𝐲𝐜

+ 𝟐∑𝒂𝐛

𝐜𝐲𝐜

− 𝟐𝒂𝐛𝐜∑𝒂

𝐜𝐲𝐜

 

⇔ (∑𝒂𝐛

𝐜𝐲𝐜

)

𝟐

− 𝟐∑𝒂𝐛

𝐜𝐲𝐜

+ 𝟏 ≥ 𝟎 ⇔ (∑𝒂𝐛

𝐜𝐲𝐜

− 𝟏)

𝟐

≥ 𝟎 → 𝐭𝐫𝐮𝐞 

∴ (𝒂𝟐 + 𝟏)(𝐛𝟐 + 𝟏)(𝐜𝟐 + 𝟏) ≥ 𝟐𝟓 ∀ 𝒂,𝐛, 𝐜 ∈ ℝ│𝒂 + 𝐛 + 𝐜 − 𝒂𝐛𝐜 = 𝟓 (𝐐𝐄𝐃) 

 

1167. 𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 ∈ [𝟎, 𝟏] ∶ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝟏

√𝒂𝟐 + 𝟏
+

𝟏

√𝒃𝟐 + 𝟏
+

𝟏

√𝒄𝟐 + 𝟏
≥ 𝟏 + √𝟐 

Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
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Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑺𝒊𝒏𝒄𝒆 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏 𝒕𝒉𝒆𝒏 ∃𝒙,𝒚, 𝒛 ∈ [𝟎,
𝝅

𝟐
) , 𝒙 + 𝒚 + 𝒛 =

𝝅

𝟐
 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 ∶ 

𝒂 = 𝐭𝐚𝐧𝒙 ,   𝒃 = 𝐭𝐚𝐧 𝒚 ,   𝒄 = 𝐭𝐚𝐧 𝒛. 

𝑻𝒉𝒆 𝒑𝒓𝒐𝒃𝒍𝒆𝒎 𝒃𝒆𝒄𝒐𝒎𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 ∶  𝐜𝐨𝐬 𝒙 + 𝐜𝐨𝐬 𝒚 + 𝐜𝐨𝐬 𝒛 ≥ 𝟏 + √𝟐. 

𝑺𝒊𝒏𝒄𝒆 𝒂, 𝒃, 𝒄 ∈ [𝟎,𝟏] 𝒕𝒉𝒆𝒏 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 𝒙,𝒚, 𝒛 ∈ [𝟎,
𝝅

𝟒
] .  𝑳𝒆𝒕 𝒇(𝒕) = 𝐜𝐨𝐬 𝒕 , 𝒕 ∈ [𝟎,

𝝅

𝟒
]. 

𝒇 𝒊𝒔 𝒄𝒐𝒏𝒄𝒂𝒗𝒆 𝒐𝒏 [𝟎,
𝝅

𝟒
]  𝒂𝒏𝒅 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 (

𝝅

𝟒
,
𝝅

𝟒
, 𝟎)  𝒎𝒂𝒋𝒐𝒓𝒊𝒛𝒆𝒔 𝒕𝒉𝒆 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 (𝒙, 𝒚, 𝒛), 

𝒕𝒉𝒆𝒏 𝒃𝒚 𝑲𝒂𝒓𝒂𝒎𝒂𝒕𝒂 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝐜𝐨𝐬 𝒙 + 𝐜𝐨𝐬𝒚 + 𝐜𝐨𝐬 𝒛 ≥ 𝐜𝐨𝐬
𝝅

𝟒
+ 𝐜𝐨𝐬

𝝅

𝟒
+ 𝐜𝐨𝐬𝟎 = 𝟏 + √𝟐. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂, 𝒃, 𝒄) = (𝟏,𝟏, 𝟎) 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏𝒔. 

1168. 𝐅𝐨𝐫 𝒂𝒍𝒍 𝒂, 𝐛, 𝐜 ≥ 𝟎 𝐬𝐮𝐜𝐡 𝐭𝐡𝒂𝐭 ∶ 𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 > 0, 

𝒂(𝐛 + 𝐜)

𝒂𝟐 + 𝐛𝐜
+
𝐛(𝒂 + 𝐜)

𝐛𝟐 + 𝒂𝐜
+
𝐜(𝐛 + 𝒂)

𝐜𝟐 + 𝐛𝒂
≥ 𝟏 +

𝟏𝟔𝒂𝐛𝐜

(𝒂 + 𝐛)(𝐛 + 𝐜)(𝐜 + 𝒂)
 

  Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution 1 by Soumava Chakraborty-Kolkata-India 

𝐂𝒂𝐬𝐞 𝟏  𝐄𝒙𝒂𝐜𝐭𝐥𝐲 𝐨𝐧𝐞 𝒂𝐦𝐨𝐧𝐠 𝒂, 𝐛, 𝐜 = 𝟎 𝒂𝐧𝐝 𝐖𝐋𝐎𝐆 𝐰𝐞 𝐦𝒂𝐲 𝒂𝐬𝐬𝐮𝐦𝐞  

𝒂 = 𝟎 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 =
𝐛𝐜

𝐛𝟐
+
𝐛𝐜

𝐜𝟐
=
𝐛

𝐜
+
𝐜

𝐛
≥
𝐀−𝐆

 𝟐 > 1 = 𝑅𝐻𝑆 ⇒ 𝐿𝐻𝑆 > 𝑅𝐻𝑆 

𝐂𝒂𝐬𝐞 𝟐  𝒂, 𝐛, 𝐜 > 0 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶
𝒂(𝐛 + 𝐜)

𝒂𝟐 + 𝐛𝐜
+
𝐛(𝒂 + 𝐜)

𝐛𝟐 + 𝒂𝐜
+
𝐜(𝐛 + 𝒂)

𝐜𝟐 + 𝐛𝒂
 

=
𝒂(𝐛 + 𝐜)

𝒂𝟐 + 𝐛𝐜
+ 𝟏 +

𝐛(𝒂 + 𝐜)

𝐛𝟐 + 𝒂𝐜
+ 𝟏 +

𝐜(𝐛 + 𝒂)

𝐜𝟐 + 𝐛𝒂
+ 𝟏 − 𝟑 

=
𝒂𝐛 + 𝒂𝐜 + 𝒂𝟐 + 𝐛𝐜

𝒂𝟐 + 𝐛𝐜
+
𝒂𝐛 + 𝐛𝐜 + 𝐛𝟐 + 𝒂𝐜

𝐛𝟐 + 𝒂𝐜
+
𝐛𝐜 + 𝐜𝒂 + 𝐜𝟐 + 𝒂𝐛

𝐜𝟐 + 𝐛𝒂
− 𝟑 

=
(𝒂 + 𝐛)(𝒂 + 𝐜)

𝒂𝟐 + 𝐛𝐜
+
(𝐛 + 𝒂)(𝐛 + 𝐜)

𝐛𝟐 + 𝒂𝐜
+
(𝐜 + 𝐛)(𝐜 + 𝒂)

𝐜𝟐 + 𝐛𝒂
− 𝟑 

= (𝒂 + 𝐛)(𝐛 + 𝐜)(𝐜 + 𝒂)∑
𝟏

(𝒂𝟐 + 𝐛𝐜)(𝐛 + 𝐜)
𝐜𝐲𝐜

− 𝟑 

≥
𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦 𝟗(𝒂 + 𝐛)(𝐛 + 𝐜)(𝐜 + 𝒂)

∑ 𝒂𝟐𝐛𝐜𝐲𝐜 + ∑ 𝒂𝟐𝐜𝐜𝐲𝐜 + ∑ 𝐛𝟐𝐜𝐜𝐲𝐜 +∑ 𝐛𝐜𝟐𝐜𝐲𝐜
− 𝟑 =

𝟗(𝒙 + 𝟐𝐲)

𝟐𝒙
− 𝟑 
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(𝒙 =∑𝒂𝟐𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟐

𝐜𝐲𝐜

 𝒂𝐧𝐝 𝐲 = 𝒂𝐛𝐜) ≥
?
𝟏 +

𝟏𝟔𝒂𝐛𝐜

(𝒂 + 𝐛)(𝐛 + 𝐜)(𝐜 + 𝒂)
 

⇔
𝟗(𝒙 + 𝟐𝐲)

𝟐𝒙
≥
?
𝟒 +

𝟏𝟔𝒂𝐛𝐜

(𝒂 + 𝐛)(𝐛 + 𝐜)(𝐜 + 𝒂)
=
𝟒(𝒙 + 𝟐𝐲) + 𝟏𝟔𝐲

𝒙 + 𝟐𝐲
 

⇔ 𝟗(𝒙 + 𝟐𝐲)𝟐 ≥
?
𝟐𝒙(𝟒𝒙 + 𝟐𝟒𝐲) ⇔ 𝒙𝟐 − 𝟏𝟐𝒙𝐲 + 𝟑𝟔𝐲𝟐 ≥

?
𝟎 ⇔ (𝒙 − 𝟔𝐲)𝟐 ≥

?
𝟎 

→ 𝐭𝐫𝐮𝐞 ∴ 𝐋𝐇𝐒 ≥ 𝐑𝐇𝐒 ∴ 𝐜𝐨𝐦𝐛𝐢𝐧𝐢𝐧𝐠 𝐛𝐨𝐭𝐡 𝐜𝒂𝐬𝐞𝐬, 
𝒂(𝐛 + 𝐜)

𝒂𝟐 + 𝐛𝐜
+
𝐛(𝒂 + 𝐜)

𝐛𝟐 + 𝒂𝐜
+
𝐜(𝐛 + 𝒂)

𝐜𝟐 + 𝐛𝒂
≥ 𝟏 +

𝟏𝟔𝒂𝐛𝐜

(𝒂 + 𝐛)(𝐛 + 𝐜)(𝐜 + 𝒂)
  

∀ 𝒂, 𝐛, 𝐜 ≥ 𝟎 │𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 > 0,𝑤𝑖𝑡ℎ 𝑒𝑞𝑢𝒂𝒍𝐢𝐭𝐲 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 (𝐐𝐄𝐃) 
 

Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑻𝒉𝒆 𝒈𝒊𝒗𝒆𝒏 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒄𝒂𝒏 𝒃𝒆 𝒓𝒆𝒘𝒓𝒊𝒕𝒕𝒆𝒏 𝒂𝒔 𝒇𝒐𝒍𝒍𝒐𝒘𝒔 ∶ 

∑
(𝒂+ 𝒃)(𝒂 + 𝒄)

𝒂𝟐 + 𝒃𝒄
𝒄𝒚𝒄

≥ 𝟒+
𝟏𝟔𝒂𝒃𝒄

(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)
= 𝟒∑

𝒂(𝒃 + 𝒄)

(𝒂 + 𝒃)(𝒂 + 𝒄)
𝒄𝒚𝒄

. 

𝑩𝒚 𝑨𝑴−𝑯𝑴 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶  
(𝒂𝟐 + 𝒃𝒄) + 𝒂(𝒃 + 𝒄)

𝟐
≥
𝟐(𝒂𝟐 + 𝒃𝒄). 𝒂(𝒃 + 𝒄)

(𝒂𝟐 + 𝒃𝒄) + 𝒂(𝒃 + 𝒄)
. 

𝑻𝒉𝒆𝒏 ∶  
(𝒂 + 𝒃)(𝒂 + 𝒄)

𝒂𝟐 + 𝒃𝒄
≥

𝟒𝒂(𝒃 + 𝒄)

(𝒂 + 𝒃)(𝒂 + 𝒄)
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   ∑
(𝒂 + 𝒃)(𝒂 + 𝒄)

𝒂𝟐 + 𝒃𝒄
𝒄𝒚𝒄

≥ 𝟒∑
𝒂(𝒃 + 𝒄)

(𝒂 + 𝒃)(𝒂 + 𝒄)
𝒄𝒚𝒄

,   𝒂𝒔 𝒅𝒆𝒔𝒊𝒓𝒆𝒅. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄. 

1169. Let 𝒂, 𝒃, 𝒄 ≥ 𝟎, 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 > 0. Prove that: 

∑
𝟏

𝟐𝒂𝟐 + 𝒃𝒄
𝒄𝒚𝒄

≥
𝟐

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐
+

𝟏

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂
 

Proposed by Phan Ngoc Chau-Vietnam 
Solution by Nguyen Thuong-Vietnam 

∑
𝟏

𝟐𝒂𝟐 + 𝒃𝒄
𝒄𝒚𝒄

=∑
(𝒃 + 𝒄)𝟐

(𝒃 + 𝒄)𝟐(𝟐𝒂𝟐 + 𝒃𝒄)
𝒄𝒚𝒄

≥
𝟒(∑𝒂)𝟐

(∑𝒂𝟐)(∑𝒂) + 𝟔(∑𝒂𝒃)𝟐 − 𝟗𝒂𝒃𝒄∑𝒂
 

𝑾𝒆 𝒉𝒂𝒗𝒆: 
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(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) + 𝟑𝒂𝒃𝒄(𝒂 + 𝒃 + 𝒄) ≥ 𝟐(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)𝟐 ⇔ 

𝒂𝒃(𝒂 − 𝒃)𝟐 + 𝒃𝒄(𝒃 − 𝒄)𝟐 + 𝒄𝒂(𝒄 − 𝒂)𝟐 ≥ 𝟎 

(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) + 𝟔(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)𝟐 − 𝟗𝒂𝒃𝒄(𝒂 + 𝒃 + 𝒄) ≤ 

≤ 𝟒(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) 

∑
𝟏

𝟐𝒂𝟐 + 𝒃𝒄
𝒄𝒚𝒄

≥
(𝒂 + 𝒃 + 𝒄)𝟐

(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)
=

𝟐

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐
+

𝟏

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂
 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂 = 𝒃 = 𝒄 𝒐𝒓 (𝒂, 𝒃, 𝒄) = (𝟎, 𝒕, 𝒕), 𝒕 > 0.   

1170. If 𝒂, 𝒃, 𝒄 > 0 then: 

∑
𝒂

𝒃(𝟔(𝒂𝟑 + 𝒃𝟑) + 𝟏𝟎𝒂𝒃(𝒂 + 𝒃) + 𝒂𝒄(𝟏𝟗𝒂 + 𝟑𝟎𝒃)) 
𝒄𝒚𝒄

≥
𝟏

(𝒂 + 𝒃 + 𝒄)𝟑
 

Proposed by Zaza Mzhavanadze-Georgia 
Solution by proposer 

∑
𝒂

𝒃(𝟔(𝒂𝟑 + 𝒃𝟑) + 𝟏𝟎𝒂𝒃(𝒂 + 𝒃) + 𝒂𝒄(𝟏𝟗𝒂 + 𝟑𝟎𝒃)) 
𝒄𝒚𝒄

= 

=∑
𝒂𝟐

𝒂𝒃(𝟔(𝒂𝟑 + 𝒃𝟑) + 𝟏𝟎𝒂𝒃(𝒂 + 𝒃) + 𝒂𝒄(𝟏𝟗𝒂 + 𝟑𝟎𝒃)) 
𝒄𝒚𝒄

≥
𝑩𝒆𝒓𝒈𝒔𝒕𝒓𝒐𝒎

 

≥
(𝒂 + 𝒃 + 𝒄)𝟐

∑𝒂𝒃(𝟔(𝒂𝟑 + 𝒃𝟑) + 𝟏𝟎𝒂𝒃(𝒂 + 𝒃) + 𝒂𝒄(𝟏𝟗𝒂 + 𝟑𝟎𝒃))
≥

𝟏

(𝒂 + 𝒃 + 𝒄)𝟑
⇔ 

(𝒂 + 𝒃 + 𝒄)𝟓 ≥∑𝒂𝒃(𝟔(𝒂𝟑 + 𝒃𝟑) + 𝟏𝟎𝒂𝒃(𝒂 + 𝒃) + 𝒂𝒄(𝟏𝟗𝒂+ 𝟑𝟎𝒃))

𝒄𝒚𝒄

⇔ 

∑𝒂𝟓

𝒄𝒚𝒄

+ 𝟓∑(𝒂𝟒𝒃 + 𝒂𝒃𝟒)

𝒄𝒚𝒄

+ 𝟏𝟎∑(𝒂𝟑𝒃𝟐 + 𝒂𝟐𝒃𝟑)

𝒄𝒚𝒄

+ 𝟐𝟎∑𝒂𝟐𝒃𝒄

𝒄𝒚𝒄

+ 𝟑𝟎∑𝒂𝟐𝒃𝟐𝒄

𝒄𝒚𝒄

≥ 

≥ 𝟔∑(𝒂𝟒𝒃 + 𝒂𝒃𝟒)

𝒄𝒚𝒄

+ 𝟏𝟎∑𝒂𝟑𝒃𝟐

𝒄𝒚𝒄

+ 𝟏𝟗∑𝒂𝟑𝒃𝒄

𝒄𝒚𝒄

+ 𝟑𝟎∑𝒂𝟐𝒃𝟐𝒄

𝒄𝒚𝒄

 

𝒂𝟓 + 𝒃𝟓 + 𝒄𝟓 + 𝒂𝒃𝒄(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) ≥∑(𝒂𝟒𝒃 + 𝒂𝒃𝟒)

𝒄𝒚𝒄

 

∑𝒂𝟑(𝒂 − 𝒃)(𝒂 − 𝒄)

𝒄𝒚𝒄

≥ 𝟎 𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒃𝒚 𝑺𝒄𝒉𝒖𝒓′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒇𝒐𝒓 𝒏 = 𝟑. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂 = 𝒃 = 𝒄.   
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1171. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 0 𝐭𝐡𝐞𝐧: 

∑
𝒂𝟑

𝐛 + 𝐜
𝐜𝐲𝐜

≥
(∑ 𝒂𝐜𝐲𝐜 )(∑ 𝒂𝟑𝐜𝐲𝐜 )

𝟐∑ 𝐛𝐜𝐜𝐲𝐜
 

  Proposed by Marin Chirciu-Romania 
Solution 1 by Soumitra Mandal-Chandar Nagore-India 

𝑾𝒆 𝒌𝒏𝒐𝒘 𝒊𝒇 𝒙, 𝒚, 𝒛 ≥ 𝟎 𝒂𝒏𝒅 𝒑 = 𝒙 + 𝒚 + 𝒛, 𝒒 = 𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙 𝒂𝒏𝒅 𝒓 = 𝒙𝒚𝒛 
𝒕𝒉𝒆𝒏 𝒑𝟒 − 𝟓𝒑𝟐𝒒 + 𝟒𝒒𝟐 + 𝟔𝒓𝒑 > 0;  (𝟏) 

∑
𝒂𝟑

𝒃 + 𝒄
𝒄𝒚𝒄

≥
(∑𝒂)(∑𝒂𝟑)

𝟐∑𝒂𝒃
⇔ 𝟐(∑

𝒂𝟑

𝒃 + 𝒄
𝒄𝒚𝒄

)(∑𝒂𝒃

𝒄𝒚𝒄

) ≥ (∑𝒂

𝒄𝒚𝒄

)(∑𝒂𝟑

𝒄𝒚𝒄

) 

𝟐∑𝒂𝟒

𝒄𝒚𝒄

+ 𝟐∑
𝒂𝟑𝒃𝒄

𝒃 + 𝒄
𝒄𝒚𝒄

≥ (∑𝒂

𝒄𝒚𝒄

)(∑𝒂𝟑

𝒄𝒚𝒄

) 

𝟐 [(∑𝒂𝟐

𝒄𝒚𝒄

)

𝟐

− 𝟐((∑𝒂𝒃

𝒄𝒚𝒄

)

𝟐

− 𝟐𝒂𝒃𝒄∑𝒂

𝒄𝒚𝒄

)] + 𝟐∑
𝒂𝟑𝒃𝒄

𝒃 + 𝒄
𝒄𝒚𝒄

≥ 

≥ (∑𝒂

𝒄𝒚𝒄

) [(∑𝒂

𝒄𝒚𝒄

)

𝟑

− 𝟑∑𝒂

𝒄𝒚𝒄

⋅∑𝒂𝒃

𝒄𝒚𝒄

+ 𝟑𝒂𝒃𝒄] ⇔ 

𝟐[(𝑨𝟐 − 𝟐𝑩)𝟐 − 𝟐(𝑩𝟐 − 𝟐𝑨𝑪)] + 𝑨𝑪 ≥ 𝑨(𝑨𝟑 − 𝟑𝑨𝑩 + 𝟑𝑪) 

∵∑
𝒂𝟑𝒃𝒄

𝒃 + 𝒄
𝒄𝒚𝒄

≥ 𝒂𝒃𝒄(𝒂 + 𝒃 + 𝒄), 𝒘𝒉𝒆𝒓𝒆 𝑨 = 𝒂 + 𝒃 + 𝒄,𝑩 = 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 𝒂𝒏𝒅 𝑪 = 𝒂𝒃𝒄 

⇔ 𝑨𝟒 − 𝟓𝑨𝟐𝑩+ 𝟒𝑩𝟐 + 𝟔𝑨𝑪 ≥ 𝟎 𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒇𝒓𝒐𝒎 (𝟏). 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, ∑
𝒂𝟑

𝒃 + 𝒄
𝒄𝒚𝒄

≥
(∑𝒂)(∑𝒂𝟑)

𝟐∑𝒂𝒃
 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂 = 𝒃 = 𝒄.   

Solution 2 by Soumava Chakraborty-Kolkata-India 

𝐀𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐛 + 𝐜 = 𝒙, 𝐜 + 𝒂 = 𝐲,𝒂 + 𝐛 = 𝐳 ⇒ 𝒙+ 𝐲 − 𝐳 = 𝟐𝐜 > 0, 
𝐲 + 𝐳 − 𝒙 = 𝟐𝒂 > 𝟎 𝒂𝐧𝐝 𝐳 + 𝒙 − 𝐲 = 𝟐𝐛 > 0 ⇒ 𝑥 + 𝐲 > 𝑧, 𝐲 + 𝐳 > 𝒙, 𝐳 + 𝒙 > 𝒚 

⇒ 𝒙, 𝐲, 𝐳 𝐟𝐨𝐫𝐦 𝐬𝐢𝐝𝐞𝐬 𝐨𝐟 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 

= 𝐬,𝐑, 𝐫 (𝐬𝒂𝐲) 𝐲𝐢𝐞𝐥𝐝𝐢𝐧𝐠 𝟐∑𝒂

𝐜𝐲𝐜

=∑𝒙

𝐜𝐲𝐜

= 𝟐𝐬 ⇒∑𝒂

𝐜𝐲𝐜

=
(⦁)
𝐬 

⇒ 𝒂 = 𝐬 − 𝒙,𝐛 = 𝐬 − 𝐲, 𝐜 = 𝐬 − 𝐳 

𝐕𝐢𝒂 𝐬𝐮𝐜𝐡 𝐬𝐮𝐛𝐬𝐭𝐢𝐭𝐮𝐭𝐢𝐨𝐧𝐬,∑𝒂𝐛

𝐜𝐲𝐜

=∑(𝐬 − 𝒙)(𝐬 − 𝐲)

𝐜𝐲𝐜

= 𝟒𝐑𝐫 + 𝐫𝟐 
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⇒∑𝒂𝐛

𝐜𝐲𝐜

=
(⦁⦁)

𝟒𝐑𝐫 + 𝐫𝟐 

𝐀𝐥𝐬𝐨,∑𝒂𝟑

𝐜𝐲𝐜

= (∑𝒂

𝐜𝐲𝐜

)

𝟑

− 𝟑(𝒂 + 𝐛)(𝐛 + 𝐜)(𝐜 + 𝒂) = 𝐬𝟑 − 𝟑𝒙𝐲𝐳 = 𝐬𝟑 − 𝟏𝟐𝐑𝐫𝐬 

⇒∑𝒂𝟑

𝐜𝐲𝐜

=
(⦁⦁⦁)

𝐬𝟑 − 𝟏𝟐𝐑𝐫𝐬 

∑
𝒂𝟑

𝐛 + 𝐜
𝐜𝐲𝐜

=∑
(𝐬 − 𝒙)𝟑

𝒙
𝐜𝐲𝐜

=∑
𝐬𝟑 − 𝒙𝟑 − 𝟑𝐬𝒙(𝐬 − 𝒙)

𝒙
𝐜𝐲𝐜

 

=
𝐬𝟑(𝐬𝟐 + 𝟒𝐑𝐫+ 𝐫𝟐)

𝟒𝐑𝐫𝐬
− 𝟐(𝐬𝟐 − 𝟒𝐑𝐫 − 𝐫𝟐) − 𝟑𝐬∑(𝐬 − 𝒙)

𝐜𝐲𝐜

 

=
𝐬𝟐(𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)

𝟒𝐑𝐫
− 𝟐(𝐬𝟐 − 𝟒𝐑𝐫 − 𝐫𝟐) − 𝟑𝐬(𝟑𝐬− 𝟐𝐬) 

=
𝐬𝟐(𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐) − 𝟖𝐑𝐫(𝐬𝟐 − 𝟒𝐑𝐫 − 𝐫𝟐) − 𝟏𝟐𝐑𝐫𝐬𝟐

𝟒𝐑𝐫
 

⇒∑
𝒂𝟑

𝐛 + 𝐜
𝐜𝐲𝐜

=
𝐬𝟒 − 𝐬𝟐(𝟏𝟔𝐑𝐫 − 𝐫𝟐) + 𝟖𝐑𝐫𝟐(𝟒𝐑+ 𝐫)

𝟒𝐑𝐫
 

≥
(∑ 𝒂𝐜𝐲𝐜 )(∑ 𝒂𝟑𝐜𝐲𝐜 )

𝟐∑ 𝐛𝐜𝐜𝐲𝐜
=

𝐯𝐢𝒂 (⦁),(⦁⦁),(⦁⦁⦁) 𝐬𝟐(𝐬𝟐 − 𝟏𝟐𝐑𝐫)

𝟐(𝟒𝐑𝐫 + 𝐫𝟐)
 

⇔
𝐬𝟒 − 𝐬𝟐(𝟏𝟔𝐑𝐫 − 𝐫𝟐) + 𝟖𝐑𝐫𝟐(𝟒𝐑+ 𝐫)

𝟒𝐑𝐫
≥
𝐬𝟐(𝐬𝟐 − 𝟏𝟐𝐑𝐫)

𝟐(𝟒𝐑𝐫 + 𝐫𝟐)
 

⇔ (𝟐𝐑 + 𝐫)𝐬𝟒 − 𝐫𝐬𝟐(𝟒𝟎𝐑𝟐 + 𝟏𝟐𝐑𝐫 − 𝐫𝟐) + 𝟖𝐑𝐫𝟐(𝟒𝐑+ 𝐫)𝟐 ≥
(∗)

𝟎  

𝒂𝐧𝐝 ∵ (𝟐𝐑 + 𝐫)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)
𝟐

≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟎, 

∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 
(𝟐𝐑 + 𝐫)𝐬𝟒 − 𝐫𝐬𝟐(𝟒𝟎𝐑𝟐 + 𝟏𝟐𝐑𝐫 − 𝐫𝟐) + 𝟖𝐑𝐫𝟐(𝟒𝐑 + 𝐫)𝟐 

≥ (𝟐𝐑 + 𝐫)(𝐬𝟐 − 𝟏𝟔𝐑𝐫 + 𝟓𝐫𝟐)
𝟐
 

⇔ (𝟐𝟒𝐑𝟐 − 𝟗𝐫𝟐)𝐬𝟐 ≥
(∗∗)

𝐫(𝟑𝟖𝟒𝐑𝟑 − 𝟏𝟐𝟖𝐑𝟐𝐫 − 𝟏𝟏𝟖𝐑𝐫𝟐 + 𝟐𝟓𝐫𝟑) 

𝐍𝐨𝐰, 𝐋𝐇𝐒 𝐨𝐟 (∗∗) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

(𝟐𝟒𝐑𝟐 − 𝟗𝐫𝟐)(𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐) 

≥
?
𝐫(𝟑𝟖𝟒𝐑𝟑 − 𝟏𝟐𝟖𝐑𝟐𝐫 − 𝟏𝟏𝟖𝐑𝐫𝟐 + 𝟐𝟓𝐫𝟑) ⇔ 𝟐𝐫(𝟒𝐑𝟐 − 𝟏𝟑𝐑𝐫 + 𝟏𝟎𝐫𝟐) ≥

?
𝟎 

⇔ 𝟐𝐫(𝟒(𝐑− 𝟐𝐫) + 𝟑𝐫)(𝐑− 𝟐𝐫) ≥
?
𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐑 ≥

𝐄𝐮𝐥𝐞𝐫
𝟐𝐫 ⇒ (∗∗) ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

∴ ∑
𝒂𝟑

𝐛 + 𝐜
𝐜𝐲𝐜

≥
(∑ 𝒂𝐜𝐲𝐜 )(∑ 𝒂𝟑𝐜𝐲𝐜 )

𝟐∑ 𝐛𝐜𝐜𝐲𝐜
 ∀ 𝒂, 𝐛, 𝐜 > 0,𝑤𝑖𝑡ℎ 𝑒𝑞𝑢𝑎𝑙𝐢𝐭𝐲 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 (𝐐𝐄𝐃) 

 

Solution 3 by Sanong Huayrerai-Nakon Pathom-Thailand  

𝑭𝒐𝒓 𝒂, 𝒃, 𝒄 > 0,𝑤𝑒 𝑔𝑒𝑡: ∑
𝒂𝟑

𝒃 + 𝒄
𝒄𝒚𝒄

≥
(∑𝒂)(∑𝒂𝟑)

𝟐∑𝒂𝒃
⇔ 



 
www.ssmrmh.ro 

78 RMM-CYCLIC INEQUALITIES MARATHON 1101-1200 

 

(∑𝒂𝟑)𝟐

∑(𝒂𝟑𝒃 + 𝒂𝒃𝟑)
≥
(∑𝒂)(∑𝒂𝟑)

𝟐∑𝒂𝒃
⇔ 𝟐(∑𝒂𝟑

𝒄𝒚𝒄

)(∑𝒂𝒃

𝒄𝒚𝒄

) ≥ (∑𝒂

𝒄𝒚𝒄

)(∑𝒂𝟑𝒃 + 𝒂𝒃𝟑

𝒄𝒚𝒄

) 

∑(𝒂𝟒𝒃 + 𝒂𝒃𝟒)

𝒄𝒚𝒄

≥∑(𝒂𝟑𝒃𝟐 + 𝒂𝟐𝒃𝟑)

𝒄𝒚𝒄

, 𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒃𝒆𝒄𝒂𝒖𝒔𝒆: 

𝒂𝟒𝒃 + 𝒂𝒃𝟒 = 𝒂𝒃(𝒂𝟑 + 𝒃𝟑) ≥ 𝒂𝒃(𝒂𝟐𝒃 + 𝒂𝒃𝟐) = 𝒂𝟑𝒃𝟐 + 𝒂𝟐𝒃𝟑 (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔)   

Solution 4 by Daoudi Abdessattar-Tunisia 

(𝒑, 𝒒, 𝒓) = (∑𝒂,∑𝒂𝒃,∏𝒂) 

∑
𝒂𝟑

𝒃 + 𝒄
𝒄𝒚𝒄

≥
(∑𝒂)(∑𝒂𝟑)

𝟐∑𝒂𝒃
⇔ 𝟐𝒒(∑𝒂𝟓 + 𝒒∑𝒂𝟑) ≥ (𝒑𝒒 − 𝒓)𝒑∑𝒂𝟑 ⇔ 

𝟐𝒒∑𝒂𝟓 ≥ (𝒑𝟐𝒒 − 𝟐𝒒𝟐 − 𝒓𝒑)∑𝒂𝟑 ⇔ 𝟐𝒒∑𝒂𝟑 ≥ (𝒑𝟐𝒒 − 𝟐𝒒𝟐 − 𝒓𝒑)𝒑 

𝒑∑𝒂𝟓 ≥
𝑪𝑩𝑺

(∑𝒂𝟑)𝟐; (∗) 
⇔ 𝟔𝒑𝒓 + 𝟐𝒒𝒑𝟑 − 𝟔𝒑𝒒𝟐 ≥ 𝒑𝟑𝒒 − 𝟐𝒒𝟐𝒑 − 𝒓𝒑𝟐 
⇔ 𝒒𝒑𝟑 − 𝟒𝒑𝒒𝟐 + 𝒓𝒑𝟐 + 𝟔𝒒𝒓 ≥ 𝟎; (𝒑𝟐 ≥ 𝟑𝒒) 

⇔ 𝒒(𝒑𝟑 − 𝟒𝒑𝒒 + 𝟗𝒓) ≥ 𝟎 𝒕𝒓𝒖𝒆 𝒃𝒚 𝑺𝒄𝒉𝒖𝒓′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒑𝟑 + 𝟗𝒓 ≥ 𝟒𝒑𝒒   

 

1172. If 𝒙, 𝒚, 𝒛, 𝝀 > 0 then: 

∑√
𝒙

𝝀𝒚 + 𝝀𝒛 − 𝒙
𝒄𝒚𝒄

≥
𝟐

𝝀
√𝝀 + 𝟏 

Proposed by Marin Chirciu-Romania 
Solution 1 by Rin Huynh-Vietnam 

∑√
𝒙

𝝀𝒚 + 𝝀𝒛 − 𝒙
𝒄𝒚𝒄

=∑√
𝒙𝟐(𝝀 + 𝟏)

(𝝀 + 𝟏)𝒙(𝝀𝒚 + 𝝀𝒛 − 𝒙)
𝒄𝒚𝒄

≥
𝑨𝑴−𝑮𝑴

 

≥∑
𝒙√𝝀 + 𝟏

𝝀(𝒙 + 𝒚 + 𝒛)
𝟐𝒄𝒚𝒄

=∑
𝟐𝒙√𝝀 + 𝟏

𝝀(𝒙 + 𝒚 + 𝒛)
𝒄𝒚𝒄

=
𝟐

𝝀
√𝝀 + 𝟏 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒙 = 𝒚 = 𝒛.   

Solution 2 by Marian Dincă-Romania 

∑√
𝒙

𝝀𝒚 + 𝝀𝒛 − 𝒙
𝒄𝒚𝒄

=∑√
𝒙𝟐

𝒙(𝝀𝒚 + 𝝀𝒛 − 𝒙)
𝒄𝒚𝒄

=∑
𝒙

√(𝝀− (𝝀 + 𝟏)𝒙)(𝝀 + 𝟏)𝒙
𝝀 + 𝟏

𝒄𝒚𝒄

= 



 
www.ssmrmh.ro 

79 RMM-CYCLIC INEQUALITIES MARATHON 1101-1200 

 

= √𝝀 + 𝟏∑
𝒙

√(𝝀 − (𝝀 + 𝟏)𝒙)(𝝀 + 𝟏)𝒙
𝒄𝒚𝒄

≥ √𝝀 + 𝟏∑
𝒙

(𝝀 − (𝝀 + 𝟏)𝒙) + (𝝀 + 𝟏)𝒙
𝟐𝒄𝒚𝒄

= 

= √𝝀 + 𝟏 ⋅
𝟐

𝝀
∑𝒙

𝒄𝒚𝒄

=
𝟐√𝝀 + 𝟏

𝝀
   

1173. 𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 ≥ 𝟎, 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 ≠ 𝟎.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝒂

𝒃𝒄 + 𝒂𝟐
+

𝒃

𝒄𝒂 + 𝒃𝟐
+

𝒄

𝒂𝒃 + 𝒄𝟐
≤

𝟏

𝒂 + 𝒃
+

𝟏

𝒃 + 𝒄
+

𝟏

𝒄 + 𝒂
 

Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

(∗) ∶  
𝒂

𝒃𝒄 + 𝒂𝟐
+

𝒃

𝒄𝒂 + 𝒃𝟐
+

𝒄

𝒂𝒃+ 𝒄𝟐
≤

𝟏

𝒂+ 𝒃
+

𝟏

𝒃 + 𝒄
+

𝟏

𝒄 + 𝒂
 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  (∗)  ⇔ ∑
𝒂(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)

𝒃𝒄 + 𝒂𝟐
𝒄𝒚𝒄

≤∑(𝒃 + 𝒄)(𝒄 + 𝒂)

𝒄𝒚𝒄

 

⇔∑𝒂(𝒃+ 𝒄) (𝟏 +
𝒂(𝒃 + 𝒄)

𝒃𝒄 + 𝒂𝟐
)

𝒄𝒚𝒄

≤∑(𝒃 + 𝒄)(𝒄 + 𝒂)

𝒄𝒚𝒄

 ⇔∑
𝒂𝟐(𝒃 + 𝒄)𝟐

𝒃𝒄 + 𝒂𝟐
𝒄𝒚𝒄

≤∑(𝒃𝒄 + 𝒂𝟐)

𝒄𝒚𝒄

 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  

∑
𝒂𝟐(𝒃 + 𝒄)𝟐

𝒃𝒄 + 𝒂𝟐
𝒄𝒚𝒄

=∑
𝒂𝟐(𝒃 + 𝒄)𝟑

𝒃(𝒄𝟐 + 𝒂𝟐) + 𝒄(𝒂𝟐 + 𝒃𝟐)
𝒄𝒚𝒄

≤⏞
𝑪𝑩𝑺

 ∑𝒂𝟐(𝒃 + 𝒄) (
𝒃

𝒄𝟐 + 𝒂𝟐
+

𝒄

𝒂𝟐 + 𝒃𝟐
)

𝒄𝒚𝒄

= 

=∑(
𝒃𝟐𝒄(𝒄 + 𝒂)

𝒂𝟐 + 𝒃𝟐
+
𝒂𝟐𝒄(𝒃 + 𝒄)

𝒂𝟐 + 𝒃𝟐
)

𝒄𝒚𝒄

=∑(𝒄𝟐 +
𝒂𝒃𝒄(𝒂 + 𝒃)

𝒂𝟐 + 𝒃𝟐
)

𝒄𝒚𝒄

≤⏞
𝑨𝑴−𝑮𝑴

 ∑(𝒄𝟐 +
𝒄(𝒂 + 𝒃)

𝟐
)

𝒄𝒚𝒄

=∑(𝒃𝒄+ 𝒂𝟐)

𝒄𝒚𝒄

. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄. 

Solution 2 by Nguyen Truong-Vietnam 
𝒂

𝒂𝟐 + 𝒃𝒄
=

𝒂

(𝟏 +
𝒄
𝒃)
(𝒂𝟐 + 𝒃𝒄)

+
𝒂

(𝟏 +
𝒃
𝒄)
(𝒂𝟐 + 𝒃𝒄)

≤
𝒂

(𝒂 + 𝒄)𝟐
+

𝒂

(𝒂 + 𝒃)𝟐
 

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚,
𝒃

𝒃𝟐 + 𝒄𝒂
≤

𝒃

(𝒃 + 𝒄)𝟐
+

𝒃

(𝒂 + 𝒃)𝟐
 𝒂𝒏𝒅 

𝒄

𝒄𝟐 + 𝒂𝒃
≤

𝒄

(𝒂 + 𝒄)𝟐
+

𝒄

(𝒄 + 𝒃)𝟐
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𝑩𝒚 𝒂𝒅𝒅𝒊𝒏𝒈 𝒂𝒃𝒐𝒗𝒆 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒊𝒆𝒔,𝒘𝒆 𝒈𝒆𝒕 𝒕𝒉𝒆 𝒅𝒆𝒔𝒊𝒓𝒆𝒅 𝒓𝒆𝒔𝒖𝒍𝒕. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂 = 𝒃 = 𝒄 > 0.  

1174. 𝑰𝒇 𝒂, 𝒃, 𝒄 > 𝟎, 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 = 𝟑 𝒂𝒏𝒅 𝟐 < 𝝀 ≤ 𝟒 𝒕𝒉𝒆𝒏 ∶ 

𝟏

𝝀 − √𝒂𝒃
+

𝟏

𝝀 − √𝒃𝒄
+

𝟏

𝝀 − √𝒄𝒂
≤

𝟑

𝝀 − 𝟏
 

Proposed by Marin Chirciu-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑳𝒆𝒎𝒎𝒂 ∶ 

  𝑰𝒇 𝒙 ∈ (𝟎,√
𝟑

𝟐
)  𝒕𝒉𝒆𝒏 ∶  

𝟏

𝝀 − 𝒙
≤
𝒙𝟒 + 𝟒𝝀− 𝟓

𝟒(𝝀 − 𝟏)𝟐
  (𝟏) 

𝑷𝒓𝒐𝒐𝒇 ∶   (𝟏)  ⇔  (𝒙𝟒 + 𝟒𝝀− 𝟓)(𝝀 − 𝒙) − 𝟒(𝝀 − 𝟏)𝟐 ≥ 𝟎 

⇔ −𝒙𝟓 + 𝝀𝒙𝟒 − (𝟒𝝀− 𝟓)𝒙 + 𝟑𝝀 − 𝟒 ≥ 𝟎 

⇔ (𝒙 − 𝟏)𝟐[𝟑𝝀 − 𝟒 − 𝒙𝟑 + (𝝀 − 𝟐)𝒙𝟐 + (𝟐𝝀 − 𝟑)𝒙] ≥ 𝟎,  

𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒃𝒆𝒄𝒂𝒖𝒔𝒆 ∶  𝝀 > 2 𝑎𝑛𝑑 3𝝀 − 𝟒 > 3.2 − 4 = 2 > √
𝟑

𝟐

 𝟑

> 𝒙𝟑. 

𝑵𝒐𝒘,𝒔𝒊𝒏𝒄𝒆 √𝒂𝒃 ≤⏞
𝑨𝑴−𝑮𝑴

 √
𝒂𝟐 + 𝒃𝟐

𝟐
< √

𝟑

𝟐
 𝒕𝒉𝒆𝒏 ∶ 

𝟏

𝝀 − √𝒂𝒃
≤⏞

𝑳𝒆𝒎𝒎𝒂

 
(𝒂𝒃)𝟐 + 𝟒𝝀 − 𝟓

𝟒(𝝀 − 𝟏)𝟐
   (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   ∑
𝟏

𝝀 − √𝒂𝒃
𝒄𝒚𝒄

≤∑
(𝒂𝒃)𝟐 + 𝟒𝝀− 𝟓

𝟒(𝝀 − 𝟏)𝟐
𝒄𝒚𝒄

=
∑ (𝒂𝒃)𝟐𝒄𝒚𝒄 + 𝟑(𝟒𝝀 − 𝟓)

𝟒(𝝀 − 𝟏)𝟐
≤ 

≤

𝟏
𝟑
(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)

𝟐
+ 𝟏𝟐𝝀− 𝟏𝟓

𝟒(𝝀 − 𝟏)𝟐
=
𝟑 + 𝟏𝟐𝝀− 𝟏𝟓

𝟒(𝝀 − 𝟏)𝟐
=

𝟑

𝝀 − 𝟏
,   𝒂𝒔 𝒅𝒆𝒔𝒊𝒓𝒆𝒅. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄 = 𝟏. 
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1175. 𝐅𝐨𝐫 𝒂𝒍𝒍 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞 𝐫𝐞𝒂𝒍 𝐧𝐮𝐦𝐛𝐞𝐫𝐬 𝒂, 𝐛, 𝐜 𝐬𝐮𝐜𝐡 𝐭𝐡𝒂𝐭 ∶ 

𝒂 + 𝐛 + 𝐜 = 𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 𝐩𝐫𝐨𝐯𝐞: 

𝟏

(𝒂 + 𝐛)𝐛
+

𝟏

(𝐛 + 𝐜)𝐜
+

𝟏

(𝐜 + 𝒂)𝒂
≥

𝟑

𝟐√𝒂𝐛𝐜
𝟑  

  Proposed by Nguyen Thuong-Vietnam 
Solution by Soumava Chakraborty-Kolkata-India 
 

𝟏

(𝒂 + 𝐛)𝐛
+

𝟏

(𝐛 + 𝐜)𝐜
+

𝟏

(𝐜 + 𝒂)𝒂
≥

𝟑

𝟐. √𝒂𝐛𝐜
𝟑 ⇔

𝒂+𝐛+𝐜 = 𝒂𝐛+𝐛𝐜+𝐜𝒂
 

(𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂) (
𝟏

(𝒂 + 𝐛)𝐛
+

𝟏

(𝐛 + 𝐜)𝐜
+

𝟏

(𝐜 + 𝒂)𝒂
) ≥
(∗) 𝟑

𝟐. √𝒂𝐛𝐜
𝟑

(𝒂 + 𝐛 + 𝐜) 

𝐍𝐨𝐰,𝟐(𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂) (
𝟏

(𝒂 + 𝐛)𝐛
+

𝟏

(𝐛 + 𝐜)𝐜
+

𝟏

(𝐜 + 𝒂)𝒂
) 

= (∑𝐜(𝒂 + 𝐛)

𝐜𝐲𝐜

)(∑
𝟏

(𝒂 + 𝐛)𝐛
𝐜𝐲𝐜

) ≥
𝐂𝐁𝐒

(∑√
𝐜

𝐛
𝐜𝐲𝐜

)

𝟐

=∑
𝐛

𝒂
𝐜𝐲𝐜

+ 𝟐∑√
𝒂

𝐛
𝐜𝐲𝐜

 

= (
𝐛

𝒂
+√

𝐛

𝐜
+√

𝐛

𝐜
) + (

𝐜

𝐛
+ √

𝐜

𝒂
+√

𝐜

𝒂
) + (

𝒂

𝐜
+√

𝒂

𝐛
+ √

𝒂

𝐛
) 

≥
𝐀−𝐆

𝟑(√
𝐛

𝒂
.
𝐛

𝐜

𝟑

+ √
𝐜

𝐛
.
𝐜

𝒂

𝟑
+ √

𝒂

𝐜
.
𝒂

𝐛

𝟑
) 

= 𝟑(√
𝐛𝟑

𝒂𝐛𝐜

𝟑

+ √
𝐜𝟑

𝒂𝐛𝐜

𝟑

+ √
𝒂𝟑

𝒂𝐛𝐜

𝟑

) =
𝟑

√𝒂𝐛𝐜
𝟑

(𝒂 + 𝐛 + 𝐜) 

⇒ (𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂) (
𝟏

(𝒂 + 𝐛)𝐛
+

𝟏

(𝐛 + 𝐜)𝐜
+

𝟏

(𝐜 + 𝒂)𝒂
) ≥

𝟑

𝟐. √𝒂𝐛𝐜
𝟑

(𝒂 + 𝐛 + 𝐜) 

⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ;𝐐𝐄𝐃, 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 
 

1176.  𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 > 0 ∶ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 = 𝟑𝒂𝒃𝒄.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝒂

𝒂𝟐 + 𝒃 + 𝒄
+

𝒃

𝒂 + 𝒃𝟐 + 𝒄
+

𝒄

𝒂 + 𝒃 + 𝒄𝟐
≤ 𝟏 

Proposed by Nguyen Thuong-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 = 𝟑𝒂𝒃𝒄 ≤⏞
𝑨𝑴−𝑮𝑴

 𝟑√(
𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

𝟑
)

𝟑

  ⇒   𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 ≥ 𝟑  (𝟏) 
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𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  ∑
𝒂

𝒂𝟐 + 𝒃 + 𝒄
𝒄𝒚𝒄

≤⏞
𝑪𝑩𝑺

 ∑
𝒂(𝟏 + 𝒃 + 𝒄)

(𝒂 + 𝒃 + 𝒄)𝟐
𝒄𝒚𝒄

=
∑ 𝒂𝒄𝒚𝒄 + 𝟐∑ 𝒃𝒄𝒄𝒚𝒄

(𝒂 + 𝒃 + 𝒄)𝟐
 ≤⏞
?

 𝟏 

⇔  𝒂 + 𝒃 + 𝒄 ≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐,   𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒃𝒆𝒄𝒂𝒖𝒔𝒆 ∶ 

∑𝒂

𝒄𝒚𝒄

≤⏞
𝑨𝑴−𝑮𝑴

 ∑
𝒂𝟐 + 𝟏

𝟐
𝒄𝒚𝒄

=
𝟏

𝟐
∑𝒂𝟐

𝒄𝒚𝒄

+
𝟑

𝟐
 ≤⏞
(𝟏)

 ∑𝒂𝟐

𝒄𝒚𝒄

. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂,𝒃, 𝒄) = (𝟏, 𝟏, 𝟏). 

1177. 𝐅𝐨𝐫 𝒂𝒍𝒍 𝒂, 𝐛, 𝐜 ≥ 𝟎 𝐬𝐮𝐜𝐡 𝐭𝐡𝒂𝐭 ∶ 

𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 = 𝟏,
𝟒 − 𝟑𝒂𝐛𝐜

𝒂 + 𝐛 + 𝐜
≤ 𝟐 

  Proposed by Tran Quoc Thinh-Vietnam 
Solution 1 by Soumava Chakraborty-Kolkata-India 
 

𝐖𝐞 𝐨𝐛𝐬𝐞𝐫𝐯𝐞 𝐭𝐡𝒂𝐭 𝐞𝐢𝐭𝐡𝐞𝐫 𝐞𝒙𝒂𝐜𝐭𝐥𝐲 𝐨𝐧𝐞 𝒂𝐦𝐨𝐧𝐠 𝒂,𝐛, 𝐜 = 𝟎 𝐨𝐫 𝒂, 𝐛, 𝐜 > 0 
𝐅𝐨𝐫 𝐭𝐡𝐞 𝐟𝐢𝐫𝐬𝐭 𝐬𝐜𝐞𝐧𝒂𝐫𝐢𝐨,𝐖𝐋𝐎𝐆 𝐰𝐞 𝐦𝒂𝐲 𝒂𝐬𝐬𝐮𝐦𝐞 𝒂 = 𝟎 ∴ 𝐛𝐜 = 𝟏 (𝐛, 𝐜 > 0)  

𝒂𝐧𝐝 
𝟒 − 𝟑𝒂𝐛𝐜

𝒂 + 𝐛 + 𝐜
=

𝟒

𝐛 + 𝐜
≤
𝐀−𝐆 𝟒

𝟐√𝐛𝐜
=

𝐛𝐜 = 𝟏 
𝟐 ∴ 𝐢𝐧 𝐭𝐡𝐞 𝐟𝐢𝐫𝐬𝐭 𝐜𝒂𝐬𝐞,

𝟒 − 𝟑𝒂𝐛𝐜

𝒂 + 𝐛 + 𝐜
≤ 𝟐 , 

𝐰𝐢𝐭𝐡 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐟𝐨𝐫 (𝒂,𝐛, 𝐜) = (𝟎,𝟏, 𝟏) 𝐨𝐫 (𝟏, 𝟎, 𝟏) 𝐨𝐫 (𝟏, 𝟏, 𝟎)  
𝐖𝐞 𝐧𝐨𝐰 𝐬𝐡𝐢𝐟𝐭 𝐨𝐮𝐫 𝐟𝐨𝐜𝐮𝐬 𝐭𝐨 ∶ 𝒂, 𝐛, 𝐜 > 0 

𝐀𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐛 + 𝐜 = 𝒙, 𝐜 + 𝒂 = 𝐲,𝒂 + 𝐛 = 𝐳 ⇒ 𝒙+ 𝐲 − 𝐳 = 𝟐𝐜 > 0, 
𝐲 + 𝐳 − 𝒙 = 𝟐𝒂 > 0 𝒂𝐧𝐝 𝐳 + 𝒙 − 𝐲 = 𝟐𝐛 > 0 ⇒ 𝒙+ 𝐲 > 𝑧, 𝐲 + 𝐳 > 𝒙, 𝐳 + 𝒙 > 𝑦 

⇒ 𝒙, 𝐲, 𝐳 𝐟𝐨𝐫𝐦 𝐬𝐢𝐝𝐞𝐬𝐨𝐟 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 

= 𝐬, 𝐑, 𝐫 (𝐬𝒂𝐲) 𝐲𝐢𝐞𝐥𝐝𝐢𝐧𝐠 𝟐∑𝒂

𝐜𝐲𝐜

=∑𝒙

𝐜𝐲𝐜

= 𝟐𝐬 ⇒∑𝒂

𝐜𝐲𝐜

= 𝐬 → (𝟏) 

⇒ 𝒂 = 𝐬 − 𝒙,𝐛 = 𝐬 − 𝐲, 𝐜 = 𝐬 − 𝐳 

𝐕𝐢𝒂 𝐬𝐮𝐜𝐡 𝐬𝐮𝐛𝐬𝐭𝐢𝐭𝐮𝐭𝐢𝐨𝐧𝐬,∑𝒂𝐛

𝐜𝐲𝐜

=∑(𝐬− 𝒙)(𝐬 − 𝐲)

𝐜𝐲𝐜

= 𝟒𝐑𝐫 + 𝐫𝟐 → (𝟐)  

𝒂𝐧𝐝 𝒂𝐛𝐜 = (𝐬 − 𝒙)(𝐬 − 𝐲)(𝐬 − 𝐲) = 𝐫𝟐𝐬 → (𝟑) 

𝐍𝐨𝐰,
𝟒 − 𝟑𝒂𝐛𝐜

𝒂 + 𝐛 + 𝐜
− 𝟐 ≤ 𝟎 ⇔

𝟒 − 𝟑𝒂𝐛𝐜− 𝟐∑ 𝒂𝐜𝐲𝐜

𝒂 + 𝐛 + 𝐜
≤ 𝟎 

⇔
∵ 𝟏 = 𝒂𝐛+𝐛𝐜+𝐜𝒂

𝟐∑𝒂

𝐜𝐲𝐜

+
𝟑𝒂𝐛𝐜

∑ 𝒂𝐛𝐜𝐲𝐜
≥ 𝟒.√∑𝒂𝐛

𝐜𝐲𝐜

 

⇔ 𝟐(∑𝒂

𝐜𝐲𝐜

)(∑𝒂𝐛

𝐜𝐲𝐜

)+ 𝟑𝒂𝐛𝐜 ≥ 𝟒(∑𝒂𝐛

𝐜𝐲𝐜

) .√∑𝒂𝐛

𝐜𝐲𝐜

 

⇔
𝐯𝐢𝒂 (𝟏),(𝟐),(𝟑)

𝟐𝐬(𝟒𝐑𝐫 + 𝐫𝟐) + 𝟑𝐫𝟐𝐬 ≥ 𝟒(𝟒𝐑𝐫 + 𝐫𝟐).√𝟒𝐑𝐫 + 𝐫𝟐 
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⇔ 𝐬(𝟖𝐑 + 𝟓𝐫) ≥ 𝟒(𝟒𝐑 + 𝐫). √𝟒𝐑𝐫 + 𝐫𝟐 

⇔ 𝐬𝟐(𝟖𝐑 + 𝟓𝐫) ≥ 𝟏𝟔(𝟒𝐑𝐫 + 𝐫𝟐)(𝟒𝐑+ 𝐫)𝟐 ≥
(∗)

𝟎 

𝐍𝐨𝐰, 𝐋𝐇𝐒 𝐨𝐟 (∗) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

(𝟖𝐑 + 𝟓𝐫)(𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐) ≥
?
𝟏𝟔(𝟒𝐑𝐫 + 𝐫𝟐)(𝟒𝐑+ 𝐫)𝟐 

⇔ 𝟏𝟗𝟐𝐑𝟐 − 𝟏𝟗𝟐𝐑𝐫 − 𝟏𝟒𝟏𝐫𝟐 ≥
?
𝟎 ⇔ (𝐑 − 𝟐𝐫)(𝟏𝟗𝟐𝐑 + 𝟏𝟗𝟐𝐫) + 𝟐𝟒𝟑𝐫𝟐 ≥

?
𝟎 

→ 𝐭𝐫𝐮𝐞 ∵ 𝐑 ≥
𝐄𝐮𝐥𝐞𝐫

𝟐𝐫 ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 (𝐬𝐭𝐫𝐢𝐜𝐭 𝐢𝐧𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲) ∴
𝟒 − 𝟑𝒂𝐛𝐜

𝒂 + 𝐛 + 𝐜
< 2 ∀ 𝒂, 𝐛, 𝐜 > 0  

∴ 𝐜𝐨𝐦𝐛𝐢𝐧𝐢𝐧𝐠 𝐛𝐨𝐭𝐡 𝐜𝒂𝐬𝐞𝐬,
𝟒 − 𝟑𝒂𝐛𝐜

𝒂 + 𝐛 + 𝐜
≤ 𝟐 ∀ 𝒂,𝐛, 𝐜 ≥ 𝟎 │𝒂𝐛+ 𝐛𝐜 + 𝐜𝒂 = 𝟏, 

𝐰𝐢𝐭𝐡 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐟𝐨𝐫 (𝒂,𝐛, 𝐜) = (𝟎, 𝟏, 𝟏) 𝐨𝐫 (𝟏, 𝟎, 𝟏) 𝐨𝐫 (𝟏, 𝟏, 𝟎) (𝐐𝐄𝐃) 
 

Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco 
  

𝑳𝒆𝒕 𝒒 ≔ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏,   𝒑 ≔ 𝒂 + 𝒃 + 𝒄 ≥ √𝟑𝒒 = √𝟑   𝒂𝒏𝒅   𝒓 ≔ 𝒂𝒃𝒄. 

𝑻𝒉𝒆 𝒑𝒓𝒐𝒃𝒍𝒆𝒎 𝒃𝒆𝒄𝒐𝒎𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 ∶   
𝟒 − 𝟑𝒓

𝒑
≤ 𝟐   𝒐𝒓   𝟐𝒑+ 𝟑𝒓 ≥ 𝟒. 

𝑰𝒇 𝒑 ≥ 𝟐  𝒕𝒉𝒆 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒊𝒔 𝒐𝒃𝒗𝒊𝒐𝒖𝒔 𝒕𝒓𝒖𝒆. 

𝑾𝒆 𝒂𝒔𝒔𝒖𝒎𝒆 𝒏𝒐𝒘 𝒕𝒉𝒂𝒕 √𝟑 ≤ 𝒑 ≤ 𝟐.   

𝑩𝒚 𝑺𝒄𝒉𝒖𝒓′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 𝟗𝒓 ≥ 𝟒𝒑𝒒− 𝒑𝟑 = 𝟒𝒑− 𝒑𝟑. 

𝑻𝒉𝒆𝒏 ∶  𝟐𝒑 + 𝟑𝒓 ≥ 𝟐𝒑+
𝟒𝒑 − 𝒑𝟑

𝟑
= 𝟒 +

(𝟐 − 𝒑)(𝒑𝟐 + 𝟐𝒑− 𝟔)

𝟑
≥ 𝟒. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂,𝒃, 𝒄) = (𝟏, 𝟏, 𝟎) 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 

1178.  𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 ≥ 𝟎 ∶  𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 = 𝟑.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝒂𝟐𝒃 + 𝒃𝟐𝒄 + 𝒄𝟐𝒂 + 𝟐𝒂𝒃𝒄 + 𝟑 ≥
𝟖

𝟑
(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) 

Proposed by Phan Ngoc Chau-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑻𝒉𝒆 𝒈𝒊𝒗𝒆𝒏 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒄𝒂𝒏 𝒃𝒆 𝒓𝒆𝒘𝒓𝒊𝒕𝒕𝒆𝒏 𝒂𝒔 𝒇𝒐𝒍𝒍𝒐𝒘𝒔 ∶ 

(𝒂 + 𝒃 + 𝒄)(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) + 𝟑 ≥
𝟖

𝟑
(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) + (𝒂𝒃𝟐 + 𝒃𝒄𝟐 + 𝒄𝒂𝟐 + 𝒂𝒃𝒄). 
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𝑳𝒆𝒎𝒎𝒂 ∶   𝑰𝒇 𝒂, 𝒃, 𝒄 ≥ 𝟎 𝒕𝒉𝒆𝒏 ∶   𝒂𝒃𝟐 + 𝒃𝒄𝟐 + 𝒄𝒂𝟐 + 𝒂𝒃𝒄 ≤
𝟒

𝟐𝟕
(𝒂 + 𝒃 + 𝒄)𝟑. 

𝑷𝒓𝒐𝒐𝒇 ∶   𝑾𝑳𝑶𝑮 𝒘𝒆 𝒂𝒔𝒔𝒖𝒎𝒆 𝒕𝒉𝒂𝒕 𝒃 = 𝒎𝒊𝒅{𝒂, 𝒃, 𝒄}. 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   𝒂𝒃𝟐 + 𝒃𝒄𝟐 + 𝒄𝒂𝟐 + 𝒂𝒃𝒄 = −𝒂(𝒂 − 𝒃)(𝒃 − 𝒄) +
𝟏

𝟐
. 𝟐𝒃(𝒂 + 𝒄)𝟐 ≤ 

≤⏞
𝑨𝑴−𝑮𝑴

𝟎 +
𝟏

𝟐
. (
𝟐𝒃 + (𝒂 + 𝒄) + (𝒂 + 𝒄)

𝟑
)

𝟑

=
𝟒

𝟐𝟕
(𝒂 + 𝒃 + 𝒄)𝟑,   𝒂𝒔 𝒅𝒆𝒔𝒊𝒓𝒆𝒅. 

𝑺𝒐 𝒊𝒕 𝒔𝒖𝒇𝒇𝒊𝒄𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

(𝒂 + 𝒃 + 𝒄)(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) + 𝟑 ≥
𝟖

𝟑
(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) +

𝟒

𝟐𝟕
(𝒂 + 𝒃 + 𝒄)𝟑. 

𝑳𝒆𝒕 𝒑 ≔ 𝒂 + 𝒃 + 𝒄 𝒂𝒏𝒅 𝒒 ≔ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂.  𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 𝟑 = 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 = 𝒑𝟐 − 𝟐𝒒. 

𝑺𝒐 𝒘𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 ∶   𝒑𝒒 + 𝟑 ≥
𝟖

𝟑
𝒒 +

𝟒

𝟐𝟕
𝒑𝟑  𝒐𝒓  𝒑.

𝒑𝟐 − 𝟑

𝟐
+ 𝟑 ≥

𝟖

𝟑
.
𝒑𝟐 − 𝟑

𝟐
+
𝟒

𝟐𝟕
𝒑𝟑 

𝒐𝒓  
𝟏𝟗

𝟓𝟒
𝒑𝟑 −

𝟒

𝟑
𝒑𝟐 −

𝟑

𝟐
𝒑 + 𝟕 ≥ 𝟎  𝒐𝒓  (𝒑 − 𝟑)𝟐 (

𝟏𝟗

𝟓𝟒
𝒑 +

𝟕

𝟗
) ≥ 𝟎,   𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄 = 𝟏. 

1179. 𝑳𝒆𝒕 𝒂, 𝒃, 𝒄, 𝒅 > 𝟎 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 ∶   𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝒅𝟐 =
𝒂𝒃𝒄𝒅.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝒂

𝒂𝟑 + 𝟐𝒃𝒄𝒅
+

𝒃

𝒃𝟑 + 𝟐𝒄𝒅𝒂
+

𝒄

𝒄𝟑 + 𝟐𝒅𝒂𝒃
+

𝒅

𝒅𝟑 + 𝒂𝒃𝒄
≤
𝟏

𝟑
 

Proposed by Tran Quoc Thinh-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 

  
𝒂

𝒂𝟑 + 𝟐𝒃𝒄𝒅
≤⏞

𝑨𝑴−𝑮𝑴 𝒂

𝟑√𝒂𝟑(𝒃𝒄𝒅)𝟐
𝟑

=
𝒂√𝒃𝒄𝒅
𝟑

𝟑𝒂𝒃𝒄𝒅
 ≤⏞
𝑨𝑴−𝑮𝑴

 
𝒂𝒃 + 𝒂𝒄 + 𝒂𝒅

𝟑. 𝟑𝒂𝒃𝒄𝒅
≤ 

≤⏞
𝑨𝑴−𝑮𝑴

 
(𝒂𝟐 + 𝒃𝟐) + (𝒂𝟐 + 𝒄𝟐) + (𝒂𝟐 + 𝒅𝟐)

𝟐. 𝟗𝒂𝒃𝒄𝒅
=
𝟑𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝒅𝟐

𝟏𝟖𝒂𝒃𝒄𝒅
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 
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𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   ∑
𝒂

𝒂𝟑 + 𝟐𝒃𝒄𝒅
𝒄𝒚𝒄

≤∑
𝟑𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝒅𝟐

𝟏𝟖𝒂𝒃𝒄𝒅
𝒄𝒚𝒄

=
𝟔(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝒅𝟐)

𝟏𝟖𝒂𝒃𝒄𝒅
=
𝟏

𝟑
. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄 = 𝒅 = 𝟐. 

1180. 𝑰𝒇 𝒂, 𝒃, 𝒄 > 𝟎 ∶ 𝒂 + 𝒃 + 𝒄 + 𝟏 = 𝟒𝒂𝒃𝒄 𝒕𝒉𝒆𝒏 ∶ 

(𝒃 + 𝒄)√𝒂 + (𝒄 + 𝒂)√𝒃 + (𝒂 + 𝒃)√𝒄 ≥
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
+

𝟏

𝒂𝒃
+
𝟏

𝒃𝒄
+
𝟏

𝒄𝒂
 

Proposed by Nguyen Thuong-Vietnam 
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 

  𝒂 + 𝒃 + 𝒄 + 𝟏 = 𝒂. 𝟒𝒃𝒄 ≤⏞
𝑨𝑴−𝑮𝑴

𝒂(𝒃 + 𝒄)𝟐  ⇔  (𝒃 + 𝒄 + 𝟏)(𝒂(𝒃 + 𝒄) − (𝟏 + 𝒂)) ≥ 𝟎 

𝑻𝒉𝒆𝒏 ∶   𝒃 + 𝒄 ≥
𝟏 + 𝒂

𝒂
  ⇒   𝟒𝒂𝒃𝒄 ≥ 𝒂 + 𝟏 +

𝟏 + 𝒂

𝒂
=
(𝒂 + 𝟏)𝟐

𝒂
 ≥⏞
𝑨𝑴−𝑮𝑴

 
𝟐(𝒂 + 𝟏)

√𝒂
. 

𝑻𝒉𝒆𝒏 ∶   √𝒂 ≥
𝒂 + 𝟏

𝟐𝒂𝒃𝒄
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   ∑(𝒃 + 𝒄)√𝒂

𝒄𝒚𝒄

≥∑
(𝒂 + 𝟏)(𝒃 + 𝒄)

𝟐𝒂𝒃𝒄
𝒄𝒚𝒄

=
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
+
𝟏

𝒂𝒃
+
𝟏

𝒃𝒄
+
𝟏

𝒄𝒂
. 

Solution 2 by Soumava Chakraborty-Kolkata-India 
 

𝟒𝒂𝐛𝐜 = 𝒂 + 𝐛 + 𝐜 + 𝟏 ≥
𝐀−𝐆

𝒂 + 𝟏 + 𝟐√𝐛𝐜 ⇒ 𝟒𝒂(√𝐛𝐜)
𝟐
− 𝟐√𝐛𝐜 − (𝒂 + 𝟏) 

≥ 𝟎 ∴ 𝐞𝐢𝐭𝐡𝐞𝐫 √𝐛𝐜 ≤
𝟐 − √𝟒+ 𝟏𝟔𝒂(𝒂 + 𝟏)

𝟖𝒂
 𝐨𝐫 √𝐛𝐜 ≥

𝟐 + √𝟒+ 𝟏𝟔𝒂(𝒂 + 𝟏)

𝟖𝒂
 

⇒ 𝐞𝐢𝐭𝐡𝐞𝐫 √𝐛𝐜 ≤
𝟏 − (𝟐𝒂 + 𝟏)

𝟒𝒂
 𝐨𝐫 √𝐛𝐜 ≥

𝟏 + (𝟐𝒂 + 𝟏)

𝟒𝒂
⇒ 𝐞𝐢𝐭𝐡𝐞𝐫 √𝐛𝐜 ≤

−𝟏

𝟐
  

𝐨𝐫 √𝐛𝐜 ≥
𝒂 + 𝟏

𝟐𝒂
 𝒂𝐧𝐝 ∵ √𝐛𝐜 > 0 ∴ √𝐛𝐜 ≥

𝒂+ 𝟏

𝟐𝒂
⇒ √𝒂. √𝒂. √𝐛𝐜 ≥

𝒂 + 𝟏

𝟐
 

⇒ √𝒂 ≥
𝒂 + 𝟏

𝟐√𝒂𝐛𝐜
⇒ (𝐛 + 𝐜)√𝒂 ≥

(𝐛 + 𝐜)(𝒂 + 𝟏)

𝟐√𝒂𝐛𝐜
 𝒂𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐬 

⇒∑((𝐛+ 𝐜)√𝒂)

𝐜𝐲𝐜

≥
𝟏

𝟐√𝒂𝐛𝐜
∑(𝐛 + 𝐜)(𝒂 + 𝟏)

𝐜𝐲𝐜

=
𝟏

𝟐√𝒂𝐛𝐜
∑(𝒂𝐛 + 𝐜𝒂 + 𝐛 + 𝐜)

𝐜𝐲𝐜
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=
𝟐

𝟐√𝒂𝐛𝐜
(∑𝒂

𝐜𝐲𝐜

+∑𝒂𝐛

𝐜𝐲𝐜

) ≥
? 𝟏

𝒂
+
𝟏

𝐛
+
𝟏

𝐜
+
𝟏

𝒂𝐛
+
𝟏

𝐛𝐜
+
𝟏

𝐜𝒂
=

𝟏

𝒂𝐛𝐜
(∑𝒂

𝐜𝐲𝐜

+∑𝒂𝐛

𝐜𝐲𝐜

) 

⇔ 𝒂𝐛𝐜 ≥
?
√𝒂𝐛𝐜 ⇔ 𝒂𝐛𝐜 ≥

?
𝟏 → 𝐭𝐫𝐮𝐞 ∵ 𝟒𝒂𝐛𝐜 = 𝒂+ 𝐛 + 𝐜 + 𝟏 ≥

𝐀−𝐆
𝟒. √𝒂𝐛𝐜

𝟒
 

⇒ 𝒂𝐛𝐜 ≥ 𝟏 ∴ (𝐛 + 𝐜)√𝒂 + (𝐜 + 𝒂)√𝐛+ (𝒂 + 𝐛)√𝐜 ≥
𝟏

𝒂
+
𝟏

𝐛
+
𝟏

𝐜
+
𝟏

𝒂𝐛
+
𝟏

𝐛𝐜
+
𝟏

𝐜𝒂
  

∀ 𝒂, 𝐛, 𝐜 > 0│𝑎 + 𝐛 + 𝐜 + 𝟏 = 𝟒𝒂𝐛𝐜,𝐰𝐢𝐭𝐡 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 𝐨𝐜𝐜𝐮𝐫𝐫𝐢𝐧𝐠 
𝐢𝐟𝐟 𝟑𝒂 + 𝟏 = 𝟒𝒂𝟑 ⇒ 𝐢𝐟𝐟 (𝒂 − 𝟏)(𝟐𝒂 + 𝟏)𝟐 = 𝟎 ⇒ 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 

 

1181. 𝑰𝒇 𝒙, 𝒚, 𝒛 > 𝟎, 𝒙 + 𝒚 + 𝒛 = 𝟗 𝒕𝒉𝒆𝒏 ∶ 

𝒙

𝟑𝒙 + 𝒚𝒛
+

𝒚

𝟑𝒚 + 𝒛𝒙
+

𝒛

𝟑𝒛 + 𝒙𝒚
≥
𝟏

𝟐
 

Proposed by Tuan Kiet-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑳𝒆𝒕 𝒂 = √
𝒚𝒛

𝒙
, 𝒃 = √

𝒛𝒙

𝒚
, 𝒄 = √

𝒙𝒚

𝒛
.  𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟗  𝒂𝒏𝒅, 

𝒕𝒉𝒆 𝒑𝒓𝒐𝒃𝒍𝒆𝒎 𝒃𝒆𝒄𝒐𝒎𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 ∶   
𝟏

𝟑 + 𝒂𝟐
+

𝟏

𝟑 + 𝒃𝟐
+

𝟏

𝟑 + 𝒄𝟐
≥
𝟏

𝟐
. 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   
𝟏

𝟑 + 𝒂𝟐
=
𝟏

𝟑
(𝟏 −

𝒂𝟐

𝟑 + 𝒂𝟐
) =

𝟏

𝟑
−

𝒂𝟐

𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂 + 𝟑𝒂𝟐
= 

=
𝟏

𝟑
−

𝒂𝟐

𝒂(𝒂 + 𝒃 + 𝒄) + (𝟐𝒂𝟐 + 𝒃𝒄)
 ≥⏞
𝑪𝑩𝑺

 
𝟏

𝟑
−
𝟏

𝟒
(

𝒂𝟐

𝒂(𝒂 + 𝒃 + 𝒄)
+

𝒂𝟐

𝟐𝒂𝟐 + 𝒃𝒄
) = 

=
𝟏

𝟑
−

𝒂

𝟒(𝒂 + 𝒃 + 𝒄)
−
𝟏

𝟖
(𝟏 −

𝒃𝒄

𝟐𝒂𝟐 + 𝒃𝒄
) =

𝟓

𝟐𝟒
−

𝒂

𝟒(𝒂 + 𝒃 + 𝒄)
+

𝒃𝒄

𝟖(𝟐𝒂𝟐 + 𝒃𝒄)
 (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒏 ∶   ∑
𝟏

𝟑 + 𝒂𝟐
𝒄𝒚𝒄

≥∑(
𝟓

𝟐𝟒
−

𝒂

𝟒(𝒂 + 𝒃 + 𝒄)
+

𝒃𝒄

𝟖(𝟐𝒂𝟐 + 𝒃𝒄)
)

𝒄𝒚𝒄

=
𝟓

𝟖
−
𝟏

𝟒
+
𝟏

𝟖
∑

(𝒃𝒄)𝟐

𝟐𝒂𝟐𝒃𝒄 + (𝒃𝒄)𝟐
𝒄𝒚𝒄

≥ 

≥⏞
𝑪𝑩𝑺

 
𝟑

𝟖
+
𝟏

𝟖
.

(∑ 𝒃𝒄𝒄𝒚𝒄 )
𝟐

∑ (𝟐𝒂𝟐𝒃𝒄+ (𝒃𝒄)𝟐)𝒄𝒚𝒄
=
𝟑

𝟖
+
𝟏

𝟖
=
𝟏

𝟐
. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒙 = 𝒚 = 𝒛 = 𝟑. 
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1182. 𝐅𝐨𝐫 𝒂𝒍𝒍 𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞 𝐫𝐞𝒂𝒍 𝐧𝐮𝐦𝐛𝐞𝐫𝐬 𝒙, 𝐲, 𝐳 𝐬𝐮𝐜𝐡 𝐭𝐡𝒂𝐭 ∶ 

𝒙 + 𝐲 + 𝐳 = 𝟏, 𝒑𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 

𝟏

(𝒙 + 𝐲𝐳)𝟐
+

𝟏

(𝐲 + 𝐳𝒙)𝟐
+

𝟏

(𝐳 + 𝒙𝐲)𝟐
≤

𝟗

𝟏𝟔𝒙𝐲𝐳
 

  Proposed by Nguyen Thuong-Vietnam 
Solution 1 by Soumava Chakraborty-Kolkata-India 

𝟏

(𝒙 + 𝐲𝐳)𝟐
+

𝟏

(𝐲 + 𝐳𝒙)𝟐
+

𝟏

(𝐳 + 𝒙𝐲)𝟐
=

𝒙+𝐲+𝐳 = 𝟏
∑

𝟏

(𝟏− 𝐲 − 𝐳 + 𝐲𝐳)𝟐
𝐜𝐲𝐜

 

= ∑
(𝟏 − 𝒙)𝟐

(𝟏 − 𝒙)𝟐(𝟏 − 𝐲)𝟐(𝟏 − 𝐳)𝟐
𝐜𝐲𝐜

=
𝒙+𝐲+𝐳 = 𝟏 ∑ (𝐲 + 𝐳)𝟐𝐜𝐲𝐜

(𝒙 + 𝐲)𝟐(𝐲 + 𝐳)𝟐(𝐳 + 𝒙)𝟐
 

≤
(𝒙+𝐲)(𝐲+𝐳)(𝐳+𝒙) ≥ 

𝟖
𝟗
(∑ 𝒙𝐜𝐲𝐜 )(∑ 𝒙𝐲𝐜𝐲𝐜 ) 𝟐∑ 𝒙𝟐𝐜𝐲𝐜 + 𝟐∑ 𝒙𝐲𝐜𝐲𝐜

 
𝟖
𝟗
(∑ 𝒙𝐜𝐲𝐜 )(∑ 𝒙𝐲𝐜𝐲𝐜 )(𝒙 + 𝐲)(𝐲 + 𝐳)(𝐳 + 𝒙)

 

=
𝒙+𝐲+𝐳 = 𝟏 𝟐∑ 𝒙𝟐𝐜𝐲𝐜 + 𝟐∑ 𝒙𝐲𝐜𝐲𝐜

 
𝟖
𝟗
(∑ 𝒙𝐲𝐜𝐲𝐜 )(𝒙 + 𝐲)(𝐲 + 𝐳)(𝐳 + 𝒙)

≤
? 𝟗

𝟏𝟔𝒙𝐲𝐳
 

⇔ (∑𝒙𝐲

𝐜𝐲𝐜

)(𝒙 + 𝐲)(𝐲 + 𝐳)(𝐳 + 𝒙) ≥
?
𝟐𝒙𝐲𝐳(𝟐∑𝒙𝟐

𝐜𝐲𝐜

+ 𝟐∑𝒙𝐲

𝐜𝐲𝐜

) 

⇔ (∑𝒙𝐲

𝐜𝐲𝐜

)(𝟐𝒙𝐲𝐳 +∑𝒙𝐲(𝒙 + 𝐲)

𝐜𝐲𝐜

) ≥
?
𝟐𝒙𝐲𝐳(𝟐∑𝒙𝟐

𝐜𝐲𝐜

+ 𝟐∑𝒙𝐲

𝐜𝐲𝐜

) 

⇔ (∑𝒙𝐲

𝐜𝐲𝐜

)(∑𝒙𝐲(𝒙 + 𝐲)

𝐜𝐲𝐜

) ≥
?
⏟
(∗)

𝟐𝒙𝐲𝐳(𝟐∑𝒙𝟐

𝐜𝐲𝐜

+∑𝒙𝐲

𝐜𝐲𝐜

) 

𝐍𝐨𝐰, (∑𝒙𝐲

𝐜𝐲𝐜

)(∑𝒙𝐲(𝒙 + 𝐲)

𝐜𝐲𝐜

) 

= (𝒙𝐲 + 𝐲𝐳 + 𝐳𝒙)(𝒙𝐲(𝒙 + 𝐲) + 𝐲𝐳(𝐲 + 𝐳) + 𝐳𝒙(𝐳 + 𝒙)) 

=∑𝒙𝟐𝐲𝟐(𝒙 + 𝐲)

𝐜𝐲𝐜

+∑(𝒙𝐲. 𝐲𝐳. (𝐲 + 𝐳))

𝐜𝐲𝐜

+∑(𝒙𝐲. 𝐳𝒙. (𝐳 + 𝒙))

𝐜𝐲𝐜

 

= ∑𝒙𝟑(𝐲𝟐 + 𝐳𝟐)

𝐜𝐲𝐜

+ 𝒙𝐲𝐳∑(𝐲𝟐 + 𝐲𝐳)

𝐜𝐲𝐜

+ 𝒙𝐲𝐳∑(𝒙𝟐 + 𝐳𝒙)

𝐜𝐲𝐜

 

≥
𝐀−𝐆

∑𝒙𝟑. 𝟐𝐲𝐳

𝐜𝐲𝐜

+ 𝒙𝐲𝐳(𝟐∑𝒙𝟐

𝐜𝐲𝐜

+ 𝟐∑𝒙𝐲

𝐜𝐲𝐜

) 
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= 𝟐𝒙𝐲𝐳∑𝒙𝟐

𝐜𝐲𝐜

+ 𝒙𝐲𝐳(𝟐∑𝒙𝟐

𝐜𝐲𝐜

+ 𝟐∑𝒙𝐲

𝐜𝐲𝐜

) = 𝟐𝒙𝐲𝐳(𝟐∑𝒙𝟐

𝐜𝐲𝐜

+∑𝒙𝐲

𝐜𝐲𝐜

) 

⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴
𝟏

(𝒙 + 𝐲𝐳)𝟐
+

𝟏

(𝐲 + 𝐳𝒙)𝟐
+

𝟏

(𝐳 + 𝒙𝐲)𝟐
≤

𝟗

𝟏𝟔𝒙𝐲𝐳
  

∀ 𝒙, 𝐲, 𝐳 > 0│𝑥 + 𝐲 + 𝐳 = 𝟏, 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐟𝐟 𝒙 = 𝐲 = 𝐳 =
𝟏

𝟑
 (𝐐𝐄𝐃) 

 

Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco  

𝑻𝒉𝒆 𝒈𝒊𝒗𝒆𝒏 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒊𝒔 𝒔𝒖𝒄𝒄𝒆𝒔𝒔𝒊𝒗𝒆𝒍𝒚 𝒆𝒒𝒖𝒊𝒗𝒂𝒍𝒆𝒏𝒕 𝒕𝒐 ∶ 

𝟏

[(𝒙 + 𝒚)(𝒙 + 𝒛)]𝟐
+

𝟏

[(𝒚 + 𝒛)(𝒚 + 𝒙)]𝟐
+

𝟏

[(𝒛 + 𝒙)(𝒛 + 𝒚)]𝟐
≤

𝟗

𝟏𝟔𝒙𝒚𝒛(𝒙+ 𝒚 + 𝒛)
 

𝟏𝟔𝒙𝒚𝒛(𝒙 + 𝒚 + 𝒛)[(𝒙 + 𝒚)𝟐 + (𝒚 + 𝒛)𝟐 + (𝒛 + 𝒙)𝟐] ≤ 𝟗(𝒙 + 𝒚)𝟐(𝒚 + 𝒛)𝟐(𝒛 + 𝒙)𝟐. 

𝑼𝒔𝒊𝒏𝒈 𝑹𝒂𝒗𝒊′𝒔 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒊𝒐𝒏,   ∃∆𝑨𝑩𝑪 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 ∶  𝒂 = 𝒙 + 𝒚,   𝒃 = 𝒚 + 𝒛,   𝒄 = 𝒛 + 𝒙. 

𝑳𝒆𝒕 𝑭, 𝑹 𝒃𝒆 𝒕𝒉𝒆 𝒂𝒓𝒆𝒂, 𝒄𝒊𝒓𝒄𝒖𝒎𝒓𝒂𝒅𝒊𝒖𝒔 𝒐𝒇 ∆𝑨𝑩𝑪 𝒂𝒏𝒅 𝒔 =
𝒂 + 𝒃 + 𝒄

𝟐
= 𝒙 + 𝒚 + 𝒛. 

𝑩𝒚 𝑯𝒆𝒓𝒐𝒏′𝒔 𝒇𝒐𝒓𝒎𝒖𝒍𝒂,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 𝑭𝟐 = 𝒔(𝒔 − 𝒂)(𝒔 − 𝒃)(𝒔 − 𝒄) = 𝒙𝒚𝒛(𝒙 + 𝒚 + 𝒛). 

𝑺𝒐 𝒕𝒉𝒆 𝒈𝒊𝒗𝒆𝒏 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒊𝒔 𝒆𝒒𝒖𝒊𝒗𝒂𝒍𝒆𝒏𝒕 𝒕𝒐 ∶ 

𝟏𝟔𝑭𝟐(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) ≤ 𝟗(𝒂𝒃𝒄)𝟐 = 𝟗(𝟒𝑹𝑭)𝟐  ⇔  𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 ≤ 𝟗𝑹𝟐, 

𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝑳𝒆𝒊𝒃𝒏𝒊𝒛′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇 𝒙 = 𝒚 = 𝒛 =
𝟏

𝟑
. 

Solution 3 by Sanong Huayrerai-Nakon Pathom-Thailand 

𝟏

(𝒙 + 𝒚𝒛)𝟐
+

𝟏

(𝒚 + 𝒛𝒙)𝟐
+

𝟏

(𝒛 + 𝒙𝒚)𝟐
≤

𝟗

𝟏𝟔𝒙𝒚𝒛
 

𝟏

(𝒙 + 𝒚)𝟐(𝒙 + 𝒛)𝟐
+

𝟏

(𝒚 + 𝒙)𝟐(𝒚 + 𝒛)𝟐
+

𝟏

(𝒛 + 𝒙)𝟐(𝒛 + 𝒚)𝟐
≤

𝟗

𝟏𝟔𝒙𝒚𝒛
; 𝒙 + 𝒚 + 𝒛 = 𝟏 

(𝒙 + 𝒚)𝟐 + (𝒚 + 𝒛)𝟐 + (𝒛 + 𝒙)𝟐 ≤
𝟗

𝟏𝟔𝒙𝒚𝒛
(𝒙 + 𝒚)(𝒚 + 𝒛)(𝒛 + 𝒙)(𝒙 + 𝒚)(𝒚 + 𝒛)(𝒛 + 𝒙) 

𝟐(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙) ≤ 

≤
𝟗

𝟏𝟔𝒙𝒚𝒛
(𝒙 + 𝒚)(𝒚 + 𝒛)(𝒛 + 𝒙) ⋅

(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙)(𝒙 + 𝒚 + 𝒛)

𝟗
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𝟒(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝒙𝒚+ 𝒚𝒛 + 𝒛𝒙) ≤ (
𝒙

𝒚
+
𝒚

𝒙
+
𝒚

𝒛
+
𝒛

𝒚
+
𝒙

𝒛
+
𝒛

𝒙
) (𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙); (𝒙𝒚𝒛 = 𝟏) 

𝟐(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐) ≤
𝒙𝒚𝟐

𝒛
+
𝒚𝒛𝟐

𝒙
+
𝒛𝒙𝟐

𝒚
+
𝒙𝟐𝒚

𝒛
+
𝒚𝟐𝒛

𝒙
+
𝒛𝟐𝒙

𝒚
 

𝟐(𝒙𝟑𝒚𝒛 + 𝒚𝟑𝒛𝒙 + 𝒛𝟑𝒙𝒚) ≤ 𝒙𝟐𝒚𝟑 + 𝒚𝟐𝒛𝟑 + 𝒙𝟐𝒚𝟐 + 𝒚𝟑𝒛𝟐 + 𝒛𝟑𝒙𝟐 𝒕𝒓𝒖𝒆 𝒃𝒆𝒄𝒂𝒖𝒔𝒆: 
𝒙𝟐𝒚𝟑 + 𝒛𝟐𝒚𝟑 = 𝒚𝟑(𝒙𝟐 + 𝒛𝟐) ≥ 𝟐𝒚𝟑𝒛𝒙 𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔.   

   

Solution 4 by Michael Sterghiou-Greece 

∑
𝟏

(𝒙 + 𝒚𝒛)𝟐
𝒄𝒚𝒄

≤
𝟗

𝟏𝟔𝒙𝒚𝒛
;  (𝟏) 

𝑳𝒆𝒕 (𝒑, 𝒒, 𝒓) = (∑𝒙,∑𝒙𝒚,∏𝒙), 𝒑 = 𝟏, 𝒒 ≤
𝟏

𝟑
, 𝒓 ≤

𝟏

𝟐𝟕
;  (𝟐) 

𝟏

𝒙 + 𝒚𝒛
=

𝟏

𝒙(𝒙 + 𝒚 + 𝒛) + 𝒚𝒛
=

𝟏

(𝒙 + 𝒚)(𝒙 + 𝒛)
=

𝒚 + 𝒛

∏(𝒙 + 𝒚)
 

𝑺𝒐, (𝟏) ⇒
∑(𝒙 + 𝒚)𝟐

∏(𝒙 + 𝒚)𝟐
≤

𝟗

𝟏𝟔𝒓
 𝒐𝒓

𝟐(𝟏 − 𝒒)

(𝒒 − 𝒓)𝟐
≤

𝟗

𝟏𝟔𝒓
  

𝒇(𝒓) = −𝟗𝒒𝟐 − 𝟏𝟒𝒒𝒓 − 𝟗𝒓𝟐 + 𝟑𝟐𝒓 ≤ 𝟎; (𝟑) 

𝒇′(𝒓) = 𝟐(𝟏𝟔 − 𝟕𝒒 − 𝟗𝒓) >
(𝟐)

𝟎 ⇒ 𝒇(𝒓) ↗ 
𝑺𝒐, 𝒇(𝒓)𝒊𝒔 𝒎𝒂𝒙𝒊𝒎𝒂𝒍 𝒘𝒉𝒆𝒏 𝒓 𝒊𝒔 𝒎𝒂𝒙𝒊𝒎𝒖𝒎. 

𝒒 = (𝟐 − 𝟑𝒚)𝒚, 𝒓 = 𝒚𝟐(𝟏 − 𝟐𝒚) 
𝑭𝒓𝒐𝒎 (𝟑),𝒘𝒆 𝒈𝒆𝒕 𝒇(𝒓) = −𝟒(𝟏 − 𝟑𝒚)𝟐𝒚𝟐(𝟏 + 𝒚)𝟐 ≤ 𝟎.𝑾𝒆 𝒂𝒓𝒆 𝒅𝒐𝒏𝒆! 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒚 =
𝟏

𝟑
, 𝒛 =

𝟏

𝟑
 𝒂𝒏𝒅 𝒙 =

𝟏

𝟑
.   

1183. 𝐈𝐟 𝒂, 𝐛, 𝐜 ≥ 𝟎 𝐬𝐮𝐜𝐡 𝐭𝐡𝒂𝐭 ∶ 𝒂 + 𝐛 + 𝐜 = 𝟑 𝐭𝐡𝐞𝐧 

𝒂

𝟏 + 𝟑𝐛𝟐
+

𝐛

𝟏 + 𝟑𝐜𝟐
+

𝐜

𝟏 + 𝟑𝒂𝟐
≥
𝟑

𝟒
 

  Proposed by Phan Ngoc Chau-Ho Chi Minh-Vietnam 
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  
𝒂

𝟏 + 𝟑𝒃𝟐
= 𝒂 −

𝟑𝒂𝒃𝟐

𝟏 + 𝟑𝒃𝟐
 ≥⏞
𝑨𝑴−𝑮𝑴

 𝒂 −
𝟑𝒂𝒃𝟐

𝟒√(𝒃𝟐)𝟑
𝟒

= 𝒂 −
𝟑𝒂√𝒃

𝟒
 ≥⏞
𝑨𝑴−𝑮𝑴

𝒂 −
𝟑(𝒂 + 𝒂𝒃)

𝟖
. 

𝑻𝒉𝒆𝒏 ∶   
𝒂

𝟏 + 𝟑𝒃𝟐
≥
𝟓𝒂− 𝟑𝒂𝒃

𝟖
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   ∑
𝒂

𝟏 + 𝟑𝒃𝟐
𝒄𝒚𝒄

≥∑
𝟓𝒂− 𝟑𝒂𝒃

𝟖
𝒄𝒚𝒄

=
𝟓.𝟑

𝟖
−
𝟑

𝟖
∑𝒂𝒃

𝒄𝒚𝒄

≥
𝟏𝟓

𝟖
−
(𝒂 + 𝒃 + 𝒄)𝟐

𝟖
=
𝟏𝟓

𝟖
−
𝟗

𝟖
=
𝟑

𝟒
. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂,𝒃, 𝒄) = (𝟏, 𝟏, 𝟏). 
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Solution 2 by Soumava Chakraborty-Kolkata-India 
 

𝒂

𝟏 + 𝟑𝐛𝟐
+

𝐛

𝟏+ 𝟑𝐜𝟐
+

𝐜

𝟏 + 𝟑𝒂𝟐
≥
𝟑

𝟒
=
𝒂 + 𝐛 + 𝐜

𝟒
⇔∑𝒂(

𝟏

𝟏 + 𝟑𝐛𝟐
−
𝟏

𝟒
)

𝐜𝐲𝐜

≥ 𝟎 

⇔
𝟑

𝟒
∑𝒂(

𝟏 − 𝐛𝟐

𝟏 + 𝟑𝐛𝟐
)

𝐜𝐲𝐜

≥ 𝟎 ⇔∑𝒂(
𝟏 − 𝐛𝟐

𝟏 + 𝟑𝐛𝟐
)

𝐜𝐲𝐜

≥
(∗)

𝟎 

𝐍𝐨𝐰
𝟏 − 𝐛𝟐

𝟏 + 𝟑𝐛𝟐
≥
? 𝟏 − 𝐛

𝟐
⇔ (𝟏 − 𝐛) (

𝟏 + 𝐛

𝟏 + 𝟑𝐛𝟐
−
𝟏

𝟐
) ≥

?
𝟎 ⇔

(𝟏 − 𝐛)(𝟏 − 𝟐𝐛 − 𝟑𝐛𝟐)

𝟐(𝟏 + 𝟑𝐛𝟐)
≥
?
𝟎 

⇔
(𝟏 − 𝐛)𝟐(𝟏 + 𝟑𝐛)

𝟐(𝟏 + 𝟑𝐛𝟐)
≥
?
𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐛 ≥ 𝟎 

∴ 𝒂(
𝟏 − 𝐛𝟐

𝟏 + 𝟑𝐛𝟐
) ≥ 𝒂(

𝟏 − 𝐛

𝟐
)  𝒂𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐬 (∵ 𝒂 ≥ 𝟎 𝐞𝐭𝐜) 

⇒∑𝒂(
𝟏 − 𝐛𝟐

𝟏 + 𝟑𝐛𝟐
)

𝐜𝐲𝐜

≥∑𝒂(
𝟏− 𝐛

𝟐
)

𝐜𝐲𝐜

=
𝟏

𝟐
∑𝒂

𝐜𝐲𝐜

−
𝟏

𝟐
∑𝒂𝐛

𝐜𝐲𝐜

 

≥
𝟏

𝟐
∑𝒂

𝐜𝐲𝐜

−
𝟏

𝟔
(∑𝒂

𝐜𝐲𝐜

)

𝟐

=
𝒂+𝐛+𝐜 = 𝟑 𝟑

𝟐
−
𝟗

𝟔
= 𝟎 ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

∴
𝒂

𝟏 + 𝟑𝐛𝟐
+

𝐛

𝟏 + 𝟑𝐜𝟐
+

𝐜

𝟏 + 𝟑𝒂𝟐
≥
𝟑

𝟒
 ∀ 𝒂,𝐛, 𝐜 ≥ 𝟎│𝒂+ 𝐛 + 𝐜 = 𝟑, 

𝐰𝐢𝐭𝐡 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
 

Solution 3 by Sanong Huayrerai-Nakon Pathom-Thailand 

𝟏)  𝑰𝒇 𝒂 = 𝒃 = 𝟎, 𝒄 = 𝟑,
𝒄

𝟏 + 𝟑𝒂𝟐
=
𝟑

𝟏
= 𝟑 ≥

𝟑

𝟒
 

𝟐)  𝑰𝒇 𝒂 = 𝟎, 𝒃 + 𝒄 = 𝟑,
𝒃

𝟏 + 𝟑𝒄𝟐
+
𝒄

𝟏
≥
𝟑

𝟒
 

𝑰𝒇𝒇 𝒃 + 𝒄 + 𝟑𝒄𝟑 ≥
𝟑

𝟒
(𝟏 + 𝟑𝒄𝟐) 

𝑰𝒇𝒇 𝟒(𝒃 + 𝒄) + 𝟏𝟐𝒄𝟑 ≥ 𝟑 + 𝟗𝒄𝟐 
𝟗 + 𝟏𝟐𝒄𝟑 ≥ 𝟗𝒄𝟐 
𝟑 + 𝟒𝒄𝟑 ≥ 𝟑𝒄𝟐 

𝟐 + 𝟏 + 𝒄𝟑 + 𝒄𝟑 + 𝟐𝒄𝟑 ≥ 𝟑𝒄𝟐 𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆. 

𝟑)  𝑰𝒇 𝒂, 𝒃, 𝒄 > 0,
𝒂

𝟏 + 𝟑𝒃𝟐
+

𝒃

𝟏 + 𝟑𝒄𝟐
+

𝒄

𝟏 + 𝟑𝒂𝟐

≥
𝒂 + 𝒃 + 𝒄

𝟑
(

𝟏

𝟏 + 𝟑𝒂𝟐
+

𝟏

𝟏 + 𝟑𝒃𝟐
+

𝟏

𝟏 + 𝟑𝒄𝟐
) ≥

𝟑

𝟒
 

𝟏

𝒂(
𝟏
𝒂 + 𝟑𝒂)

+
𝟏

𝒃 (
𝟏
𝒃 + 𝟑𝒃)

+
𝟏

𝒄(
𝟏
𝒄 + 𝟑𝒄)

≥
𝟑

𝟒
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𝟏
𝒂𝟐

𝟏
𝒂𝟐

+ 𝟑
+

𝟏
𝒃𝟐

𝟏
𝒃𝟐

+ 𝟑
+

𝟏
𝒄𝟐

𝟏
𝒄𝟐
+ 𝟑

≥
𝟑

𝟒
 

(
𝟏
𝒂 +

𝟏
𝒃 +

𝟏
𝒄)

𝟐

𝟏
𝒂𝟐

+
𝟏
𝒃𝟐

+
𝟏
𝒄𝟐
+ 𝟗

≥
𝟑

𝟒
 

𝟒(
𝟏

𝒂𝟐
+
𝟏

𝒃𝟐
+
𝟏

𝒄𝟐
+ 𝟐(

𝟏

𝒂𝒃
+
𝟏

𝒃𝒄
+
𝟏

𝒄𝒂
)) ≥ 𝟑(

𝟏

𝒂𝟐
+
𝟏

𝒃𝟐
+
𝟏

𝒄𝟐
+ 𝟗) 

𝟏

𝒂𝟐
+
𝟏

𝒃𝟐
+
𝟏

𝒄𝟐
≥ 𝟑 

𝟏

𝒂𝒃
+
𝟏

𝒃𝒄
+
𝟏

𝒄𝒂
≥ 𝟑 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂 = 𝒃 = 𝒄 = 𝟏.   
 

1184. 𝑳𝒆𝒕 𝒂, 𝒃, 𝒄 ≥ 𝟎 ∶ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝟏.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝟔𝒂𝟐 − 𝒂 + 𝒃𝒄

𝟐𝒂 + 𝒃𝒄
+
𝟔𝒃𝟐 − 𝒃 + 𝒄𝒂

𝟐𝒃 + 𝒄𝒂
+
𝟔𝒄𝟐 − 𝒄 + 𝒂𝒃

𝟐𝒄 + 𝒂𝒃
≤
𝟑(𝒂 + 𝒃 + 𝒄)𝟐

𝟐
. 

  Proposed by Nguyen Thuong-Vietnam, 

Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

∑
𝟔𝒂𝟐 − 𝒂 + 𝒃𝒄

𝟐𝒂 + 𝒃𝒄
𝒄𝒚𝒄

≤
𝟑

𝟐
(𝒂 + 𝒃 + 𝒄)𝟐 

∑
𝟒𝒂𝟐 + 𝒃𝒄

𝟐𝒂 + 𝒃𝒄
𝒄𝒚𝒄

≤ 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 + √𝟑 +∑(𝒂 + 𝒃)(𝒂 + 𝒄)

𝒄𝒚𝒄

 𝒕𝒓𝒖𝒆 𝒃𝒆𝒄𝒂𝒖𝒔𝒆: 

𝟒𝒂𝟐 + 𝒃𝒄

𝟐𝒂 + 𝒃𝒄
≤ 𝒂𝟐 + 𝟏 

𝟒𝒂𝟐 + 𝒃𝒄 ≤ 𝟐𝒂𝟑 + 𝒂𝟐𝒃𝒄 + 𝟐𝒂 + 𝒃𝒄 

𝟒𝒂𝟐 ≤ 𝟐𝒂𝟐 + 𝟐𝒂 + 𝒂𝟐𝒃𝒄; 𝒂𝟐𝒃𝒄 ≥ 𝟎 

𝟒𝒃𝟐 + 𝒄𝒂

𝟐𝒃 + 𝒄𝒂
≤ 𝒃𝟐 + 𝟏, 𝟒𝒃𝟐 + 𝒄𝒂 ≤ 𝟐𝒃𝟑 + 𝒃𝟐𝒄𝒂 + 𝟐𝒃 + 𝒄𝒂 

𝟒𝒄𝟐 + 𝒂𝒃

𝟐𝒄 + 𝒂𝒃
≤ 𝒄𝟐 + 𝟏, 𝟒𝒄𝟐 + 𝒂𝒃 ≤ 𝟐𝒄𝟑 + 𝒄𝟐𝒂𝒃 + 𝟐𝒄 + 𝒂𝒃 
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𝟒𝒄𝟐 ≤ 𝟐𝒄𝟑 + 𝟐𝒄 + 𝒄𝟐𝒂𝒃   

Solution 2 by Sanonog Huayrerai-Nakon Pathom-Thailand 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  
𝟔𝒂𝟐 − 𝒂 + 𝒃𝒄

𝟐𝒂 + 𝒃𝒄
=
𝟏

𝟐
(𝟑.

𝟒𝒂𝟐 + 𝒃𝒄

𝟐𝒂 + 𝒃𝒄
− 𝟏) ≤⏞

𝑨𝑴−𝑮𝑴

  
𝟏

𝟐
(𝟑.

𝟐𝒂𝟑 + 𝟐𝒂 + 𝒃𝒄

𝟐𝒂 + 𝒃𝒄
− 𝟏) = 

=
𝟏

𝟐
(𝟑.

(𝟐𝒂 + 𝒃𝒄)(𝒂𝟐 + 𝟏) − 𝒂𝟐𝒃𝒄

𝟐𝒂 + 𝒃𝒄
− 𝟏) ≤

𝟏

𝟐
[𝟑(𝒂𝟐 + 𝟏) − 𝟏]

=
𝟑𝒂𝟐 + 𝟐

𝟐
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   ∑
𝟔𝒂𝟐 − 𝒂 + 𝒃𝒄

𝟐𝒂 + 𝒃𝒄
𝒄𝒚𝒄

≤∑
𝟑𝒂𝟐 + 𝟐

𝟐
𝒄𝒚𝒄

=
𝟑(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝟐)

𝟐
=
𝟑(𝒂 + 𝒃 + 𝒄)𝟐

𝟐
. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂,𝒃, 𝒄) = (𝟏, 𝟏, 𝟎) 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 

1185. If 𝒂, 𝒃, 𝒄 > 0 then: 

∑
𝒂𝟓 + 𝒃𝟓

𝒂𝟐𝒃𝟐(𝒂𝟑 + 𝒃𝟑)
𝒄𝒚𝒄

≥
𝟏

𝒂𝟐
+
𝟏

𝒃𝟐
+
𝟏

𝒄𝟐
 

Proposed by Zaza Mzavanadze-Georgia 
Solution 1 by Tapas Das-India 

𝒂𝟓 + 𝒃𝟓

𝒂𝟐𝒃𝟐(𝒂𝟑 + 𝒃𝟑)
−
𝟏

𝟐
(
𝟏

𝒂𝟐
+
𝟏

𝒃𝟐
) =

𝒂𝟓 + 𝒃𝟓

𝒂𝟐𝒃𝟐(𝒂𝟑 + 𝒃𝟑)
−
𝒂𝟐 + 𝒃𝟐

𝟐𝒂𝟐𝒃𝟐
= 

=
𝟐(𝒂𝟓 + 𝒃𝟓) − (𝒂𝟐 + 𝒃𝟐)(𝒂𝟑 + 𝒃𝟑)

𝟐𝒂𝟐𝒃𝟐(𝒂𝟑 + 𝒃𝟑)
=
𝒂𝟓 − 𝒂𝟐𝒃𝟑 − 𝒂𝟑𝒃𝟐 + 𝒃𝟓

𝟐𝒂𝟐𝒃𝟐(𝒂𝟑 + 𝒃𝟑)
= 

=
𝒂𝟐(𝒂𝟑 − 𝒃𝟑) − 𝒃𝟐(𝒂𝟑 − 𝒃𝟑)

𝟐𝒂𝟐𝒃𝟐(𝒂𝟑 + 𝒃𝟑)
=
(𝒂 + 𝒃)(𝒂 − 𝒃)(𝒂 − 𝒃)(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐)

𝟐𝒂𝟐𝒃𝟐(𝒂𝟑 + 𝒃𝟑)
> 0 

𝒂𝟓 + 𝒃𝟓

𝒂𝟐𝒃𝟐(𝒂𝟑 + 𝒃𝟑)
≥
𝟏

𝟐
(
𝟏

𝒂𝟐
+
𝟏

𝒃𝟐
) (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 

  ∑
𝒂𝟓 + 𝒃𝟓

𝒂𝟐𝒃𝟐(𝒂𝟑 + 𝒃𝟑)
𝒄𝒚𝒄

≥
𝟏

𝒂𝟐
+
𝟏

𝒃𝟐
+
𝟏

𝒄𝟐
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Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑩𝒚 𝑪𝒉𝒆𝒃𝒚𝒔𝒉𝒆𝒗′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   𝒂𝟓 + 𝒃𝟓 ≥
𝟏

𝟐
(𝒂𝟑 + 𝒃𝟑)(𝒂𝟐 + 𝒃𝟐) 

𝑻𝒉𝒆𝒏 ∶   
𝒂𝟓 + 𝒃𝟓

𝒂𝟐𝒃𝟐(𝒂𝟑 + 𝒃𝟑)
≥
𝒂𝟐 + 𝒃𝟐

𝟐𝒂𝟐𝒃𝟐
=
𝟏

𝟐
(
𝟏

𝒂𝟐
+
𝟏

𝒃𝟐
). 

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚,   𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝒃𝟓 + 𝒄𝟓

𝒃𝟐𝒄𝟐(𝒃𝟑 + 𝒄𝟑)
≥
𝟏

𝟐
(
𝟏

𝒃𝟐
+
𝟏

𝒄𝟐
)   𝒂𝒏𝒅  

𝒄𝟓 + 𝒂𝟓

𝒄𝟐𝒂𝟐(𝒄𝟑 + 𝒂𝟑)
≥
𝟏

𝟐
(
𝟏

𝒄𝟐
+
𝟏

𝒂𝟐
). 

𝑨𝒅𝒅𝒊𝒏𝒈 𝒕𝒉𝒆𝒔𝒆 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒊𝒆𝒔 𝒚𝒊𝒆𝒍𝒅𝒔 𝒕𝒉𝒆 𝒅𝒆𝒔𝒊𝒓𝒆𝒅 𝒓𝒆𝒔𝒖𝒍𝒕. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄. 

Solution 3 by Daoudi Abdessatar-Tunisia  

∑
𝒂𝟓 + 𝒃𝟓

𝒂𝟐𝒃𝟐(𝒂𝟑 + 𝒃𝟑)
𝒄𝒚𝒄

=
𝟏

𝟐
∑

(√
𝒂𝟓 + 𝒃𝟓

𝟐

𝟓

)

𝟓

(√
𝒂𝟐 + 𝒃𝟐

𝟐 )

𝟐

(√
𝒂𝟑 + 𝒃𝟑

𝟐

𝟑

)

𝟑 (
𝟏

𝒂𝟐
+
𝟏

𝒃𝟐
)

𝒄𝒚𝒄

≥
𝑷𝒐𝒘𝒆𝒓 𝑴𝒆𝒂𝒏𝒔

 

≥
𝟏

𝟐
∑(

𝟏

𝒂𝟐
+
𝟏

𝒃𝟐
)

𝒄𝒚𝒄

=∑
𝟏

𝒂𝟐
𝒄𝒚𝒄

 

1186. Let 𝒂, 𝒃, 𝒄 ≥ 𝟎 such that 𝒂 + 𝒃 + 𝒄 = 𝟑. Prove that: 

𝟏

𝟑𝟔 + 𝒃𝒂(𝒂 + 𝒃)
+

𝟏

𝟑𝟔 + 𝒃𝒄(𝒃 + 𝒄)
+

𝟏

𝟑𝟔 + 𝒄𝒂(𝒄 + 𝒂)
≥

𝟑

𝟑𝟖
 

Proposed by Tran Quoc Thinh-Vietnam 
Solution 1 by Samir Zaakouni-Morocco 

𝑺 =
𝟏

𝟑𝟔+ 𝒃𝒂(𝒂 + 𝒃)
+

𝟏

𝟑𝟔 + 𝒃𝒄(𝒃 + 𝒄)
+

𝟏

𝟑𝟔 + 𝒄𝒂(𝒄 + 𝒂)
 

𝑺 ≥
𝟑

𝟑𝟖
⇔

𝒄

𝟑𝟔𝒄 + 𝒂𝒃𝒄(𝒂 + 𝒃)
+

𝒂

𝟑𝟔𝒂 + 𝒂𝒃𝒄(𝒃 + 𝒄)
+

𝒃

𝟑𝟔𝒃 + 𝒂𝒃𝒄(𝒄 + 𝒂)
≥

𝟑

𝟑𝟖
 

𝒂 + 𝒃 + 𝒄

𝟑
≥ √𝒂𝒃𝒄

𝟑
⇒ 𝟎 ≤ 𝒂𝒃𝒄 ≤ 𝟏 

𝟑𝟔𝒄 + 𝒂𝒃𝒄(𝒂 + 𝒃) ≤ 𝒂 + 𝒃 + 𝟑𝟔𝒄 
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𝟑𝟔 + 𝒂𝒃𝒄(𝒂 + 𝒃) ≤ 𝟑𝟓𝒄 + 𝟑 

𝒄

𝟑𝟔 + 𝒂𝒃𝒄(𝒂 + 𝒃)
≥

𝒄

𝟑𝟓𝒄 + 𝟑
 

𝒂

𝟑𝟔𝒂 + 𝒂𝒃𝒄(𝒃 + 𝒄)
≥

𝒂

𝟑𝟓𝒂 + 𝟑
 𝒂𝒏𝒅

𝒃

𝟑𝟔𝒃 + 𝒂𝒃𝒄(𝒄 + 𝒂)
≥

𝒃

𝟑𝟓𝒃 + 𝟑
 

𝑺 ≥
𝒂

𝟑𝟓𝒂 + 𝟑
+

𝒃

𝟑𝟓𝒃 + 𝟑
+

𝒄

𝟑𝟓𝒄 + 𝟑
 

𝑳𝒆𝒕: 𝒇(𝒂, 𝒃, 𝒄) =
𝒂

𝟑𝟓𝒂 + 𝟑
+

𝒃

𝟑𝟓𝒃 + 𝟑
+

𝒄

𝟑𝟓𝒄 + 𝟑
, 𝒂 + 𝒃 + 𝒄 = 𝟑, (𝒂, 𝒃, 𝒄) ∈ ℝ∗. 

{𝐦𝐢𝐧 𝒇
(𝒂, 𝒃, 𝒄) =

𝒂

𝟑𝟓𝒂 + 𝟑
+

𝒃

𝟑𝟓𝒃 + 𝟑
+

𝒄

𝟑𝟓𝒄 + 𝟑
𝒂 + 𝒃 + 𝒄 = 𝟑, (𝒂, 𝒃, 𝒄) ∈ ℝ∗

 

𝑳(𝒂, 𝒃, 𝒄, 𝝀) =
𝒂

𝟑𝟓𝒂 + 𝟑
+

𝒃

𝟑𝟓𝒃 + 𝟑
+

𝒄

𝟑𝟓𝒄 + 𝟑
− 𝝀(𝒂 + 𝒃 + 𝒄 − 𝟑) 

{
 
 
 
 

 
 
 
 
𝒅𝑳(𝒂, 𝒃, 𝒄, 𝝀)

𝒅𝒂
= 𝟎 ⇔

𝟑

(𝟑𝟓𝒂 + 𝟑)𝟐
− 𝝀 = 𝟎 ⇔ 𝝀 =

𝟑

(𝟑𝟓𝒂 + 𝟑)𝟐
; (𝟏)

𝒅𝑳(𝒂, 𝒃, 𝒄, 𝝀)

𝒅𝒃
= 𝟎 ⇔

𝟑

(𝟑𝟓𝒃 + 𝟑)𝟐
− 𝝀 = 𝟎 ⇔ 𝝀 =

𝟑

(𝟑𝟓𝒃 + 𝟑)𝟐
; (𝟐)

𝒅𝑳(𝒂, 𝒃, 𝒄, 𝝀)

𝒅𝒄
= 𝟎 ⇔

𝟑

(𝟑𝟓𝒄 + 𝟑)𝟐
− 𝝀 = 𝟎 ⇔ 𝝀 =

𝟑

(𝟑𝟓𝒄 + 𝟑)𝟐
; (𝟑)

𝒅𝑳(𝒂, 𝒃, 𝒄, 𝝀)

𝒅𝝀
= 𝟎 ⇔ 𝟑 = 𝒂 + 𝒃 + 𝒄;  (∗)

 

{
 

 
𝟑

(𝟑𝟓𝒃 + 𝟑)𝟐
=

𝟑

(𝟑𝟓𝒂 + 𝟑)𝟐

𝟑

(𝟑𝟓𝒄 + 𝟑)𝟐
=

𝟑

(𝟑𝟓𝒂+ 𝟑)𝟐

⇒ {𝒃 = 𝒂
𝒄 = 𝒂

⇒ 𝒂 = 𝒃 = 𝒄. 

𝟑 − 𝟑𝒂 = 𝟎 ⇒ 𝒂 = 𝒃 = 𝒄 = 𝟏. 

𝐦𝐢𝐧
𝒂+𝒃+𝒄=𝟑

{𝒇(𝒂, 𝒃, 𝒄)} =
𝟏

𝟑𝟖
+
𝟏

𝟑𝟖
+
𝟏

𝟑𝟖
=

𝟑

𝟑𝟖
. 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝑺 ≥
𝟑

𝟑𝟖
   

Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑳𝒆𝒕 𝒙 = 𝒂𝒃(𝒂 + 𝒃), 𝒚 = 𝒃𝒄(𝒃 + 𝒄), 𝒛 = 𝒄𝒂(𝒄 + 𝒂),   𝒑 = 𝒂 + 𝒃 + 𝒄 = 𝟑, 𝒒
= 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂, 𝒓 = 𝒂𝒃𝒄. 
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𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  (∗)  ⇔ ∑
𝟏

𝟑𝟔 + 𝒙
𝒄𝒚𝒄

≥
𝟑

𝟑𝟖
 ⇔ 𝟑𝟖∑(𝟑𝟔 + 𝒚)(𝟑𝟔 + 𝒚)

𝒄𝒚𝒄

≥ 𝟑∏(𝟑𝟔+ 𝒙)

𝒄𝒚𝒄

 

⇔ 𝟕𝟕𝟕𝟔 ≥ 𝟑𝒙𝒚𝒛 + 𝟏𝟏𝟓𝟐(𝒙 + 𝒚 + 𝒛) + 𝟕𝟎(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙),   𝒘𝒊𝒕𝒉 ∶ 

𝒙𝒚𝒛 = (𝒂𝒃𝒄)𝟐∏(𝒃+ 𝒄)

𝒄𝒚𝒄

= 𝒓𝟐(𝒑𝒒 − 𝒓) = 𝒓𝟐(𝟑𝒒 − 𝒓),   𝒙 + 𝒚 + 𝒛 = 𝒑𝒒 − 𝟑𝒓

= 𝟑(𝒒 − 𝒓) 

𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙 = 𝒂𝒃𝒄∑𝒂(𝒂 + 𝒃)(𝒂 + 𝒄)

𝒄𝒚𝒄

= 𝒓(𝒑𝟑 − 𝟐𝒑𝒒 + 𝟑𝒓) = 𝟑𝒓(𝟗 − 𝟐𝒒 + 𝒓). 

𝑺𝒐 𝒕𝒉𝒆 𝒈𝒊𝒗𝒆𝒏 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒊𝒔 𝒆𝒒𝒖𝒊𝒗𝒂𝒍𝒆𝒏𝒕 𝒕𝒐 ∶ 

𝒇(𝒓) = 𝒓𝟑 − (𝟕𝟎 + 𝟑𝒒)𝒓𝟐 + (𝟓𝟐𝟐 + 𝟏𝟒𝟎𝒒)𝒓 + 𝟐𝟓𝟗𝟐 − 𝟏𝟏𝟓𝟐𝒒 ≥ 𝟎  (𝟏) 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  

 𝒇′(𝒓) = 𝟑𝒓𝟐 + 𝟏𝟒𝟎𝒒 + [𝟓𝟐𝟐 − 𝟐(𝟕𝟎 + 𝟑𝒒)𝒓] ≥⏞
𝒒 ≤ 𝟑 & 𝑟 ≤ 1

 𝟎, 𝒕𝒉𝒆𝒏 𝒇 𝒊𝒔 𝒊𝒏𝒄𝒓𝒆𝒂𝒔𝒊𝒏𝒈. 

𝑰𝒇 𝒒 ≤
𝟗

𝟒
,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

  𝒇(𝒓) = 𝒓𝟑 + 𝟏𝟒𝟎𝒒𝒓 + [𝟓𝟐𝟐 − (𝟕𝟎 + 𝟑𝒒)𝒓]𝒓 + 𝟏𝟏𝟓𝟐 (
𝟗

𝟒
− 𝒒) ≥⏞

𝒓 ≤ 𝟏

 𝟎. 

𝑰𝒇 
𝟗

𝟒
≤ 𝒒 ≤ 𝟑,   𝒃𝒚 𝒇𝒐𝒖𝒓𝒕𝒉 𝒅𝒆𝒈𝒓𝒆𝒆 𝑺𝒄𝒉𝒖𝒓′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚, 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝒓 ≥
𝟓𝒑𝟐𝒒 − 𝒑𝟒 − 𝟒𝒒𝟐

𝟔𝒑
=
−𝟒𝒒𝟐 + 𝟒𝟓𝒒 − 𝟖𝟏

𝟏𝟖
,   𝒕𝒉𝒆𝒏 ∶ 

𝒇(𝒓) ≥ 𝒇(
−𝟒𝒒𝟐 + 𝟒𝟓𝒒 − 𝟖𝟏

𝟏𝟖
) = 

=
(𝟑 − 𝒒)(𝟒𝒒 − 𝟗)[𝟏𝟔𝒒𝟒 + 𝟑𝒒𝟐(𝟏𝟗𝟓𝟑 − 𝟖𝟎𝒒) + 𝟐𝟒𝟑(𝟏𝟏𝟐𝟓 − 𝟏𝟖𝟐𝒒)]

𝟏𝟖𝟑
≥ 𝟎. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂, 𝒃, 𝒄) = (𝟏, 𝟏, 𝟏) 𝒐𝒓 (
𝟑

𝟐
,
𝟑

𝟐
, 𝟎)  𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 
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1187. If 𝒂, 𝒃 > 0 and 𝒏 ∈ ℕ then: 

(
𝟐𝒂𝟑

𝒃√𝒃𝟒 + 𝟑𝒂𝟒
)

𝒏

+ (
𝟐𝒃𝟑

𝒂√𝒂𝟒 + 𝟑𝒃𝟒
)

𝒏

≥ 𝟐 

Proposed by Marin Chirciu-Romania 
Solution by Rin Huynh-Vietnam 
 

(
𝟐𝒂𝟑

𝒃√𝒃𝟒 + 𝟑𝒂𝟒
)

𝒏

+ (
𝟐𝒃𝟑

𝒂√𝒂𝟒 + 𝟑𝒃𝟒
)

𝒏

≥
𝑷𝒐𝒘𝒆𝒓 𝑴𝒆𝒂𝒏𝒔;𝑪𝑩𝑺 𝟏

𝟐𝒏−𝟏
(

𝟐𝒂𝟑

𝒃√𝒃𝟒 + 𝟑𝒂𝟒
+

𝟐𝒃𝟑

𝒂√𝒂𝟒 + 𝟑𝒃𝟒
)

𝒏

 

= 𝟐(
𝟐𝒂𝟑

𝒃√𝒃𝟒 + 𝟑𝒂𝟒
+

𝟐𝒃𝟑

𝒂√𝒂𝟒 + 𝟑𝒃𝟒
) ≥

𝟐(𝒂𝟐 + 𝒃𝟐)𝟐

𝒂𝒃√𝒃𝟒 + 𝟑𝒂𝟒 + 𝒂𝒃√𝒂𝟒 + 𝟑𝒃𝟒
≥ 

≥
𝟐(𝒂𝟒 + 𝟐𝒂𝟐𝒃𝟐 + 𝒃𝟒)

𝒂𝒃√𝟐(𝒃𝟒 + 𝟑𝒂𝟒 + 𝒂𝟒 + 𝟑𝒃𝟒)
≥
𝟒√𝟐𝒂𝟐𝒃𝟐(𝒂𝟒 + 𝒃𝟒)

𝒂𝒃√𝟖(𝒂𝟒 + 𝒃𝟒)
= 𝟐 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂 = 𝒃.   

1188. If 𝟎 < 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏, 𝒂𝟏 + 𝒂𝟐 +⋯+ 𝒂𝒏 = 𝟑, 𝒏 ∈ ℕ then: 

√𝒏𝒂𝟏 + 𝟏𝟑 + √𝒏𝒂𝟐 + 𝟏𝟑 +⋯+ √𝒏𝒂𝒏 + 𝟏𝟑 < 𝑛√𝟒
𝟑

 

Proposed by Sebastian Ilinca-Romania 
Solution 1 by Soumitra Mandal-Chandar Nagore-India 

𝒙 → √𝒙
𝟑
 𝒊𝒔 𝒂 𝒄𝒐𝒏𝒄𝒂𝒗𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒂𝒏𝒅 ∑𝒂𝒊

𝒏

𝒊=𝟏

= 𝟑(𝒈𝒊𝒗𝒆𝒏) 

∴  ∑ √𝒏𝒂𝒊 + 𝟏
𝟑

𝒏

𝒊=𝟏

≤ 𝒏√
𝟏

𝒏
∑(𝒏𝒂𝒊 + 𝟏)

𝒏

𝒊=𝟏

𝟑

= 𝒏√
𝟏

𝒏
{𝒏∑𝒂𝒊

𝒏

𝒊=𝟏

+ 𝒏}
𝟑

= 𝒏√
𝟑𝒏 + 𝒏

𝒏

𝟑

= 𝒏√𝟒
𝟑

 

𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒂𝒕 𝒂𝟏 = 𝒂𝟐 = ⋯ = 𝒂𝒏 =
𝟑

𝒏
 

Solution 2 by Tapas Das-India 

√𝒏𝒂𝟏 + 𝟏
𝟑 + √𝒏𝒂𝟐 + 𝟏

𝟑 +⋯+ √𝒏𝒂𝒏 + 𝟏
𝟑 ≤

𝑪𝑩𝑺
 

≤ 𝒏√
(𝒏𝒂𝟏 + 𝟏) + (𝒏𝒂𝟐 + 𝟏) + ⋯+ (𝒏𝒂𝒏 + 𝟏)

𝒏

𝟑

 

= 𝒏√(𝒂𝟏 + 𝒂𝟐 +⋯+ 𝒂𝒏) + 𝟏
𝟑

= 𝒏√𝟑 + 𝟏
𝟑

= 𝒏√𝟒
𝟑
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∵
𝒙𝟏
𝒎 + 𝒙𝟐

𝒎 +⋯+ 𝒙𝒏
𝒎

𝒏
≤ (

𝒙𝟏 + 𝒙𝟐 +⋯+ 𝒙𝒏
𝒏

)
𝒎

, 𝒘𝒉𝒆𝒏 𝟎 < 𝒎 < 𝟏. 

1189. If 𝒂, 𝒃, 𝒄 > 0, 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 = 3 and 𝝀 ≥ 𝟎 then: 

𝒃𝒄

𝟏 + 𝝀𝒂𝟐
+

𝒄𝒂

𝟏 + 𝝀𝒃𝟐
+

𝒂𝒃

𝟏 + 𝝀𝒄𝟐
≥

𝟑

𝝀 + 𝟏
 

Proposed by Marin Chirciu-Romania 
Solution by Tran Quoc Anh-Vietnam 

𝑾𝒆 𝒉𝒂𝒗𝒆: 

(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)𝟐 ≥ 𝟑𝒂𝒃𝒄(𝒂 + 𝒃 + 𝒄) ⇒ 𝟑 ≥ 𝒂𝒃𝒄(𝒂 + 𝒃 + 𝒄); (𝟏) 

𝑨𝒍𝒕𝒆𝒓𝒏𝒂𝒕𝒊𝒗𝒆𝒍𝒚: 

∑
𝒂𝒃

𝟏 + 𝝀𝒄𝟐
𝒄𝒚𝒄

=∑
(𝒂𝒃)𝟐

𝒂𝒃 + 𝝀𝒂𝒃𝒄𝟐
𝒄𝒚𝒄

≥
𝑹𝒂𝒅𝒐𝒏 (𝒂𝒃 + 𝒃𝒄 + 𝒃𝒄)𝟐

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 + 𝝀𝒂𝒃𝒄(𝒂 + 𝒃 + 𝒄)
≥
(𝟏)

 

≥
𝟑𝟐

𝟑 + 𝟑𝝀
=

𝟑

𝟏 + 𝝀
 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄 = 𝟏.   

1190. 𝑮𝒊𝒗𝒆𝒏 𝒂, 𝒃, 𝒄 > 𝟎 ∶ 𝒂𝒃𝒄 = 𝟏.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝟏

𝒂 + 𝒃
+

𝟏

𝒃 + 𝒄
+

𝟏

𝒄 + 𝒂
≥
(𝒂 + 𝒃)(𝟐 − 𝒂𝒃) + (𝒃 + 𝒄)(𝟐 − 𝒃𝒄) + (𝒄 + 𝒂)(𝟐 − 𝒄𝒂)

𝟒
 

Proposed by Nguyen Thuong-Vietnam 
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑻𝒉𝒆 𝒈𝒊𝒗𝒆𝒏 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒄𝒂𝒏 𝒃𝒆 𝒓𝒆𝒘𝒓𝒊𝒕𝒕𝒆𝒏 𝒂𝒔 𝒇𝒐𝒍𝒍𝒐𝒘𝒔 ∶ 

(
𝟏

𝒂 + 𝒃
+
𝒄𝟐(𝒂 + 𝒃)

𝟒
) + (

𝟏

𝒃 + 𝒄
+
𝒂𝟐(𝒃 + 𝒄)

𝟒
) + (

𝟏

𝒄 + 𝒂
+
𝒃𝟐(𝒄 + 𝒂)

𝟒
) ≥ 𝒂 + 𝒃 + 𝒄. 

𝑩𝒚 𝑨𝑴− 𝑮𝑴 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   
𝟏

𝒂 + 𝒃
+
𝒄𝟐(𝒂 + 𝒃)

𝟒
≥ 𝒄. 

𝑨𝒅𝒅𝒊𝒏𝒈 𝒕𝒉𝒊𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒘𝒊𝒕𝒉 𝒔𝒊𝒎𝒊𝒍𝒂𝒓 𝒐𝒏𝒆𝒔 𝒚𝒊𝒆𝒍𝒅𝒔 𝒕𝒉𝒆 𝒅𝒆𝒔𝒊𝒓𝒆𝒅 𝒓𝒆𝒔𝒖𝒍𝒕. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄 = 𝟏. 

Solution 2 by Michael Sterghiou-Greece 

∑
𝟏

𝒂+ 𝒃
𝒄𝒚𝒄

≥
𝟏

𝟒
∑(𝒂+ 𝒃)(𝟐 − 𝒂𝒃)

𝒄𝒚𝒄

;   (𝟏) 
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𝑳𝒆𝒕 (𝒑,𝒒, 𝒓) = (∑𝒂,∑𝒂𝒃,∏𝒂), 𝒓 = 𝟏,𝒑, 𝒒 ≥ 𝟑, 𝒕𝒉𝒆𝒏 (𝟏) 𝒓𝒆𝒅𝒖𝒄𝒆𝒔 𝒕𝒐: 

∑(𝒂 + 𝒃)(𝒃 + 𝒄)

∏(𝒂 + 𝒃)
≥
𝟏

𝟒
[𝟒(∑𝒂) − ∑(𝒂𝟐𝒃+ 𝒂𝒃𝟐)] 𝒐𝒓

𝒑𝟐 + 𝒒

𝒑𝒒 − 𝟏
≥
𝟒𝒑− 𝒑𝒒+ 𝟑

𝟒
 

∑𝒂𝒃(𝒂 + 𝒃) = 𝒑𝒒− 𝟑𝒓 = 𝒑𝒒− 𝟑; ∏(𝒂 + 𝒃) = 𝒑𝒒− 𝒓 = 𝒑𝒒− 𝟏 𝒐𝒓  

𝒇(𝒒) = 𝟒(𝒑𝟐 + 𝒒) − (𝒑𝒒 − 𝟏)(𝟒𝒑− 𝒑𝒒+ 𝟑) ≥ 𝟎;  (𝟐) 

𝒇′(𝒒) = 𝟐𝒑𝟐(𝒒 − 𝟐) − 𝟒𝒑 + 𝟒 = 𝟐[𝒑(𝒑(𝒒 − 𝟐) − 𝟐) + 𝟐] ≥ 𝟎 𝒂𝒔 𝒑 ≥ 𝟑 𝒂𝒏𝒅  

𝒒 − 𝟐 ≥ 𝟏, 𝒉𝒆𝒏𝒄𝒆 𝒇 − 𝒊𝒏𝒄𝒓𝒆𝒂𝒔𝒊𝒏𝒈 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏. 

𝑨𝒔𝒔𝒖𝒎𝒆 𝒑 = 𝟑𝒕𝟐, 𝒕 ≥ 𝟏 𝒕𝒉𝒆𝒏 𝒂𝒔 𝒒𝟐 ≥ 𝟑𝒑𝒓 = 𝟑𝒑 = 𝟗𝒕𝟐 𝒐𝒓 𝒒 ≥ 𝟑𝒕 𝒂𝒏𝒅  

𝒇(𝒒) ≥ 𝒇(𝟑𝒕) = ⋯ = (𝒕 − 𝟏)[(𝒕 − 𝟏)(𝟐𝟕𝒕𝟒 + 𝟓𝟒𝒕𝟑 + 𝟒𝟓𝒕𝟐 + 𝟐𝟒𝒕 + 𝟏𝟗) + 𝟏𝟖] ≥ 𝟎.𝑫𝒐𝒏𝒆! 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒕 = 𝟏, 𝒑,𝒒 = 𝟑,𝒂 = 𝒃 = 𝒄 = 𝟏.  

1191. If 𝒙, 𝒚, 𝒛 > 𝟎, 𝒙 + 𝒚 + 𝒛 = 𝟏, then: 

𝒙

𝒙𝒚𝒛 + 𝒙𝟐 + 𝟐
+

𝒚

𝒙𝒚𝒛 + 𝒚𝟐 + 𝟐
+

𝒛

𝒙𝒚𝒛 + 𝒛𝟐 + 𝟐
≤
𝟐𝟕

𝟓𝟖
 

Proposed by Tuan Kiet-Vietnam 
Solution by Michael Stergiou-Greece 

𝒙

𝒙𝒚𝒛 + 𝒙𝟐 + 𝟐
+

𝒚

𝒙𝒚𝒛 + 𝒚𝟐 + 𝟐
+

𝒛

𝒙𝒚𝒛 + 𝒛𝟐 + 𝟐
≤
𝟐𝟕

𝟓𝟖
;  (𝟏) 

𝑳𝒆𝒕 (𝒑, 𝒒, 𝒓) = (∑𝒙,∑𝒙𝒚,∏𝒙): 𝒑 = 𝟏, 𝒒 ≤ 𝟏, 𝒓 ≤
𝟏

𝟐𝟕
. 

∑𝒙𝒚(𝒙 + 𝒚)

𝒄𝒚𝒄

= 𝒑𝒒 − 𝟑𝒓 = 𝒒 − 𝟑𝒓,  

∑𝒙𝟐𝒚𝟐

𝒄𝒚𝒄

= 𝒒𝟐 − 𝟐𝒑𝒓 = 𝒒𝟐 − 𝟐𝒓 

∑𝒙𝟐

𝒄𝒚𝒄

= 𝟏 − 𝟐𝒒 

∑𝒙(𝒓𝟐 + 𝒚𝟐 + 𝟐)(𝒓 + 𝒛𝟐 + 𝟐)

𝒄𝒚𝒄

= ⋯ = 𝟐(𝒒𝒓 + 𝒒 − 𝒓𝟐 − 𝒓+ 𝟐) = 𝑨 

∏(𝒓+ 𝒙𝟐 + 𝟐)

𝒄𝒚𝒄

= ⋯ = 𝒒𝟐𝒓 + 𝟐𝒒𝟐 − 𝟐𝒒𝒓𝟐 − 𝟖𝒒𝒓 − 𝟖𝒒 + 𝒓𝟑 + 𝟔𝒓𝟐 + 𝟏𝟐𝒓 + 𝟏𝟐 = 𝑩 
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𝑾𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒔𝒉𝒐𝒘: 
𝑨

𝑩
≤
𝟓𝟕

𝟓𝟖
. 

𝑳𝒆𝒕 𝒇(𝒒, 𝒓) = −𝟐𝟕𝒒𝟐𝒓 − 𝟓𝟒𝒒𝟐 + 𝟓𝟒𝒒𝒓𝟐 + 𝟑𝟑𝟐𝒒𝒓 + 𝟑𝟑𝟐𝒒 − 𝟐𝟕𝒓𝟑 − 𝟐𝟕𝟖𝒓𝟐 − 𝟒𝟒𝟎𝒓

− 𝟗𝟐 ≤ 𝟎 

𝑩𝒖𝒕
𝒅𝒇

𝒅𝒒
= −𝟓𝟒𝒒𝒓 − 𝟏𝟎𝟖𝒒 + 𝟓𝟒𝒓𝟐 + 𝟑𝟑𝟐𝒓 + 𝟑𝟑𝟐 > 0 𝑎𝑠 𝑡ℎ𝑒 𝑡𝑒𝑟𝑚 + 332 

𝒐𝒖𝒕 𝒘𝒆𝒊𝒈𝒕𝒉𝒔 𝒂𝒍𝒍 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝒕𝒆𝒓𝒎𝒔, 𝒉𝒆𝒏𝒄𝒆 𝒇 ↗ 𝒂𝒏𝒅 𝒇(𝒒) ≤ 𝒇 (
𝟏 + 𝟗𝒓

𝟒
) 

𝒂𝒔 𝒃𝒚 𝑺𝒄𝒉𝒖𝒓′𝒔 𝟑𝒓𝒅 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒒 ≤
𝟏 + 𝟗𝒓

𝟒
. 

𝑻𝒉𝒊𝒔 𝒍𝒆𝒂𝒅𝒔 𝒕𝒐
𝟏

𝟏𝟔
(𝟏 − 𝟐𝟕𝒓)(𝟐𝟓𝒓𝟐 − 𝟏𝟎𝟓𝒓 − 𝟏𝟗𝟖) ≤ 𝟎.𝑾𝒆 𝒂𝒓𝒆 𝒅𝒐𝒏𝒆! 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒓 =
𝟏

𝟐𝟕
, 𝒒 =

𝟏

𝟑
 𝒂𝒏𝒅 𝒙 = 𝒚 = 𝒛 =

𝟏

𝟑
.    

1192. 

𝐈𝐟 𝒂, 𝐛, 𝐜 > 𝟎 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝐭 ∶ 𝒂𝟓𝐛𝟓 + 𝐛𝟓𝐜𝟓 + 𝐜𝟓𝒂𝟓 + 𝒂𝟓𝐛𝟓𝐜𝟓 = 𝟒, 𝐭𝐡𝐞𝐧 ∶ 

√𝒂𝟓 + 𝟐
𝟑

+ √𝐛𝟓 + 𝟐
𝟑

+ √𝐜𝟓 + 𝟐
𝟑

≥ 𝟑√𝟑
𝟑

 

  Proposed by Zaza Mzhavanadze-Georgia 
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑻𝒉𝒆 𝒈𝒊𝒗𝒆𝒏 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝒄𝒂𝒏 𝒃𝒆 𝒓𝒆𝒘𝒓𝒊𝒕𝒕𝒆𝒏 𝒂𝒔 𝒇𝒐𝒍𝒍𝒐𝒘𝒔 ∶ 

𝟏

𝒂𝟓 + 𝟐
+

𝟏

𝒃𝟓 + 𝟐
+

𝟏

𝒄𝟓 + 𝟐
= 𝟏. 

𝑩𝒚 𝑯ӧ𝒍𝒅𝒆𝒓′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

(∑√𝒂𝟓 + 𝟐
𝟑

𝒄𝒚𝒄

)

𝟑

(∑
𝟏

𝒂𝟓 + 𝟐
𝒄𝒚𝒄

) ≥ (𝟏 + 𝟏 + 𝟏)𝟒 = 𝟖𝟏. 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   √𝒂𝟓 + 𝟐
𝟑

+ √𝒃𝟓 + 𝟐
𝟑

+ √𝒄𝟓 + 𝟐
𝟑

≥ √𝟖𝟏
𝟑

= 𝟑√𝟑
𝟑

. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄 = 𝟏. 
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Solution 2 by Soumava Chakraborty-Kolkata-India 
 

𝒂𝟓 = 𝒙, 𝐛𝟓 = 𝐲, 𝐜𝟓 = 𝐳 (𝒔𝒂𝒚) ⇒ 𝒂𝟓𝐛𝟓 + 𝐛𝟓𝐜𝟓 + 𝐜𝟓𝒂𝟓 + 𝒂𝟓𝐛𝟓𝐜𝟓 = 𝟒 

⇒∑𝒙𝐲

𝐜𝐲𝐜

+ 𝒙𝐲𝐳 = 𝟒 ⇒ 𝟒 − 𝒙𝐲𝐳 =∑𝒙𝐲

𝐜𝐲𝐜

≥
𝐀−𝐆

𝟑√𝒙𝟐𝐲𝟐𝐳𝟐
𝟑

 

⇒ 𝛂𝟑 + 𝟑𝛂𝟐 − 𝟒 ≤ 𝟎 (𝛂 = √𝒙𝐲𝐳
𝟑 ) ⇒ (𝛂 − 𝟏)(𝛂 + 𝟐)𝟐 ≤ 𝟎 ⇒ 𝛂 = √𝒙𝐲𝐳

𝟑 ≤ 𝟏 

⇒ 𝒙𝐲𝐳 ≤
(∗)

𝟏 ⇒ 𝟒 − 𝒙𝐲𝐳 ≥ 𝟒 − 𝟏 ⇒∑𝒙𝐲

𝐜𝐲𝐜

≥ 𝟑 

∴ (∑𝒙

𝐜𝐲𝐜

)

𝟐

≥ 𝟑∑𝒙𝐲

𝐜𝐲𝐜

≥ 𝟗 ⇒∑𝒙

𝐜𝐲𝐜

≥
(∗∗)

𝟑 

𝐍𝐨𝐰, √𝒂𝟓 + 𝟐
𝟑

+ √𝐛𝟓 + 𝟐
𝟑

+ √𝐜𝟓 + 𝟐
𝟑

=∑ √𝒙 + 𝟐
𝟑

𝐜𝐲𝐜

 

≥
𝐀−𝐆

𝟑√(𝒙 + 𝟐)(𝐲 + 𝟐)(𝐳 + 𝟐)
𝟗

= 𝟑√𝟐∑𝒙𝐲

𝐜𝐲𝐜

+ 𝟒∑𝒙

𝐜𝐲𝐜

+ 𝟖 + 𝒙𝐲𝐳𝟗  

=
∑ 𝒙𝐲𝐜𝐲𝐜  = 𝟒−𝒙𝐲𝐳

𝟑√𝟖 − 𝒙𝐲𝐳 + 𝟒∑𝒙

𝐜𝐲𝐜

+ 𝟖𝟗 ≥
𝐯𝐢𝒂 (∗),(∗∗)

𝟑√𝟏𝟔 − 𝟏 + 𝟒(𝟑)
𝟗

= 𝟑√𝟑𝟑
𝟗

= 𝟑√𝟑
𝟑

 

∴ √𝒂𝟓 + 𝟐
𝟑

+ √𝐛𝟓 + 𝟐
𝟑

+ √𝐜𝟓 + 𝟐
𝟑

≥ 𝟑√𝟑
𝟑
  

∀ 𝒂, 𝐛, 𝐜 > 0│𝒂𝟓𝐛𝟓 + 𝐛𝟓𝐜𝟓 + 𝐜𝟓𝒂𝟓 + 𝒂𝟓𝐛𝟓𝐜𝟓 = 𝟒,′′=′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
 

Solution 3 by Sanong Huayrerai-Nakon Pathom-Thailand 
 

𝑭𝒐𝒓 𝒂, 𝒃, 𝒄 > 0, 𝒂𝟓𝒃𝟓 + 𝒃𝟓𝒄𝟓 + 𝒄𝟓𝒂𝟓 + (𝒂𝒃𝒄)𝟓 = 𝟒,𝒘𝒆 𝒉𝒂𝒗𝒆 

√𝒂𝟓 + 𝟐
𝟑

+ √𝒃𝟓 + 𝟐
𝟑

+ √𝒄𝟓 + 𝟐
𝟑

≥ 𝟑√𝟑
𝟑

, 𝟑√(𝒂𝟓 + 𝟐)(𝒃𝟓 + 𝟐)(𝒄𝟓 + 𝟐)
𝟑

≥ √𝟑
𝟑

 

(𝒂𝟓 + 𝟐)(𝒃𝟓 + 𝟐)(𝒄𝟓 + 𝟐) ≥ 𝟑𝟑 

𝟐𝒂𝟓𝒃𝟓 + 𝟐𝒃𝟓𝒄𝟓 + 𝟐𝒄𝟓𝒂𝟓 + 𝟒𝒂𝟓 + 𝟒𝒃𝟓 + 𝟒𝒄𝟓 + (𝒂𝒃𝒄)𝟓 + 𝟖

≥ 𝟑𝟑 𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆, 𝒃𝒆𝒄𝒂𝒖𝒔𝒆 

𝒂𝟓𝒃𝟓 + 𝒃𝟓𝒄𝟓 + 𝒄𝟓𝒂𝟓 + (𝒂𝒃𝒄)𝟓 = 𝟒;  (𝒂𝒃𝒄)𝟓 ≤ 𝟏 

𝟒(𝒂𝟓 + 𝒃𝟓 + 𝒄𝟓) ≥ 𝟏𝟐 ⇔ 𝒂𝟓𝒃𝟓 + 𝒃𝟓𝒄𝟓 + 𝒄𝟓𝒂𝟓 ≥ 𝟑 

(𝒂𝒃)𝟓 + (𝒃𝒄)𝟓 + (𝒄𝒂)𝟓 + (𝒂𝒃𝒄)𝟓 = 𝟏𝟎 

𝟒√(𝒂𝒃𝒄)𝟏𝟓
𝟒

≤ 𝟒 ⇔ (𝒂𝒃𝒄)
𝟏𝟓
𝟒 ≤ 𝟏 ⇔ 𝒂𝒃𝒄 ≤ 𝟏 
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(𝒂𝒃)𝟓 + (𝒃𝒄)𝟓 + (𝒄𝒂)𝟓 ≥ 𝟑 ⇔ 𝟑(𝒂𝒃)𝟓 + (𝒃𝒄)𝟓 + (𝒄𝒂)𝟓 ≥ 𝟗 

(𝒂𝟓 + 𝒃𝟓 + 𝒄𝟓)
𝟐
≥ 𝟗 ⇒ 𝒂𝟓 + 𝒃𝟓 + 𝒄𝟓 ≥ 𝟑.   

1193. 𝑰𝒇 𝒂, 𝒃, 𝒄 > 0,   2𝒂𝒃𝒄 + 𝟑(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) = 𝟐𝟕 𝒕𝒉𝒆𝒏 ∶ 

√𝒂𝒃 + √𝒃𝒄 + √𝒄𝒂 ≤
𝟗

𝟐
 

Proposed by Zaza Mzhavanadze-Georgia 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑻𝒉𝒆 𝒈𝒊𝒗𝒆𝒏 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝒄𝒂𝒏 𝒃𝒆 𝒘𝒓𝒊𝒕𝒕𝒆𝒏 𝒊𝒏 𝒕𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒆𝒒𝒖𝒊𝒗𝒂𝒍𝒆𝒏𝒕 𝒘𝒂𝒚 ∶ 

𝟑

𝒂 + 𝟑
+

𝟑

𝒃 + 𝟑
+

𝟑

𝒄 + 𝟑
= 𝟐  𝒐𝒓  

𝒂

𝒂 + 𝟑
+

𝒃

𝒃 + 𝟑
+

𝒄

𝒄 + 𝟑
= 𝟏. 

𝑩𝒚 𝑪𝑩𝑺 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝟏 =∑
𝒂

𝒂+ 𝟑
𝒄𝒚𝒄

≥
(√𝒂+ √𝒃 + √𝒄)

𝟐

𝒂 + 𝒃 + 𝒄 + 𝟗
 ⇔  𝒂 + 𝒃 + 𝒄 + 𝟗 ≥ (√𝒂 + √𝒃 + √𝒄)

𝟐
. 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   √𝒂𝒃 + √𝒃𝒄 + √𝒄𝒂 ≤
𝟗

𝟐
.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒇𝒐𝒓 𝒂 = 𝒃 = 𝒄 =

𝟑

𝟐
. 

1194. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 𝟎 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝐭 𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 = 𝟑, 𝐭𝐡𝐞𝐧 ∶ 

𝒂

(𝐛 + 𝐜)𝟐
+

𝐛

(𝐜 + 𝒂)𝟐
+

𝐜

(𝒂 + 𝐛)𝟐
 ≥

𝟑(𝒂𝐛𝐜 − 𝟐)

𝟑𝒂𝐛𝐜 − 𝟕
 

  Proposed by Nguyen Thuong-Vietnam 
Solution 1 by Soumava Chakraborty-Kolkata-India 
 

𝒂

(𝐛 + 𝐜)𝟐
+

𝐛

(𝐜 + 𝒂)𝟐
+

𝐜

(𝒂 + 𝐛)𝟐
=∑

𝒂𝟑

(𝒂𝐛 + 𝒂𝐜)𝟐
𝐜𝐲𝐜

 

≥
𝐑𝒂𝐝𝐨𝐧 (∑ 𝒂𝐜𝐲𝐜 )

𝟑

(𝟐∑ 𝒂𝐛𝐜𝐲𝐜 )
𝟐 ≥

? 𝟑

𝟒
−
𝟑(𝒂𝐛𝐜 − 𝟏)

𝟏𝟔
⇔

𝟒(∑ 𝒂𝐜𝐲𝐜 )
𝟑

(∑ 𝒂𝐛𝐜𝐲𝐜 )
𝟐 ≥

?
𝟏𝟓 − 𝟑𝒂𝐛𝐜 

⇔
𝒂𝐛+𝐛𝐜+𝐜𝒂 = 𝟑

⇔
𝟒(∑ 𝒂𝐜𝐲𝐜 )

𝟑

𝟗
+ 𝟑𝒂𝐛𝐜 ≥

? 𝟏𝟓

𝟑.√𝟑
(∑𝒂𝐛

𝐜𝐲𝐜

) .√∑𝒂𝐛

𝐜𝐲𝐜
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⇔(𝟒(∑𝒂

𝐜𝐲𝐜

)

𝟑

+ 𝟐𝟕𝒂𝐛𝐜)

𝟐

≥
?
⏟
(∗)

𝟔𝟕𝟓(∑𝒂𝐛

𝐜𝐲𝐜

)

𝟑

 

𝐀𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐛 + 𝐜 = 𝒙, 𝐜 + 𝒂 = 𝐲, 𝒂 + 𝐛 = 𝐳 ⇒ 𝒙 + 𝐲 − 𝐳 = 𝟐𝐜 > 0, 
𝐲 + 𝐳 − 𝒙 = 𝟐𝒂 > 0 𝒂𝐧𝐝 𝐳 + 𝒙 − 𝐲 = 𝟐𝐛 > 0 ⇒ 𝒙 + 𝐲 > 𝑧, 𝐲 + 𝐳 > 𝒙, 𝐳 + 𝒙 > 𝑦 

⇒ 𝒙, 𝐲, 𝐳 𝐟𝐨𝐫𝐦 𝐬𝐢𝐝𝐞𝐬 𝐨𝐟 𝒂𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 

= 𝐬,𝐑, 𝐫 (𝐬𝒂𝐲) 𝐲𝐢𝐞𝐥𝐝𝐢𝐧𝐠 𝟐∑𝒂

𝐜𝐲𝐜

=∑𝒙

𝐜𝐲𝐜

= 𝟐𝐬 ⇒∑𝒂

𝐜𝐲𝐜

= 𝐬 → (𝟏) 

⇒ 𝒂 = 𝐬 − 𝒙, 𝐛 = 𝐬 − 𝐲, 𝐜 = 𝐬 − 𝐳 

𝐕𝐢𝒂 𝐬𝐮𝐜𝐡 𝐬𝐮𝐛𝐬𝐭𝐢𝐭𝐮𝐭𝐢𝐨𝐧𝐬,∑𝒂𝐛

𝐜𝐲𝐜

=∑(𝐬 − 𝒙)(𝐬 − 𝐲)

𝐜𝐲𝐜

= 𝟒𝐑𝐫 + 𝐫𝟐 → (𝟐)  

𝒂𝐧𝐝 𝒂𝐛𝐜 = (𝐬 − 𝒙)(𝐬 − 𝐲)(𝐬 − 𝐲) = 𝐫𝟐𝐬 → (𝟑) 

𝐕𝐢𝒂 (𝟏), (𝟐), (𝟑), (∗) ⇔ 𝐬𝟐(𝟒𝐬𝟐 + 𝟐𝟕𝐫𝟐)𝟐 ≥
(∗∗)

𝟔𝟕𝟓𝐫𝟑(𝟒𝐑+ 𝐫)𝟑 𝒂𝐧𝐝 

∵ 𝐬𝟐 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐 ≥
𝐄𝐮𝐥𝐞𝐫

𝟏𝟔𝐑𝐫 −
𝟓𝐑𝐫

𝟐
=
𝟐𝟕𝐑𝐫

𝟐
𝒂𝐧𝐝 

∵ (𝟒𝐬𝟐 + 𝟐𝟕𝐫𝟐)𝟐 ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

(𝟒(𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐) + 𝟐𝟕𝐫𝟐)𝟐 
∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∗∗), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

𝟐𝟕𝐑𝐫

𝟐
(𝟒(𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐) + 𝟐𝟕𝐫𝟐)𝟐 ≥ 𝟔𝟕𝟓𝐫𝟑(𝟒𝐑+ 𝐫)𝟑 

⇔ 𝟖𝟗𝟔𝐑𝟑 − 𝟏𝟓𝟎𝟒𝐑𝟐𝐫 − 𝟓𝟓𝟏𝐑𝐫𝟐 − 𝟓𝟎𝐫𝟑 ≥ 𝟎 
⇔ (𝐑 − 𝟐𝐫)(𝟖𝟗𝟔𝐑𝟐 + 𝟐𝟖𝟖𝐑𝐫 + 𝟐𝟓𝐫𝟐) ≥ 𝟎 

→ 𝐭𝐫𝐮𝐞 ∵ 𝐑 ≥
𝐄𝐮𝐥𝐞𝐫

𝟐𝐫 ⇒ (∗∗) ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 

∴
𝒂

(𝐛 + 𝐜)𝟐
+

𝐛

(𝐜 + 𝒂)𝟐
+

𝐜

(𝒂 + 𝐛)𝟐
≥
𝟑

𝟒
−
𝟑(𝒂𝐛𝐜 − 𝟏)

𝟏𝟔
≥
? 𝟑(𝒂𝐛𝐜 − 𝟐)

𝟑𝒂𝐛𝐜 − 𝟕
 

⇔
𝟏

𝟒
−
𝐭 − 𝟏

𝟏𝟔
−
𝐭 − 𝟐

𝟑𝐭 − 𝟕
≥
?
𝟎 (𝐭 = 𝒂𝐛𝐜) 

⇔
𝟒(𝟑𝐭 − 𝟕) − (𝐭 − 𝟏)(𝟑𝐭 − 𝟕) − 𝟏𝟔(𝐭 − 𝟐)

𝟏𝟔(𝟑𝐭 − 𝟕)
≥
?
𝟎 ⇔

−𝟑(𝐭 − 𝟏)𝟐

𝟏𝟔(𝟑𝐭 − 𝟕)
≥
?
𝟎 

→ 𝐭𝐫𝐮𝐞 ∵ 𝟑 =∑𝒂𝐛

𝐜𝐲𝐜

≥
𝐀−𝐆

𝟑√𝒂𝟐𝐛𝟐𝐜𝟐
𝟑

⇒ √𝐭𝟐
𝟑

≤ 𝟏 ⇒ 𝐭 ≤ 𝟏 

⇒ 𝟑𝐭 ≤ 𝟑 < 7 ⇒ 𝟑𝐭 − 𝟕 < 0 ⇒
−𝟑(𝐭 − 𝟏)𝟐

𝟏𝟔(𝟑𝐭 − 𝟕)
≥ 𝟎 

∴
𝒂

(𝐛 + 𝐜)𝟐
+

𝐛

(𝐜 + 𝒂)𝟐
+

𝐜

(𝒂 + 𝐛)𝟐
 ≥

𝟑(𝒂𝐛𝐜 − 𝟐)

𝟑𝒂𝐛𝐜 − 𝟕
  

∀ 𝒂, 𝐛, 𝐜 > 0│𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 = 𝟑,′′=′′ 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 
 

 Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑳𝒆𝒕 𝒙 =
𝟏

𝒂
,   𝒚 =

𝟏

𝒃
,   𝒛 =

𝟏

𝒄
  𝒂𝒏𝒅  𝒑 = 𝒙 + 𝒚+ 𝒛,   𝒒 = 𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙,   𝒓 = 𝒙𝒚𝒛. 
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𝑭𝒓𝒐𝒎 𝒕𝒉𝒆 𝒈𝒊𝒗𝒆𝒏 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   𝒑 = 𝟑𝒓. 

𝑭𝒓𝒐𝒎 𝒕𝒉𝒆 𝒘𝒆𝒍𝒍 𝒌𝒏𝒐𝒘𝒏 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 ∶   𝒒𝟐 ≥ 𝟑𝒑𝒓,   𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   𝒒 ≥ 𝟑𝒓. 

𝑻𝒉𝒆 𝒑𝒓𝒐𝒃𝒍𝒆𝒎 𝒃𝒆𝒄𝒐𝒎𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 ∶   ∑
(𝒚𝒛)𝟐

𝒙(𝒚 + 𝒛)𝟐
𝒄𝒚𝒄

≥
𝟑(𝟐𝒙𝒚𝒛 − 𝟏)

𝟕𝒙𝒚𝒛 − 𝟑
. 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   ∑
(𝒚𝒛)𝟐

𝒙(𝒚 + 𝒛)𝟐
𝒄𝒚𝒄

 ≥⏞
𝑪𝑩𝑺

 
𝒒𝟐

𝒑𝒒 + 𝟑𝒓
=⏞

𝒑 = 𝟑𝒓

 
𝒒

𝟑𝒓(𝟏 +
𝟏
𝒒
)
 ≥⏞
𝒒 ≥ 𝟑𝒓

 
𝟑𝒓

𝟑𝒓 + 𝟏
 ≥⏞
?

 
𝟑(𝟐𝒓 − 𝟏)

𝟕𝒓 − 𝟑
 

⇔ 
𝟑(𝒓 − 𝟏)𝟐

(𝟑𝒓 + 𝟏)(𝟕𝒓 − 𝟑)
≥ 𝟎,𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒃𝒆𝒄𝒂𝒖𝒔𝒆 ∶ 𝟑𝒓 = 𝒑 ≥⏞

𝑨𝑴−𝑮𝑴

 𝟑√𝒓
𝟑  ⇒  𝒓 ≥ 𝟏. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄 = 𝟏. 

Solution 3 by Sanong Huayrerai-Nakon Pathom-Thailand 
𝑭𝒐𝒓 𝒂, 𝒃, 𝒄 > 0, 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 = 3, 𝑤𝑒 ℎ𝑎𝑣𝑒: 
𝒂

(𝒃 + 𝒄)𝟐
+

𝒃

(𝒄 + 𝒂)𝟐
+

𝒄

(𝒂 + 𝒃)𝟐
≥
𝟑(𝒂𝒃𝒄 − 𝟐)

𝟑𝒂𝒃𝒄 − 𝟕
⇔ 

(
𝒂

(𝒃 + 𝒄)
)
𝟐

𝒂
+
(

𝒃
𝒄 + 𝒂)

𝟐

𝒃
+
(

𝒄
𝒂+ 𝒃)

𝟐

𝒄
≥
𝟑

𝟒
⇔ 

(
𝒂

𝒃 + 𝒄 +
𝒃

𝒄 + 𝒂 +
𝒄

𝒂 + 𝒃)
𝟐

𝒂 + 𝒃 + 𝒄
≥
𝟑

𝟒
⇔

(
(𝒂 + 𝒃 + 𝒄)𝟐

𝟐(𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂)
)
𝟐

𝒂 + 𝒃 + 𝒄
≥
𝟑

𝟒
 

(𝒂 + 𝒃 + 𝒄)𝟒

𝟔𝟐(𝒂 + 𝒃 + 𝒄)
≥
𝟑

𝟒
⇔ (𝒂 + 𝒃 + 𝒄)𝟑 ≥ 𝟑𝟑 𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆, 𝒃𝒆𝒄𝒂𝒖𝒔𝒆 𝟑(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) = 𝟗

⇔ 
(𝒂 + 𝒃 + 𝒄)𝟐 ≥ 𝟑(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) = 𝟗 ⇔ 𝒂+ 𝒃 + 𝒄 ≥ 𝟑 𝒕𝒓𝒖𝒆.   

 
Solution 4 by Daoudi Abdessattar-Tunisia 

∑𝒂𝒃 = 𝟑, 𝒓 = 𝒂𝒃𝒄, 𝒑 = ∑𝒂 ≥ 𝟑 
𝟑(𝒓 − 𝟐)

𝟑(𝒓 − 𝟐) − 𝟏
≤ −

𝟑𝒓

𝟏𝟔
+
𝟏𝟓

𝟏𝟔
 

𝑳𝒆𝒕 𝒇(𝒙) =
𝒙

𝒙 − 𝟏
− 𝒄𝒐𝒏𝒄𝒂𝒗𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏, 𝒕𝒉𝒆𝒏 𝒇(𝒙) ≤ 𝒇′(−𝟏)(𝒙 + 𝟑) + 𝒇(−𝟑) 

𝑷 =∑
𝒂

(𝒃 + 𝒄)𝟐
𝒄𝒚𝒄

=∑
𝒂𝟐

𝟐𝒓 + 𝒂(𝒃𝟐 + 𝒄𝟐)
𝒄𝒚𝒄

≥
𝒑𝟐

𝟑𝒑 + 𝟑𝒓
 

𝟏𝟔𝑷 ≥ 𝟑𝒓 ≥ 𝟏𝟓 ⇔ 𝟏𝟔𝒑𝟐 + (𝟑𝒑 + 𝟑𝒓)𝟑𝒓 ≥ 𝟒𝟓(𝒑 + 𝒓) ⇔ 
𝟏𝟔𝒑𝟐 + 𝟗𝒑𝒓 + 𝟗𝒓𝟐 − 𝟒𝟓𝒑 − 𝟒𝟓𝒓 ≥ 𝟎 ⇔ 
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𝟏𝟓𝒑(𝒑 − 𝟑) + (𝒑𝟐 + 𝟗𝒑𝒓 + 𝟗𝒓𝟐 − 𝟒𝟓𝒓) ≥ 𝟎 𝒕𝒓𝒖𝒆, 𝒃𝒆𝒄𝒂𝒖𝒔𝒆 𝒑 ≥ 𝟑 𝒂𝒏𝒅  

𝒑𝟐 + 𝟗𝒑𝒓 + 𝟗𝒓𝟐 ≥
𝑨𝑴−𝑮𝑴

𝟒𝟓𝒓   
 

1195. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 𝟎 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 ∶ 𝒂 + 𝐛 + 𝐜 ≤ 𝟑, 𝐭𝐡𝐞𝐧 ∶ 

𝟗

𝒂𝐛𝐜
− (

𝒂 + 𝐛

𝐛 + 𝐜
+
𝐛 + 𝐜

𝐜 + 𝒂
+
𝐜 + 𝒂

𝒂 + 𝐛
) ≥ 𝟔 

  Proposed by George Apostolopoulos-Messolonghi-Greece 
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  𝒂𝒃𝒄.∑
𝒂 + 𝒃

𝒃 + 𝒄
𝒄𝒚𝒄

 ≤⏞
𝑨𝑴−𝑯𝑴

 𝒂𝒃𝒄.∑
𝒂+ 𝒃

𝟒
(
𝟏

𝒃
+
𝟏

𝒄
)

𝒄𝒚𝒄

=
𝟏

𝟒
∑𝒂(𝒂 + 𝒃)(𝒃 + 𝒄)

𝒄𝒚𝒄

= 

=
𝟏

𝟒
∑𝒂𝟐𝒃

𝒄𝒚𝒄

+
𝟏

𝟐
∑𝒂𝒃𝟐

𝒄𝒚𝒄

+
𝟑𝒂𝒃𝒄

𝟒
 ≤⏞
𝑨𝑴−𝑮𝑴𝟏

𝟒
∑𝒂𝟐𝒃

𝒄𝒚𝒄

+
𝟏

𝟐
∑𝒂𝒃𝟐

𝒄𝒚𝒄

+
𝟏

𝟒
∑𝒂𝟐𝒃

𝒄𝒚𝒄

=
𝟏

𝟐
∑𝒄(𝒂𝟐 + 𝒃𝟐)

𝒄𝒚𝒄

. 

𝑻𝒉𝒆𝒏 ∶   
𝟗

𝒂𝒃𝒄
− (

𝒂 + 𝒃

𝒃 + 𝒄
+
𝒃 + 𝒄

𝒄 + 𝒂
+
𝒄 + 𝒂

𝒂 + 𝒃
) ≥

(𝒂 + 𝒃 + 𝒄)𝟑

𝟑𝒂𝒃𝒄
−
𝟏

𝟐
∑

𝒄(𝒂𝟐 + 𝒃𝟐)

𝒂𝒃𝒄
𝒄𝒚𝒄

= 

=
𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑

𝟑𝒂𝒃𝒄
+
𝟏

𝟐
∑

𝒄(𝒂𝟐 + 𝒃𝟐)

𝒂𝒃𝒄
𝒄𝒚𝒄

+ 𝟐 ≥⏞
𝑨𝑴−𝑮𝑴

 
𝟑𝒂𝒃𝒄

𝟑𝒂𝒃𝒄
+
𝟏

𝟐
∑

𝒄. 𝟐𝒂𝒃

𝒂𝒃𝒄
𝒄𝒚𝒄

+ 𝟐 = 𝟔. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒅.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄 = 𝟏. 

Solution 2 by Soumava Chakraborty-Kolkata-India 
 

𝐀𝐬𝐬𝐢𝐠𝐧𝐢𝐧𝐠 𝐛 + 𝐜 = 𝜶, 𝐜 + 𝒂 = 𝛃, 𝒂 + 𝐛 = 𝛄 ⇒ 𝜶 + 𝛃 − 𝛄 = 𝟐𝐜 > 0, 
𝛃 + 𝛄 − 𝜶 = 𝟐𝒂 > 0 𝒂𝐧𝐝 𝛄 + 𝜶 − 𝛃 = 𝟐𝐛 > 0 ⇒ 𝜶 + 𝛃 > 𝛾, 𝛃 + 𝛄 > 𝜶,𝛄 + 𝜶 > 𝛽  

⇒ 𝜶,𝛃, 𝛄𝐟𝐨𝐫𝐦 𝐬𝐢𝐝𝐞𝐬 𝐨𝐟 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐰𝐢𝐭𝐡 𝐬𝐞𝐦𝐢𝐩𝐞𝐫𝐢𝐦𝐞𝐭𝐞𝐫, 𝐜𝐢𝐫𝐜𝐮𝐦𝐫𝒂𝐝𝐢𝐮𝐬 𝒂𝐧𝐝 𝐢𝐧𝐫𝒂𝐝𝐢𝐮𝐬 

= 𝐬,𝐑, 𝐫 (𝐬𝒂𝐲) 𝐲𝐢𝐞𝐥𝐝𝐢𝐧𝐠 𝟐∑𝒂

𝐜𝐲𝐜

=∑𝜶

𝐜𝐲𝐜

= 𝟐𝐬 ⇒∑𝒂

𝐜𝐲𝐜

= 𝐬 → (𝟏) 

⇒ 𝒂 = 𝐬 − 𝜶, 𝐛 = 𝐬 − 𝛃, 𝐜 = 𝐬 − 𝛄 ∴ 𝒂𝐛𝐜 = (𝐬 −  𝜶)(𝐬 −  𝛃)(𝐬 − 𝛄) = 𝐫𝟐𝐬 → (𝟐) 

∴
𝟗

𝒂𝐛𝐜
− (

𝒂 + 𝐛

𝐛 + 𝐜
+
𝐛 + 𝐜

𝐜 + 𝒂
+
𝐜 + 𝒂

𝒂+ 𝐛
) ≥
𝟑 ≥ 𝒂+𝐛+𝐜 ⇒ 𝟗 ≥ 

(𝒂+𝐛+𝐜)𝟑

𝟑 (∑ 𝒂𝐜𝐲𝐜 )
𝟑

𝟑𝒂𝐛𝐜
−∑

𝜶

𝛃
𝐜𝐲𝐜

 

=
𝐯𝐢𝒂 (𝟏),(𝟐) 𝐬𝟑

𝟑𝐫𝟐𝐬
−∑

𝜶

𝛃
𝐜𝐲𝐜

≥
?
𝟔 ⇔∑

𝜶

𝛃
𝐜𝐲𝐜

≤
?
⏟
(∎)

𝐬𝟐 − 𝟏𝟖𝐫𝟐

𝟑𝐫𝟐
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𝐍𝐨𝐰,
𝐬𝟐

𝐫𝟐
=
𝐬𝟒

∆𝟐
=

𝐬𝟒

𝐬(𝐬 −  𝜶)(𝐬 −  𝛃)(𝐬 − 𝛄)
=
(⦁) (∑ 𝒂𝐜𝐲𝐜 )

𝟑

𝒂𝐛𝐜
  

𝒂𝐧𝐝 𝟏 +
𝟒𝐑

𝐫
= 𝟏 +

𝟒𝐬𝜶𝛃𝛄

𝟒𝐬(𝐬 −  𝜶)(𝐬 −  𝛃)(𝐬 − 𝛄)
= 𝟏 +

∏ (𝐛 + 𝐜)𝐜𝐲𝐜

𝒂𝐛𝐜
 

⇒ 𝟏 +
𝟒𝐑

𝐫
=
(⦁⦁) 𝒂𝐛𝐜 +∏ (𝐛 + 𝐜)𝐜𝐲𝐜

𝒂𝐛𝐜
 

𝐍𝐨𝐰,∑
𝜶

𝛃
𝐜𝐲𝐜

=∑
𝐛 + 𝐜

𝐜 + 𝒂
⇒∑

𝜶

𝛃
𝐜𝐲𝐜

=
(⦁⦁⦁) ∑ (𝒂 + 𝐛)(𝐛 + 𝐜)𝟐𝐜𝐲𝐜

∏ (𝐛 + 𝐜)𝐜𝐲𝐜
 

∴ (⦁), (⦁⦁), (⦁⦁⦁) ⇒
𝐬𝟐

𝐫𝟐
≥ (∑

𝜶

𝛃
𝐜𝐲𝐜

)(𝟏 +
𝟒𝐑

𝐫
) 

⇔
(∑ 𝒂𝐜𝐲𝐜 )

𝟑

𝒂𝐛𝐜
≥ (

𝒂𝐛𝐜+ ∏ (𝐛 + 𝐜)𝐜𝐲𝐜

𝒂𝐛𝐜
)(

∑ (𝒂 + 𝐛)(𝐛 + 𝐜)𝟐𝐜𝐲𝐜

∏ (𝐛 + 𝐜)𝐜𝐲𝐜
) 

⇔ (∏(𝐛 + 𝐜)

𝐜𝐲𝐜

)(∑𝒂

𝐜𝐲𝐜

)

𝟑

≥ (𝒂𝐛𝐜 +∏(𝐛 + 𝐜)

𝐜𝐲𝐜

)(∑(𝒂 + 𝐛)(𝐛 + 𝐜)𝟐

𝐜𝐲𝐜

) 

⇔∑𝒂𝟐𝐛𝟒

𝐜𝐲𝐜

+∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

≥
(𝐢)

𝒂𝐛𝐜(∑𝒂𝟐𝐛

𝐜𝐲𝐜

)+ 𝟑𝒂𝟐𝐛𝟐𝐜𝟐 

𝐍𝐨𝐰, ∀ 𝐮, 𝐯,𝐰 > 0, 𝐯𝟑 + 𝐯𝟑 + 𝐮𝟑 ≥
𝐀−𝐆

𝟑𝐯𝟐𝐮,𝐰𝟑 +𝐰𝟑 + 𝐯𝟑 ≥
𝐀−𝐆

𝟑𝐰𝟐𝐯  

𝒂𝐧𝐝 𝐮𝟑 + 𝐮𝟑 +𝐰𝟑 ≥
𝐀−𝐆

𝟑𝐮𝟐𝐰 𝒂𝐧𝐝 𝐬𝐮𝐦𝐦𝐢𝐧𝐠 𝐮𝐩 ∶∑𝐮𝟑

𝐜𝐲𝐜

≥∑𝐮𝐯𝟐

𝐜𝐲𝐜

  

𝒂𝐧𝐝 𝐜𝐡𝐨𝐨𝐬𝐢𝐧𝐠 𝐮 = 𝒂𝐛, 𝐯 = 𝐛𝐜 𝒂𝐧𝐝 𝐰 = 𝐜𝒂, 

∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

≥
(∗)

𝒂𝐛𝐜(∑𝒂𝟐𝐛

𝐜𝐲𝐜

)  𝒂𝐧𝐝 ∑𝒂𝟐𝐛𝟒

𝐜𝐲𝐜

≥
𝐀−𝐆
⏟
(∗∗)

𝟑𝒂𝟐𝐛𝟐𝐜𝟐 ∴ (∗) + (∗∗) ⇒ (𝐢) 𝐢𝐬 𝐭𝐫𝐮𝐞 

⇒
𝐬𝟐

𝐫𝟐
≥ (∑

𝜶

𝛃
𝐜𝐲𝐜

)(𝟏 +
𝟒𝐑

𝐫
) ⇒∑

𝜶

𝛃
𝐜𝐲𝐜

≤
𝐬𝟐

𝐫(𝟒𝐑+ 𝐫)
≤
? 𝐬𝟐 − 𝟏𝟖𝐫𝟐

𝟑𝐫𝟐
 

⇔ (𝟒𝐑− 𝟐𝐫)𝐬𝟐 ≥
?
⏟

(∎∎)

𝟏𝟖𝐫𝟐(𝟒𝐑+ 𝐫) 𝒂𝐧𝐝 ∵ 𝐬𝟐 ≥
𝐌𝐢𝐭𝐫𝐢𝐧𝐨𝐯𝐢𝐜

𝟐𝟕𝐫𝟐 

∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (∎∎), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 𝟑(𝟒𝐑 − 𝟐𝐫) ≥ 𝟐(𝟒𝐑+ 𝐫) 
⇔ 𝟒𝐑 ≥ 𝟖𝐫 → 𝐭𝐫𝐮𝐞 𝐯𝐢𝒂 𝐄𝐮𝐥𝐞𝐫 ⇒ (∎∎) ⇒ (∎) 𝐢𝐬 𝐭𝐫𝐮𝐞 

⇒
𝟗

𝒂𝐛𝐜
− (

𝒂 + 𝐛

𝐛+ 𝐜
+
𝐛 + 𝐜

𝐜 + 𝒂
+
𝐜 + 𝒂

𝒂+ 𝐛
) ≥ 𝟔  

∀ 𝒂, 𝐛, 𝐜 > 0│𝒂 + 𝐛 + 𝐜 ≤ 𝟑, ′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 (𝐐𝐄𝐃) 
 

Solution 3 by Sanong Huayrerai-Nakon Pathom-Thailand 
𝑭𝒐𝒓 𝒂, 𝒃, 𝒄 > 0, 𝑎 + 𝑏 + 𝑐 ≤ 3, 𝑡ℎ𝑒𝑛 
𝟗

𝒂𝒃𝒄
−
𝒂 + 𝒃

𝒃 + 𝒄
+
𝒃 + 𝒄

𝒄 + 𝒂
+
𝒄 + 𝒂

𝒂 + 𝒃
≥ 𝟔 ⇔ 
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𝟗

𝒂𝒃𝒄
≥ 𝟔 +

𝒂 + 𝒃

𝒃 + 𝒄
+
𝒃 + 𝒄

𝒄 + 𝒂
+
𝒄 + 𝒂

𝒂 + 𝒃
⇔ 

𝟗

𝒂𝒃𝒄
≥ 𝟔 +

𝒂
𝒃 +

𝒃
𝒄 +

𝒄
𝒂 +

𝒂
𝒄 +

𝒄
𝒃 +

𝒃
𝒂

𝟐
⇔ 

𝟏𝟖 ≥ 𝟏𝟐𝒂𝒃𝒄 + 𝒂𝟐𝒄 + 𝒄𝟐𝒃 + 𝒃𝟐𝒂 + 𝒂𝟐𝒃 + 𝒃𝟐𝒄 + 𝒄𝟐𝒂 ⇔ 

𝟏𝟖 ≥
𝟏𝟖(𝒂 + 𝒃 + 𝒄)𝟑

𝟐𝟕
⇔ 𝟐𝟕 ≥ (𝒂 + 𝒃 + 𝒄)𝟑; (𝒂 + 𝒃 + 𝒄 ≤ 𝟑) 𝒕𝒓𝒖𝒆. 

𝟏𝟖

𝟐𝟕
(𝒂 + 𝒃 + 𝒄)𝟑 ≥ 𝟏𝟐𝒂𝒃𝒄 + 𝒂𝟐𝒄 + 𝒄𝟐𝒃 + 𝒃𝟐𝒂 + 𝒂𝟐𝒃 + 𝒃𝟐𝒄 + 𝒄𝟐𝒂 ⇔ 

𝟐(𝒂 + 𝒃 + 𝒄)𝟑 ≥ 𝟑(𝟏𝟐𝒂𝒃𝒄 + 𝒂𝟐𝒄 + 𝒄𝟐𝒃 + 𝒃𝟐𝒂 + 𝒂𝟐𝒃 + 𝒃𝟐𝒄 + 𝒄𝟐𝒂) ⇔ 
𝟐(𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑) + 𝟔(𝒂𝟐𝒄 + 𝒄𝟐𝒃 + 𝒃𝟐𝒂 + 𝒂𝟐𝒃 + 𝒃𝟐𝒄 + 𝒄𝟐𝒂) + 𝟏𝟐𝒂𝒃𝒄 ≥ 

≥ 𝟑𝟔𝒂𝒃𝒄 + 𝟑(𝒂𝟐𝒄 + 𝒄𝟐𝒃 + 𝒃𝟐𝒂 + 𝒂𝟐𝒃 + 𝒃𝟐𝒄 + 𝒄𝟐𝒂) ⇔ 
𝟐(𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑) + 𝟑(𝒂𝟐𝒄 + 𝒄𝟐𝒃 + 𝒃𝟐𝒂 + 𝒂𝟐𝒃 + 𝒃𝟐𝒄 + 𝒄𝟐𝒂) ≥ 𝟐𝟒𝒂𝒃𝒄 𝒕𝒓𝒖𝒆.   

 

1196. 𝐈𝐟 𝒂, 𝐛, 𝐜 ≥ 𝟎 𝐬𝐮𝐜𝐡 𝐭𝐡𝒂𝐭 ∶ 𝒂 + 𝐛 + 𝐜 = 𝟐, 𝐭𝐡𝐞𝐧 ∶ 

√𝒂 +
𝒂

𝐛 + 𝟏
+√𝐛 +

𝐛

𝐜 + 𝟏
+ √𝐜 +

𝐜

𝒂 + 𝟏
≥ 𝟐(𝒂𝐛𝐜 + 𝟏) 

  Proposed by Phan Ngoc Chau-Vietnam 
Solution 1 by Soumava Chakraborty-Kolkata-India 

𝐂𝒂𝐬𝐞 𝟏  𝐄𝒙𝒂𝐜𝐭𝐥𝐲 𝟏 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞 = 𝟎 𝒂𝐧𝐝 𝐖𝐋𝐎𝐆 𝐰𝐞 𝐦𝒂𝐲 𝒂𝐬𝐬𝐮𝐦𝐞 𝒂 = 𝟎 𝐰𝐢𝐭𝐡  

𝐛, 𝐜 > 0; 𝑏 + 𝑐 = 2 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ √𝒂 +
𝒂

𝐛 + 𝟏
+√𝐛 +

𝐛

𝐜 + 𝟏
+ √𝐜 +

𝐜

𝒂 + 𝟏
 

= √𝐛 +
𝐛

𝟑 − 𝐛
+√𝟐(𝟐 − 𝐛) ≥ 𝟐(𝒂𝐛𝐜 + 𝟏) = 𝟐 

⇔ 𝐛 +
𝐛

𝟑 − 𝐛
+ 𝟐(𝟐 − 𝐛) + 𝟐√𝟐(𝟐 − 𝐛) (𝐛 +

𝐛

𝟑 − 𝐛
) ≥ 𝟒 

⇔ 𝟐√
𝟐𝐛(𝟐 − 𝐛)(𝟒 − 𝐛)

𝟑 − 𝐛
≥ 𝐛 −

𝐛

𝟑 − 𝐛
=
𝐛(𝟐 − 𝐛)

𝟑 − 𝐛
⇔ 𝟐√𝟐(𝟒 − 𝐛) ≥ √

𝐛(𝟐 − 𝐛)

𝟑 − 𝐛
 

⇔ 𝟖(𝟒 − 𝐛) ≥
𝐛(𝟐 − 𝐛)

𝟑 − 𝐛
⇔ 𝟖(𝟒 − 𝐛)(𝟑 − 𝐛) ≥ 𝐛(𝟐 − 𝐛) ⇔ 𝟗𝐛𝟐 − 𝟓𝟖𝐛 + 𝟗𝟔 ≥ 𝟎 

→ 𝐭𝐫𝐮𝐞 ∀ 𝐛, ∵ ∆= 𝟓𝟖𝟐 − 𝟑𝟔. 𝟗𝟔 = −𝟗𝟐 < 0 

∴ √𝒂 +
𝒂

𝐛 + 𝟏
+√𝐛 +

𝐛

𝐜 + 𝟏
+√𝐜 +

𝐜

𝒂 + 𝟏
> 2(𝒂𝐛𝐜 + 𝟏), 

𝐰𝐡𝐞𝐧 𝐞𝒙𝒂𝐜𝐭𝐥𝐲 𝟏 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞 = 𝟎 
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𝐂𝒂𝐬𝐞 𝟐  𝐄𝒙𝒂𝐜𝐭𝐥𝐲 𝟐 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞𝐬 = 𝟎 𝒂𝐧𝐝 𝐖𝐋𝐎𝐆 𝐰𝐞 𝐦𝒂𝐲 𝒂𝐬𝐬𝐮𝐦𝐞 𝐛 = 𝐜 = 𝟎 𝐰𝐢𝐭𝐡  

𝒂 = 𝟐 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 = √𝟐. 𝟐 = 𝟐 = 𝟐(𝒂𝐛𝐜 + 𝟏) 

∴ √𝒂 +
𝒂

𝐛 + 𝟏
+ √𝐛 +

𝐛

𝐜 + 𝟏
+√𝐜 +

𝐜

𝒂 + 𝟏
≥ 𝟐(𝒂𝐛𝐜 + 𝟏), 

𝐰𝐡𝐞𝐧 𝐞𝒙𝒂𝐜𝐭𝐥𝐲 𝟐 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞𝐬 = 𝟎 

𝐂𝒂𝐬𝐞 𝟑  𝒂, 𝐛, 𝐜 > 0 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒𝟐 > 𝐑𝐇𝐒𝟐 

⇔∑𝒂

𝐜𝐲𝐜

+∑
𝒂

𝐛+ 𝟏
𝐜𝐲𝐜

+ 𝟐∑(√𝒂 +
𝒂

𝐛 + 𝟏
.√𝐛 +

𝐛

𝐜 + 𝟏
)

𝐜𝐲𝐜

>
(∗)

𝟒(𝒂𝐛𝐜 + 𝟏)𝟐 

𝐍𝐨𝐰,
𝒂

𝐛 + 𝟏
>

𝐛 < 2 𝒂

𝟑
⇒ 𝒂 +

𝒂

𝐛 + 𝟏
>
𝟒𝒂

𝟑
 𝒂𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐬 

∴ 𝟐∑(√𝒂 +
𝒂

𝐛 + 𝟏
.√𝐛 +

𝐛

𝐜 + 𝟏
)

𝐜𝐲𝐜

> 2.
𝟒

𝟑
∑√𝒂𝐛

𝐜𝐲𝐜

>
𝟖

𝟑
.√∑𝒂𝐛

𝐜𝐲𝐜

 

⇒ 𝟐∑(√𝒂 +
𝒂

𝐛 + 𝟏
.√𝐛 +

𝐛

𝐜 + 𝟏
)

𝐜𝐲𝐜

>
(⦁) 𝟖

𝟑
.√∑𝒂𝐛

𝐜𝐲𝐜

 

𝐀𝐠𝒂𝐢𝐧,
𝒂

𝐛 + 𝟏
=
𝒂(𝐛 + 𝟏 − 𝐛)

𝐛 + 𝟏
= 𝒂 −

𝒂𝐛

𝐛 + 𝟏
≥
𝐀−𝐆

𝒂 −
𝒂𝐛

𝟐√𝐛
 

∴
𝒂

𝐛 + 𝟏
≥ 𝒂 −

𝟏

𝟐
𝒂√𝐛 𝒂𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐬 ⇒ 

∑
𝒂

𝐛+ 𝟏
𝐜𝐲𝐜

≥∑𝒂

𝐜𝐲𝐜

−
𝟏

𝟐
∑(√𝒂√𝒂𝐛)

𝐜𝐲𝐜

≥
𝐂𝐁𝐒

𝟐 −
𝟏

𝟐
.√∑𝒂

𝐜𝐲𝐜

. √∑𝒂𝐛

𝐜𝐲𝐜

 

=
𝒂+𝐛+𝐜 = 𝟐

𝟐 −
𝟏

√𝟐
.√∑𝒂𝐛

𝐜𝐲𝐜

>

𝟑
𝟒
 > 

𝟏

√𝟐
𝟐 −

𝟑

𝟒
. √∑𝒂𝐛

𝐜𝐲𝐜

∴ ∑𝒂

𝐜𝐲𝐜

+∑
𝒂

𝐛 + 𝟏
𝐜𝐲𝐜

 

> 2 + 2 −
𝟑

𝟒
.√∑𝒂𝐛

𝐜𝐲𝐜

⇒ 𝐋𝐇𝐒 𝐨𝐟 (∗) >
𝐯𝐢𝒂 (⦁)

 

𝟒 + (
𝟖

𝟑
−
𝟑

𝟒
) . √∑𝒂𝐛

𝐜𝐲𝐜

>
𝐀−𝐆

𝟒 +
𝟐𝟑

𝟒
. √√𝒂𝐛.√𝐛𝐜. √𝐜𝒂
𝟑

 

>
?
𝟒(𝒂𝐛𝐜 + 𝟏)𝟐 ⇔ 𝟒+

𝟐𝟑𝐭

𝟒
>
?
𝟒(𝐭𝟑 + 𝟏)𝟐 (𝐭 = √𝒂𝐛𝐜

𝟑
) ⇔ 𝟏𝟔 + 𝟐𝟑𝐭 >

?
𝟏𝟔(𝐭𝟑 + 𝟏)𝟐 

⇔ 𝟒𝟖𝐭𝟓 + 𝟗𝟔𝐭𝟐 − 𝟔𝟗 <
?
𝟎 

⇔ (𝟑𝐭 − 𝟐) (𝟏𝟔𝐭𝟒 +
𝟑𝟐

𝟑
𝐭𝟑 +

𝟔𝟒

𝟗
𝐭𝟐 +

𝟗𝟗𝟐

𝟐𝟕
𝐭 +

𝟏𝟗𝟖𝟒

𝟖𝟏
) −

𝟏𝟔𝟐𝟏

𝟖𝟏
<
?
𝟎 

→ 𝐭𝐫𝐮𝐞 ∵ 𝟐 =∑𝒂

𝐜𝐲𝐜

≥
𝐀−𝐆

𝟑√𝒂𝐛𝐜
𝟑

⇒ 𝟑𝐭 − 𝟐 ≤ 𝟎 𝒂𝐧𝐝 𝐭 > 0 ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 
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∴ √𝒂 +
𝒂

𝐛 + 𝟏
+ √𝐛 +

𝐛

𝐜 + 𝟏
+ √𝐜 +

𝐜

𝒂 + 𝟏
> 2(𝒂𝐛𝐜 + 𝟏)  

∀ 𝒂, 𝐛, 𝐜 > 𝟎│𝒂 + 𝐛 + 𝐜 = 𝟐 ∴ 𝐜𝐨𝐦𝐛𝐢𝐧𝐢𝐧𝐠 𝒂𝒍𝒍 𝟑 𝐜𝒂𝐬𝐞𝐬, 

√𝒂 +
𝒂

𝐛 + 𝟏
+ √𝐛 +

𝐛

𝐜 + 𝟏
+√𝐜 +

𝐜

𝒂 + 𝟏
≥ 𝟐(𝒂𝐛𝐜 + 𝟏) ∀ 𝒂, 𝐛, 𝐜 > 𝟎│𝒂 + 𝐛 + 𝐜 = 𝟐, 

′′ =′′  𝐢𝐟𝐟 {𝒂 = 𝐛 = 𝟎, 𝐜 = 𝟐} 𝐨𝐫 {𝐛 = 𝐜 = 𝟎,𝒂 = 𝟐} 𝐨𝐫 {𝐜 = 𝒂 = 𝟎, 𝐛 = 𝟐} (𝐐𝐄𝐃) 
 

Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑨𝒇𝒕𝒆𝒓 𝒔𝒒𝒖𝒂𝒓𝒊𝒏𝒈, 𝒕𝒉𝒆 𝒈𝒊𝒗𝒆𝒏 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒊𝒔 𝒆𝒒𝒖𝒊𝒗𝒂𝒍𝒆𝒏𝒕 𝒕𝒐 ∶ 

∑
𝒂

𝒃+ 𝟏
𝒄𝒚𝒄

+ 𝟐∑√(𝒄+
𝒄

𝒂 + 𝟏
)(𝒂 +

𝒂

𝒃 + 𝟏
)

𝒄𝒚𝒄

≥ 𝟒(𝒂𝒃𝒄)𝟐 + 𝟖𝒂𝒃𝒄+ 𝟐  (𝟏) 

𝑵𝒐𝒘,   ∑
𝒂

𝒃 + 𝟏
𝒄𝒚𝒄

=∑(𝒂 −
𝒂𝒃

𝒃 + 𝟏
)

𝒄𝒚𝒄

= 𝟐 −∑
𝟐𝒂𝒃

𝒂+ 𝟑𝒃+ 𝒄
𝒄𝒚𝒄

≥⏞
𝑨𝑴−𝑮𝑴

𝟐 −∑
𝟐𝒂𝒃

𝟐√𝟑𝒂𝒃
𝒄𝒚𝒄

= 𝟐 −
√𝟑

𝟑
∑√𝒂𝒃

𝒄𝒚𝒄

. 

𝑻𝒉𝒆𝒏 ∶   𝑳𝑯𝑺(𝟏) ≥ 𝟐−
√𝟑

𝟑
∑√𝒂𝒃

𝒄𝒚𝒄

+ 𝟐∑√𝒄𝒂

𝒄𝒚𝒄

= 𝟐 + (𝟐 −
√𝟑

𝟑
)∑√𝒂𝒃

𝒄𝒚𝒄

≥ 

≥⏞
𝑨𝑴−𝑮𝑴

 𝟐 + (𝟐 −
√𝟑

𝟑
) . 𝟑√𝒂𝒃𝒄

𝟑
 ≥⏞
?

 𝑹𝑯𝑺(𝟏)  ⇔⏞
𝒙 ≔ √𝒂𝒃𝒄

𝟑

 𝟑 (𝟐 −
√𝟑

𝟑
)𝒙 ≥ 𝟒𝒙𝟔 + 𝟖𝒙𝟑. 

𝑩𝒚 𝑨𝑴− 𝑮𝑴 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   𝒙 ≤
𝒂 + 𝒃 + 𝒄

𝟑
=
𝟐

𝟑
. 

𝑻𝒉𝒆𝒏 ∶   𝟒𝒙𝟔 + 𝟖𝒙𝟑 = 𝟒𝒙𝟑(𝒙𝟑 + 𝟐) ≤ 𝒙.𝟒 (
𝟐

𝟑
)
𝟐

((
𝟐

𝟑
)
𝟑

+ 𝟐) ≤ 𝟑(𝟐 −
√𝟑

𝟑
)𝒙. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂,𝒃, 𝒄) = (𝟐, 𝟎, 𝟎) 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 

1197. 𝐅𝐨𝐫 𝒂𝒍𝒍 𝐧𝐨𝐧 − 𝐧𝐞𝐠𝒂𝐭𝐢𝐯𝐞 𝒙, 𝐲, 𝐳 𝐬𝐮𝐜𝐡 𝐭𝐡𝒂𝐭 ∶ 

 𝒙𝐲 + 𝐲𝐳 + 𝐳𝒙 = 𝒙 + 𝐲 + 𝐳 > 0, 

𝐭𝐡𝐞 𝐟𝐨𝒍𝒍𝐨𝐰𝐢𝐧𝐠 𝐫𝐞𝒍𝒂𝐭𝐢𝐨𝐧𝐬𝐡𝐢𝐩 𝐡𝐨𝒍𝐝𝐬 ∶ 
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√
𝒙𝟐 + 𝐲

𝐳 + 𝒙𝐲
+ √

𝐲𝟐 + 𝐳

𝒙 + 𝐲𝐳
+ √

𝐳𝟐 + 𝒙

𝐲 + 𝐳𝒙
 ≥ 𝟑 

  Proposed by Nguyen Thuong-Vietnam 
Solution by Soumava Chakraborty-Kolkata-India 

𝒙, 𝐲, 𝐳 ≥ 𝟎│𝒙𝐲 + 𝐲𝐳 + 𝐳𝒙 = 𝒙 + 𝐲 + 𝐳 > 0 ⇒ 𝒂𝐭 𝐦𝐨𝐬𝐭 𝐨𝐧𝐞 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞 = 𝟎 

𝐂𝒂𝐬𝐞 𝟏  𝐄𝒙𝒂𝐜𝐭𝒍𝐲 𝐨𝐧𝐞 𝐯𝒂𝐫𝐢𝒂𝐛𝒍𝐞 = 𝟎 𝒂𝐧𝐝 𝐖𝐋𝐎𝐆 𝐰𝐞 𝐦𝒂𝐲 𝒂𝐬𝐬𝐮𝐦𝐞 𝒙 = 𝟎  

𝐰𝐢𝐭𝐡 𝐲, 𝐳 > 0; 𝑦𝑧 = 𝑦 + 𝑧 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 = √
𝐲

𝐳
+ √

𝐲𝟐 + 𝐳

𝐲𝐳
+ √

𝐳𝟐

𝐲
 

≥
𝐀−𝐆

𝟑√√
𝐲𝟐 + 𝐳

𝐲

𝟑

>
?
𝟑 ⇔

𝐲𝟐 + 𝐳

𝐲
>
?
𝟏 ⇔ 𝐲 − 𝟏 +

𝟏

𝐲 − 𝟏
>
?
𝟎  

(∵ 𝐲𝐳 = 𝐲 + 𝐳 ⇒ 𝐳(𝐲 − 𝟏) = 𝐲 ⇒
𝐳

𝐲
=

𝟏

𝐲 − 𝟏
) → 𝐭𝐫𝐮𝐞 ∵ 𝐲 − 𝟏 +

𝟏

𝐲 − 𝟏
≥
𝐀−𝐆

𝟐 > 0 

∴ √
𝒙𝟐 + 𝐲

𝐳 + 𝒙𝐲
+ √

𝐲𝟐 + 𝐳

𝒙 + 𝐲𝐳
+ √

𝐳𝟐 + 𝒙

𝐲 + 𝐳𝒙
 > 𝟑 

𝐂𝒂𝐬𝐞 𝟐  𝒙, 𝐲, 𝐳 > 0 𝒂𝐧𝐝 √
𝒙𝟐 + 𝐲

𝐳 + 𝒙𝐲
+√

𝐲𝟐 + 𝐳

𝒙 + 𝐲𝐳
+ √

𝐳𝟐 + 𝒙

𝐲 + 𝐳𝒙
 

≥
𝐀−𝐆

𝟑√√
𝒙𝟐 + 𝐲

𝐳 + 𝒙𝐲
.
𝐲𝟐 + 𝐳

𝒙 + 𝐲𝐳
.
𝐳𝟐 + 𝒙

𝐲 + 𝐳𝒙

𝟑

≥
?
𝟑 

⇔ (𝒙𝟐 + 𝐲)(𝐲𝟐 + 𝐳)(𝐳𝟐 + 𝒙) ≥
?
(𝐳 + 𝒙𝐲)(𝒙 + 𝐲𝐳)(𝐲 + 𝐳𝒙) 

⇔∑𝒙𝟑𝐲𝟐

𝐜𝐲𝐜

+∑𝒙𝟐𝐲𝟑

𝐜𝐲𝐜

≥∑𝒙𝟐𝐲𝟐

𝐜𝐲𝐜

+ 𝒙𝐲𝐳∑𝒙𝟐

𝐜𝐲𝐜

 

⇔

∵𝟏 = 
𝒙𝐲+𝐲𝐳+𝐳𝒙
𝒙+𝐲+𝐳

∑𝒙𝟑𝐲𝟐

𝐜𝐲𝐜

+∑𝒙𝟐𝐲𝟑

𝐜𝐲𝐜

≥ (∑𝒙𝟐𝐲𝟐

𝐜𝐲𝐜

)(
∑ 𝒙𝐲𝐜𝐲𝐜

∑ 𝒙𝐜𝐲𝐜
) + 𝒙𝐲𝐳∑𝒙𝟐

𝐜𝐲𝐜

 

⇔ (∑𝒙

𝐜𝐲𝐜

)(∑(𝒙𝟐𝐲𝟐(∑𝒙

𝐜𝐲𝐜

− 𝐳))

𝐜𝐲𝐜

) 

≥ (∑𝒙𝟐𝐲𝟐

𝐜𝐲𝐜

)(∑𝒙𝐲

𝐜𝐲𝐜

) + 𝒙𝐲𝐳(∑𝒙𝟐

𝐜𝐲𝐜

)(∑𝒙

𝐜𝐲𝐜

) 
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⇔ (∑𝒙

𝐜𝐲𝐜

)((∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝟐𝐲𝟐

𝐜𝐲𝐜

) − 𝒙𝐲𝐳(∑𝒙𝐲

𝐜𝐲𝐜

)) 

≥ (∑𝒙𝟐𝐲𝟐

𝐜𝐲𝐜

)(∑𝒙𝐲

𝐜𝐲𝐜

) + 𝒙𝐲𝐳(∑𝒙𝟐

𝐜𝐲𝐜

)(∑𝒙

𝐜𝐲𝐜

) 

⇔ (∑𝒙𝟐𝐲𝟐

𝐜𝐲𝐜

)(∑𝒙

𝐜𝐲𝐜

)

𝟐

− 𝒙𝐲𝐳(∑𝒙𝐲

𝐜𝐲𝐜

)(∑𝒙

𝐜𝐲𝐜

) 

≥ (∑𝒙𝟐𝐲𝟐

𝐜𝐲𝐜

)(∑𝒙𝐲

𝐜𝐲𝐜

) + 𝒙𝐲𝐳(∑𝒙𝟐

𝐜𝐲𝐜

)(∑𝒙

𝐜𝐲𝐜

) 

⇔ (∑𝒙𝟐𝐲𝟐

𝐜𝐲𝐜

)((∑𝒙

𝐜𝐲𝐜

)

𝟐

−∑𝒙𝐲

𝐜𝐲𝐜

) ≥ 𝒙𝐲𝐳(∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝟐

𝐜𝐲𝐜

+∑𝒙𝐲

𝐜𝐲𝐜

) 

⇔ (∑𝒙𝟐𝐲𝟐

𝐜𝐲𝐜

)(∑𝒙𝟐

𝐜𝐲𝐜

+∑𝒙𝐲

𝐜𝐲𝐜

) ≥ 𝒙𝐲𝐳(∑𝒙

𝐜𝐲𝐜

)(∑𝒙𝟐

𝐜𝐲𝐜

+∑𝒙𝐲

𝐜𝐲𝐜

) 

⇔∑𝒙𝟐𝐲𝟐

𝐜𝐲𝐜

≥ 𝒙𝐲𝐳(∑𝒙

𝐜𝐲𝐜

) → 𝐭𝐫𝐮𝐞 ∴ √
𝒙𝟐 + 𝐲

𝐳 + 𝒙𝐲
+ √

𝐲𝟐 + 𝐳

𝒙 + 𝐲𝐳
+ √

𝐳𝟐 + 𝒙

𝐲 + 𝐳𝒙
 ≥ 𝟑 

∴ 𝐜𝐨𝐦𝐛𝐢𝐧𝐢𝐧𝐠 𝐛𝐨𝐭𝐡 𝐜𝒂𝐬𝐞𝐬,√
𝒙𝟐 + 𝐲

𝐳 + 𝒙𝐲
+ √

𝐲𝟐 + 𝐳

𝒙 + 𝐲𝐳
+ √

𝐳𝟐 + 𝒙

𝐲 + 𝐳𝒙
 ≥ 𝟑  

∀ 𝒙, 𝐲, 𝐳 ≥ 𝟎│𝒙𝐲 + 𝐲𝐳 + 𝐳𝒙 = 𝒙 + 𝐲 + 𝐳 > 0,′′=′′  𝐢𝐟𝐟 𝒙 = 𝐲 = 𝐳 = 𝟏 (𝐐𝐄𝐃) 
 

1198. 𝐈𝐟 𝒂, 𝐛, 𝐜 > 𝟎 𝐬𝐮𝐜𝐡 𝐭𝐡𝒂𝐭 ∶ 𝒂 + 𝐛 + 𝐜 = 𝟏, 𝐭𝐡𝐞𝐧 ∶ 

∑
𝒂

√𝒂𝟐(𝒂 + 𝟒𝐛) + 𝐛𝟐(𝟒𝐛 + 𝟔𝒂) + 𝟏𝟐𝒂𝐛𝐜
𝟒

𝐜𝐲𝐜

≥ 𝟏 

  Proposed by Zaza Mzhavanadze-Georgia 
Solution 1 by Sanong Huayrerai-Nakon Pathom-Thailand 
 

∑
𝒂

√𝒂𝟐(𝒂 + 𝟒𝒃) + 𝒃𝟐(𝟒𝒃 + 𝟔𝒂) + 𝟏𝟐𝒂𝒃𝒄
𝟒

𝒄𝒚𝒄

≥ 𝟏 

∑√
𝒂𝟓

𝒂𝟒 + 𝟒𝒂𝟑𝒃 + 𝟑𝒂𝒃𝟑 + 𝟔𝒂𝟐𝒃𝟐 + 𝟏𝟐𝒂𝟐𝒃𝒄

𝟒

𝒄𝒚𝒄

≥ 𝟏 
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√(∑𝒂)𝟓
𝟒

√∑𝒂𝟒 + 𝟒∑(𝒂𝟑𝒃 + 𝒂𝒃𝟑) + 𝟔𝒂𝟐𝒃𝟐 + 𝟏𝟐𝒂𝟐𝒃𝒄 + 𝒂𝒃𝟐𝒄 + 𝒂𝒃𝒄
𝟒

≥ 𝟏 

(∑𝒂

𝒄𝒚𝒄

)

𝟓

≥ ∑𝒂𝟒 + 𝟒∑(𝒂𝟑𝒃 + 𝒂𝒃𝟑) + 𝟔𝒂𝟐𝒃𝟐 + 𝟏𝟐∑𝒂𝟐𝒃𝒄

𝒄𝒚𝒄

+ 𝒂𝒃𝒄 𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆, 𝒃𝒆𝒄𝒂𝒖𝒔𝒆 

(∑𝒂

𝒄𝒚𝒄

)

𝟓

≥∑(𝒂𝟒 + 𝒂𝟑𝒃)

𝒄𝒚𝒄

+ 𝟑∑(𝒂𝟑𝒃 + 𝒂𝒃𝟑)

𝒄𝒚𝒄

+ 𝟑∑𝒂𝟐𝒃𝟐

𝒄𝒚𝒄

+ 𝒂𝟑𝒄 + 𝒄𝟑𝒃 + 𝒃𝟑𝒂

+ 𝟏𝟐∑𝒂𝟐𝒃𝒄

𝒄𝒚𝒄

  

(∑𝒂

𝒄𝒚𝒄

)

𝟓

≥∑𝒂𝟑

𝒄𝒚𝒄

+ 𝟑∑(𝒂𝟐𝒃 + 𝒂𝒃𝟐)

𝒄𝒚𝒄

+ 𝟔∑𝒂𝟐𝒃𝒄

𝒄𝒚𝒄

 

(∑𝒂

𝒄𝒚𝒄

)

𝟓

≥∑𝒂𝟑

𝒄𝒚𝒄

+ 𝟑∑(𝒂𝟐𝒃 + 𝒂𝒃𝟐)

𝒄𝒚𝒄

+ 𝟔𝒂𝒃𝒄 

(𝒂 + 𝒃 + 𝒄)𝟓 ≥ (𝒂 + 𝒃 + 𝒄)𝟑 ⇔ (𝒂 + 𝒃 + 𝒄)𝟐 ≥ 𝒂 + 𝒃 + 𝒄 𝒕𝒓𝒖𝒆 𝒃𝒆𝒄𝒂𝒖𝒔𝒆  
𝒂 + 𝒃 + 𝒄 = 𝟏.   

Solution 2 by Soumava Chakraborty-Kolkata-India 
 

∑
𝒂

√𝒂𝟐(𝒂 + 𝟒𝐛) + 𝐛𝟐(𝟒𝐛 + 𝟔𝒂) + 𝟏𝟐𝒂𝐛𝐜
𝟒

𝐜𝐲𝐜

 

= ∑
𝒂
𝟓
𝟒

√𝒂𝟑(𝒂 + 𝟒𝐛) + 𝒂𝐛𝟐(𝟒𝐛 + 𝟔𝒂) + 𝟏𝟐𝒂𝟐𝐛𝐜
𝟒

𝐜𝐲𝐜

 

≥
𝐑𝒂𝐝𝐨𝐧 (∑ 𝒂𝐜𝐲𝐜 )

𝟓
𝟒

(∑ (𝒂𝟑(𝒂 + 𝟒𝐛) + 𝒂𝐛𝟐(𝟒𝐛 + 𝟔𝒂) + 𝟏𝟐𝒂𝟐𝐛𝐜)𝐜𝐲𝐜 )
𝟏
𝟒

 

=
𝒂+𝐛+𝐜 = 𝟏 𝟏

(∑ 𝒂𝟒𝐜𝐲𝐜 + 𝟒∑ 𝒂𝟑𝐛𝐜𝐲𝐜 + 𝟒∑ 𝒂𝐛𝟑𝐜𝐲𝐜 + 𝟔∑ 𝒂𝟐𝐛𝟐𝐜𝐲𝐜 + 𝟏𝟐𝒂𝐛𝐜(∑ 𝒂𝐜𝐲𝐜 ))

𝟏
𝟒

 

=
𝟏

(∑ 𝒂𝟒𝐜𝐲𝐜 + 𝟒𝒂𝐛(∑ 𝒂𝟐𝐜𝐲𝐜 − 𝐜𝟐) + 𝟔∑ 𝒂𝟐𝐛𝟐𝐜𝐲𝐜 + 𝟏𝟐𝒂𝐛𝐜(∑ 𝒂𝐜𝐲𝐜 ))

𝟏
𝟒

 

=
𝟏

((∑ 𝒂𝟒𝐜𝐲𝐜 + 𝟐∑ 𝒂𝟐𝐛𝟐𝐜𝐲𝐜 ) + 𝟒(∑ 𝒂𝐛𝐜𝐲𝐜 )(∑ 𝒂𝟐𝐜𝐲𝐜 ) + (𝟒∑ 𝒂𝟐𝐛𝟐𝐜𝐲𝐜 + 𝟖𝒂𝐛𝐜(∑ 𝒂𝐜𝐲𝐜 )))

𝟏
𝟒
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=
𝟏

((∑ 𝒂𝟐𝐜𝐲𝐜 )
𝟐
+ 𝟒(∑ 𝒂𝐛𝐜𝐲𝐜 )(∑ 𝒂𝟐𝐜𝐲𝐜 ) + 𝟒(∑ 𝒂𝐛𝐜𝐲𝐜 )

𝟐
)

𝟏
𝟒

=
𝟏

(∑ 𝒂𝟐𝐜𝐲𝐜 + 𝟐(∑ 𝒂𝐛𝐜𝐲𝐜 ))

𝟏
𝟒

 

=
𝟏

((∑ 𝒂𝐜𝐲𝐜 )
𝟐
)

𝟏
𝟒

=
𝒂+𝐛+𝐜 = 𝟏

𝟏,′′=′′ 𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 =
𝟏

𝟑
 (𝐐𝐄𝐃) 

1199. 𝐈𝐟 𝒂, 𝐛, 𝐜 ≥ 𝟎 𝐬𝐮𝐜𝐡 𝐭𝐡𝒂𝐭 𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 = 𝟑, 𝐭𝐡𝐞𝐧 ∶ 

𝐜

𝟏 + 𝒂𝐛
+

𝒂

𝟏 + 𝐛𝐜
+

𝐛

𝟏 + 𝐜𝒂
≥
𝟑

𝟐
 

  Proposed by Nguyen Thuong-BenTre-Vietnam 
Solution 1 by Soumava Chakraborty-Kolkata-India 

𝐂𝒂𝐬𝐞 𝟏  𝐄𝒙𝒂𝐜𝐭𝐥𝐲 𝟐 𝐯𝒂𝐫𝐢𝒂𝐛𝐥𝐞𝐬 = 𝟎 𝒂𝐧𝐝 𝐖𝐋𝐎𝐆 𝐰𝐞 𝐦𝒂𝐲 𝒂𝐬𝐬𝐮𝐦𝐞 𝐛 = 𝐜 = 𝟎   

𝒂𝐧𝐝 𝒂 > 0 ∴
𝐜

𝟏 + 𝒂𝐛
+

𝒂

𝟏 + 𝐛𝐜
+

𝐛

𝟏 + 𝐜𝒂
= 𝒂 = √𝟑 >

𝟑

𝟐
 

𝐂𝒂𝐬𝐞 𝟐  𝐄𝒙𝒂𝐜𝐭𝐥𝐲 𝟏 𝐯𝒂𝐫𝐢𝒂𝐛𝐥𝐞 = 𝟎 𝒂𝐧𝐝 𝐖𝐋𝐎𝐆 𝐰𝐞 𝐦𝒂𝐲 𝒂𝐬𝐬𝐮𝐦𝐞 𝒂 = 𝟎 𝒂𝐧𝐝 𝐛, 𝐜 > 0 

∴
𝐜

𝟏 + 𝒂𝐛
+

𝒂

𝟏 + 𝐛𝐜
+

𝐛

𝟏 + 𝐜𝒂
= 𝐜 + 𝐛 = √𝐛𝟐 + 𝐜𝟐 + 𝟐𝐛𝐜 > √𝐛𝟐 + 𝐜𝟐 = √𝟑 >

𝟑

𝟐
 

𝐂𝒂𝐬𝐞 𝟑  𝒂, 𝐛, 𝐜 > 𝟎 ∴
𝐜

𝟏 + 𝒂𝐛
+

𝒂

𝟏 + 𝐛𝐜
+

𝐛

𝟏 + 𝐜𝒂
=∑

𝐜𝟒

𝐜𝟑 + 𝒂𝐛𝐜𝟑
𝐜𝐲𝐜

 

≥
𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦 (∑ 𝒂𝟐𝐜𝐲𝐜 )

𝟐

∑ 𝒂𝟑𝐜𝐲𝐜 + 𝒂𝐛𝐜(∑ 𝒂𝟐𝐜𝐲𝐜 )
=

𝒂𝟐+𝐛𝟐+𝐜𝟐  = 𝟑 (∑ 𝒂𝟐𝐜𝐲𝐜 )
𝟐

∑ 𝒂𝟑𝐜𝐲𝐜 + 𝟑𝒂𝐛𝐜
≥
? 𝟑

𝟐
=

𝒂𝟐+𝐛𝟐+𝐜𝟐 = 𝟑 √𝟑

𝟐 √∑𝒂𝟐

𝐜𝐲𝐜

 

⇔
(∑ 𝒂𝟐𝐜𝐲𝐜 )

𝟒

(∑ 𝒂𝟑𝐜𝐲𝐜 + 𝟑𝒂𝐛𝐜)
𝟐 ≥

? 𝟑(∑ 𝒂𝟐𝐜𝐲𝐜 )

𝟒
 

⇔∑𝒂𝟔

𝐜𝐲𝐜

+ 𝟏𝟐(∑𝒂𝟒𝐛𝟐

𝐜𝐲𝐜

+∑𝒂𝟐𝐛𝟒

𝐜𝐲𝐜

) ≥
?
⏟
(∗)

𝟔∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

+ 𝟏𝟖𝒂𝐛𝐜∑𝒂𝟑

𝐜𝐲𝐜

+ 𝟑𝒂𝟐𝐛𝟐𝐜𝟐 

𝐍𝐨𝐰, 𝟑(∑𝒂𝟒𝐛𝟐

𝐜𝐲𝐜

+∑𝒂𝟐𝐛𝟒

𝐜𝐲𝐜

) = 𝟑∑(𝒂𝟒𝐛𝟐 + 𝒂𝟐𝐛𝟒)

𝐜𝐲𝐜

≥
𝐀−𝐆

𝟔∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

 

∴ 𝟑 (∑𝒂𝟒𝐛𝟐

𝐜𝐲𝐜

+∑𝒂𝟐𝐛𝟒

𝐜𝐲𝐜

) ≥
(𝐢)

𝟔∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

 

𝐀𝒍𝐬𝐨,𝟗 (∑𝒂𝟒𝐛𝟐

𝐜𝐲𝐜

+∑𝒂𝟐𝐛𝟒

𝐜𝐲𝐜

) = 𝟗∑(𝒂𝟒𝐛𝟐 + 𝒂𝟒𝐜𝟐)

𝐜𝐲𝐜

≥
𝐀−𝐆

𝟏𝟖∑𝒂𝟒𝐛𝐜

𝐜𝐲𝐜
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∴ 𝟗(∑𝒂𝟒𝐛𝟐

𝐜𝐲𝐜

+∑𝒂𝟐𝐛𝟒

𝐜𝐲𝐜

) ≥
(𝐢𝐢)

𝟏𝟖𝒂𝐛𝐜∑𝒂𝟑

𝐜𝐲𝐜

 𝒂𝐧𝐝 ∑𝒂𝟔

𝐜𝐲𝐜

≥
𝐀−𝐆
⏟
(𝐢𝐢𝐢)

𝟑𝒂𝟐𝐛𝟐𝐜𝟐 

∴ (𝐢) + (𝐢𝐢) + (𝐢𝐢𝐢) ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ⇒
𝐜

𝟏 + 𝒂𝐛
+

𝒂

𝟏 + 𝐛𝐜
+

𝐛

𝟏 + 𝐜𝒂
≥
𝟑

𝟐
  

𝒂𝐧𝐝 𝐡𝐞𝐧𝐜𝐞, 𝐜𝐨𝐦𝐛𝐢𝐧𝐢𝐧𝐠 𝒂𝒍𝒍 𝐜𝒂𝐬𝐞𝐬,
𝐜

𝟏 + 𝒂𝐛
+

𝒂

𝟏 + 𝐛𝐜
+

𝐛

𝟏 + 𝐜𝒂
≥
𝟑

𝟐
  

∀ 𝒂, 𝐛, 𝐜 ≥ 𝟎│𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 = 𝟑,′′ =′′  𝐢𝐟𝐟 𝒂 = 𝐛 = 𝐜 = 𝟏 (𝐐𝐄𝐃) 

 

Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco  
 

𝑳𝒆𝒕 𝒑 ≔ 𝒂 + 𝒃 + 𝒄,   𝒒 ≔ 𝒂 + 𝒃𝒄 + 𝒄𝒂,   𝒓 ≔ 𝒂𝒃𝒄. 

𝑭𝒓𝒐𝒎 𝒕𝒉𝒆 𝒈𝒊𝒗𝒆𝒏 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   𝒑𝟐 − 𝟐𝒒 = 𝟑  (𝟏) 

𝑩𝒚 𝑨𝑴−𝑮𝑴 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

(𝒂 + 𝒃 + 𝒄)(𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂) ≥ 𝟗𝒂𝒃𝒄 ⇔  𝒑𝒒 ≥ 𝟗𝒓  (𝟐) 

𝑻𝒉𝒆𝒏 ∶   ∑
𝒂

𝟏 + 𝒃𝒄
𝒄𝒚𝒄

 ≥⏞
𝑪𝑩𝑺

 
(𝒂 + 𝒃 + 𝒄)𝟐

𝒂 + 𝒃 + 𝒄 + 𝟑𝒂𝒃𝒄
=

𝟑𝒑𝟐

𝟑𝒑 + 𝟗𝒓
 ≥⏞
(𝟐)

 
𝟑𝒑𝟐

𝟑𝒑 + 𝒑𝒒
= 

=⏞
(𝟏) 𝟔𝒑

𝟔 + (𝒑𝟐 − 𝟑)
=
𝟑

𝟐
+
𝟑(𝟑 − 𝒑)(𝒑 − 𝟏)

𝟐(𝒑𝟐 + 𝟑)
≥
𝟑

𝟐
,   𝒃𝒆𝒄𝒂𝒖𝒔𝒆 ∶ 

𝟑 = √𝟑(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) ≥⏞
𝑪𝑩𝑺

𝒑 ≥ √𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 > 1. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄 = 𝟏. 

Solution 3 by Khaled Abd Imouti-Damascus-Syria 
 

𝒄

𝟏 + 𝒂𝒃
+

𝒂

𝟏 + 𝒃𝒄
+

𝒃

𝟏 + 𝒄𝒂
=

𝒄𝟐

𝒄 + 𝒂𝒃𝒄
+

𝒂𝟐

𝒂 + 𝒂𝒃𝒄
+

𝒃𝟐

𝒃 + 𝒂𝒃𝒄
=

𝑮= √𝒂𝒃𝒄
𝟑

 

=
𝒄𝟐

𝒄 + 𝑮𝟑
+

𝒂𝟐

𝒂 + 𝑮𝟑
+

𝒃𝟐

𝒃 + 𝑮𝟑
 

𝑳𝒆𝒕 𝒃𝒆 𝒇(𝒙) =
𝒙𝟐

𝒙 + 𝑮𝟑
, 𝒕𝒉𝒆𝒏 𝒇′(𝒙) =

𝒙𝟐 + 𝟐𝒙𝑮𝟑

(𝒙 + 𝑮𝟑)𝟐
 𝒂𝒏𝒅 𝒇′′(𝒙) =

𝟐𝑮𝟑

(𝒙 + 𝑮𝟑)𝟑
> 0. 

 𝑺𝒐, 𝒇 − 𝒄𝒐𝒏𝒗𝒆𝒙 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒂𝒏𝒅  
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𝒄𝟐

𝒄 + 𝑮𝟑
+

𝒂𝟐

𝒂 + 𝑮𝟑
+

𝒃𝟐

𝒃 + 𝑮𝟑
≥ 𝟑 ⋅

(
𝒂 + 𝒃 + 𝒄

𝟑 )
𝟐

(
𝒂 + 𝒃 + 𝒄

𝟑 ) + 𝑮𝟑
=

𝒔𝟐

𝒔 + 𝟑𝑮𝟑
≥
? 𝟑

𝟐
⇔ 

𝟐𝒔𝟐 ≥ 𝟑𝒔 + 𝟗𝑮𝟑 ⇔ 𝟐𝒔𝟐 − 𝟑𝒔 − 𝟗𝑮𝟑 ≥ 𝟎 
𝚫 = 𝟗(𝟏 + 𝟖𝑮𝟑) > 0 

𝒔𝟏 =
𝟑

𝟒
(𝟏 − √𝟏 + 𝟖𝑮𝟑)  𝒊𝒎𝒑𝒐𝒔𝒔𝒊𝒃𝒍𝒆. 

𝒔𝟐 =
𝟑

𝟒
(𝟏 + √𝟏 + 𝟖𝑮𝟑 >

𝟑

𝟐
, 𝒃𝒖𝒕 𝒔𝟐 = (𝒂 + 𝒃 + 𝒄)𝟐 = 𝟑 + 𝟐(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) ≤ 

≤ 𝟑 + 𝟐(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) = 𝟗 ⇒ 𝒔𝟐 ≤ 𝟗 ⇒ 𝒙 ≤ 𝟑 𝒂𝒏𝒅 𝒔 >
𝟑

𝟐
⇔ 

(𝒂 + 𝒃 + 𝒄)𝟐 ≥
𝟗

𝟒
⇔ 𝟑 + 𝟐(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) ≥

𝟗

𝟒
 𝒕𝒓𝒖𝒆. 

𝑺𝒐,
𝒄

𝟏 + 𝒂𝒃
+

𝒃

𝟏 + 𝒂𝒄
+ +

𝒂

𝟏 + 𝒃𝒄
≥
𝟑

𝟐
 𝒊𝒕𝒔 𝒕𝒓𝒖𝒆.  

 
Solution 4 by Daoudi Abdessattar-Tunisia 

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 = 𝟑,
𝒄

𝟏 + 𝒂𝒃
−

𝟑𝒄𝟐

𝟑𝒄 + 𝒒
≥ 𝟎 ⇔

𝒄(𝒒 − 𝟑𝒓)

(𝟏 + 𝒂𝒃)(𝟑𝒄 + 𝒒)
≥ 𝟎 𝒕𝒓𝒖𝒆. 

∑
𝒄

𝟏+ 𝒂𝒃
𝒄𝒚𝒄

≥ 𝟑∑
𝒂𝟐

𝟑𝒂 + 𝒒
𝒄𝒚𝒄

≥
𝟑𝒑𝟐

𝟑(𝒑 + 𝒒)
≥
𝟑

𝟐
⇔ 

𝟐𝒑𝟐 − 𝟑𝒑 − 𝟑𝒒 ≥ 𝟎 ⇔ 𝟔 + 𝒒 − 𝟑√𝟑 + 𝟐𝒒 ≥ 𝟎 ⇔ (𝒒 − 𝟑)𝟐 ≥ 𝟎   

 
1200. 𝐈𝐟 𝒂, 𝐛, 𝐜 ≥ 𝟎 𝐬𝐮𝐜𝐡 𝐭𝐡𝒂𝐭 𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂 > 0, 𝐭𝐡𝐞𝐧 ∶ 

√
𝒂𝐛

𝒂𝟐 + 𝐛𝟐
+√

𝐛𝐜

𝐛𝟐 + 𝐜𝟐
+ √

𝐜𝒂

𝐜𝟐 + 𝒂𝟐
≥ √

𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂

𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐
 

  Proposed by Nguyen Thuong-Vietnam 
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 

  ∑√
𝒂𝒃

𝒂𝟐 + 𝒃𝟐
𝒄𝒚𝒄

 ≥⏞
𝒂𝒃𝒄 ≥ 𝟎

 ∑√
𝒂𝒃

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐
𝒄𝒚𝒄

=
√𝒂𝒃+ √𝒃𝒄 + √𝒄𝒂

√𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐
= 

= √
𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 + 𝟐√𝒂𝒃𝒄(√𝒂+ √𝒃 + √𝒄)

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐
≥ √

𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐
. 
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𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 (𝒂 = 𝟎, 𝒃, 𝒄 > 0) 𝒂𝒏𝒅 𝒑𝒆𝒓𝒎𝒖𝒕𝒂𝒕𝒊𝒐𝒏. 

Solution 2 by Soumava Chakraborty-Kolkata-India 
 

𝐋𝐇𝐒𝟐 −
𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂

𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐
 

= (
𝒂𝐛

𝒂𝟐 + 𝐛𝟐
−

𝒂𝐛

𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐
) + (

𝐛𝐜

𝐛𝟐 + 𝐜𝟐
−

𝐛𝐜

𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐
) 

+ (
𝐜𝒂

𝐜𝟐 + 𝒂𝟐
−

𝐜𝒂

𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐
) + 𝟐∑(√

𝒂𝐛

𝒂𝟐 + 𝐛𝟐
. √

𝐛𝐜

𝐛𝟐 + 𝐜𝟐
)

𝐜𝐲𝐜

 

≥
𝒂𝐛(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 − 𝒂𝟐 − 𝐛𝟐)

(𝒂𝟐 + 𝐛𝟐)(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐)
+
𝐛𝐜(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 − 𝐛𝟐 − 𝐜𝟐)

(𝐛𝟐 + 𝐜𝟐)(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐)
 

+
𝐜𝒂(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 − 𝐜𝟐 − 𝒂𝟐)

(𝐛𝟐 + 𝐜𝟐)(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐)
+ 𝟐. (𝟎 + 𝟎 + 𝟎) 

=
𝒂𝐛𝐜

𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐
∑

𝐜

𝒂𝟐 + 𝐛𝟐
𝐜𝐲𝐜

≥ 𝟎 (∵ 𝒂, 𝐛, 𝐜 ≥ 𝟎) ⇒ 𝐋𝐇𝐒𝟐 ≥
𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂

𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐
 

⇒ √
𝒂𝐛

𝒂𝟐 + 𝐛𝟐
+√

𝐛𝐜

𝐛𝟐 + 𝐜𝟐
+ √

𝐜𝒂

𝐜𝟐 + 𝒂𝟐
≥ √

𝒂𝐛 + 𝐛𝐜 + 𝐜𝒂

𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐
 ∀ 𝒂, 𝐛, 𝐜 > 0│∑𝒂𝐛

𝐜𝐲𝐜

> 0, 

′′ =′′  𝐢𝐟𝐟 {𝒂 = 𝟎, 𝐛, 𝐜 > 0} 𝐨𝐫 {𝐛 = 𝟎, 𝐜, 𝒂 > 0} 𝐨𝐫 {𝐜 = 𝟎, 𝒂, 𝐛 > 0} (𝐐𝐄𝐃) 

Solution 3 by Sanong Huayrerai-Nakon Pathom-Thailand 

∑√
𝒂𝒃

𝒂𝟐 + 𝒃𝟐
𝒄𝒚𝒄

≥ √
𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐
 

∑√
𝒂𝒃(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)

𝒂𝟐 + 𝒃𝟐
 

𝒄𝒚𝒄

≥ √𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 

∑√𝒂𝒃 +
𝒂𝒃𝒄𝟐

𝒂𝟐 + 𝒃𝟐
𝒄𝒚𝒄

≥ √𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 

(∑√𝒂𝒃 +
𝒂𝒃𝒄𝟐

𝒂𝟐 + 𝒃𝟐
𝒄𝒚𝒄

)

𝟐

≥ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 

∑(𝒂𝒃 +
𝒂𝒃𝒄𝟐

𝒂𝟐 + 𝒃𝟐
)

𝒄𝒚𝒄

+ 𝟐∑√(𝒂𝒃 +
𝒂𝒃𝒄𝟐

𝒂𝟐 + 𝒃𝟐
)(𝒃𝒄 +

𝒃𝒄𝒂𝟐

𝒃𝟐 + 𝒄𝟐
)

𝒄𝒚𝒄

≥ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 

𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒃𝒆𝒄𝒂𝒖𝒔𝒆 𝒂, 𝒃, 𝒄 > 0 𝑎𝑛𝑑 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 > 0.   
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It’s nice to be important but more important it’s to be nice. 

At this paper works a TEAM. 

This is RMM TEAM. 

To be continued! 

Daniel Sitaru 

 

 

 


