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801. Prove that: 

𝒄𝒐𝒔
𝟑𝝅

𝟏𝟑
− 𝒄𝒐𝒔

𝟐𝝅

𝟏𝟑
=
√𝟏𝟑

𝟑
𝒄𝒐𝒔 (

𝟏

𝟑
𝒂𝒓𝒄𝒄𝒐𝒔 (−

𝟓

𝟐√𝟏𝟑
) +

𝝅

𝟑
) +

𝟏

𝟔
 

Proposed by Vasile Mircea Popa-Romania 
Solution by Pham Duc Nam-Vietnam 
 

𝒄𝒐𝒔
𝟑𝝅

𝟏𝟑
− 𝒄𝒐𝒔

𝟐𝝅

𝟏𝟑
=
√𝟏𝟑

𝟑
𝒄𝒐𝒔(

𝟏

𝟑
𝒂𝒓𝒄𝒄𝒐𝒔 (−

𝟓

𝟐√𝟏𝟑
) +

𝝅

𝟑
) +

𝟏

𝟔
  

⇔ 𝒄𝒐𝒔
𝟑𝝅

𝟏𝟑
− 𝒄𝒐𝒔

𝟐𝝅

𝟏𝟑
−
𝟏

𝟔
=
√𝟏𝟑

𝟑
𝒄𝒐𝒔(

𝟏

𝟑
𝒂𝒓𝒄𝒄𝒐𝒔 (−

𝟓

𝟐√𝟏𝟑
) +

𝝅

𝟑
) 

∗
𝟓

𝟐√𝟏𝟑
< 1,apply: 𝒂𝒓𝒄𝒄𝒐𝒔(𝒙) + 𝒂𝒓𝒄𝒄𝒐𝒔(−𝒙) = 𝝅 ⇒ 𝒂𝒓𝒄𝒄𝒐𝒔 (−

𝟓

𝟐√𝟏𝟑
) = 𝝅− 𝒂𝒓𝒄𝒄𝒐𝒔(

𝟓

𝟐√𝟏𝟑
) 

⇒
√𝟏𝟑

𝟑
𝒄𝒐𝒔 (

𝟏

𝟑
𝒂𝒓𝒄𝒄𝒐𝒔 (−

𝟓

𝟐√𝟏𝟑
) +

𝝅

𝟑
) =

√𝟏𝟑

𝟑
𝒄𝒐𝒔(

𝟏

𝟑
(𝝅 − 𝒂𝒓𝒄𝒄𝒐𝒔(

𝟓

𝟐√𝟏𝟑
)) +

𝝅

𝟑
)

=
√𝟏𝟑

𝟑
𝒄𝒐𝒔(−

𝟏

𝟑
𝒂𝒓𝒄𝒄𝒐𝒔 (

𝟓

𝟐√𝟏𝟑
) +

𝟐𝝅

𝟑
) =

√𝟏𝟑

𝟑
𝒄𝒐𝒔(

𝟏

𝟑
𝒂𝒓𝒄𝒄𝒐𝒔 (

𝟓

𝟐√𝟏𝟑
) −

𝟐𝝅

𝟑
) 

⇒ This expression has exactly form of roots of cubic equation which can be shown 

 in trigonometric form: 𝟐√
−𝒑

𝟑
𝒄𝒐𝒔(

𝟏

𝟑
𝒂𝒓𝒄𝒄𝒐𝒔(

𝟑𝒒

𝟐𝒑
√
−𝟑

𝒑
)−

𝟐𝝅𝒌

𝟑
)(𝒌 = 𝟎, 𝟏,𝟐) 

∗
√𝟏𝟑

𝟑
𝒄𝒐𝒔 (

𝟏

𝟑
𝒂𝒓𝒄𝒄𝒐𝒔 (

𝟓

𝟐√𝟏𝟑
)−

𝟐𝝅

𝟑
) = 𝟐√

−𝒑

𝟑
𝒄𝒐𝒔(

𝟏

𝟑
𝒂𝒓𝒄𝒄𝒐𝒔(

𝟑𝒒

𝟐𝒑
√
−𝟑

𝒑
)−

𝟐𝝅

𝟑
)(𝒌 = 𝟏)

⇒

{
 
 

 
 √𝟏𝟑

𝟑
= 𝟐√

−𝒑

𝟑

𝟓

𝟐√𝟏𝟑
=
𝟑𝒒

𝟐𝒑
√
−𝟑

𝒑

⇒ {
𝑝 = −

𝟏𝟑

𝟏𝟐

𝑞 = −
𝟔𝟓

𝟐𝟏𝟔

 

⇒
√𝟏𝟑

𝟑
𝒄𝒐𝒔 (

𝟏

𝟑
𝒂𝒓𝒄𝒄𝒐𝒔 (−

𝟓

𝟐√𝟏𝟑
) +

𝝅

𝟑
)  is one root of equation: 𝒕𝟑 −

𝟏𝟑

𝟏𝟐
𝒕 −

𝟔𝟓

𝟐𝟏𝟔
= 𝟎

⇔ 𝟐𝟏𝟔𝒕𝟑 − 𝟐𝟑𝟒𝒕 − 𝟔𝟓 = 𝟎 ⇒ All roots are: 𝒕𝒌

=
√𝟏𝟑

𝟑
𝒄𝒐𝒔(

𝟏

𝟑
𝒂𝒓𝒄𝒄𝒐𝒔(

𝟓

𝟐√𝟏𝟑
) −

𝟐𝒌𝝅

𝟑
)(𝒌 = 𝟎, 𝟏,𝟐)and 𝒕𝟐 < 𝒕𝟏 < 𝒕𝟎 
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∗ 𝒇(𝒕) = 𝟐𝟏𝟔𝒕𝟑 − 𝟐𝟑𝟒𝒕 − 𝟔𝟓 ⇒ 𝒇′(𝒕) = 𝟔𝟒𝟖𝒕𝟐 − 𝟐𝟑𝟒 ⇒ 𝒇′(𝒕) = 𝟎 ⇔ 𝒕

= ±
√𝟏𝟑

𝟔
, 𝒇 (−

√𝟏𝟑

𝟔
)𝒇(

√𝟏𝟑

𝟔
) < 0 ⇒ 𝒇(𝒕)

= 𝟎 has exactly one root (𝒕𝟏)lies in (−
√𝟏𝟑

𝟔
,
√𝟏𝟑

𝟔
)  and 𝒇(𝒕) is strictly decreasing in 

(−
√𝟏𝟑

𝟔
,
√𝟏𝟑

𝟔
) 

∗ Replace: 𝒕 = 𝒄𝒐𝒔
𝟑𝝅

𝟏𝟑
− 𝒄𝒐𝒔

𝟐𝝅

𝟏𝟑
−
𝟏

𝟔

⇒ 𝟐𝟏𝟔(𝒄𝒐𝒔
𝟑𝝅

𝟏𝟑
− 𝒄𝒐𝒔

𝟐𝝅

𝟏𝟑
−
𝟏

𝟔
)
𝟑

− 𝟐𝟑𝟒(𝒄𝒐𝒔
𝟑𝝅

𝟏𝟑
− 𝒄𝒐𝒔

𝟐𝝅

𝟏𝟑
−
𝟏

𝟔
) − 𝟔𝟓 = 𝟎 

⇒ 𝒄𝒐𝒔
𝟑𝝅

𝟏𝟑
− 𝒄𝒐𝒔

𝟐𝝅

𝟏𝟑
−
𝟏

𝟔
 is also one root of 𝟐𝟏𝟔𝒕𝟑 − 𝟐𝟑𝟒𝒕 − 𝟔𝟓

= 𝟎, so all roots can be shown as : c 𝒐𝒔
𝟕𝝅

𝟏𝟑
− 𝒄𝒐𝒔

𝟒𝝅

𝟏𝟑
−
𝟏

𝟔
, c 𝒐𝒔

𝟓𝝅

𝟏𝟑
− 𝒄𝒐𝒔

𝟏𝟐𝝅

𝟏𝟑

−
𝟏

𝟔
 and (𝒄𝒐𝒔

𝟕𝝅

𝟏𝟑
− 𝒄𝒐𝒔

𝟒𝝅

𝟏𝟑
−
𝟏

𝟔
) < (𝒄𝒐𝒔

𝟑𝝅

𝟏𝟑
− 𝒄𝒐𝒔

𝟐𝝅

𝟏𝟑
−
𝟏

𝟔
)

< (𝒄𝒐𝒔
𝟓𝝅

𝟏𝟑
− 𝒄𝒐𝒔

𝟏𝟐𝝅

𝟏𝟑
−
𝟏

𝟔
) 

∗ As we show above, in (−
√𝟏𝟑

𝟔
,
√𝟏𝟑

𝟔
)𝒇(𝒕) is strictly decreasing, 𝒇(𝒕)

= 𝟎 has exactly one root (𝒕𝟏)lies in (−
√𝟏𝟑

𝟔
,
√𝟏𝟑

𝟔
) ⇒ 𝒇(𝒄𝒐𝒔

𝟑𝝅

𝟏𝟑
− 𝒄𝒐𝒔

𝟐𝝅

𝟏𝟑
−
𝟏

𝟔
)

= 𝒇(𝒕𝟏) = 𝒇(
√𝟏𝟑

𝟑
𝒄𝒐𝒔(

𝟏

𝟑
𝒂𝒓𝒄𝒄𝒐𝒔(

𝟓

𝟐√𝟏𝟑
) −

𝟐𝝅

𝟑
))  if and only: 

𝒄𝒐𝒔
𝟑𝝅

𝟏𝟑
− 𝒄𝒐𝒔

𝟐𝝅

𝟏𝟑
−
𝟏

𝟔
=
√𝟏𝟑

𝟑
𝒄𝒐𝒔(

𝟏

𝟑
𝒂𝒓𝒄𝒄𝒐𝒔(

𝟓

𝟐√𝟏𝟑
) −

𝟐𝝅

𝟑
)

=
√𝟏𝟑

𝟑
𝒄𝒐𝒔(

𝟏

𝟑
𝒂𝒓𝒄𝒄𝒐𝒔 (−

𝟓

𝟐√𝟏𝟑
) +

𝝅

𝟑
) ⇒ 𝒄𝒐𝒔

𝟑𝝅

𝟏𝟑
− 𝒄𝒐𝒔

𝟐𝝅

𝟏𝟑

=
√𝟏𝟑

𝟑
𝒄𝒐𝒔(

𝟏

𝟑
𝒂𝒓𝒄𝒄𝒐𝒔 (−

𝟓

𝟐√𝟏𝟑
) +

𝝅

𝟑
) +

𝟏

𝟔
 

802.  
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In 𝚫𝑨𝑩𝑪,𝑶 −Toricelli’s point,∢𝑨 = 𝟔𝟎°. Prove that: 

𝒂𝟐 = 𝒎𝟐 + 𝒏𝟐 + 𝒑𝟐 

Proposed by Binh Luc-Vietnam 
Solution by Jose Ferreira Queiroz-Olinda-Brazil 
 

𝒂𝟐 = 𝒏𝟐 + 𝒑𝟐 − 𝟐𝒏𝒑 ⋅ 𝐜𝐨𝐬 𝟏𝟐𝟎° = 𝒏𝟐 + 𝒑𝟐 + 𝒏𝒑      

𝒃𝟐 = 𝒎𝟐 + 𝒑𝟐 − 𝟐𝒎𝒑 ⋅ 𝐜𝐨𝐬 𝟏𝟐𝟎° = 𝒎𝟐 + 𝒑𝟐 +𝒎𝒑 

𝒄𝟐 = 𝒎𝟐 + 𝒏𝟐 − 𝟐𝒎𝒏 ⋅ 𝐜𝐨𝐬 𝟏𝟐𝟎° = 𝒎𝟐 + 𝒏𝟐 +𝒎𝒏 

                       Then: 

                       𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 = 𝟐𝒎𝟐 + 𝟐𝒏𝟐 + 𝟐𝒑𝟐 +𝒎𝒏 + 𝒏𝒑 + 𝒑𝒎;             (𝟏) 

𝒂𝟐 = 𝒃𝟐 + 𝒄𝟐 − 𝟐𝒃𝒄 ⋅ 𝐜𝐨𝐬 𝟔𝟎° 

𝒂𝟐 = 𝒃𝟐 + 𝒄𝟐 − 𝟐𝒃𝒄 ⋅
𝟏

𝟐
 

              𝒃𝟐 + 𝒄𝟐 = 𝒂𝟐 + 𝒃𝒄;               (𝟐) 

                                     Now, 

[𝑶𝑩𝑪] =
𝟏

𝟐
𝑵𝑷 ⋅ 𝐬𝐢𝐧 𝟏𝟐𝟎° =

√𝟑

𝟒
𝒏𝒑 

[𝑶𝑨𝑪] =
√𝟑

𝟒
𝒎𝒑 

[𝑶𝑨𝑩] =
√𝟑

𝟒
𝒎𝒏 

[𝑶𝑨𝑩] + [𝑶𝑩𝑪] + [𝑶𝑪𝑨] = [𝑨𝑩𝑪] =
𝟏

𝟐
𝒃𝒄 ⋅ 𝐬𝐢𝐧𝟏𝟐𝟎° 
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√𝟑

𝟒
(𝒎𝒏 + 𝒏𝒑 + 𝒑𝒎) =

√𝟑

𝟒
𝒃𝒄 

          𝒃𝒄 = 𝒎𝒏 + 𝒏𝒑 + 𝒑𝒎;                (𝟑) 

                            Using (1), (2) and (3), we get:   

𝟐𝒂𝟐 + 𝒃𝒄 = 𝟐𝒎𝟐 + 𝟐𝒏𝟐 + 𝟐𝒑𝟐 + 𝒃𝒄 

                             Therefore: 𝒂𝟐 = 𝒎𝟐 + 𝒏𝟐 + 𝒑𝟐 

803. In 𝚫𝑨𝑩𝑪 the following relationship holds: 

√𝒔𝟐 + 𝒓𝟐 + 𝟒𝑹𝒓 ≥∑√𝟐𝑹𝒓 ⋅
𝒃 + 𝒄 − 𝒂

𝒂
𝒄𝒚𝒄

 

Proposed by Mihaly Bencze, Neculai Stanciu-Romania 
Solution by Tapas Das-India 

∑√𝟐𝑹𝒓 ⋅
𝒃 + 𝒄 − 𝒂

𝒂
𝒄𝒚𝒄

=∑√𝟐𝑹𝒓 ⋅
𝟐𝒔 − 𝟐𝒂

𝒂
𝒄𝒚𝒄

= √𝟒𝑹𝒓 ⋅∑√
𝒔 − 𝒂

𝒂
𝒄𝒚𝒄

≤
𝑪𝑩𝑺

 

≤ √𝟒𝑹𝒓 ⋅ √(𝒔 − 𝒂 + 𝒔 − 𝒃 + 𝒔 − 𝒄) (
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) = 

= √𝟒𝑹𝒓 ⋅ √(𝟑𝒔 − 𝟐𝒔) (
𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂

𝒂𝒃𝒄
) = √𝟒𝑹𝒓 ⋅ √

𝒔(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)

𝟒𝑹𝒓𝒔
= 

= √𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = √𝒔𝟐 + 𝒓𝟐 + 𝟒𝑹𝒓. Equality holds for: 𝒂 = 𝒃 = 𝒄. 

804. In 𝚫𝑨𝑩𝑪,𝑮 −centroid, 𝑨̂ = 𝜽, 𝑩𝑪 = 𝒂, 𝑨𝑩 = 𝑨𝑪 = 𝒃 

[𝑨𝑫𝑮𝑬]

[𝑨𝑩𝑪]
= (

𝟐

𝟑
)
𝟐
− (

𝒂

𝟑𝒃
)
𝟐

. Find: ∢𝑫𝑮𝑬 = 𝒇(𝜽). 



 
www.ssmrmh.ro 

7 RMM-GEOMETRY MARATHON 801-900 

 

 

Proposed by Thanasis Gakopoulos-Farsala-Greece 
Solution by proposer 

 

Let 𝑮𝑮𝟏 ∥ 𝑨𝑪,𝑮𝑮𝟐 ∥ 𝑨𝑩. Is 𝑨𝑮𝟏 = 𝑨𝑮𝟐 =
𝒃

𝟑
. 

[𝑨𝑫𝑮𝑬]

[𝑨𝑩𝑪]
= (

𝟐

𝟑
)
𝟐

− (
𝒂

𝟑𝒃
)
𝟐

;                (𝟏) 

{
[𝑨𝑫𝑮𝑬] =

𝟏

𝟐
𝐬𝐢𝐧 𝑨 (𝑨𝑬 ⋅ 𝑨𝑮𝟏 + 𝑨𝑫 ⋅ 𝑨𝑮𝟐) =

𝟏

𝟐
𝐬𝐢𝐧 𝑨 ⋅

𝒃

𝟑
(𝑨𝑬 + 𝑨𝑫)

[𝑨𝑩𝑪] =
𝟏

𝟐
𝐬𝐢𝐧 𝑨 ⋅ 𝒃𝟐

(𝑮𝒂𝒌𝒐𝒑𝒐𝒖𝒍𝒐𝒔′ 𝒕𝒉) 

[𝑨𝑫𝑮𝑬]

[𝑨𝑩𝑪]
=
𝑨𝑬 + 𝑨𝑫

𝟑𝒃
=
(𝟏) 𝟒𝒃𝟐 − 𝒂𝟐

𝟗𝒃𝟐
⇒ 

⇒ 𝑨𝑫 + 𝑨𝑬 =
𝟒𝒃𝟐 − 𝒂𝟐

𝟑𝒃
;                (𝟐) 

𝐈𝐬:  𝑨𝑴𝟐 = 𝒃𝟐 −
𝒂𝟐

𝟒
; 𝑨𝑮𝟐 =

𝟒

𝟗
𝑨𝑴𝟐 ⇒ 𝑨𝑮𝟐 =

𝟏

𝟗
(𝟒𝒃𝟐 − 𝒂𝟐) 
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𝐈𝐬:  𝑨𝑬 ⋅ 𝑨𝑮𝟏 + 𝑨𝑫 ⋅ 𝑨𝑮𝟐 =
𝒃

𝟑
(𝑨𝑫+ 𝑨𝑬) =

(𝟐) 𝟏

𝟗
(𝟒𝒃𝟐 − 𝒂𝟐) 

𝑨𝑮𝟐 = 𝑨𝑬 ⋅ 𝑨𝑮𝟏 + 𝑨𝑫 ⋅ 𝑨𝑮𝟐 ⇒ 𝑨𝑫𝑮𝑬−cyclic (𝑮𝒂𝒌𝒐𝒑𝒐𝒖𝒍𝒐𝒔′𝒕𝒉. ), so 

𝑫𝑮𝑬̂ = 𝟏𝟖𝟎° − 𝜽. 

805. In 𝚫𝑨𝑩𝑪,𝑨 −center of circle. Prove: 

𝟏

𝑨𝑷
−
𝟏

𝑨𝑩
=

𝟏

𝑨𝑸
−
𝟏

𝑨𝑪
 

 

Proposed by Thanasis Gakopoulos-Farsala-Greece 

Solution by Rajarshi Chakraborty-India 

𝑨𝑫𝟏 = 𝑨𝑫𝟐; 𝑨𝑫𝟏 ∥ 𝑫𝑫𝟐; 𝑨𝑫𝟐 ∥ 𝑫𝑫𝟏, 𝒔𝒐:  𝑨𝑫𝟐𝑫𝑫𝟏 𝒊𝒔 𝒂 𝒓𝒉𝒐𝒎𝒃𝒖𝒔, 𝒕𝒉𝒆𝒏: 

∢𝑫𝟏𝑨𝑫 = ∢𝑫𝑨𝑫𝟐 ⇒
𝑨𝑩

𝑨𝑪
=
𝑩𝑫

𝑫𝑪
;      (𝟏) 

𝑵𝒐𝒘, 𝒃𝒚 𝑪𝒆𝒗𝒂′𝒔 𝒕𝒉𝒆𝒐𝒓𝒆𝒎:  
𝑨𝑷

𝑷𝑩
∙
𝑩𝑫

𝑫𝑪
∙
𝑪𝑸

𝑸𝑨
= 𝟏;    (𝟐) 

𝑨𝑷

𝑷𝑩
∙
𝑨𝑩

𝑨𝑪
∙
𝑪𝑸

𝑸𝑨
= 𝟏 ⇒

𝑪𝑸

𝑨𝑪 ∙ 𝑸𝑨
=

𝑷𝑩

𝑨𝑷 ∙ 𝑨𝑩
 

𝑨𝑪 − 𝑸𝑨

𝑨𝑪 ∙ 𝑸𝑨
=
𝑨𝑩 − 𝑨𝑷

𝑨𝑷 ∙ 𝑨𝑩
⇔

𝟏

𝑨𝑸
−
𝟏

𝑨𝑪
=

𝟏

𝑨𝑷
−
𝟏

𝑨𝑩
 

806. 𝑳, 𝑱 −tangential points, 𝑷𝑸 ∥ 𝑩𝑪. Prove: 

[𝑩𝑫𝑱𝑷] = [𝑫𝑱𝑬𝑱] = [𝑳𝑪𝑸𝑬] ⇔ 𝒂 = 𝟑(𝒄 − 𝒃) 
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Proposed by Thanasis Gakopoulos-Farsala-Greece 
Solution by Jose Ferreira Queiroz-Olinda-Brazil 

 

𝑨𝑷 = 𝒙, 𝑨𝑸 = 𝒚, 𝑳𝑪 = 𝒔 − 𝒄,𝑩𝑳 = 𝒔 − 𝒃 

𝑨𝑴 = 𝑨𝑵 = 𝒔 − 𝒂, 𝑱𝑸 = 𝑸𝑴 = 𝒔 − 𝒂 − 𝒚 

𝑱𝑷 = 𝑷𝑵 = 𝒔 − 𝒂 − 𝒙, 𝑨𝑯𝒂 = 𝒉𝒂, 𝑨𝑯 = 𝒉𝟏 

𝚫𝑨𝑷𝑸~𝚫𝑨𝑩𝑪 ⇒
𝒉𝒂
𝒉𝟏

=
𝒃

𝒚
=
𝒄

𝒙
⇒ 𝒉𝒂 = 𝒉𝟏 + 𝟐𝒓 ⇒ {

𝒙 =
𝒄

𝒔
(𝒔 − 𝒂)

𝒚 =
𝒃

𝒔
(𝒔 − 𝒂)

 

𝑱𝑷 = 𝑷𝑵 = 𝒔 − 𝒂 − 𝒙 = 𝒔 − 𝒂 −
𝒄

𝒙
(𝒔 − 𝒂) =

(𝒔 − 𝒂)(𝒔 − 𝒄)

𝒔
 

𝑱𝑸 = 𝑸𝑴 = 𝒔 − 𝒂 − 𝒚 = 𝒔 − 𝒂 −
𝒃

𝒔
(𝒔 − 𝒂) =

(𝒔 − 𝒂)(𝒔 − 𝒃)

𝒔
 

𝑷𝑸 = 𝑱𝑷 + 𝑱𝑸 =
𝒂(𝒔 − 𝒂)

𝒔
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𝚫𝑨𝑬𝑸~𝚫𝑨𝑳𝑪 ⇒
𝒃

𝒚
=
𝒉𝒂
𝒉𝟏

=
𝑳𝑪

𝑬𝑸
⇒ 𝑬𝑸 =

𝑳𝑪 ∙ 𝒚

𝒃
=
𝒔 − 𝒄

𝒃
∙
𝒃

𝒔
(𝒔 − 𝒂) 

𝑬𝑸 =
(𝒔 − 𝒂)(𝒔 − 𝒄)

𝒔
 

[𝑳𝑪𝑸𝑬] = [𝑨𝑳𝑪] − [𝑨𝑬𝑸] =
𝟏

𝟐
(𝒔 − 𝒄)𝒉𝒂 −

𝟏

𝟐
∙
(𝒔 − 𝒂)(𝒔 − 𝒄)

𝒔
𝒉𝟏 

[𝑳𝑪𝑸𝑬] =
𝑭(𝒔 − 𝒄)(𝟐𝒔 − 𝒂)

𝒔𝟐
 

𝚫𝑨𝑷𝑱~𝚫𝑨𝑩𝑫 ⇒
𝒄

𝒙
=
𝒉𝒂
𝒉𝟏

=
𝑩𝑫

𝑱𝑷
⇒ 𝑩𝑫 =

𝑱𝑷 ∙ 𝒄

𝒙
 

𝑩𝑫 =
𝒄

𝒙
∙
(𝒔 − 𝒂)(𝒔 − 𝒄)

𝒔
=
𝒄

𝒔
(𝒔 − 𝒂)(𝒔 − 𝒄) ∙

𝒔

𝒄
∙
𝟏

𝒔 − 𝒂
= 𝒔 − 𝒄 

𝐈𝐧 𝚫𝑨𝑩𝑫 𝐚𝐧𝐝 𝚫𝑨𝑷𝑱: 𝑩𝑫 = 𝑳𝑪 𝐚𝐧𝐝 𝑱𝑷 = 𝑬𝑫 𝐭𝐡𝐞𝐧: [𝑩𝑫𝑱𝑷] = [𝑳𝑪𝑸𝑬]. 

𝐍𝐨𝐰, [𝑫𝑳𝑬𝑱] = [𝑫𝑩𝑪] − [𝑨𝑷𝑸] − [𝑩𝑫𝑱𝑷] − [𝑳𝑪𝑸𝑬] = 

=
𝟏

𝟐
𝒂𝒉𝒂 +

𝟏

𝟐
𝑷𝑸 ∙ 𝒉𝟏 − 𝟐 ∙

𝑭(𝒔 − 𝒄)(𝟐𝒔 − 𝒂)

𝒔𝟐
= 

= 𝑭 −
𝟏

𝟐
∙
𝒂(𝒔 − 𝒂)

𝒔
∙ (𝒉𝒂 − 𝟐𝒓) −

𝟐𝑭(𝒔 − 𝒄)(𝟐𝒔 − 𝒂)

𝒔𝟐
= 

= 𝑭 −
𝟏

𝟐
∙
𝒂𝒉𝒂
𝒔
∙ (𝒉𝒂 − 𝟐𝒓) −

𝟐𝑭(𝒔 − 𝒄)(𝟐𝒔 − 𝒂)

𝒔𝟐
= 

= 𝑭 −
𝑭

𝒔
(𝒔 − 𝒂) +

𝒂𝒓(𝒔 − 𝒂)

𝒔
−
𝟐𝑭(𝒔 − 𝒄)(𝟐𝒔 − 𝒂)

𝒔𝟐
= 

=
𝑭

𝒔𝟐
(𝒃 + 𝒄)(𝒄 − 𝒃) 

{𝑫𝑳𝑬𝑱] = [𝑩𝑫𝑱𝑷] ⇔
𝑭(𝒔 − 𝒄)(𝟐𝒔 − 𝒂)

𝒔𝟐
=
𝑭

𝒔𝟐
(𝒃 + 𝒄)(𝒄 − 𝒃) ⇔ 

{
𝒔 − 𝒄 = 𝒄 − 𝒃

𝒂 + 𝒃 − 𝒄

𝟐
= 𝒄 − 𝒃

⇔ 𝒂 = 𝟑(𝒄 − 𝒃) 

807. Prove that: 

𝑹𝟐 =
𝒅𝟐(𝒅𝟐 − 𝒂𝒄)

(𝟐𝒅)𝟐 − (𝒂 + 𝒄)𝟐
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Proposed by Thanasis Gakopoulos-Farsala-Greece 
Solution by Jose Ferreira Queiroz-Olinda-Brazil 
 

∢𝑨𝑩𝑫 = ∢𝑫𝑩𝑪 = 𝜽; ∢𝑨𝑶𝑫 = ∢𝑫𝑶𝑪 = 𝟐𝜽 

Using Gakopoulos’ Lemmas 𝑵𝑪𝑪𝑸𝟑: 

𝑨𝑩𝑪𝑫 − 𝐜𝐲𝐜𝐥𝐢𝐜 ⇔ 𝑩𝑫 =
𝑩𝑨 ∙ 𝐬𝐢𝐧𝜽 + 𝑩𝑪 ∙ 𝐬𝐢𝐧 𝜽

𝐬𝐢𝐧 𝟐𝜽
 

𝒅 =
𝒂 ∙ 𝐬𝐢𝐧 𝜽 + 𝒄 ∙ 𝐬𝐢𝐧 𝜽

𝐬𝐢𝐧𝟐𝜽
⇒ 𝐜𝐨𝐬𝜽 =

𝒂 + 𝒄

𝟐𝒅
 

𝑨𝑪𝟐 = 𝒂𝟐 + 𝒄𝟐 − 𝟐𝒂𝒄 ∙ 𝐜𝐨𝐬 𝟐𝜽 = 𝑹𝟐 +𝑹𝟐 − 𝟐𝑹𝟐 ∙ 𝐜𝐨𝐬 𝟒𝜽 

𝟐𝑹𝟐(𝟏 − 𝐜𝐨𝐬𝟒𝜽) = 𝒂𝟐 + 𝒄𝟐 − 𝟐𝒂𝒄 ∙ 𝐜𝐨𝐬 𝟐𝜽 

𝟐𝑹𝟐(𝟖 𝐜𝐨𝐬𝟐 𝜽 − 𝟖 𝐜𝐨𝐬𝟒 𝜽) = (𝒂 + 𝒄)𝟐 − 𝟒𝒂𝒄 ∙ 𝐜𝐨𝐬𝟐 𝜽 

𝟏𝟔𝑹𝟐 [
(𝒂 + 𝒄)𝟐

𝟒𝒅𝟐
−
(𝒂 + 𝒄)𝟒

𝟏𝟔𝒅𝟒
] = (𝒂 + 𝒄)𝟐 − 𝟒𝒂𝒄 ∙

(𝒂 + 𝒄)𝟐

𝟒𝒅𝟐
 

𝟏𝟔𝑹𝟐 [𝟏 −
(𝒂 + 𝒄)𝟐

𝟒𝒅𝟐
] = 𝟒𝒅𝟐 − 𝟒𝒂𝒄 

Therefore, 

𝑹𝟐 =
𝒅𝟐(𝒅𝟐 − 𝒂𝒄)

(𝟐𝒅)𝟐 − (𝒂 + 𝒄)𝟐
 

808. Let 𝑨𝑩𝑪 be a heptagonal triangle, 𝑰 −incenter of 𝑨𝑩𝑪. Prove that: 



 
www.ssmrmh.ro 

12 RMM-GEOMETRY MARATHON 801-900 

 

𝟏

𝑨𝑪
+
𝟏

𝑰𝑪
=
𝟏

𝑨𝑰
, 𝑨𝑩 + 𝑨𝑰 = 𝑩𝑪, 𝑨𝑪 + 𝑪𝑰 = 𝑨𝑩 

 

Proposed by Juan Jose Isach Mayo-Valencia-Spain 
Solution by Jose Ferreira Queiroz-Olinda-Brazil 

𝚫𝑨𝑩𝑪 is heptagonal, then: 

𝒃(𝒂 + 𝒄) = 𝒂𝒄, 𝒃𝟐 = 𝒂𝟐 − 𝒂𝒄 , 𝒄𝟐 = 𝒃𝟐 + 𝒂𝒃, 𝒂𝟐 = 𝒄𝟐 + 𝒃𝒄 

𝚫𝑨𝑰𝑪~𝚫𝑨𝑩𝑪: 

𝑪𝑰

𝒄
=
𝒃

𝒂
=
𝑨𝑰

𝒃
⇒ 𝑪𝑰 =

𝒃𝒄

𝒂
 𝐚𝐧𝐝 𝑨𝑰 =

𝒃𝟐

𝒂
 

(𝑰)     
𝟏

𝑨𝑪
+
𝟏

𝑰𝑪
=
𝟏

𝒃
+
𝟏

𝒃𝒄
𝒂

=
𝟏

𝒃
+
𝒂

𝒃𝒄
=
𝟏

𝒃
∙
𝒂 + 𝒄

𝒄
=
𝟏

𝒃
∙
𝒂

𝒃
 

𝟏

𝑨𝑪
+
𝟏

𝑰𝑪
=
𝒂

𝒃𝟐
=
𝟏

𝑨𝑰
 

(𝑰𝑰)       𝑨𝑩 + 𝑨𝑰 = 𝒄 +
𝒃𝟐

𝒂
=
𝒂𝒄 + 𝒃𝟐

𝒂
=
𝒂𝒄 + 𝒂𝟐 − 𝒂𝒄

𝒂
= 𝒂 

𝑨𝑩 + 𝑨𝑰 = 𝒂 = 𝑩𝑪 

(𝑰𝑰𝑰)       𝑨𝑪 + 𝑪𝑰 = 𝒃 +
𝒃𝒄

𝒂
= 𝒃 ∙

𝒂 + 𝒄

𝒂
= 𝒃 ∙

𝒄

𝒃
= 𝒄 

𝑨𝑪 + 𝑪𝑰 = 𝒄 = 𝑨𝑩 

809. 

𝑰𝒇 𝜶 =∑
𝟏

𝒎𝒂 +𝒎𝒃 −𝒎𝒄
𝒄𝒚𝒄

, 𝜷 =∑
𝟏

𝒎𝒂
𝒄𝒚𝒄

, 𝝎 − 𝑩𝒓𝒐𝒄𝒂𝒓𝒅′𝒔 𝒂𝒏𝒈𝒍𝒆 𝒊𝒏 ∆𝑨𝑩𝑪 𝒕𝒉𝒆𝒏 ∶ 
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𝟏

𝐬𝐢𝐧𝝎
≥ √

𝜶

𝜷
(√

𝟐(𝒎𝒂 +𝒎𝒃) − 𝒎𝒄

𝟐(𝒎𝒂 +𝒎𝒄) −𝒎𝒃
+ √

𝟐(𝒎𝒂 +𝒎𝒄) − 𝒎𝒃

𝟐(𝒎𝒂 +𝒎𝒃) − 𝒎𝒄
) 

Proposed by Bogdan Fuștei-Romania 
Solutions 1,2  by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 
𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝟏 ∶ 

𝑳𝒆𝒎𝒎𝒂 ∶   𝑰𝒏 𝒂𝒏𝒚 ∆𝑨𝑩𝑪 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   
√𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐

𝟐𝑭
≥
𝒃

𝒄
+
𝒄

𝒃
  (∗) 

𝑷𝒓𝒐𝒐𝒇 ∶  (∗)  ⇔  𝟐𝒃𝒄√𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐

≥ (𝒃𝟐 + 𝒄𝟐)√𝟐(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐) − (𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒) 

⇔⏞
𝒔𝒒𝒖𝒂𝒓𝒊𝒏𝒈

 𝟒𝒃𝟐𝒄𝟐(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐)

≥ (𝟐𝒃𝟐𝒄𝟐 + 𝒃𝟒 + 𝒄𝟒)[𝟐(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐) − (𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒)] 

⇔  𝟎 ≥ −𝒂𝟒(𝒃𝟐 + 𝒄𝟐)
𝟐
+ 𝟐(𝒃𝟒 + 𝒄𝟒)(𝒂𝟐𝒃𝟐 + 𝒄𝟐𝒂𝟐) − (𝒃𝟒 + 𝒄𝟒)

𝟐

= −[𝒂𝟐(𝒃𝟐 + 𝒄𝟐) − (𝒃𝟒 + 𝒄𝟒)]
𝟐

 

𝑾𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒂𝒏𝒅 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒐𝒇 𝒕𝒉𝒆 𝒍𝒆𝒎𝒎𝒂 𝒊𝒔 𝒅𝒐𝒏𝒆. 

𝑵𝒐𝒘,   𝒎𝒂,𝒎𝒃,𝒎𝒄 − 𝒄𝒂𝒏 𝒃𝒆 𝒕𝒉𝒆 𝒔𝒊𝒅𝒆𝒔 𝒐𝒇 𝒂 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 𝒕𝒉𝒆𝒏 𝒂
′ = √𝒎𝒂, 𝒃

′ = √𝒎𝒃, 𝒄
′ = √𝒎𝒄 − 

𝒄𝒂𝒏 𝒂𝒍𝒔𝒐 𝒃𝒆 𝒕𝒉𝒆 𝒔𝒊𝒅𝒆𝒔 𝒐𝒇 𝒂 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 𝒘𝒊𝒕𝒉 𝒂𝒓𝒆𝒂 𝑭′ =
𝟏

𝟒
√𝟐∑𝒎𝒃𝒎𝒄 −∑𝒎𝒂

𝟐. 

𝑻𝒉𝒆𝒏 𝒎𝒂′ ,𝒎𝒃′ ,𝒎𝒄′ − 𝒄𝒂𝒏 𝒃𝒆 𝒕𝒉𝒆 𝒔𝒊𝒅𝒆𝒔 𝒐𝒇 𝒂 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 𝒘𝒊𝒕𝒉 𝒂𝒓𝒆𝒂 𝑺 =
𝟑

𝟒
𝑭′ , 

𝒎𝒂′ = √
𝟐(𝒎𝒃 +𝒎𝒄) − 𝒎𝒂

𝟒
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 𝒂𝒏𝒅 

 ∑𝒎𝒃′
𝟐𝒎𝒄′

𝟐

𝒄𝒚𝒄

=
𝟗

𝟏𝟔
∑𝒃′

𝟐
𝒄′
𝟐

𝒄𝒚𝒄

=
𝟗

𝟏𝟔
∑𝒎𝒃𝒎𝒄

𝒄𝒚𝒄

. 

𝑼𝒔𝒊𝒏𝒈 𝒕𝒉𝒆 𝒍𝒆𝒎𝒎𝒂 𝒊𝒏 ∆𝒎𝒂′𝒎𝒃′𝒎𝒄′  𝒘𝒆 𝒈𝒆𝒕 ∶   
𝒎𝒃′

𝒎𝒄′
+
𝒎𝒄′

𝒎𝒃′
≤
√∑𝒎𝒃′

𝟐𝒎𝒄′
𝟐

𝟐𝑺
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𝒐𝒓  √
𝟐(𝒎𝒂 +𝒎𝒃) − 𝒎𝒄

𝟐(𝒎𝒂 +𝒎𝒄) −𝒎𝒃
+√

𝟐(𝒎𝒂 +𝒎𝒄) −𝒎𝒃

𝟐(𝒎𝒂 +𝒎𝒃) − 𝒎𝒄
≤

𝟐√∑𝒎𝒃𝒎𝒄

√𝟐∑𝒎𝒃𝒎𝒄 − ∑𝒎𝒂
𝟐
  (𝟏) 

𝑵𝒐𝒘 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶  
𝜶

𝜷
=
∑(𝒎𝒂 +𝒎𝒃 −𝒎𝒄)(𝒎𝒂 +𝒎𝒄 −𝒎𝒃)

∏(𝒎𝒂 +𝒎𝒃 −𝒎𝒄)
.
𝒎𝒂𝒎𝒃𝒎𝒄

∑𝒎𝒃𝒎𝒄
= 

=
𝟐∑𝒎𝒃𝒎𝒄 −∑𝒎𝒂

𝟐

(𝟒𝑭∆𝒎𝒂𝒎𝒃𝒎𝒄
)
𝟐 .

𝒎𝒂𝒎𝒃𝒎𝒄∑𝒎𝒂

∑𝒎𝒃𝒎𝒄
 ≤⏞
𝑨𝑴−𝑮𝑴

 
𝟐∑𝒎𝒃𝒎𝒄 − ∑𝒎𝒂

𝟐

∑𝒎𝒃𝒎𝒄
.
∑𝒎𝒃

𝟐𝒎𝒄
𝟐

(𝟑𝑭)𝟐
= 

=
𝟐∑𝒎𝒃𝒎𝒄 − ∑𝒎𝒂

𝟐

∑𝒎𝒃𝒎𝒄
.

𝟗
𝟏𝟔
∑𝒃𝟐𝒄𝟐

𝟗𝑭𝟐
=
𝟐∑𝒎𝒃𝒎𝒄 −∑𝒎𝒂

𝟐

∑𝒎𝒃𝒎𝒄
.

𝟏

𝟒 𝐬𝐢𝐧𝟐𝝎
  (𝟐) 

𝑭𝒓𝒐𝒎 (𝟏) 𝒂𝒏𝒅 (𝟐) 𝒘𝒆 𝒈𝒆𝒕 ∶ 

√
𝜶

𝜷
(√

𝟐(𝒎𝒂 +𝒎𝒃) −𝒎𝒄

𝟐(𝒎𝒂 +𝒎𝒄) − 𝒎𝒃
+ √

𝟐(𝒎𝒂 +𝒎𝒄) − 𝒎𝒃

𝟐(𝒎𝒂 +𝒎𝒃) −𝒎𝒄
) ≤

𝟏

𝐬𝐢𝐧𝝎
,   𝒂𝒔 𝒅𝒆𝒔𝒊𝒓𝒆𝒅. 

𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝟐 ∶ 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   𝐬𝐢𝐧𝝎 =
𝟐𝑭

√∑𝒃𝟐𝒄𝟐
=

𝟖
𝟑𝑭𝒎

√𝟏𝟔
𝟗
∑𝒎𝒃

𝟐𝒎𝒄
𝟐

=
𝟐𝑭𝒎

√∑𝒎𝒃
𝟐𝒎𝒄

𝟐
= 𝐬𝐢𝐧𝝎𝒎,  

𝒘𝒉𝒆𝒓𝒆 𝑭𝒎  𝒂𝒏𝒅 𝝎𝒎 𝒂𝒓𝒆 𝒕𝒉𝒆 𝒂𝒓𝒆𝒂 𝒂𝒏𝒅 𝒕𝒉𝒆 𝑩𝒓𝒐𝒄𝒂𝒓𝒅
′𝒔 𝒂𝒏𝒈𝒍𝒆 𝒐𝒇 ∆𝒎𝒂𝒎𝒃𝒎𝒄. 

𝑺𝒐 𝒕𝒉𝒆 𝒅𝒆𝒔𝒊𝒓𝒆𝒅 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒄𝒂𝒏 𝒃𝒆 𝒓𝒆𝒘𝒓𝒊𝒕𝒕𝒆𝒏 𝒂𝒔 𝒇𝒐𝒍𝒍𝒐𝒘𝒔 ∶ 

𝟏

𝐬𝐢𝐧𝝎𝒎
≥ √

𝜶

𝜷
(√

𝟐(𝒎𝒂 +𝒎𝒃) − 𝒎𝒄

𝟐(𝒎𝒂 +𝒎𝒄) −𝒎𝒃
+ √

𝟐(𝒎𝒂 +𝒎𝒄) − 𝒎𝒃

𝟐(𝒎𝒂 +𝒎𝒃) −𝒎𝒄
) 

𝑺𝒐 𝒊𝒕 𝒔𝒖𝒇𝒇𝒊𝒄𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝟏

𝐬𝐢𝐧𝝎
≥ √

𝜶′

𝜷′
(√

𝟐(𝒂 + 𝒃) − 𝒄

𝟐(𝒂 + 𝒄) − 𝒃
+√

𝟐(𝒂 + 𝒄) − 𝒃

𝟐(𝒂 + 𝒃) − 𝒄
),   ∀∆𝑨𝑩𝑪,   𝒘𝒉𝒆𝒓𝒆 ∶ 

𝜶′ =∑
𝟏

𝒂 + 𝒃 − 𝒄
𝒄𝒚𝒄

=
𝟒𝑹+ 𝒓

𝟐𝑭
  𝒂𝒏𝒅  𝜷′ =∑

𝟏

𝒂
𝒄𝒚𝒄

=
𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂

𝟒𝑹𝑭
. 

𝑺𝒊𝒏𝒄𝒆 √𝒂, √𝒃, √𝒄 − 𝒄𝒂𝒏 𝒃𝒆 𝒕𝒉𝒆 𝒔𝒊𝒅𝒆𝒔 𝒐𝒇 𝒂 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 𝒘𝒊𝒕𝒉 𝒂𝒓𝒆𝒂 
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 𝑭′ =
√𝟐∑𝒃𝒄 − ∑𝒂𝟐

𝟒
=
√𝒓(𝟒𝑹+ 𝒓)

𝟐
, 

𝒕𝒉𝒆𝒏 𝒎√𝒂,𝒎√𝒃,𝒎√𝒄 − 𝒄𝒂𝒏 𝒃𝒆 𝒕𝒉𝒆 𝒔𝒊𝒅𝒆𝒔 𝒐𝒇 𝒂 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 𝒘𝒊𝒕𝒉 𝒂𝒓𝒆𝒂 ∶ 

𝑺 =
𝟑

𝟒
𝑭′ =

𝟑√𝒓(𝟒𝑹+ 𝒓)

𝟖
  𝒂𝒏𝒅  𝒎√𝒂 = √

𝟐(𝒃+ 𝒄) − 𝒂

𝟒
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔). 

𝑼𝒔𝒊𝒏𝒈 𝒕𝒉𝒆 𝒍𝒆𝒎𝒎𝒂 𝒑𝒓𝒐𝒗𝒆𝒅 𝒊𝒏 𝒕𝒉𝒆 𝒇𝒊𝒓𝒔𝒕 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝒊𝒏 ∆𝒎√𝒂𝒎√𝒃𝒎√𝒄,𝒘𝒆 𝒈𝒆𝒕 ∶ 

𝒎√𝒃

𝒎√𝒄

+
𝒎√𝒄

𝒎√𝒃

≤

√∑𝒎√𝒃
𝟐𝒎√𝒄

𝟐

𝟐𝑺
. 

𝑶𝒓  √
𝟐(𝒂+ 𝒃) − 𝒄

𝟐(𝒂+ 𝒄) − 𝒃
+√

𝟐(𝒂 + 𝒄) − 𝒃

𝟐(𝒂 + 𝒃) − 𝒄
≤

√ 𝟗
𝟏𝟔
∑√𝒃

 𝟐
√𝒄

 𝟐

𝟐.
𝟑√𝒓(𝟒𝑹+ 𝒓)

𝟖

= √
𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂

𝒓(𝟒𝑹+ 𝒓)
 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   √
𝜶′

𝜷′
(√

𝟐(𝒂 + 𝒃) − 𝒄

𝟐(𝒂 + 𝒄) − 𝒃
+ √

𝟐(𝒂 + 𝒄) − 𝒃

𝟐(𝒂 + 𝒃) − 𝒄
) ≤ √

𝟐𝑹(𝟒𝑹+ 𝒓)

𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂
.√
𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂

𝒓(𝟒𝑹+ 𝒓)
= 

= √
𝟐𝑹

𝒓
=
√𝒂𝒃𝒄(𝒂 + 𝒃 + 𝒄)

𝟐𝑭
 ≤⏞
𝑨𝑴−𝑮𝑴

 
√𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐

𝟐𝑭
=

𝟏

𝐬𝐢𝐧𝝎
,   𝒂𝒔 𝒅𝒆𝒔𝒊𝒓𝒆𝒅. 

 

 

810. 𝑰𝒏 ∆𝑨𝑩𝑪 𝒉𝒐𝒍𝒅𝒔: 

   𝟏𝟒𝟒𝒓𝟐 ≤∑(𝒃𝟐 + 𝒄𝟐) 𝐜𝐬𝐜
𝑨

𝟐
𝒄𝒚𝒄

≤
𝟗𝑹(𝟑𝑹𝟐 − 𝟒𝒓𝟐)

𝒓
 

Proposed by Marin Chirciu-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   ∑(𝒃𝟐 + 𝒄𝟐) 𝐜𝐬𝐜
𝑨

𝟐
𝒄𝒚𝒄

 ≤⏞
𝑻𝒆𝒓𝒆𝒔𝒉𝒊𝒏

 ∑𝟒𝑹𝒎𝒂. 𝐜𝐬𝐜
𝑨

𝟐
𝒄𝒚𝒄

 ≤⏞
𝑪𝑩𝑺

 𝟒𝑹√∑𝒎𝒂
𝟐

𝒄𝒚𝒄

.∑𝐜𝐬𝐜𝟐
𝑨

𝟐
𝒄𝒚𝒄

= 



 
www.ssmrmh.ro 

16 RMM-GEOMETRY MARATHON 801-900 

 

=  𝟒𝑹√
𝟑(𝒔𝟐 − 𝒓𝟐 − 𝟒𝑹𝒓)

𝟐
.
𝒔𝟐 + 𝒓𝟐 − 𝟖𝑹𝒓

𝒓𝟐
 ≤⏞
𝑮𝒆𝒓𝒓𝒆𝒕𝒔𝒆𝒏

 
𝟒𝑹

𝒓
√
𝟑(𝟒𝑹𝟐 + 𝟐𝒓𝟐)(𝟒𝑹𝟐 − 𝟒𝑹𝒓+ 𝟒𝒓𝟐)

𝟐
= 

=
𝟒𝑹. 𝟐√(𝟐𝑹𝟐 + 𝒓𝟐). 𝟑(𝑹𝟐 −𝑹𝒓 + 𝒓𝟐)

𝒓
 ≤⏞
𝑨𝑴−𝑮𝑴

 
𝟒𝑹[(𝟐𝑹𝟐 + 𝒓𝟐) + 𝟑(𝑹𝟐 −𝑹𝒓 + 𝒓𝟐)]

𝒓
= 

=
𝟒𝑹(𝟓𝑹𝟐 − 𝟑𝑹𝒓+ 𝟒𝒓𝟐)

𝒓
=
𝟗𝑹(𝟑𝑹𝟐 − 𝟒𝒓𝟐) − 𝑹(𝑹 − 𝟐𝒓)(𝟕𝑹+ 𝟐𝟔𝒓)

𝒓
 ≤⏞
𝑬𝒖𝒍𝒆𝒓

 
𝟗𝑹(𝟑𝑹𝟐 − 𝟒𝒓𝟐)

𝒓
. 

𝑵𝒐𝒘 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶  ∑(𝒃𝟐 + 𝒄𝟐) 𝐜𝐬𝐜
𝑨

𝟐
𝒄𝒚𝒄

 ≥⏞
𝑪𝑩𝑺

 ∑
(𝒃 + 𝒄)𝟐

𝟐 𝐬𝐢𝐧
𝑨
𝟐𝒄𝒚𝒄

 ≥⏞
𝑪𝑩𝑺

 
𝟒(𝒂 + 𝒃 + 𝒄)𝟐

𝟐(𝐬𝐢𝐧
𝑨
𝟐
+ 𝐬𝐢𝐧

𝑩
𝟐
+ 𝐬𝐢𝐧

𝑪
𝟐
)
≥ 

≥⏞
𝑱𝒆𝒏𝒔𝒆𝒏

 
𝟐. 𝟒𝒔𝟐

𝟑 𝐬𝐢𝐧
𝝅
𝟔

 ≥⏞
𝑴𝒊𝒕𝒓𝒊𝒏𝒐𝒗𝒊𝒄

 
𝟖. 𝟐𝟕𝒓𝟐

𝟑
𝟐

= 𝟏𝟒𝟒𝒓𝟐. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒅.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 ∆𝑨𝑩𝑪 𝒊𝒔 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍. 

811. 𝑰𝒏 ∆𝑨𝑩𝑪 𝒕𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔𝒉𝒊𝒑 𝒉𝒐𝒍𝒅𝒔: 

  ∑√𝒂(𝟐𝒂 + 𝟐𝒃 − 𝒄)

𝒄𝒚𝒄

≥ 𝟑√𝟐𝑹(𝒉𝒂 + 𝒉𝒃 + 𝒉𝒄) 

Proposed by Bogdan Fuștei-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑻𝒉𝒆 𝒈𝒊𝒗𝒆𝒏 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒄𝒂𝒏 𝒃𝒆 𝒓𝒆𝒘𝒓𝒊𝒕𝒕𝒆𝒏 𝒂𝒔 𝒇𝒐𝒍𝒍𝒐𝒘𝒔 ∶ 

∑√𝒂(𝟐𝒂 + 𝟐𝒃 − 𝒄)

𝒄𝒚𝒄

≥ 𝟑√𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂. 

𝑼𝒔𝒊𝒏𝒈 𝑹𝒂𝒗𝒊′𝒔 𝒔𝒖𝒃𝒔𝒕𝒊𝒕𝒖𝒕𝒊𝒐𝒏 ∶ 𝒂 = 𝒚 + 𝒛, 𝒃 = 𝒛 + 𝒙, 𝒄 = 𝒙 + 𝒚,   𝒙, 𝒚, 𝒛 > 0.  𝑊𝑒 ℎ𝑎𝑣𝑒 ∶ 

∑√𝒂(𝟐𝒂 + 𝟐𝒃 − 𝒄)

𝒄𝒚𝒄

=∑√(𝒚 + 𝒛)(𝒙 + 𝒚 + 𝟒𝒛)

𝒄𝒚𝒄

=∑√(𝒚 + 𝟐𝒛)𝟐 +√𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙
 𝟐

𝒄𝒚𝒄

≥ 

≥⏞
𝑴𝒊𝒏𝒌𝒐𝒘𝒔𝒌𝒊

 √[∑(𝒚 + 𝟐𝒛)]
𝟐

+ (∑√𝒙𝒚+ 𝒚𝒛 + 𝒛𝒙)
𝟐

= √𝟗∑(𝒛 + 𝒙)(𝒙 + 𝒚) = 𝟑√𝒂𝒃+ 𝒃𝒄 + 𝒄𝒂. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒅.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 ∆𝑨𝑩𝑪 𝒊𝒔 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍. 

812. In 𝚫𝑨𝑩𝑪 the following relationship holds: 
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(∑𝒂√𝒃𝒄

𝒄𝒚𝒄

)(∑ √𝒂𝒃
𝟑

(√𝒂
𝟑

+ √𝒃
𝟑
)

𝒄𝒚𝒄

) ≤ 𝟓𝟒√𝟑 ∙ 𝑹𝟑 

Proposed by Daniel Sitaru-Romania 
Solution 1 by Alex Szoros-Romania 

(∀)𝒙, 𝒚 ≥ 𝟎:  𝒙𝟑 + 𝒚𝟑 ≥ 𝒙𝒚(𝒙 + 𝒚).  

𝑳𝒆𝒕: 𝒙 = √𝒂
𝟑  𝒂𝒏𝒅 𝒚 = √𝒃

𝟑
 𝒕𝒉𝒆𝒏: 𝒂 + 𝒃 ≥ √𝒂𝒃

𝟑
(√𝒂
𝟑 + √𝒃

𝟑
)  

∑√𝒂𝒃
𝟑

(√𝒂
𝟑 + √𝒃

𝟑
)

𝒄𝒚𝒄

≤∑(𝒂 + 𝒃)

𝒄𝒚𝒄

= 𝟐∑𝒂

𝒄𝒚𝒄

= 𝟒𝒔;         (𝟏) 

∑𝒂√𝒃𝒄

𝒄𝒚𝒄

≤∑𝒂(
𝒃 + 𝒄

𝟐
)

𝒄𝒚𝒄

=
𝟏

𝟐
∑(𝒂𝒃 + 𝒂𝒄)

𝒄𝒚𝒄

=∑𝒂𝒃

𝒄𝒚𝒄

≤∑𝒂𝟐

𝒄𝒚𝒄

≤ 𝟗𝑹𝟐;        (𝟐) 

𝑩𝒖𝒕 𝒔 ≤
𝟑√𝟑

𝟑
𝑹 (𝑴𝒊𝒕𝒓𝒊𝒏𝒐𝒗𝒊𝒄) ⇒ 𝟒𝒔 ≤ 𝟔√𝟑 ∙ 𝑹;         (𝟑) 

𝑭𝒓𝒐𝒎 (𝟏), (𝟐) 𝒂𝒏𝒅 (𝟑): 

(∑𝒂√𝒃𝒄

𝒄𝒚𝒄

)(∑√𝒂𝒃
𝟑

(√𝒂
𝟑 + √𝒃

𝟑
)

𝒄𝒚𝒄

) ≤ 𝟒𝒔 ∙ 𝟗𝑹𝟐 ≤ 𝟔√𝟑𝑹 ∙ 𝟗𝑹𝟐 = 𝟓𝟒√𝟑 ∙ 𝑹𝟑 

Solution 2 by Tapas Das-India 

√𝒂𝒃
𝟑

(√𝒂
𝟑 + √𝒃

𝟑
) = (√𝒂𝟐𝒃

𝟑
+ √𝒂𝒃𝟐

𝟑
) = √𝒂 ∙ 𝒂 ∙ 𝒃

𝟑
+ √𝒂 ∙ 𝒃 ∙ 𝒃

𝟑
≤

𝑨𝑴−𝑮𝑴
 

≤
𝒂 + 𝒂 + 𝒃

𝟑
+
𝒂 + 𝒃 + 𝒃

𝟑
=
𝟑(𝒂 + 𝒃)

𝟑
= 𝒂 + 𝒃 

∑√𝒂𝒃
𝟑

(√𝒂
𝟑 + √𝒃

𝟑
)

𝒄𝒚𝒄

≤∑(𝒂 + 𝒃)

𝒄𝒚𝒄

= 𝟒𝒔 

∑𝒂√𝒃𝒄

𝒄𝒚𝒄

=∑√𝒂𝒃 ∙ 𝒂𝒄

𝒄𝒚𝒄

≤
𝟏

𝟐
∑(𝒂𝒃 + 𝒂𝒄)

𝒄𝒚𝒄

= 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 

  (∑𝒂√𝒃𝒄

𝒄𝒚𝒄

)(∑ √𝒂𝒃
𝟑

(√𝒂
𝟑 + √𝒃

𝟑
)

𝒄𝒚𝒄

) ≤ 𝟒𝒔(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) ≤ 

≤
(𝒂 + 𝒃 + 𝒄)𝟐

𝟑
∙ 𝟒𝒔 =

𝟒𝒔𝟐 ∙ 𝟒𝒔

𝟑
≤
𝟒

𝟑
∙
𝟐𝟕𝑹𝟐

𝟒
∙ 𝟒 ∙

𝟑√𝟑

𝟐
𝑹 = 𝟓𝟒√𝟑 ∙ 𝑹𝟑   
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813.  𝑰𝒏 ∆𝑨𝑩𝑪 𝒕𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔𝒉𝒊𝒑 𝒉𝒐𝒍𝒅𝒔: 

   𝟐𝑹 ≤∑
𝑨𝑰

𝐬𝐢𝐧𝑨 (𝐬𝐢𝐧𝑩 + 𝐬𝐢𝐧 𝑪)
𝒄𝒚𝒄

≤
𝑹𝟐

𝒓
 

Proposed by Ertan Yildirim-Izmir-Turkiye 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑨𝑰 =
𝒓

𝐬𝐢𝐧
𝑨
𝟐

=
𝟒𝑹𝒓 𝐜𝐨𝐬

𝑨
𝟐

𝒂
=
𝒃𝒄 𝐜𝐨𝐬

𝑨
𝟐

𝒔
=
(𝒃 + 𝒄)𝒘𝒂

𝟐𝒔
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

∑
𝑨𝑰

𝐬𝐢𝐧 𝑨 (𝐬𝐢𝐧𝑩 + 𝐬𝐢𝐧𝑪)
𝒄𝒚𝒄

=∑
(𝒃 + 𝒄)𝒘𝒂

𝟐𝒔
.
(𝟐𝑹)𝟐

𝒂(𝒃 + 𝒄)
𝒄𝒚𝒄

=
𝟐𝑹𝟐

𝒔
∑

𝒘𝒂

𝒂
𝒄𝒚𝒄

. 

𝑵𝒐𝒘,𝒘𝒆 𝒌𝒏𝒐𝒘 𝒕𝒉𝒂𝒕 ∶   𝒉𝒂 ≤ 𝒘𝒂 ≤ √𝒔(𝒔 − 𝒂)  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔), 𝒕𝒉𝒆𝒏 ∶ 

∑
𝑨𝑰

𝐬𝐢𝐧 𝑨 (𝐬𝐢𝐧𝑩 + 𝐬𝐢𝐧𝑪)
𝒄𝒚𝒄

≥
𝟐𝑹𝟐

𝒔
∑

𝒉𝒂
𝒂

𝒄𝒚𝒄

= 𝟒𝑹𝟐𝒓∑
𝟏

𝒂𝟐
𝒄𝒚𝒄

 ≥⏞
𝑨𝑴−𝑮𝑴

 𝟒𝑹𝟐𝒓∑
𝟏

𝒃𝒄
𝒄𝒚𝒄

=
𝟒𝑹𝟐𝒓

𝟐𝑹𝒓
= 𝟐𝑹. 

𝑨𝒏𝒅 ∶  ∑
𝑨𝑰

𝐬𝐢𝐧 𝑨 (𝐬𝐢𝐧𝑩 + 𝐬𝐢𝐧𝑪)
𝒄𝒚𝒄

=
𝟐𝑹𝟐

𝒔
∑

𝒘𝒂

𝒂
𝒄𝒚𝒄

=
𝑹𝟐

𝒔𝟐𝒓
∑𝒘𝒂𝒉𝒂
𝒄𝒚𝒄

≤
𝑹𝟐

𝒔𝟐𝒓
∑𝒔(𝒔 − 𝒂)

𝒄𝒚𝒄

=
𝑹𝟐

𝒓
.  

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒅.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 ∆𝑨𝑩𝑪 𝒊𝒔 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍. 

 

 

814. 𝑰𝒏 ∆𝑨𝑩𝑪 𝒕𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔𝒉𝒊𝒑 𝒉𝒐𝒍𝒅𝒔: 

  
𝒂𝟑

𝒃𝟑
+
𝒃𝟑

𝒄𝟑
+
𝒄𝟑

𝒂𝟑
+
𝑹𝟑

𝒓𝟑
≥ 𝟖 +

𝒃𝟑

𝒂𝟑
+
𝒄𝟑

𝒃𝟑
+
𝒂𝟑

𝒄𝟑
 

Proposed by Nguyen Van Canh-BenTre-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑻𝒉𝒆 𝒈𝒊𝒗𝒆𝒏 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒄𝒂𝒏 𝒃𝒆 𝒓𝒆𝒘𝒓𝒊𝒕𝒕𝒆𝒏 𝒂𝒔 𝒇𝒐𝒍𝒍𝒐𝒘𝒔 ∶ 

𝑹𝟑

𝒓𝟑
− 𝟖 ≥

(𝒂𝟑 − 𝒃𝟑)(𝒂𝟑 − 𝒄𝟑)(𝒃𝟑 − 𝒄𝟑)

𝒂𝟑𝒃𝟑𝒄𝟑
  (𝟏) 
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𝑾𝑳𝑶𝑮,𝒘𝒆 𝒎𝒂𝒚 𝒂𝒔𝒔𝒖𝒎𝒆 𝒕𝒉𝒂𝒕 𝒄 = 𝒎𝒊𝒏{𝒂,𝒃, 𝒄}. 

𝑰𝒇 𝒃 ≥ 𝒂 ≥ 𝒄  𝒘𝒆 𝒉𝒂𝒗𝒆 ∶  𝑳𝑯𝑺(𝟏) ≥⏞
𝑬𝒖𝒍𝒆𝒓

𝟎 ≥ 𝑹𝑯𝑺(𝟏). 

𝑵𝒐𝒘,𝒘𝒆 𝒂𝒔𝒔𝒖𝒎𝒆 𝒕𝒉𝒂𝒕 𝒂 ≥ 𝒃 ≥ 𝒄.  𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝒂𝟑

𝒃𝟑
+
𝒃𝟑

𝒄𝟑
+
𝒄𝟑

𝒂𝟑
+
𝑹𝟑

𝒓𝟑
 ≥⏞
𝑩𝒂𝒏𝒅𝒊𝒍𝒂

 
𝒂𝟑

𝒃𝟑
+
𝒃𝟑

𝒄𝟑
+
𝒄𝟑

𝒂𝟑
+ (

𝒂

𝒄
+
𝒄

𝒂
)
𝟑

 ≥⏞
?

 𝟖 +
𝒃𝟑

𝒂𝟑
+
𝒄𝟑

𝒃𝟑
+
𝒂𝟑

𝒄𝟑
 

⇔ (𝟏 +
𝒄𝟑

𝒂𝟑
−
𝒃𝟑

𝒂𝟑
−
𝒄𝟑

𝒃𝟑
) + (

𝒂𝟑

𝒃𝟑
+
𝒃𝟑

𝒄𝟑
+
𝒄𝟑

𝒂𝟑
− 𝟑) + 𝟑(

𝒂

𝒄
+
𝒄

𝒂
− 𝟐) ≥ 𝟎. 

⇔ 
(𝒂𝟑 − 𝒃𝟑)(𝒃𝟑 − 𝒄𝟑)

𝒂𝟑𝒃𝟑
+ (

𝒂𝟑

𝒃𝟑
+
𝒃𝟑

𝒄𝟑
+
𝒄𝟑

𝒂𝟑
− 𝟑) +

𝟑(𝒄 − 𝒂)𝟐

𝒄𝒂
≥ 𝟎. 

𝑾𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒃𝒚 𝑨𝑴−𝑮𝑴 (∴
𝒂𝟑

𝒃𝟑
+
𝒃𝟑

𝒄𝟑
+
𝒄𝟑

𝒂𝟑
≥ 𝟑)  𝒂𝒏𝒅 𝒂 ≥ 𝒃 ≥ 𝒄. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 ∆𝑨𝑩𝑪 𝒊𝒔 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍. 

815. 𝐈𝐧 𝒂𝐧𝐲 ∆ 𝐀𝐁𝐂 𝐡𝐨𝐥𝐝𝐬: 

𝒂𝟒

𝐛𝟒
+
𝐛𝟒

𝐜𝟒
+
𝐜𝟒

𝒂𝟒
+
𝐑𝟒

𝐫𝟒
≥ 𝟏𝟔 +

𝐛𝟑

𝒂𝟑
+
𝐜𝟑

𝐛𝟑
+
𝒂𝟑

𝐜𝟑
 

  Proposed by Nguyen Van Canh-BenTre-Vietnam 
Solution  by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑳𝒆𝒎𝒎𝒂 ∶   𝑰𝒏 𝒂𝒏𝒚 ∆𝑨𝑩𝑪 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   
𝒃

𝒂
+
𝒄

𝒃
+
𝒂

𝒄
≤
𝑹

𝒓
+ 𝟏. 

𝑷𝒓𝒐𝒐𝒇 ∶   𝑾𝒆 𝒂𝒔𝒔𝒖𝒎𝒆 𝒕𝒉𝒂𝒕 𝒄 = 𝐦𝐢𝐧{𝒂, 𝒃, 𝒄} .  𝑰𝒇 𝒂 ≥ 𝒃 ≥ 𝒄  𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝑹

𝒓
+ 𝟏 ≥⏞

𝑩𝒂𝒏𝒅𝒊𝒍𝒂

 
𝒂

𝒄
+
𝒄

𝒂
+ 𝟏 =

𝒃

𝒂
+
𝒄

𝒃
+
𝒂

𝒄
+
(𝒂 − 𝒃)(𝒃 − 𝒄)

𝒂𝒃
≥
𝒃

𝒂
+
𝒄

𝒃
+
𝒂

𝒄
. 

𝑰𝒇 𝒃 ≥ 𝒂 ≥ 𝒄 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

 
𝑹

𝒓
+ 𝟏 ≥⏞

𝑩𝒂𝒏𝒅𝒊𝒍𝒂

 
𝒃

𝒄
+
𝒄

𝒃
+ 𝟏 =

𝒃

𝒂
+
𝒄

𝒃
+
𝒂

𝒄
+
(𝒃 − 𝒂)(𝒂 − 𝒄)

𝒄𝒂
≥
𝒃

𝒂
+
𝒄

𝒃
+
𝒂

𝒄
. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒐𝒇 𝒕𝒉𝒆 𝒍𝒆𝒎𝒎𝒂 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆. 



 
www.ssmrmh.ro 

20 RMM-GEOMETRY MARATHON 801-900 

 

𝑵𝒐𝒘,   𝟏𝟔 +
𝒃𝟑

𝒂𝟑
+
𝒄𝟑

𝒃𝟑
+
𝒂𝟑

𝒄𝟑
= 𝟏𝟔 + (

𝒃

𝒂
+
𝒄

𝒃
+
𝒂

𝒄
)
𝟑

− 𝟑(
𝒃

𝒂
+
𝒄

𝒃
+
𝒂

𝒄
) (
𝒂

𝒃
+
𝒃

𝒄
+
𝒄

𝒂
) + 𝟑 ≤ 

≤⏞
𝑳𝒆𝒎𝒎𝒂 & 𝐴𝑀−𝐺𝑀

 𝟏𝟔 + (
𝑹

𝒓
+ 𝟏)

𝟑

− 𝟑. 𝟑. 𝟑 + 𝟑 = 𝟑 +
𝑹𝟒

𝒓𝟒
− (

𝑹

𝒓
− 𝟐)(

𝑹𝟑

𝒓𝟑
+
𝑹𝟐

𝒓𝟐
−
𝑹

𝒓
− 𝟓) ≤ 

≤⏞
𝑬𝒖𝒍𝒆𝒓

 𝟑 +
𝑹𝟒

𝒓𝟒
 ≤⏞
𝑨𝑴−𝑮𝑴

 
𝒂𝟒

𝒃𝟒
+
𝒃𝟒

𝒄𝟒
+
𝒄𝟒

𝒂𝟒
+
𝑹𝟒

𝒓𝟒
,   𝒂𝒔 𝒅𝒆𝒔𝒊𝒓𝒆𝒅. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 ∆𝑨𝑩𝑪 𝒊𝒔 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍. 

816. In 𝚫𝑨𝑩𝑪 the following relationship holds: 

∑
𝒔𝒂
𝟒 + (𝒔𝒃 + 𝒔𝒄)

𝟒

𝒔𝒃𝒔𝒄
𝒄𝒚𝒄

≥
𝟗𝟏𝟖𝒓𝟑

𝑹
 

Proposed by Marin Chirciu-Romania 
Solution 1 by Soumava Chakraborty-Kolkata-India 

∑
𝐬𝒂
𝟒 + (𝐬𝐛 + 𝐬𝐜)

𝟒

𝐬𝐛𝐬𝐜
𝐜𝐲𝐜

≥
(𝒙+𝐲)𝟒 ≥ 𝟖𝒙𝐲(𝒙𝟐+𝐲𝟐)

∑
𝐬𝒂
𝟒 + 𝟖𝐬𝐛𝐬𝐜(𝐬𝐛

𝟐 + 𝐬𝐜
𝟐)

𝐬𝐛𝐬𝐜
𝐜𝐲𝐜

 

=∑
𝐬𝒂
𝟒

𝐬𝐛𝐬𝐜
𝐜𝐲𝐜

+ 𝟖∑(𝐬𝐛
𝟐 + 𝐬𝐜

𝟐)

𝐜𝐲𝐜

≥
𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦 (∑ 𝐬𝒂

𝟐
𝐜𝐲𝐜 )

𝟐

∑ 𝐬𝐛𝐬𝐜𝐜𝐲𝐜
+ 𝟏𝟔∑𝐬𝒂

𝟐

𝐜𝐲𝐜

 

≥
(∑ 𝐬𝒂

𝟐
𝐜𝐲𝐜 )

𝟐

∑ 𝐬𝒂
𝟐

𝐜𝐲𝐜

+ 𝟏𝟔∑𝐬𝒂
𝟐

𝐜𝐲𝐜

= 𝟏𝟕∑𝐬𝒂
𝟐

𝐜𝐲𝐜

≥ 𝟏𝟕∑𝐡𝒂
𝟐

𝐜𝐲𝐜

≥
𝟏𝟕

𝟑
(∑𝐡𝒂
𝐜𝐲𝐜

)

𝟐

 

≥
𝟏𝟕

𝟑
(𝟗𝐫)𝟐 =

𝟒𝟓𝟗𝐫𝟑

𝐫
≥

𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦 𝟒𝟓𝟗𝐫𝟑

𝐑
𝟐

=
𝟗𝟏𝟖𝐫𝟑

𝐑
 (𝐐𝐄𝐃), 

𝐞𝐪𝐮𝐚𝐥𝐢𝐭𝐲 𝐢𝐟𝐟 ∆ 𝐀𝐁𝐂 𝐢𝐬 𝐞𝐪𝐮𝐢𝐥𝐚𝐭𝐞𝐫𝐚𝐥 

Solution 2 by Tapas Das-India 

∑
𝒔𝒂
𝟒 + (𝒔𝒃 + 𝒔𝒄)

𝟒

𝒔𝒃𝒔𝒄
𝒄𝒚𝒄

=∑
𝒔𝒂
𝟒

𝒔𝒃𝒔𝒄
𝒄𝒚𝒄

+∑
(𝒔𝒃 + 𝒔𝒄)

𝟒

𝒔𝒃𝒔𝒄
𝒄𝒚𝒄

≥
𝑯𝒐𝒍𝒅𝒆𝒓

 

≥
(𝒔𝒂 + 𝒔𝒃 + 𝒔𝒄)

𝟒

𝟑𝟐(𝒔𝒂𝒔𝒃 + 𝒔𝒃𝒔𝒄 + 𝒔𝒄𝒔𝒂)
+

(𝟐𝒔𝒂 + 𝟐𝒔𝒃 + 𝟐𝒔𝒄)
𝟒

𝟑𝟐(𝒔𝒂𝒔𝒃 + 𝒔𝒃𝒔𝒄 + 𝒔𝒄𝒔𝒂)
≥
(𝟏)
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≥
(𝒔𝒂 + 𝒔𝒃 + 𝒔𝒄)

𝟒

𝟗 ⋅
(𝒔𝒂 + 𝒔𝒃 + 𝒔𝒄)𝟐

𝟑

+
𝟏𝟔(𝒔𝒂 + 𝒔𝒃 + 𝒔𝒄)

𝟒

𝟗 ⋅
(𝒔𝒂 + 𝒔𝒃 + 𝒔𝒄)𝟐

𝟑

=
𝟏𝟕

𝟑
(𝒔𝒂 + 𝒔𝒃+𝒄)

𝟐 ≥ 

≥
𝟏𝟕

𝟑
(𝒉𝒂 + 𝒉𝒃 + 𝒉𝒄)

𝟐 =
𝟏𝟕

𝟑
⋅ (𝟗𝒓)𝟐 =

𝟏𝟕

𝟑
⋅ 𝟖𝟏𝒓𝟐 = 𝟒𝟓𝟗𝒓𝟐 

We need to prove: 

𝟒𝟓𝟗𝒓𝟐 ≥
𝟗𝟏𝟖𝒓𝟐

𝑹
⇔ 𝑹 ≥ 𝟐𝒓 (𝑬𝒖𝒍𝒆𝒓). 

(𝟏) ⇔ (𝒙 + 𝒚 + 𝒛)𝟐 ≥ 𝟑(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙) 

817. In 𝚫𝑨𝑩𝑪 the following relationship holds: 

𝟖𝒔𝒂𝒔𝒃𝒔𝒄 ≤ (
𝑹

𝟐𝒓
)
𝟐

(𝒉𝒂 + 𝒉𝒃)(𝒉𝒃 + 𝒉𝒄)(𝒉𝒄 + 𝒉𝒂) 

Proposed by Marin Chirciu-Romania 
Solution 1 by Soumava Chakraborty-Kolkata-India 

𝐦𝒂
𝟐𝐦𝐛

𝟐𝐦𝐜
𝟐 =

𝟏

𝟔𝟒
(𝟐𝐛𝟐 + 𝟐𝐜𝟐 − 𝒂𝟐)(𝟐𝐜𝟐 + 𝟐𝒂𝟐 − 𝐛𝟐)(𝟐𝒂𝟐 + 𝟐𝐛𝟐 − 𝐜𝟐) 

=
(𝟏) 𝟏

𝟔𝟒
{−𝟒∑𝒂𝟔

𝐜𝐲𝐜

+ 𝟔(∑𝒂𝟒𝐛𝟐

𝐜𝐲𝐜

+∑𝒂𝟐𝐛𝟒

𝐜𝐲𝐜

) + 𝟑𝒂𝟐𝐛𝟐𝐜𝟐} 

𝐍𝐨𝐰,∑𝒂𝟔

𝐜𝐲𝐜

= (∑𝒂𝟐

𝐜𝐲𝐜

)

𝟑

− 𝟑(𝒂𝟐+𝐛𝟐)(𝐛𝟐 + 𝐜𝟐)(𝐜𝟐 + 𝒂𝟐) 

= (∑𝒂𝟐

𝐜𝐲𝐜

)

𝟑

− 𝟑(𝟐𝒂𝟐𝐛𝟐𝐜𝟐 +∑(𝒂𝟐𝐛𝟐 (∑𝒂𝟐

𝐜𝐲𝐜

− 𝐜𝟐))

𝐜𝐲𝐜

) 

= (∑𝒂𝟐

𝐜𝐲𝐜

)

𝟑

+ 𝟑𝒂𝟐𝐛𝟐𝐜𝟐 − 𝟑(∑𝒂𝟐

𝐜𝐲𝐜

𝐛𝟐)(∑𝒂𝟐

𝐜𝐲𝐜

) 

∴∑𝒂𝟔

𝐜𝐲𝐜

=
(𝟐)
(∑𝒂𝟐

𝐜𝐲𝐜

)

𝟑

+ 𝟑𝒂𝟐𝐛𝟐𝐜𝟐 − 𝟑(∑𝒂𝟐

𝐜𝐲𝐜

𝐛𝟐)(∑𝒂𝟐

𝐜𝐲𝐜

) 
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𝐀𝐥𝐬𝐨,∑𝒂𝟒𝐛𝟐

𝐜𝐲𝐜

+∑𝒂𝟐𝐛𝟒

𝐜𝐲𝐜

=∑(𝒂𝟐𝐛𝟐 (∑𝒂𝟐

𝐜𝐲𝐜

− 𝐜𝟐))

𝐜𝐲𝐜

 

=
(𝟑)
(∑𝒂𝟐

𝐜𝐲𝐜

𝐛𝟐)(∑𝒂𝟐

𝐜𝐲𝐜

) − 𝟑𝒂𝟐𝐛𝟐𝐜𝟐 ∴ (𝟏), (𝟐), (𝟑) ⇒ 𝐦𝒂
𝟐𝐦𝐛

𝟐𝐦𝐜
𝟐 

=
𝟏

𝟔𝟒
(−𝟒(∑𝒂𝟐

𝐜𝐲𝐜

)

𝟑

− 𝟏𝟐𝒂𝟐𝐛𝟐𝐜𝟐 + 𝟏𝟐(∑𝒂𝟐

𝐜𝐲𝐜

𝐛𝟐)(∑𝒂𝟐

𝐜𝐲𝐜

) + 𝟔(∑𝒂𝟐

𝐜𝐲𝐜

𝐛𝟐)(∑𝒂𝟐

𝐜𝐲𝐜

)

− 𝟏𝟖𝒂𝟐𝐛𝟐𝐜𝟐 + 𝟑𝒂𝟐𝐛𝟐𝐜𝟐) 

Solution 2 by Tapas Das-India 

(
𝑹

𝟐𝒓
)
𝟐

(𝒉𝒂 + 𝒉𝒃)(𝒉𝒃 + 𝒉𝒄)(𝒉𝒄 + 𝒉𝒂) = 

= (
𝑹

𝟐𝒓
)
𝟐

(𝟐𝑭)𝟑 (
𝟏

𝒂
+
𝟏

𝒃
) (
𝟏

𝒃
+
𝟏

𝒄
) (
𝟏

𝒄
+
𝟏

𝒂
) = (

𝑹

𝟐𝒓
)
𝟐

(𝟐𝑭)𝟑 ⋅
(𝒂 + 𝒃)(𝒃 + 𝒄)(𝒄 + 𝒂)

𝒂𝟐𝒃𝟐𝒄𝟐
= 

= (
𝑹

𝟐𝒓
)
𝟐

⋅ 𝟖𝑭𝟑 ⋅
(𝒂 + 𝒃 + 𝒄)(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) − 𝒂𝒃𝒄

(𝟒𝑹𝒓𝒔)𝟐
= 

=
𝟖𝒓𝟑𝒔𝟑

𝟏𝟔𝑹𝟐𝒓𝟐𝒔𝟐
⋅ (
𝑹

𝟐𝒓
)
𝟐

[𝟐𝒔(𝟐+ 𝒓𝟐 + 𝟒𝑹𝒓) − 𝟒𝑹𝒓𝒔] = 

=
𝒓𝒔

𝟐𝑹𝟐
⋅ (
𝑹

𝟐𝒓
)
𝟐

⋅ 𝟐𝒔(𝒔𝟐 + 𝒓𝟐 + 𝟐𝑹𝒓) =
𝒓𝒔

𝑹𝟐
⋅ (
𝑹

𝟐𝒓
)
𝟐

⋅ 𝒔(𝒔𝟐 + 𝒓𝟐 + 𝟐𝑹𝒓) 

𝒔𝒂𝒔𝒃𝒔𝒄 ≤ 𝒎𝒂𝒎𝒃𝒎𝒄 ≤
𝑹𝒔𝟐

𝟐
,   𝟖𝒔𝒂𝒔𝒃𝒔𝒄 ≤ 𝟒𝑹𝒔

𝟐 

We need to show: 

𝟖 ⋅
𝑹𝒔𝟐

𝟐
≤
𝒓𝒔𝟐

𝑹𝟐
(𝒔𝟐 + 𝒓𝟐 + 𝟐𝑹𝒓) (

𝑹

𝟐𝒓
)
𝟐

⇔ 𝟖 ⋅
𝑹𝒔𝟐

𝟐
≤
𝒓𝒔𝟐

𝑹𝟐
(𝒔𝟐 + 𝒓𝟐 + 𝟐𝑹𝒓) ⋅

𝑹𝟐

𝟒𝒓𝟐
⇔ 

𝟏𝟔𝑹𝒓 ≤ 𝒔𝟐 + 𝒓𝟐 + 𝟐𝑹𝒓 ⇔ 𝒔𝟐 + 𝒓𝟐 ≥ 𝟏𝟒𝑹𝒓 

𝟏𝟒𝑹𝒓 ≤ 𝟏𝟔𝑹𝒓 − 𝟓𝒓𝟐 + 𝒓𝟐(𝑮𝒆𝒓𝒓𝒆𝒕𝒔𝒆𝒏) ⇔ 𝟐𝑹𝒓 ≥ 𝟒𝒓𝟐 

𝑹 ≥ 𝟐𝒓 (𝑬𝒖𝒍𝒆𝒓) 
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Solution 3 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝒔𝒂 =
𝒃𝒄. 𝟐𝒎𝒂

𝒃𝟐 + 𝒄𝟐
=
𝒃𝒄√(𝟐𝒃𝟐 + 𝟐𝒄𝟐 − 𝒂𝟐)(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)

(𝒃𝟐 + 𝒄𝟐)√𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐
 ≤⏞
𝑨𝑴−𝑮𝑴

 

≤  
𝒃𝒄[(𝟐𝒃𝟐 + 𝟐𝒄𝟐 − 𝒂𝟐) + (𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)]

𝟐(𝒃𝟐 + 𝒄𝟐)√𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐
≤ 

≤⏞
𝑨𝑴−𝑸𝑴

 
𝒃𝒄. 𝟑(𝒃𝟐 + 𝒄𝟐). √𝟑

𝟐(𝒃𝟐 + 𝒄𝟐)(𝒂 + 𝒃 + 𝒄)
=
𝟑√𝟑𝒃𝒄

𝟒𝒔
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒏 ∶   𝟖𝒔𝒂𝒔𝒃𝒔𝒄 ≤ 𝟖.
(𝟑√𝟑)

𝟑
(𝒂𝒃𝒄)𝟐

(𝟒𝒔)𝟑
=
𝟖𝟏√𝟑. (𝟒𝑹𝒔𝒓)𝟐

𝟖𝒔𝟑

=
𝟏𝟔𝟐√𝟑𝑹𝟐𝒓𝟐

𝒔
 ≤⏞
𝑴𝒊𝒕𝒓𝒊𝒏𝒐𝒗𝒊𝒄

 𝟓𝟒𝑹𝟐𝒓  (𝟏) 

𝑵𝒐𝒘 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶  (
𝑹

𝟐𝒓
)
𝟐

∏(𝒉𝒃 + 𝒉𝒄)

𝒄𝒚𝒄

= (
𝑹

𝟐𝒓
)
𝟐

.
(𝟐𝒔𝒓)𝟑

(𝟒𝑹𝒔𝒓)𝟐
∏(𝒃 + 𝒄)

𝒄𝒚𝒄

=
𝒔

𝟖𝒓
. 𝟐𝒔(𝒔𝟐 + 𝒓𝟐 + 𝟐𝑹𝒓) ≥ 

≥⏞
𝑮𝒆𝒓𝒓𝒆𝒕𝒔𝒆𝒏

 
𝒔𝟐(𝟏𝟖𝑹𝒓 − 𝟒𝒓𝟐)

𝟒𝒓
 ≥⏞
𝑪𝒐𝒔𝒏𝒊𝒕𝒂 & 𝑇𝑢𝑟𝑡𝑜𝑖𝑢

 
𝟐𝟕𝑹𝒓

𝟐
.
𝟗𝑹 − 𝟐𝒓

𝟐
 ≥⏞
𝑬𝒖𝒍𝒆𝒓

 
𝟐𝟕𝑹𝒓

𝟐
. 𝟒𝑹

= 𝟓𝟒𝑹𝟐𝒓 ≥⏞
(𝟏)

𝟖𝒔𝒂𝒔𝒃𝒔𝒄. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 ∆𝑨𝑩𝑪 𝒊𝒔 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍. 

818. In 𝚫𝑨𝑩𝑪 the following relationship holds: 

∑
𝒓𝒂 − 𝒉𝒂
𝒓𝒂 + 𝒉𝒂

𝒄𝒚𝒄

≥
(𝒂 − 𝒃)𝟐 + (𝒃 − 𝒄)𝟐 + (𝒄 − 𝒂)𝟐

𝟐(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)
 

Proposed by Marin Chirciu-Romania 
Solution by Tapas Das-India 

𝒓𝒂 − 𝒉𝒂
𝒓𝒂 + 𝒉𝒂

=

𝑭
𝒔 − 𝒂 −

𝟐𝑭
𝒂

𝑭
𝒔 − 𝒂 +

𝟐𝑭
𝒂

=

𝟏
𝒔 − 𝒂 −

𝟐
𝒂

𝟏
𝒔 − 𝒂 +

𝟐
𝒂

=
𝟑𝒂 − 𝟐𝒔

𝟐𝒔 − 𝒂
=
𝟐𝒂 − (𝒃 + 𝒄)

𝒃 + 𝒄
 

∑
𝒓𝒂 − 𝒉𝒂
𝒓𝒂 + 𝒉𝒂

𝒄𝒚𝒄

=∑
𝟐𝒂− (𝒃 + 𝒄)

𝒃 + 𝒄
𝒄𝒚𝒄

=∑(
𝟐𝒂

𝒃 + 𝒄
− 𝟏)

𝒄𝒚𝒄

= 𝟐∑
𝒂

𝒃 + 𝒄
𝒄𝒚𝒄

− 𝟑 = 
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= 𝟐∑
𝒂𝟐

𝒂𝒃 + 𝒂𝒄
𝒄𝒚𝒄

− 𝟑 ≥
𝟐(𝒂 + 𝒃 + 𝒄)𝟐

𝟐(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)
− 𝟑 = 

=
(𝒂 + 𝒃 + 𝒄)𝟐 − 𝟑(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂
= 

=
𝟐𝒂𝟐 + 𝟐𝒃𝟐 + 𝟐𝒄𝟐 − 𝟐𝒂𝒃 − 𝟐𝒃𝒄 − 𝟐𝒄𝒂

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂
≥
(𝒂 − 𝒃)𝟐 + (𝒃 − 𝒄)𝟐 + (𝒄 − 𝒂)𝟐

𝟐(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)
 

Equality holds for 𝒂 = 𝒃 = 𝒄. 

819. 𝑰𝒏 ∆𝑨𝑩𝑪 𝒕𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔𝒉𝒊𝒑 𝒉𝒐𝒍𝒅𝒔 ∶  

 𝟏𝟔𝟎∑(
𝑨

𝝅
)
𝟐

𝒄𝒚𝒄

− 𝟐𝟕∑(𝟏 −
𝟐𝑨

𝝅
)
𝟓

𝒄𝒚𝒄

≥ 𝟓𝟑 

Proposed by George Apostolopoulos-Messolonghi-Greece 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑳𝒆𝒕 𝒙 ≔
𝑨

𝝅
,   𝒚 ≔

𝑩

𝝅
,   𝒛 ≔

𝑪

𝝅
  𝒂𝒏𝒅  𝒑 ≔ 𝒙 + 𝒚 + 𝒛 = 𝟏,   𝒒 ≔ 𝒙𝒚+ 𝒚𝒛 + 𝒛𝒙,   𝒓 ≔ 𝒙𝒚𝒛. 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 

 ∑(
𝑨

𝝅
)
𝟐

𝒄𝒚𝒄

=∑𝒙𝟐

𝒄𝒚𝒄

= 𝟏 − 𝟐𝒒 𝒂𝒏𝒅 𝒖𝒔𝒊𝒏𝒈 𝒕𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒊𝒅𝒆𝒏𝒕𝒊𝒕𝒚 ∶ 

𝒖𝟓 + 𝒗𝟓 + 𝒘𝟓 = (𝒖 + 𝒗+ 𝒘)𝟓 − 𝟓(𝒖 + 𝒗)(𝒗 + 𝒘)(𝒘 + 𝒖)(𝒖𝟐 + 𝒗𝟐 + 𝒘𝟐 + 𝒖𝒗 + 𝒗𝒘+𝒘𝒖), 

𝒘𝒆 𝒈𝒆𝒕 ∶  

∑(𝟏− 𝟐𝒙)𝟓

𝒄𝒚𝒄

= 

= (𝟑 − 𝟐∑𝒙)
𝟓

− 𝟓∏[𝟐− 𝟐(𝒙 + 𝒚)] . (∑(𝟏 − 𝟐𝒙)𝟐 +∑(𝟏− 𝟐𝒙)(𝟏 − 𝟐𝒚)) = 

= 𝟏 − 𝟓. 𝟖𝒙𝒚𝒛 (𝟒∑𝒙𝟐 + 𝟒∑𝒚𝒛 − 𝟐) = 𝟏 − 𝟒𝟎𝒓(𝟐 − 𝟒𝒒) = 𝟏 − 𝟖𝟎𝒓(𝟏 − 𝟐𝒒). 

𝑺𝒐 𝒕𝒉𝒆 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒃𝒆𝒄𝒐𝒎𝒆𝒔 ∶ 

  𝟏𝟔𝟎(𝟏 − 𝟐𝒒) − 𝟐𝟕[𝟏 − 𝟖𝟎𝒓(𝟏 − 𝟐𝒒)] ≥ 𝟓𝟑 
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𝒐𝒓  𝟏 − 𝟒𝒒 + 𝟐𝟕𝒓(𝟏 − 𝟐𝒒) ≥ 𝟎   𝒐𝒓  𝟗𝒓 ≥
𝟒𝒒 − 𝟏

𝟑(𝟏 − 𝟐𝒒)
.  (∴ 𝒒 ≤

𝒑𝟐

𝟑
=
𝟏

𝟑
) 

𝑻𝒉𝒆 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒇𝒐𝒓 𝟒𝒒 ≤ 𝟏. 

𝑰𝒇 𝟒𝒒 ≥ 𝟏 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶  𝟗𝒓 ≥⏞
𝑺𝒄𝒉𝒖𝒓

𝟒𝒑𝒒 − 𝒑𝟑 = 𝟒𝒒 − 𝟏 ≥⏞

𝒒 ≤ 
𝟏
𝟑 𝟒𝒒 − 𝟏

𝟑(𝟏 − 𝟐𝒒)
. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒅.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 ∆𝑨𝑩𝑪 𝒊𝒔 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍. 

820. 𝑰𝒇 𝝎 𝒊𝒔 𝑩𝒓𝒐𝒄𝒂𝒓𝒅′𝒔 𝒂𝒏𝒈𝒍𝒆 𝒊𝒏 ∆𝑨𝑩𝑪 𝒕𝒉𝒆𝒏 

𝐜𝐨𝐬 𝑨 +
𝒎𝒄

𝒉𝒂
𝐜𝐨𝐬𝑩 +

𝒎𝒃

𝒉𝒂
𝐜𝐨𝐬 𝑪 ≤

𝟏

𝟐
(

𝟏

𝐬𝐢𝐧𝝎
+
𝒎𝒃𝒎𝒄

𝒉𝒂
𝟐 ) 

Proposed by Bogdan Fuștei-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑳𝒆𝒎𝒎𝒂 ∶   𝑰𝒏 𝒂𝒏𝒚 ∆𝑨𝑩𝑪 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   
𝟏

𝐬𝐢𝐧𝝎
≥
𝒃

𝒄
+
𝒄

𝒃
  (∗) 

𝑷𝒓𝒐𝒐𝒇 ∶    𝑺𝒊𝒏𝒄𝒆  𝐬𝐢𝐧𝝎 =
𝟐𝑭

√𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐
  𝒂𝒏𝒅 𝟒𝑭

= √𝟐(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐) − (𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒), 

𝒕𝒉𝒆𝒏 ∶  (∗)  ⇔  𝟐𝒃𝒄√𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐

≥ (𝒃𝟐 + 𝒄𝟐)√𝟐(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐) − (𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒) 

⇔⏞
𝒔𝒒𝒖𝒂𝒓𝒊𝒏𝒈

 𝟒𝒃𝟐𝒄𝟐(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐)

≥ (𝟐𝒃𝟐𝒄𝟐 + 𝒃𝟒 + 𝒄𝟒)[𝟐(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐) − (𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒)] 

⇔  𝟎 ≥ −𝒂𝟒(𝒃𝟐 + 𝒄𝟐)𝟐 + 𝟐(𝒃𝟒 + 𝒄𝟒)(𝒂𝟐𝒃𝟐 + 𝒄𝟐𝒂𝟐) − (𝒃𝟒 + 𝒄𝟒)𝟐

= −[𝒂𝟐(𝒃𝟐 + 𝒄𝟐) − (𝒃𝟒 + 𝒄𝟒)]𝟐 

𝑾𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒂𝒏𝒅 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒐𝒇 𝒕𝒉𝒆 𝒍𝒆𝒎𝒎𝒂 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆. 

𝑰𝒏 ∆𝒎𝒂𝒎𝒃𝒎𝒄 𝒘𝒆 𝒈𝒆𝒕 ∶  
𝒎𝒃

𝒎𝒄
+
𝒎𝒄

𝒎𝒃
 ≤⏞
𝑳𝒆𝒎𝒎𝒂 𝟏

𝐬𝐢𝐧𝝎𝒎
=
√∑𝒎𝒃

𝟐𝒎𝒄
𝟐

𝟐𝑭𝒎
=
√ 𝟗
𝟏𝟔
∑𝒃𝟐𝒄𝟐

𝟑𝑭
𝟐

=
𝟏

𝐬𝐢𝐧𝝎
. 
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𝑺𝒐 𝒊𝒕 𝒔𝒖𝒇𝒇𝒊𝒄𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 ∶   𝐜𝐨𝐬𝑨 +
𝒎𝒄

𝒉𝒂
𝐜𝐨𝐬𝑩 +

𝒎𝒃

𝒉𝒂
𝐜𝐨𝐬𝑪 ≤

𝟏

𝟐
(
𝒎𝒃

𝒎𝒄
+
𝒎𝒄

𝒎𝒃
+
𝒎𝒃𝒎𝒄

𝒉𝒂
𝟐 ) 

⇔⏞
𝑨 = 𝝅−(𝑩+𝑪)

 − (𝐜𝐨𝐬𝑩 𝐜𝐨𝐬𝑪 − 𝐬𝐢𝐧𝑩𝐬𝐢𝐧𝑪) +
𝒎𝒄

𝒉𝒂
𝐜𝐨𝐬𝑩 +

𝒎𝒃

𝒉𝒂
𝐜𝐨𝐬 𝑪

≤
𝟏

𝟐
(
𝒎𝒃

𝒎𝒄
+
𝒎𝒄

𝒎𝒃
+
𝒎𝒃𝒎𝒄

𝒉𝒂
𝟐 ) 

⇔
𝟏

𝟐
(√

𝒎𝒄

𝒎𝒃
𝐜𝐨𝐬𝑩 +√

𝒎𝒃

𝒎𝒄
𝐜𝐨𝐬𝑪 − √

𝒎𝒃𝒎𝒄

𝒉𝒂
𝟐
)

𝟐

+
𝟏

𝟐
(√

𝒎𝒄

𝒎𝒃
𝐬𝐢𝐧 𝑩 −√

𝒎𝒃

𝒎𝒄
𝐬𝐢𝐧𝑪)

𝟐

≥ 𝟎. 

𝑾𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒂𝒏𝒅 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒅. 

821. In 𝚫𝑨𝑩𝑪,𝑮 −centroid, 
𝑨𝑷

𝑨𝑩
= 𝒑 the following relationship holds: 

𝑷𝑮

𝑮𝑸
= 𝟑𝒑 − 𝟏 

 

Proposed by Thanasis Gakopoulos-Farsala-Greece 
 

Solution 1 by Miguel Angel Perez Garcia Ortega-Mexico 

Let 𝑷(𝟏 − 𝒑;𝒑; 𝟎)  barycentric coordinates of 𝚫𝑨𝑩𝑪, then: 

𝑷𝑮 = 𝒑𝒙 + (𝒑 − 𝟏)𝒚 + (𝟏 − 𝟐𝒑)𝒛 = 𝟎 
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𝑸 = 𝑷𝑮 ∩ 𝑪𝑨 = (𝟐𝒑 − 𝟏; 𝟎; 𝒑) = (
𝟐𝒑 − 𝟏

𝟑𝒑 − 𝟏
; 𝟎;

𝒑

𝟑𝒑 − 𝟏
) 

𝑮 = 𝑷 + (𝟑𝒑 − 𝟏)𝑸 

Hence: 

𝑷𝑮

𝑮𝑸
= 𝟑𝒑 − 𝟏 

Solution 2 by Jose Ferreira Queiroz-Olinda-Brazil 

Using Gakopoulos’ Lemmas, we have: 

(𝟏)   
𝑨𝑩

𝑨𝑷
+
𝑨𝑪

𝑨𝑸
= 𝟑 ⇒

𝑨𝑪

𝑨𝑸
= 𝟑 −

𝟏

𝒑
 

(𝟐)   
𝑷𝑮

𝑮𝑸
=
𝑩𝑴

𝑴𝑪
⋅
𝑨𝑷

𝑨𝑩
⋅
𝑨𝑪

𝑨𝑸
                  

𝑷𝑮

𝑮𝑸
= 𝒑(𝟑 −

𝟏

𝒑
) ⇔

𝑷𝑮

𝑮𝑸
= 𝟑𝒑 − 𝟏 

822. In 𝚫𝑨𝑩𝑪 the following relationship holds: 

∑
(𝐜𝐬𝐜

𝑩
𝟐
+ 𝐜𝐬𝐜

𝑪
𝟐
)
𝒏+𝟏

(𝐜𝐬𝐜
𝑨
𝟐
+ √𝐜𝐬𝐜

𝑩
𝟐
𝐜𝐬𝐜

𝑪
𝟐
)

𝒏

𝒄𝒚𝒄

≥ 𝟏𝟐; 𝒏 ∈ ℕ 

Proposed by Marin Chirciu-Romania 
Solution by Tapas Das-India 
 

√𝐜𝐬𝐜
𝑩

𝟐
𝐜𝐬𝐜

𝑪

𝟐
≤

𝑨𝑴−𝑮𝑴 𝟏

𝟐
(𝐜𝐬𝐜

𝑩

𝟐
+ 𝐜𝐬𝐜

𝑪

𝟐
) 

𝐜𝐬𝐜
𝑨

𝟐
+ √𝐜𝐬𝐜

𝑩

𝟐
𝐜𝐬𝐜

𝑪

𝟐
≤ 𝐜𝐬𝐜

𝑨

𝟐
+
𝟏

𝟐
(𝐜𝐬𝐜

𝑩

𝟐
+ 𝐜𝐬𝐜

𝑪

𝟐
) 

Analogous: 

𝐜𝐬𝐜
𝑩

𝟐
+√𝐜𝐬𝐜

𝑪

𝟐
𝐜𝐬𝐜

𝑨

𝟐
≤ 𝐜𝐬𝐜

𝑩

𝟐
+
𝟏

𝟐
(𝐜𝐬𝐜

𝑪

𝟐
+ 𝐜𝐬𝐜

𝑨

𝟐
)  𝐚𝐧𝐝  



 
www.ssmrmh.ro 

28 RMM-GEOMETRY MARATHON 801-900 

 

𝐜𝐬𝐜
𝑪

𝟐
+ √𝐜𝐬𝐜

𝑩

𝟐
+ 𝐜𝐬𝐜

𝑨

𝟐
≤ 𝐜𝐬𝐜

𝑪

𝟐
+
𝟏

𝟐
(𝐜𝐬𝐜

𝑨

𝟐
+ 𝐜𝐬𝐜

𝑩

𝟐
) 

                     ∑(𝐜𝐬𝐜
𝑨

𝟐
+√𝐜𝐬𝐜

𝑩

𝟐
𝐜𝐬𝐜

𝑪

𝟐
)

𝒄𝒚𝒄

≤ 𝟐∑𝐜𝐬𝐜
𝑨

𝟐
𝒄𝒚𝒄

;                  (𝟏) 

Now, 

∑
(𝐜𝐬𝐜

𝑩
𝟐 + 𝐜𝐬𝐜

𝑪
𝟐)

𝒏+𝟏

(𝐜𝐬𝐜
𝑨
𝟐
+ √𝐜𝐬𝐜

𝑩
𝟐
𝐜𝐬𝐜

𝑪
𝟐
)

𝒏

𝒄𝒚𝒄

≥
𝑹𝒂𝒅𝒐𝒏 𝟐𝒏+𝟏 (∑ 𝐜𝐬𝐜

𝑨
𝟐)

𝒏+𝟏

∑(𝐜𝐬𝐜
𝑨
𝟐
+ √𝐜𝐬𝐜

𝑩
𝟐
𝐜𝐬𝐜

𝑪
𝟐
)

𝒏 ≥
(𝟏)

 

≥
𝟐𝒏+𝟏 (∑𝐜𝐬𝐜

𝑨
𝟐)

𝒏+𝟏

𝟐𝒏 (∑𝐜𝐬𝐜
𝑨
𝟐)

𝒏 = 𝟐∑𝐜𝐬𝐜
𝑨

𝟐
𝒄𝒚𝒄

≥

𝑱𝒆𝒏𝒔𝒆𝒏

𝒙→𝐜𝐬𝐜
𝒙
𝟐
 𝒊𝒔 𝒄𝒐𝒏𝒗𝒆𝒙

𝟑 𝐜𝐬𝐜
𝝅

𝟔
= 𝟔 

823. If 𝒙 ∈ ℝ then in 𝚫𝑨𝑩𝑪 holds: 

(𝟏 − 𝒙) 𝐜𝐨𝐬 𝑨 + (𝟏 +
𝒓

𝑹
)𝒙 ≤ 𝟏 +

𝒙𝟐

𝟐
 

Proposed by Bogdan Fuştei-Romania 
Solution 1 by Tapas Das-India 

𝟏 +
𝒓

𝑹
= 𝐜𝐨𝐬 𝑨 + 𝐜𝐨𝐬 𝑩 + 𝐜𝐨𝐬 𝑪 

Case 1: If 𝒙 > 0, we need to show: 

(𝟏 − 𝒙) 𝐜𝐨𝐬𝑨 + (𝟏 +
𝒓

𝑹
)𝒙 ≤ 𝟏 +

𝒙𝟐

𝟐
 

(𝟏 − 𝒙) 𝐜𝐨𝐬𝑨 + (𝐜𝐨𝐬𝑨 + 𝐜𝐨𝐬𝑩 + 𝐜𝐨𝐬𝑪)𝒙 ≤ 𝟏 +
𝒙𝟐

𝟐
 

𝐜𝐨𝐬𝑨 + (𝐜𝐨𝐬𝑩 + 𝐜𝐨𝐬𝑪)𝒙 ≤ 𝟏 +
𝒙𝟐

𝟐
 

𝐜𝐨𝐬𝑨 + 𝟐𝐜𝐨𝐬
𝑩 + 𝑪

𝟐
𝐜𝐨𝐬

𝑩 − 𝑪

𝟐
⋅ 𝒙 ≤ 𝟏 +

𝒙𝟐

𝟐
 

𝟏 − 𝟐𝐬𝐢𝐧𝟐
𝑨

𝟐
+ 𝟐𝐬𝐢𝐧

𝑨

𝟐
𝐜𝐨𝐬

𝑩 − 𝑪

𝟐
⋅ 𝒙 ≤ 𝟏 +

𝒙𝟐

𝟐
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−𝟐 𝐬𝐢𝐧𝟐
𝑨

𝟐
+ 𝟐𝐬𝐢𝐧

𝑨

𝟐
𝐜𝐨𝐬

𝑩 − 𝑪

𝟐
⋅ 𝒙 ≤

𝒙𝟐

𝟐
 

                              𝒙𝟐 − 𝟒𝐬𝐢𝐧
𝒙

𝟐
𝐜𝐨𝐬

𝑩 − 𝑪

𝟐
⋅ 𝒙 + 𝟒𝐬𝐢𝐧𝟐

𝒙

𝟐
≥ 𝟎;               (𝟏)   

𝒂 > 0; (𝐜𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭 𝐨𝐟 𝒙𝟐); 

𝚫 = (𝟒 𝐬𝐢𝐧
𝑨

𝟐
𝐜𝐨𝐬

𝑩 − 𝑪

𝟐
)
𝟐

− 𝟒 ⋅ 𝟒 ⋅ 𝐬𝐢𝐧𝟐
𝑨

𝟐
= −𝟏𝟔𝐬𝐢𝐧𝟐

𝑨

𝟐
(𝟏 − 𝐜𝐨𝐬𝟐

𝑩− 𝑪

𝟐
) = 

= −𝟏𝟔 𝐬𝐢𝐧𝟐
𝑨

𝟐
𝐬𝐢𝐧𝟐

𝑩 − 𝑪

𝟐
< 0 ⇒ (𝟏) 𝐢𝐬 𝐭𝐫𝐮𝐞. 

Similarly, if we take 𝒙 < 0, then from (1), we get the similar result. 

(𝟏 − 𝒙) 𝐜𝐨𝐬 𝑨 + (𝟏 +
𝒓

𝑹
)𝒙 ≤ 𝟏 +

𝒙𝟐

𝟐
; 𝒙 ∈ ℝ 

Solution 2 by Ravi Prakash-New Delhi-India 

𝟏 +
𝒓

𝑹
= 𝐜𝐨𝐬 𝑨 + 𝐜𝐨𝐬 𝑩 + 𝐜𝐨𝐬 𝑪 

                       𝒙𝟐 − 𝟐𝒙(𝐜𝐨𝐬𝑩 + 𝐜𝐨𝐬 𝑪) + 𝟐(𝟏 − 𝐜𝐨𝐬𝑨) ≥ 𝟎;                 (𝟏) 

𝐍𝐨𝐰, (𝐜𝐨𝐬𝑩 + 𝐜𝐨𝐬𝑪)𝟐 ≤ 𝟒𝐜𝐨𝐬𝟐
𝑩+ 𝑪

𝟐
𝐜𝐨𝐬𝟐

𝑩− 𝑪

𝟐
− 𝟒𝐬𝐢𝐧𝟐

𝑨

𝟐
= 

= 𝟒 𝐬𝐢𝐧𝟐
𝑨

𝟐
(𝐜𝐨𝐬𝟐

𝑩− 𝑪

𝟐
− 𝟏) = −𝟒 𝐬𝐢𝐧𝟐

𝑨

𝟐
𝐜𝐨𝐬𝟐

𝑩− 𝑪

𝟐
≤ 𝟏.  

𝐓𝐡𝐮𝐬, (𝟏) 𝐢𝐭𝐬 𝐭𝐫𝐮𝐞.  

824. In 𝚫𝑨𝑩𝑪 the following relationship holds: 

𝟗𝑹

𝟒𝒓
≥ (∑√

𝒎𝒂

𝒎𝒃 +𝒎𝒄
𝒄𝒚𝒄

)

𝟐

≥
𝟗𝒓

𝑹
 

Proposed by Marin Chirciu-Romania 
Solution by Tapas Das-India 

(𝟏):    ∑
𝒎𝒃 +𝒎𝒄

𝒎𝒂
𝒄𝒚𝒄

=∑(
𝒎𝒃

𝒎𝒂
+
𝒎𝒄

𝒎𝒂
)

𝒄𝒚𝒄

≤
𝑪𝑩𝑺

𝟐√(∑𝒎𝒃
𝟐

𝒄𝒚𝒄

)(∑
𝟏

𝒎𝒂
𝟐

𝒄𝒚𝒄

) ≤
𝒎𝒂≥√𝒔(𝒔−𝒂)
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≤ 𝟐√(
𝟑

𝟒
∑𝒂𝟐

𝒄𝒚𝒄

)(∑
𝟏

𝒔(𝒔 − 𝒂)
𝒄𝒚𝒄

) ≤
𝑳𝒆𝒊𝒃𝒏𝒊𝒛

√𝟑 ⋅ 𝟗𝑹𝟐 ⋅
𝟒𝑹 + 𝒓

𝒔𝟐𝒓
≤

𝑫𝒐𝒖𝒄𝒆𝒕
 

≤ 𝟑𝑹 ⋅
√
𝟑(𝟒𝑹 + 𝒓)
𝟑𝒓(𝟒𝑹+ 𝒓)𝒓

𝟑𝑹

𝒓
 

Hence, we have: 

∑√
𝒎𝒂

𝒎𝒃 +𝒎𝒄
𝒄𝒚𝒄

≤
𝑪𝑩𝑺

√𝟑∑
𝒎𝒂

𝒎𝒃 +𝒎𝒄
𝒄𝒚𝒄

 

(∑√
𝒎𝒂

𝒎𝒃 +𝒎𝒄
𝒄𝒚𝒄

)

𝟐

≤ 𝟑∑
𝒎𝒂

𝒎𝒃 +𝒎𝒄
𝒄𝒚𝒄

≤
𝑨𝑴−𝑯𝑴 𝟑

𝟒
∑

𝒎𝒃 +𝒎𝒄

𝒎𝒂
𝒄𝒚𝒄

= 

=
𝟑

𝟒
∑(

𝒎𝒃

𝒎𝒂
+
𝒎𝒄

𝒎𝒂
)

𝒄𝒚𝒄

≤
𝟑

𝟒
⋅
𝟑𝑹

𝒓
=
𝟗𝑹

𝟒𝒓
 

𝐋𝐞𝐭:
𝒎𝒂

𝒎𝒃 +𝒎𝒄
= 𝒙;

𝒎𝒃

𝒎𝒄 +𝒎𝒂
= 𝒚;

𝒎𝒄

𝒎𝒂 +𝒎𝒃
= 𝒛 

(∑√
𝒎𝒂

𝒎𝒃 +𝒎𝒄
𝒄𝒚𝒄

)

𝟐

= (∑√𝒙

𝒄𝒚𝒄

)

𝟐

≥
𝑨𝑴−𝑮𝑴

[𝟑√𝒙𝒚𝒛
𝟔 ]

𝟐
= 𝟗 ⋅ √𝒙𝒚𝒛

𝟑 ≥
𝑮𝑴−𝑯𝑴

 

≥ 𝟗 ⋅
𝟑

𝟏
𝒙 +

𝟏
𝒚 +

𝟏
𝒛 
= 𝟗 ⋅

𝟑

∑
𝒎𝒂

𝒎𝒃 +𝒎𝒄

≥
𝟐𝟕

∑
𝒎𝒂

𝒎𝒃 +𝒎𝒄

≥
𝟐𝟕

𝟑𝑹
𝒓

=
𝟗𝒓

𝑹
 

825. 𝑳𝒆𝒕 𝑨𝑩𝑪 𝒃𝒆 𝒂 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 𝒘𝒊𝒕𝒉 𝒊𝒕𝒔 𝒊𝒏𝒓𝒂𝒅𝒊𝒖𝒔 𝒓 𝒂𝒏𝒅 𝒄𝒊𝒓𝒄𝒖𝒎𝒓𝒂𝒅𝒊𝒖𝒔 𝑹. 

𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶   𝐜𝐨𝐬
𝑨 + 𝑩

𝟒
𝐜𝐨𝐬

𝑩 + 𝑪

𝟒
𝐜𝐨𝐬

𝑪 + 𝑨

𝟒
≥ (

√𝟑

𝟐
)

𝟑

√
𝟐𝒓

𝑹

𝟑

 

Proposed by Kunihiko Chikaya-Tokyo-Japan 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑳𝒆𝒎𝒎𝒂 ∶  

 𝑰𝒇 𝒙 + 𝒚 + 𝒛 = 𝝅 𝒕𝒉𝒆𝒏 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   𝟒 𝐜𝐨𝐬
𝒙

𝟐
𝐜𝐨𝐬

𝒚

𝟐
𝐜𝐨𝐬

𝒛

𝟐
= 𝐬𝐢𝐧𝒙 + 𝐬𝐢𝐧𝒚 + 𝐬𝐢𝐧 𝒛. 
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𝑷𝒓𝒐𝒐𝒇 ∶ 𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 𝑳𝑯𝑺 = 𝟐(𝐜𝐨𝐬
𝒙 + 𝒚

𝟐
+ 𝐜𝐨𝐬

𝒙 − 𝒚

𝟐
) 𝐜𝐨𝐬

𝒛

𝟐
= 𝟐(𝐬𝐢𝐧

𝒛

𝟐
+ 𝐜𝐨𝐬

𝒙 − 𝒚

𝟐
)𝐜𝐨𝐬

𝒛

𝟐
= 

= 𝐬𝐢𝐧𝒛 + 𝟐𝐜𝐨𝐬
𝒙 − 𝒚

𝟐
𝐜𝐨𝐬

𝒛

𝟐
= 𝐬𝐢𝐧 𝒛 + 𝐜𝐨𝐬

𝒙 − 𝒚 + 𝒛

𝟐
+ 𝐜𝐨𝐬

𝒙 − 𝒚 − 𝒛

𝟐
= 

= 𝐬𝐢𝐧 𝒛 + 𝐬𝐢𝐧𝒚 + 𝐬𝐢𝐧𝒙 = 𝑹𝑯𝑺. 

𝑭𝒐𝒓 𝒙 =
𝑨 + 𝑩

𝟐
=
𝝅

𝟐
−
𝑪

𝟐
,   𝒚 =

𝑩 + 𝑪

𝟐
,   𝒛 =

𝑪 + 𝑨

𝟐
,𝒘𝒆 𝒈𝒆𝒕 ∶ 

𝐜𝐨𝐬
𝑨 + 𝑩

𝟒
𝐜𝐨𝐬

𝑩 + 𝑪

𝟒
𝐜𝐨𝐬

𝑪 + 𝑨

𝟒
=
𝟏

𝟒
(𝐜𝐨𝐬

𝑨

𝟐
+ 𝐜𝐨𝐬

𝑩

𝟐
+ 𝐜𝐨𝐬

𝑪

𝟐
) ≥⏞
𝑨𝑴−𝑮𝑴

 
𝟑

𝟒
√𝐜𝐨𝐬

𝑨

𝟐
𝐜𝐨𝐬

𝑩

𝟐
𝐜𝐨𝐬

𝑪

𝟐

𝟑

. 

𝑨𝒍𝒔𝒐 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   𝐜𝐨𝐬
𝑨

𝟐
𝐜𝐨𝐬

𝑩

𝟐
𝐜𝐨𝐬

𝑪

𝟐
=

𝒔

𝟒𝑹
 𝒂𝒏𝒅 𝒔 ≥ 𝟑√𝟑𝒓 (𝑴𝒊𝒕𝒓𝒊𝒏𝒐𝒗𝒊𝒄′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   𝐜𝐨𝐬
𝑨 + 𝑩

𝟒
𝐜𝐨𝐬

𝑩 + 𝑪

𝟒
𝐜𝐨𝐬

𝑪 + 𝑨

𝟒
≥
𝟑

𝟒
√
𝟑√𝟑𝒓

𝟒𝑹

𝟑

= (
√𝟑

𝟐
)

𝟑

√
𝟐𝒓

𝑹

𝟑

. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 ∆𝑨𝑩𝑪 𝒊𝒔 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍. 

826. In 𝚫𝑨𝑩𝑪 the following relationship holds: 

∑𝒂𝟒

𝒄𝒚𝒄

+ 𝟔(∑𝒂𝒃

𝒄𝒚𝒄

)

𝟐

+ 𝟒𝒂∑𝒂𝒃(𝒂𝟐 + 𝒃𝟐)

𝒄𝒚𝒄

≥ 𝟏𝟏𝟔𝟔𝟒𝒓𝟒 

Proposed by Daniel Sitaru-Romania 
Solution 1 by Tapas Das-India 

(𝒂 + 𝒃 + 𝒄)𝟐 = 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝟐(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) 

(𝒂 + 𝒃 + 𝒄)𝟒 = (∑𝒂𝟐

𝒄𝒚𝒄

)

𝟐

+ 𝟒(∑𝒂𝒃

𝒄𝒚𝒄

)

𝟐

+ 𝟒∑𝒂𝟐

𝒄𝒚𝒄

⋅∑𝒂𝒃

𝒄𝒚𝒄

= 

=∑𝒂𝟒

𝒄𝒚𝒄

+ 𝟒(∑𝒂𝒃

𝒄𝒚𝒄

)

𝟐

+ 𝟐[∑𝒂𝟐𝒃𝟐

𝒄𝒚𝒄

+ 𝟐∑𝒂𝟐𝒃𝒄

𝒄𝒚𝒄

+ 𝟒∑𝒂𝒃(𝒂𝟐 + 𝒃𝟐)

𝒄𝒚𝒄

= 
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=∑𝒂𝟒

𝒄𝒚𝒄

+ 𝟒(∑𝒂𝒃

𝒄𝒚𝒄

)

𝟐

+ 𝟐(∑𝒂𝒃

𝒄𝒚𝒄

)

𝟐

+ 𝟒∑𝒂𝒃(𝒂𝟐 + 𝒃𝟐)

𝒄𝒚𝒄

= 

= (𝒂 + 𝒃 + 𝒄)𝟒 = (𝟐𝒔)𝟒 = 𝟏𝟔(𝒔𝟐)𝟐 ≥ 𝟏𝟔(𝟐𝟕𝒓𝟐)𝟐 = 𝟏𝟏𝟔𝟔𝟒𝒓𝟒   

Solution 2 by Tapas Das-India 

∑𝒂𝟒

𝒄𝒚𝒄

+ 𝟔(∑𝒂𝒃

𝒄𝒚𝒄

)

𝟐

+ 𝟒∑𝒂𝒃(𝒂𝟐 + 𝒃𝟐)

𝒄𝒚𝒄

≥
𝑨𝑮𝑴

𝟑(𝒂𝒃𝒄)
𝟒
𝟑 + 𝟓𝟒(𝒂𝒃𝒄)

𝟒
𝟑 + 𝟒∑𝒂𝒃 ⋅ 𝟐𝒂𝒃

𝒄𝒚𝒄

= 

= 𝟐(𝒂𝒃𝒄)
𝟒
𝟑 + 𝟓𝟒(𝒂𝒃𝒄)

𝟒
𝟑 + 𝟖∑𝒂𝟐𝒃𝟐

𝒄𝒚𝒄

≥
𝑨𝑴−𝑮𝑴

𝟓𝟕(𝒂𝒃𝒄)
𝟒
𝟑 + 𝟐𝟒(𝒂𝒃𝒄)

𝟒
𝟑 = 𝟖𝟏(𝒂𝒃𝒄)

𝟒
𝟑 ≥ 

≥ 𝟖𝟏(𝟒𝑹 ⋅ 𝑭)
𝟒
𝟑 ≥ 𝟖𝟏(𝟖𝒓𝟐 ⋅ 𝟑√𝟑𝒓)

𝟒
𝟑 = 𝟖𝟏(𝟐𝟑 ⋅ 𝟑

𝟑
𝟐 ⋅ 𝒓𝟑)

𝟒
𝟑
= 

= 𝟖𝟏 ⋅ 𝟐𝟒 ⋅ 𝟑𝟐 ⋅ 𝒓𝟒 = 𝟏𝟏𝟔𝟔𝟒𝒓𝟒 

827. 𝑰𝒏 ∆𝑨𝑩𝑪 𝒕𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔𝒉𝒊𝒑 𝒉𝒐𝒍𝒅𝒔 ∶ 

∑𝒎𝒂√𝟓𝒂
𝟐 + 𝟖𝒎𝒃𝒎𝒄 − 𝒃

𝟐 − 𝒄𝟐

𝒄𝒚𝒄

≥ 𝟑𝑭∑(√
𝒎𝒃

𝒎𝒄
+√

𝒎𝒄

𝒎𝒃
)

𝒄𝒚𝒄

 

Proposed by Bogdan Fuștei-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑾𝒆 𝒌𝒏𝒐𝒘 𝒕𝒉𝒂𝒕 ∶  𝒘𝒂 ≥ 𝒉𝒂,  

  𝒘𝒊𝒕𝒉 ∶   𝒘𝒂 =
√𝒃𝒄.√(𝒂 + 𝒃 + 𝒄)(−𝒂 + 𝒃 + 𝒄)

𝒃 + 𝒄
  𝒂𝒏𝒅  𝒉𝒂 =

𝟐𝑭

𝒂
. 

𝑻𝒉𝒆𝒏 ∶   𝒂√𝒃𝟐 + 𝟐𝒃𝒄+ 𝒄𝟐 − 𝒂𝟐 ≥ 𝟐𝑭(√
𝒃

𝒄
+√

𝒄

𝒃
)  (𝟏) 

𝒎𝒂,𝒎𝒃,𝒎𝒄 − 𝒄𝒂𝒏 𝒃𝒆 𝒕𝒉𝒆 𝒔𝒊𝒅𝒆𝒔 𝒐𝒇 𝒂 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 𝒘𝒊𝒕𝒉 𝒂𝒓𝒆𝒂 𝑭𝒎. 

𝑨𝒑𝒑𝒍𝒚𝒊𝒏𝒈 (𝟏) 𝒊𝒏 ∆𝒎𝒂𝒎𝒃𝒎𝒄,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 
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𝒎𝒂√𝒎𝒃
𝟐 + 𝟐𝒎𝒃𝒎𝒄 +𝒎𝒄

𝟐 −𝒎𝒂
𝟐 ≥ 𝟐𝑭𝒎(√

𝒎𝒃

𝒎𝒄
+ √

𝒎𝒄

𝒎𝒃
) ,   𝒘𝒊𝒕𝒉 ∶ 

𝒎𝒂
𝟐 =

𝟐𝒃𝟐 + 𝟐𝒄𝟐 − 𝒂𝟐

𝟒
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔)  𝒂𝒏𝒅  𝑭𝒎 =

𝟑𝑭

𝟒
. 

𝑻𝒉𝒆𝒏 ∶  𝒎𝒂√𝟓𝒂𝟐 + 𝟖𝒎𝒃𝒎𝒄 − 𝒃𝟐 − 𝒄𝟐 ≥ 𝟑𝑭(√
𝒎𝒃

𝒎𝒄
+√

𝒎𝒄

𝒎𝒃
)  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   ∑𝒎𝒂√𝟓𝒂𝟐 + 𝟖𝒎𝒃𝒎𝒄 − 𝒃𝟐 − 𝒄𝟐

𝒄𝒚𝒄

≥ 𝟑𝑭∑(√
𝒎𝒃

𝒎𝒄
+ √

𝒎𝒄

𝒎𝒃
)

𝒄𝒚𝒄

. 

828. In 𝚫𝑨𝑩𝑪 the following relationship holds: 

𝟏

𝟑𝒓𝟐
≤∑

𝟏

𝒘𝒂
𝟐 𝐜𝐨𝐬𝟐

𝑩 − 𝑪
𝟐𝒄𝒚𝒄

≤
𝑹

𝟔𝒓𝟑
 

Proposed by Marin Chirciu-Romania 
Solution 1 by Tapas Das-India 

𝐜𝐨𝐬
𝑨 − 𝑩

𝟐
=
𝒂 + 𝒃

𝒄
𝐬𝐢𝐧

𝑪

𝟐
 𝐚𝐧𝐝 𝒘𝒂

𝟐 =
𝟒𝒃𝒄𝒔(𝒔 − 𝒂)

(𝒃 + 𝒄)𝟐
 

𝒘𝒂
𝟐 𝐜𝐨𝐬𝟐

𝑩− 𝑪

𝟐
=
𝟒𝒃𝒄𝒔(𝒔 − 𝒂)

(𝒃 + 𝒄)𝟐
⋅
(𝒃 + 𝒄)𝟐

𝒂𝟐
⋅ 𝐬𝐢𝐧𝟐

𝑨

𝟐
= 

=
𝟒𝒃𝒄𝒔(𝒔 − 𝒂)

𝒂𝟐
⋅
(𝒔 − 𝒃)(𝒔 − 𝒄)

𝒃𝒄
=
𝟒𝒔(𝒔 − 𝒂)(𝒔 − 𝒃)(𝒔 − 𝒄)

𝒂𝟐
= 

=
𝟒𝒔 ⋅ 𝒔𝒓𝟐

𝒂𝟐
=
𝟒𝒔𝟐𝒓𝟐

𝒂𝟐
 (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

  ∑
𝟏

𝒘𝒂
𝟐 𝐜𝐨𝐬𝟐

𝑩− 𝑪
𝟐𝒄𝒚𝒄

=
𝟏

𝟒𝒔𝟐𝒓𝟐
∑𝒂𝟐

𝒄𝒚𝒄

=
𝟏

𝟒𝒔𝟐𝒓𝟐
⋅ 𝟐(𝒔𝟐 + 𝒓𝟐 − 𝟒𝑹𝒓) ≤

𝑮𝒆𝒓𝒓𝒆𝒕𝒔𝒆𝒏
 

≤
𝟒𝑹𝟐 + 𝟒𝑹𝒓 + 𝟑𝒓𝟐 − 𝒓𝟐 − 𝟒𝑹𝒓

𝟐𝒓𝟐(𝟏𝟔𝑹𝒓 − 𝟓𝒓𝟐)
=

𝟒𝑹𝟐 + 𝟐𝒓𝟐

𝟐𝒓𝟐(𝟏𝟔𝑹𝒓 − 𝟓𝒓𝟐)
=

𝟐𝑹𝟐 + 𝒓𝟐

𝒓𝟐(𝟏𝟔𝑹𝒓 − 𝟓𝒓𝟐)
   

Now, we need to show: 

𝟐𝑹𝟐 + 𝒓𝟐

𝒓𝟐(𝟏𝟔𝑹𝒓 − 𝟓𝒓𝟐)
≤

𝑹

𝟔𝒓𝟐
⇔ (𝟐𝑹𝟐 + 𝒓𝟐)𝟔𝒓 ≤ 𝑹(𝟏𝟔𝑹𝒓 − 𝟓𝒓𝟐) ⇔ 
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𝟒𝑹𝟐𝒓 − 𝟓𝑹𝒓𝟐 − 𝟔𝒓𝟑 ≥ 𝟎 ⇔ (𝑹 − 𝟐𝒓)(𝟒𝑹 + 𝟑𝒓) ≥ 𝟎 which is true from 

𝑹 ≥ 𝟐𝒓 (𝑬𝒖𝒍𝒆𝒓).  

  ∑
𝟏

𝒘𝒂
𝟐 𝐜𝐨𝐬𝟐

𝑩− 𝑪
𝟐𝒄𝒚𝒄

=
𝟏

𝟒𝒔𝟐𝒓𝟐
∑𝒂𝟐

𝒄𝒚𝒄

 

We need to show: 

𝟏

𝟒𝒔𝟐𝒓𝟐
∑𝒂𝟐

𝒄𝒚𝒄

≥
𝟏

𝟑𝒓𝟐
⇔

𝟏

𝟒𝒔𝟐
∑𝒂𝟐

𝒄𝒚𝒄

≥
𝟏

𝟑
⇔ 𝟑∑𝒂𝟐

𝒄𝒚𝒄

≥ 𝟒𝒔𝟐 

𝟑(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) ≥ (𝒂 + 𝒃 + 𝒄)𝟐 ⇔ (𝒂 − 𝒃)𝟐 + (𝒃 − 𝒄)𝟐 + (𝒄 − 𝒂)𝟐 ≥ 𝟎 

Solution 2 by Ertan Yildirim-Turkiye 

(𝟏)                       𝐜𝐨𝐬
𝑩 − 𝑪

𝟐
=
𝒉𝒂
𝒘𝒂
                              

(𝟐)                      ∑𝒂𝟐

𝒄𝒚𝒄

≤ 𝟗𝑹𝟐(𝑳𝒆𝒊𝒃𝒏𝒊𝒛)                 

(𝟑)                      ∑
𝟏

𝒉𝒂
𝒄𝒚𝒄

=
𝟏

𝒓
                                        

(𝟒)                     𝟐𝟕𝑹𝒓 ≤ 𝟐𝒔𝟐                                       

∑
𝟏

𝒘𝒂
𝟐 𝐜𝐨𝐬𝟐

𝑩− 𝑪
𝟐𝒄𝒚𝒄

=
𝑳𝒆𝒎𝒎𝒂 𝟏

∑
𝟏

𝒘𝒂
𝟐 ⋅
𝒉𝒂𝟐

𝒘𝒂
𝟐𝒄𝒚𝒄

=∑
𝟏

𝒉𝒂𝟐
𝒄𝒚𝒄

 

Since: 𝟑(𝒙𝟐 + 𝒚𝟐 + 𝒚𝟐) ≥ (𝒙 + 𝒚 + 𝒛)𝟐 

𝟑∑
𝟏

𝒉𝒂𝟐
𝒄𝒚𝒄

≥ (∑
𝟏

𝒉𝒂
𝒄𝒚𝒄

)

𝟐

=
𝑳𝒆𝒎𝒎𝒂 𝟑 𝟏

𝒓𝟐
⇒∑

𝟏

𝒉𝒂𝟐
𝒄𝒚𝒄

=
𝟏

𝟑𝒓𝟐
 

∑
𝟏

𝒘𝒂
𝟐 𝐜𝐨𝐬𝟐

𝑩− 𝑪
𝟐𝒄𝒚𝒄

=
𝑳𝒆𝒎𝒎𝒂 𝟏

∑
𝟏

𝒘𝒂
𝟐 ⋅
𝒉𝒂𝟐

𝒘𝒂
𝟐𝒄𝒚𝒄

=∑
𝟏

𝒉𝒂𝟐
𝒄𝒚𝒄

=∑
𝟒𝑹𝟐

(𝒃𝒄)𝟐
𝒄𝒚𝒄

= 

=
𝟒𝑹𝟐

(𝒂𝒃𝒄)𝟐
⋅∑𝒂𝟐

𝒄𝒚𝒄

=
𝟒𝑹𝟐

𝟏𝟔𝒔𝟐𝒓𝟐𝑹𝟐
⋅∑𝒂𝟐

𝒄𝒚𝒄

⇒ 

𝟏

𝟒𝒔𝟐𝒓𝟐
⋅∑𝒂𝟐

𝒄𝒚𝒄

≤
𝑳𝒆𝒎𝒎𝒂 𝟐 𝟏

𝟒𝒔𝟐𝒓𝟐
⋅ 𝟗𝑹𝟐 ≤

𝑳𝒆𝒎𝒎𝒂 𝟒 𝟏

𝟐 ⋅ 𝟐𝟕𝑹𝒓 ⋅ 𝒓𝟐
⋅ 𝟗𝑹𝟐 
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829. Prove that: 

|𝐀𝐄𝟐| (
𝟏

𝐫𝟐
−
𝟏

𝐑𝟐
) = 𝟖                   𝑹, 𝒓 − 𝒓𝒂𝒅𝒊𝒆𝒔 

  Proposed by Murat Oz-Turkiye 

Solution by Soumava Chakraborty-Kolkata-India 

 
∆ 𝐏𝐀𝐃 ⇒ 𝐦(∡𝐏𝐀𝐃) +𝐦(∡𝐏𝐃𝐀) + 𝐮 = 𝟏𝟖𝟎° 

⇒ 𝟐𝒙+ 𝟐𝒙 + 𝐮 = 𝟏𝟖𝟎° (∵ 𝐏𝐀 = 𝐏𝐃 = 𝐫) ⇒ 𝐮 =
(∗)
𝟏𝟖𝟎° − 𝟒𝒙 

𝐃𝐏 || 𝐄𝐐 ⇒ 𝐦(∡𝐄𝐐𝐀) = 𝐮 ∴ 𝐯𝐢𝒂 ∆ 𝐄𝐐𝐀, 𝐮 + 𝐦+ 𝒙 = 𝟏𝟖𝟎° 

⇒
𝐯𝐢𝒂 (∗)

𝟏𝟖𝟎° − 𝟒𝒙 +𝐦+ 𝒙 = 𝟏𝟖𝟎° ⇒ 𝐦 =
(∗∗)

𝟑𝒙 
𝑪𝒐𝒔𝒊𝒏𝒆 𝒍𝒂𝒘 ⇒ 𝐀𝐃𝟐 = 𝐏𝐀𝟐 + 𝐏𝐃𝟐 − 𝟐𝐏𝐀.𝐏𝐃. 𝐜𝐨𝐬𝐮 

= 𝐫𝟐 + 𝐫𝟐 − 𝟐𝐫𝟐𝐜𝐨𝐬𝐮 =
𝐯𝐢𝒂 (∗)

𝟐𝐫𝟐 − 𝟐𝐫𝟐 𝐜𝐨𝐬(𝟏𝟖𝟎° − 𝟒𝒙) 

= 𝟐𝐫𝟐(𝟏+ 𝐜𝐨𝐬𝟒𝒙) = 𝟒𝐫𝟐 𝐜𝐨𝐬𝟐 𝟐𝒙 ⇒ 𝐀𝐃 =
(∗∗∗)

𝟐𝐫. 𝐜𝐨𝐬𝟐𝒙 

𝐍𝐨𝐰, 𝑺𝒊𝒏𝒆 𝒍𝒂𝒘 𝐨𝐧 ∆ 𝐀𝐃𝐄 ⇒
𝐀𝐄

𝐬𝐢𝐧(𝟗𝟎° + 𝟐𝒙)
=

𝐀𝐃

𝐬𝐢𝐧(𝟗𝟎° − 𝐦)
 

⇒
𝐯𝐢𝒂 (∗∗),(∗∗∗) 𝐀𝐄

𝐜𝐨𝐬𝟐𝒙
=
𝟐𝐫. 𝐜𝐨𝐬𝟐𝒙

𝐜𝐨𝐬𝟑𝒙
⇒
𝐀𝐄

𝐫
=
(⦁) 𝟐 𝐜𝐨𝐬𝟐 𝟐𝒙

𝐜𝐨𝐬𝟑𝒙
 

𝐀𝐠𝒂𝐢𝐧, 𝒔𝐢𝐧𝐞 𝒍𝒂𝒘 𝐨𝐧 ∆ 𝐀𝐄𝐐 ⇒
𝐀𝐄

𝐬𝐢𝐧𝐮
=
𝐄𝐐

𝐬𝐢𝐧𝒙
⇒

𝐯𝐢𝒂 (∗) 𝐀𝐄

𝐬𝐢𝐧(𝟏𝟖𝟎° − 𝟒𝒙)
=

𝐑

𝐬𝐢𝐧𝒙
 

⇒
𝐀𝐄

𝐑
=
(⦁⦁) 𝐬𝐢𝐧𝟒𝒙

𝐬𝐢𝐧𝒙
 

𝐀𝐥𝐬𝐨, 𝒔𝐢𝐧𝐞 𝒍𝒂𝒘 𝐨𝐧 ∆ 𝐀𝐄𝐐 ⇒
𝐀𝐄

𝐬𝐢𝐧𝐮
=

𝐀𝐐

𝐬𝐢𝐧𝐦
⇒

𝐯𝐢𝒂 (∗),(∗∗) 𝐀𝐄

𝐬𝐢𝐧𝟒𝒙
=
𝐑+ 𝟐𝐫

𝐬𝐢𝐧𝟑𝒙
 

⇒
𝐑+ 𝟐𝐫

𝐀𝐄
=
(∎) 𝐬𝐢𝐧𝟑𝒙

𝐬𝐢𝐧𝟒𝒙
 

𝐍𝐨𝐰, (⦁), (⦁⦁) ⇒
𝟐𝐫

𝐀𝐄
+
𝐑

𝐀𝐄
=
𝐜𝐨𝐬𝟑𝒙

𝐜𝐨𝐬𝟐 𝟐𝒙
+
𝐬𝐢𝐧𝒙

𝐬𝐢𝐧𝟒𝒙
 

⇒
𝐑+ 𝟐𝐫

𝐀𝐄
=

(∎∎) 𝐜𝐨𝐬𝟑𝒙. 𝐬𝐢𝐧𝟒𝒙 + 𝐬𝐢𝐧𝒙. 𝐜𝐨𝐬𝟐 𝟐𝒙

𝐬𝐢𝐧𝟒𝒙. 𝐜𝐨𝐬𝟐 𝟐𝒙
 



 
www.ssmrmh.ro 

36 RMM-GEOMETRY MARATHON 801-900 

 

∴ (∎), (∎∎) ⇒
𝐬𝐢𝐧𝟑𝒙

𝐬𝐢𝐧𝟒𝒙
=
𝐜𝐨𝐬𝟑𝒙. 𝐬𝐢𝐧𝟒𝒙 + 𝐬𝐢𝐧𝒙. 𝐜𝐨𝐬𝟐 𝟐𝒙

𝐬𝐢𝐧𝟒𝒙. 𝐜𝐨𝐬𝟐 𝟐𝒙
 

⇒ 𝐜𝐨𝐬𝟐 𝟐𝒙 . (𝐬𝐢𝐧𝟑𝒙 − 𝐬𝐢𝐧𝒙) = 𝐜𝐨𝐬𝟑𝒙. 𝐬𝐢𝐧𝟒𝒙 
⇒ 𝟐𝐜𝐨𝐬𝟐 𝟐𝒙 . 𝐜𝐨𝐬𝟐𝒙. 𝐬𝐢𝐧𝒙 = 𝟒𝐜𝐨𝐬𝟑𝒙. 𝐜𝐨𝐬𝟐𝒙. 𝐬𝐢𝐧𝒙. 𝐜𝐨𝐬𝒙 

⇒ 𝟐𝐜𝐨𝐬𝟐 𝟐𝒙 = 𝟒𝐜𝐨𝐬𝟑𝒙. 𝐜𝐨𝐬𝒙 (∵ 𝟏𝟖𝟎° − 𝟒𝒙 > 0 ⇒ 𝑥 < 45° ⇒ 𝐜𝐨𝐬𝟐𝒙 ≠ 𝟎) 
⇒ 𝟏 + 𝐜𝐨𝐬𝟒𝒙 = 𝟐(𝐜𝐨𝐬𝟒𝒙 + 𝐜𝐨𝐬𝟐𝒙) ⇒ 𝐜𝐨𝐬𝟒𝒙+ 𝟐𝐜𝐨𝐬𝟐𝒙 − 𝟏 = 𝟎 

⇒ 𝐜𝐨𝐬𝟐 𝟐𝒙 + 𝐜𝐨𝐬𝟐𝒙 − 𝟏 = 𝟎 ⇒ 𝐜𝐨𝐬𝟐𝒙 =
−𝟏 ± √𝟓

𝟐
⇒ 𝐜𝐨𝐬𝟐𝒙 =

(∗) √𝟓 − 𝟏

𝟐
  

(∵ 𝟎 < 2𝒙 <
𝛑

𝟐
⇒ 𝐜𝐨𝐬𝟐𝒙 > 0) ∴ 𝟐 𝐜𝐨𝐬𝟐 𝒙 =

√𝟓+ 𝟏

𝟐
⇒ 𝐜𝐨𝐬𝟐 𝒙 =

(∗∗) √𝟓 + 𝟏

𝟒
 

𝐀𝐄𝟐

𝐫𝟐
=

𝐯𝐢𝒂 (⦁) (𝟐𝐜𝐨𝐬𝟐 𝟐𝒙)
𝟐

𝐜𝐨𝐬𝟐 𝒙 (𝟒 𝐜𝐨𝐬𝟐 𝒙 − 𝟑)𝟐
=

𝐯𝐢𝒂 (∗),(∗∗)
𝟒 (
√𝟓 − 𝟏
𝟐 )

𝟒

(
√𝟓 + 𝟏
𝟒 )(√𝟓 − 𝟐)

𝟐
=
(𝟏𝟒 − 𝟔√𝟓).𝟒

𝟓√𝟓 − 𝟏𝟏
 

=
(𝟏𝟒 − 𝟔√𝟓)(𝟓√𝟓− 𝟏𝟏)(𝟓√𝟓 + 𝟏𝟏)

𝟓√𝟓 − 𝟏𝟏
= 𝟕𝟎√𝟓 − 𝟔𝟔√𝟓 + 𝟏𝟓𝟒 − 𝟏𝟓𝟎 

∴
𝐀𝐄𝟐

𝐫𝟐
=
(𝐢)
𝟒√𝟓 + 𝟒 

𝐀𝐄𝟐

𝐑𝟐
=

𝐯𝐢𝒂 (⦁⦁)
(
𝐬𝐢𝐧𝟒𝒙

𝐬𝐢𝐧𝒙
)
𝟐

= 𝟏𝟔𝐜𝐨𝐬𝟐 𝒙 . 𝐜𝐨𝐬𝟐 𝟐𝒙 =
𝐯𝐢𝒂 (∗),(∗∗)

𝟒(√𝟓 + 𝟏).
𝟔 − 𝟐√𝟓

𝟒
 

∴
𝐀𝐄𝟐

𝐑𝟐
=
(𝐢𝐢)

𝟒√𝟓 − 𝟒 ∴ (𝐢) − (𝐢𝐢) ⇒ |𝐀𝐄𝟐| (
𝟏

𝐫𝟐
−
𝟏

𝐑𝟐
) = 𝟒√𝟓 + 𝟒 − 𝟒√𝟓 + 𝟒 = 𝟖 (𝒂𝒏𝒔) 

 

830.  

 

Prove that: 

𝐁𝐂

𝐀𝐂
= √𝛗𝟑 

  Proposed by Murat Oz-Turkiye 
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𝐒𝐢𝐧𝐞 𝒍𝒂𝒘 𝐨𝐧 ∆ 𝐀𝐂𝐃 ⇒
𝐛

𝐬𝐢𝐧(𝟗𝟎° − 𝟐𝒂)
=

𝐦

𝐬𝐢𝐧𝒂
⇒ 𝐦 =

(∗) 𝐛𝐬𝐢𝐧𝒂

𝐜𝐨𝐬𝟐𝒂
  

𝒂𝐧𝐝 𝐬𝐢𝐧𝐞 𝒍𝒂𝒘 𝐨𝐧 ∆ 𝐀𝐁𝐂 ⇒
𝒙

𝐬𝐢𝐧(𝟗𝟎° + 𝒂)
=

𝐛

𝐬𝐢𝐧𝒂
=

𝟐𝐦

𝐜𝐨𝐬(𝟗𝟎° − 𝟐𝒂)
→ (𝟏) 

 𝒂𝐧𝐝 (𝟏) ⇒ 𝐦 =
(∗∗) 𝐛𝐜𝐨𝐬𝟐𝒂

𝟐𝐬𝐢𝐧𝒂
 

(∗), (∗∗) ⇒
𝐛𝐬𝐢𝐧𝒂

𝐜𝐨𝐬𝟐𝒂
=
𝐛𝐜𝐨𝐬𝟐𝒂

𝟐𝐬𝐢𝐧𝒂
⇒ 𝐜𝐨𝐬𝟐 𝟐𝒂 = 𝟐𝐬𝐢𝐧𝟐 𝒂 = 𝟏− 𝐜𝐨𝐬𝟐𝒂 

⇒ 𝐜𝐨𝐬𝟐 𝟐𝒂 + 𝐜𝐨𝐬𝟐𝒂 − 𝟏 = 𝟎 ⇒ 𝐜𝐨𝐬𝟐𝒂 =
(∗∗∗) √𝟓 − 𝟏

𝟐
  

(∵ 𝟗𝟎° − 𝟑𝒂 > 0 ⇒ 0 < 2𝒂 < 60°) 

𝐍𝐨𝐰,
𝐁𝐂

𝐀𝐂
=
𝒙

𝐛
=

𝐛𝐜𝐨𝐬𝒂
𝐬𝐢𝐧𝒂
𝐛

 (∵
𝒙

𝐬𝐢𝐧(𝟗𝟎° + 𝒂)
=

𝐛

𝐬𝐢𝐧𝒂
 𝐟𝐫𝐨𝐦 (𝟏)) ⇒

𝐁𝐂

𝐀𝐂
=

(∗∗∗∗)
𝐜𝐨𝐭𝒂 

𝐕𝐢𝒂 (∗∗∗), 𝟏 − 𝟐 𝐬𝐢𝐧𝟐 𝒂 =
√𝟓 − 𝟏

𝟐
⇒ 𝐬𝐢𝐧𝟐 𝒂 =

𝟑 − √𝟓

𝟒
⇒ 𝟏 + 𝐜𝐨𝐭𝟐 𝒂 =

𝟒

𝟑 − √𝟓
 

⇒ 𝐜𝐨𝐭𝟐 𝒂 =
𝟒

𝟑 − √𝟓
− 𝟏 =

𝟐(√𝟓 + 𝟏)(𝟔 + 𝟐√𝟓)

(𝟔 − 𝟐√𝟓)(𝟔 + 𝟐√𝟓)
=
𝟐(√𝟓 + 𝟏)

𝟑

𝟏𝟔
= (

√𝟓 + 𝟏

𝟐
)

𝟑

 

⇒
𝐯𝐢𝒂 (∗∗∗∗) 

(
𝐁𝐂

𝐀𝐂
)
𝟐

= 𝛗𝟑 ⇒
𝐁𝐂

𝐀𝐂
= √𝛗𝟑 (𝐐𝐄𝐃) 

 

831. 

𝐋𝐞𝐭 𝐀𝐁𝐂 𝐛𝐞 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐰𝐢𝐭𝐡 ∠ 𝐀𝐁𝐂 = 𝟐𝟎° 𝒂𝐧𝐝 ∠ 𝐀𝐂𝐁 = 𝟏𝟎°; |𝐀𝐁| = 𝒂, 

|𝐁𝐂| = 𝒂𝟐 + 𝟐𝒂.𝐏𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶  |𝐀𝐂| = √𝟑 

  Proposed by Murat Oz-Turkiye 
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𝐒𝐢𝐧𝐞 𝒍𝒂𝒘 𝐨𝐧 ∆ 𝐀𝐁𝐂 ⇒
𝒂𝟐 + 𝟐𝒂

𝐬𝐢𝐧𝟏𝟓𝟎°
=

𝒂

𝐬𝐢𝐧𝟏𝟎°
=

𝒙

𝐬𝐢𝐧𝟐𝟎°
→ (𝟏) 

 𝒂𝐧𝐝 𝐬𝐢𝐧𝐞 𝒍𝒂𝒘 𝐨𝐧 ∆ 𝐀𝐃𝐂 ⇒
𝐦

𝐬𝐢𝐧𝟏𝟓𝟎°
=
𝐦 − 𝒂

𝐬𝐢𝐧𝟏𝟎°
→ (𝟐) 

𝐒𝐢𝐧𝐞 𝒍𝒂𝒘 𝐨𝐧 ∆ 𝐃𝐁𝐂 ⇒
𝒂𝟐 + 𝟐𝒂

𝐬𝐢𝐧𝟒𝟎°
=

𝐦

𝐬𝐢𝐧𝟐𝟎°
⇒

𝒂𝟐 + 𝟐𝒂

𝟐𝐬𝐢𝐧𝟐𝟎°𝐜𝐨𝐬𝟐𝟎°
=

𝐦

𝐬𝐢𝐧𝟐𝟎°
 

⇒𝐦 =
(∗) 𝒂𝟐 + 𝟐𝒂

𝟐𝐜𝐨𝐬𝟐𝟎°
 𝒂𝐧𝐝 (𝟏) ⇒ 𝐬𝐢𝐧𝟏𝟎° =

(∗∗) 𝟏

𝟐(𝒂 + 𝟐)
 

∴ (∗), (∗∗), (𝟐) ⇒
𝒂𝟐 + 𝟐𝒂

𝐜𝐨𝐬𝟐𝟎°
= 𝟐(𝒂 + 𝟐)(

𝒂𝟐 + 𝟐𝒂

𝟐𝐜𝐨𝐬𝟐𝟎°
− 𝒂) 

⇒ 𝟐(
𝒂 + 𝟐

𝟐
− 𝐜𝐨𝐬𝟐𝟎°) = 𝟏 ⇒ 𝟐(

𝒂 + 𝟐

𝟐
− 𝟏 + 𝟐 𝐬𝐢𝐧𝟐 𝟏𝟎°) = 𝟏 

⇒
𝐯𝐢𝒂 (∗∗)

𝟐 (
𝒂 + 𝟐

𝟐
− 𝟏 +

𝟏

𝟐(𝒂 + 𝟐)𝟐
) = 𝟏 ⇒

(𝒂 + 𝟐)𝟑 − 𝟐(𝒂 + 𝟐)𝟐 + 𝟏

𝟐(𝒂 + 𝟐)𝟐
=
𝟏

𝟐
 

⇒ (𝒂+ 𝟐)𝟑 − 𝟑(𝒂 + 𝟐)𝟐 + 𝟏 = 𝟎 

⇒ 𝒂𝟑 =
(∗∗∗)

𝟑 − 𝟑𝒂𝟐 𝒂𝐧𝐝 𝒂𝒍𝒔𝒐,𝟐 (
𝒂 + 𝟐

𝟐
− 𝐜𝐨𝐬𝟐𝟎°) = 𝟏 ⇒ 𝐜𝐨𝐬𝟐𝟎° =

(∗∗∗∗) 𝒂+ 𝟏

𝟐
 

𝐍𝐨𝐰, (𝟏) ⇒ 𝒙𝟐 =
𝒂𝟐

𝐬𝐢𝐧𝟐 𝟏𝟎°
(𝟏 − 𝐜𝐨𝐬𝟐 𝟐𝟎°) =

𝐯𝐢𝒂 (∗∗),(∗∗∗∗)
𝟒𝒂𝟐(𝒂+ 𝟐)𝟐 (𝟏 −

(𝒂 + 𝟏)𝟐

𝟒
) 

= −𝒂𝟐(𝒂𝟒 + 𝟔𝒂𝟑 + 𝟗𝒂𝟐 − 𝟒𝒂− 𝟏𝟐) = −𝒂𝟐(𝒂(𝒂𝟑 − 𝟒) + 𝟔𝒂𝟑 + 𝟗𝒂𝟐 − 𝟏𝟐) 

=
𝐯𝐢𝒂 (∗∗∗)

− 𝒂𝟐(𝒂(−𝟏 − 𝟑𝒂𝟐) + 𝟔𝒂𝟑 + 𝟗𝒂𝟐 − 𝟏𝟐) = −𝒂𝟐(𝟑𝒂𝟑 − 𝒂 + 𝟗𝒂𝟐 − 𝟏𝟐) 

=
𝐯𝐢𝒂 (∗∗∗)

− 𝒂𝟐(𝟗 − 𝟗𝒂𝟐 − 𝒂 + 𝟗𝒂𝟐 − 𝟏𝟐) = 𝒂𝟐(𝟑 + 𝒂) = 𝒂𝟑 + 𝟑𝒂𝟐 

=
𝐯𝐢𝒂 (∗∗∗)

𝟑 ⇒ 𝒙 = 𝐀𝐂 = √𝟑 (𝐐𝐄𝐃) 

832. 𝐋𝐞𝐭 𝐀𝐁𝐂 𝐛𝐞 𝒂 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞 𝐰𝐢𝐭𝐡 ∠ 𝐀𝐁𝐂 = 𝟔𝟎° 𝒂𝐧𝐝 ∠ 𝐀𝐂𝐁 = 𝟓𝟎°;  

|𝐀𝐁| = 𝒂𝟐 − 𝟐, |𝐁𝐂| = 𝒂. 𝐏𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶  |𝐀𝐂| = √𝟑. 
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𝐒𝐢𝐧𝐞 𝒍𝒂𝒘 𝐨𝐧 ∆ 𝐀𝐁𝐂 ⇒
𝒂𝟐 − 𝟐

𝐬𝐢𝐧𝟓𝟎°
=

𝒂

𝐬𝐢𝐧𝟕𝟎°
=

𝒙

𝐬𝐢𝐧𝟔𝟎°
→ (𝟏) 𝒂𝐧𝐝 

𝐯𝐢𝒂 ∆ 𝐀𝐃𝐂,
𝒂

𝐬𝐢𝐧𝟕𝟎°
=
𝒂 + 𝟐− 𝒂𝟐

𝐬𝐢𝐧𝟏𝟎°
(=

(𝒂 + 𝟏)(𝟐 − 𝒂)

𝐬𝐢𝐧𝟏𝟎°
⇒ 𝒂 < 2) =

𝒙

𝐬𝐢𝐧𝟔𝟎°
→ (𝟐) 

(𝟏), (𝟐) ⇒
𝒂𝟐 − 𝟐

𝐬𝐢𝐧𝟓𝟎°
=
𝒂 + 𝟐 − 𝒂𝟐

𝐬𝐢𝐧𝟏𝟎°
⇒

𝒂𝟐 − 𝟐

𝒂+ 𝟐− 𝒂𝟐
=
𝐬𝐢𝐧𝟓𝟎°

𝐬𝐢𝐧𝟏𝟎°
⇒
(𝒂𝟐 − 𝟐) + (𝒂 + 𝟐− 𝒂𝟐)

(𝒂𝟐 − 𝟐) − (𝒂 + 𝟐 − 𝒂𝟐)
 

=
𝐬𝐢𝐧𝟓𝟎° + 𝐬𝐢𝐧𝟏𝟎°

𝐬𝐢𝐧𝟓𝟎° − 𝐬𝐢𝐧𝟏𝟎°
=
𝟐𝐬𝐢𝐧𝟑𝟎°𝐜𝐨𝐬𝟐𝟎°

𝟐𝐜𝐨𝐬𝟑𝟎°𝐬𝐢𝐧𝟐𝟎°
=

𝟏

√𝟑𝐭𝒂𝐧𝟐𝟎°
⇒ 𝐭𝒂𝐧𝟐𝟎° =

(∗) 𝟐𝒂𝟐 − 𝒂 − 𝟒

√𝟑𝒂
 

⇒ 𝐭𝐚𝐧𝟐 𝟐𝟎° =
(𝟐𝒂𝟐 − 𝒂− 𝟒)

𝟐

𝟑𝒂𝟐
⇒ 𝒂𝟐 𝐬𝐞𝐜𝟐 𝟐𝟎° − 𝒂𝟐 =

(𝟐𝒂𝟐 − 𝒂 − 𝟒)
𝟐

𝟑
 

⇒ 𝒂𝟐 𝐬𝐞𝐜𝟐 𝟐𝟎° =
𝟒(𝒂𝟒 − 𝒂𝟑 − 𝟑𝒂𝟐 + 𝟐𝒂 + 𝟒)

𝟑
 

⇒
𝒂𝟐

𝐬𝐢𝐧𝟐 𝟕𝟎°
=
𝟒(𝒂𝟒 − 𝒂𝟑 − 𝟑𝒂𝟐 + 𝟐𝒂+ 𝟒)

𝟑
 

⇒
𝒙𝟐

𝐬𝐢𝐧𝟐 𝟔𝟎°
=
𝟒(𝒂𝟒 − 𝒂𝟑 − 𝟑𝒂𝟐 + 𝟐𝒂+ 𝟒)

𝟑
⇒ 𝒙𝟐 =

(∗∗)
𝒂𝟒 − 𝒂𝟑 − 𝟑𝒂𝟐 + 𝟐𝒂+ 𝟒  

𝐍𝒂𝐩𝐢𝐞𝐫′𝐬 𝒂𝐧𝒂𝒍𝐨𝐠𝐲 ⇒ 𝐭𝒂𝐧
𝐀 − 𝐂

𝟐
=
𝒂 − 𝐜

𝒂 + 𝐜
𝐜𝐨𝐭

𝐁

𝟐
⇒ 𝐭𝒂𝐧

𝟕𝟎° − 𝟓𝟎°

𝟐
 

=
𝒂 − (𝒂𝟐 − 𝟐)

𝒂 + (𝒂𝟐 − 𝟐)
𝐜𝐨𝐭 𝟑𝟎° ⇒ 𝐭𝒂𝐧𝟏𝟎° =

(∗∗∗) 𝒂 + 𝟐 − 𝒂𝟐

𝒂𝟐 + 𝒂 − 𝟐
. √𝟑 

𝐍𝐨𝐰, (∗) ⇒
𝟐𝐭𝒂𝐧𝟏𝟎°

𝟏 − 𝐭𝐚𝐧𝟐 𝟏𝟎°
=
𝟐𝒂𝟐 − 𝒂− 𝟒

√𝟑𝒂
⇒

𝐯𝐢𝒂 (∗∗∗)
𝟐√𝟑(𝒂 + 𝟐 − 𝒂𝟐)

𝒂𝟐 + 𝒂− 𝟐

𝟏 −
𝟑(𝒂 + 𝟐 − 𝒂𝟐)𝟐

(𝒂𝟐 + 𝒂− 𝟐)𝟐

=
𝟐𝒂𝟐 − 𝒂 − 𝟒

√𝟑𝒂
 

⇒ 𝟔𝒂(𝒂 + 𝟐 − 𝒂𝟐)(𝒂𝟐 + 𝒂 − 𝟐) 

−(𝟐𝒂𝟐 − 𝒂 − 𝟒) ((𝒂𝟐 + 𝒂 − 𝟐)
𝟐
− 𝟑(𝒂 + 𝟐− 𝒂𝟐)

𝟐
) = 𝟎 

⇒ (𝒂𝟑 − 𝟑𝒂− 𝟏)(𝒂𝟑 − 𝟔𝒂𝟐 + 𝟖) =
(⦁)
𝟎  

𝐈𝐟 𝒂𝟑 − 𝟔𝒂𝟐 + 𝟖 = 𝟎, 𝐭𝐡𝐞𝐧 ∶ 𝒂𝟐(𝒂 − 𝟐) = 𝟒(𝒂𝟐 − 𝟐) > 0 ⇒ 𝑎 > 2, 𝑎 𝐜𝐨𝐧𝐭𝐫𝒂𝐝𝐢𝐜𝐭𝐢𝐨𝐧 

⇒ 𝒂𝟑 − 𝟔𝒂𝟐 + 𝟖 ≠ 𝟎 ∴ (⦁) ⇒ 𝒂𝟑 − 𝟑𝒂− 𝟏 = 𝟎 ⇒ 𝒂𝟑 =
(⦁⦁)

𝟑𝒂 + 𝟏  

∴ 𝒂𝟒 − 𝒂𝟑 − 𝟑𝒂𝟐 + 𝟐𝒂+ 𝟒 =
𝐯𝐢𝒂 (⦁⦁)

𝒂𝟒 − 𝟑𝒂− 𝟏 − 𝟑𝒂𝟐 + 𝟐𝒂+ 𝟒 = 𝒂𝟒 − 𝒂 − 𝟑𝒂𝟐 + 𝟑 

= 𝒂(𝒂𝟑 − 𝟏) − 𝟑𝒂𝟐 + 𝟑 =
𝐯𝐢𝒂 (⦁⦁)

𝒂(𝟑𝒂) − 𝟑𝒂𝟐 + 𝟑 = 𝟑 

⇒
𝐯𝐢𝒂 (∗∗)

𝒙𝟐 = 𝟑 ⇒ 𝒙 = 𝐀𝐂 = √𝟑 (𝐐𝐄𝐃) 

833. 𝑰𝒇 𝒊𝒏 ∆𝑨𝑩𝑪 𝒉𝒐𝒍𝒅𝒔 ∶  

𝟒∏(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐)

𝒄𝒚𝒄

= 𝟑(∑𝒂𝒃(𝒂 + 𝒃)

𝒄𝒚𝒄

)

𝟐

 

𝒕𝒉𝒆𝒏 𝒕𝒉𝒆 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 𝒊𝒔 𝒂𝒏 𝒊𝒔𝒐𝒔𝒄𝒆𝒍𝒆 𝒐𝒏𝒆.      
Proposed by Daniel Sitaru-Romania 
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Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝟒∏(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐)

𝒄𝒚𝒄

= 𝟑(∑𝒂𝒃(𝒂+ 𝒃)

𝒄𝒚𝒄

)

𝟐

 (∗) 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   𝟒(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐)(𝒄𝟐 + 𝒄𝒂 + 𝒂𝟐) = 

= [(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐) + (𝒄𝟐 + 𝒄𝒂 + 𝒂𝟐)]𝟐 − [(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐) − (𝒄𝟐 + 𝒄𝒂 + 𝒂𝟐)]𝟐 = 

= [(𝟐𝒂𝟐 + 𝒂𝒃 + 𝒄𝒂 + 𝟐𝒃𝒄) + (𝒃 − 𝒄)𝟐]𝟐 − [(𝒂 + 𝒃 + 𝒄)(𝒃 − 𝒄)]𝟐 = 

= (𝟐𝒂𝟐 + 𝒂𝒃 + 𝒄𝒂 + 𝟐𝒃𝒄)𝟐 + 𝟐(𝟐𝒂𝟐 + 𝒂𝒃 + 𝒄𝒂 + 𝟐𝒃𝒄)(𝒃 − 𝒄)𝟐 + (𝒃 − 𝒄)𝟒

− (𝒂 + 𝒃 + 𝒄)𝟐(𝒃 − 𝒄)𝟐 

𝑻𝒉𝒆𝒏 ∶    𝟒(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐)(𝒄𝟐 + 𝒄𝒂 + 𝒂𝟐) = (𝟐𝒂𝟐 + 𝒂𝒃 + 𝒄𝒂 + 𝟐𝒃𝒄)𝟐 + 𝟑𝒂𝟐(𝒃 − 𝒄)𝟐. 

𝑨𝒍𝒔𝒐 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   𝟒(𝒃𝟐 + 𝒃𝒄 + 𝒄𝟐) = 𝟑(𝒃 + 𝒄)𝟐 + (𝒃 − 𝒄)𝟐. 

𝑴𝒖𝒍𝒕𝒊𝒑𝒚𝒊𝒏𝒈 𝒕𝒉𝒆𝒔𝒆 𝒕𝒘𝒐 𝒊𝒅𝒆𝒏𝒕𝒊𝒕𝒊𝒆𝒔 𝒘𝒆 𝒈𝒆𝒕 ∶ 

𝟒𝑳𝑯𝑺(∗) = [(𝟐𝒂𝟐 + 𝒂𝒃 + 𝒄𝒂 + 𝟐𝒃𝒄)𝟐 + 𝟑𝒂𝟐(𝒃 − 𝒄)𝟐][𝟑(𝒃 + 𝒄)𝟐 + (𝒃 − 𝒄)𝟐] ≥ 

≥⏞
𝑪𝑩𝑺

 [√𝟑(𝟐𝒂𝟐 + 𝒂𝒃 + 𝒄𝒂 + 𝟐𝒃𝒄)(𝒃 + 𝒄) + √𝟑𝒂(𝒃 − 𝒄)𝟐]
𝟐
= 

= 𝟑(𝟐∑𝒂𝒃(𝒂 + 𝒃)

𝒄𝒚𝒄

)

𝟐

= 𝟒𝑹𝑯𝑺(∗). 

𝑻𝒉𝒆𝒏 ∶   𝑳𝑯𝑺(∗) ≥ 𝑹𝑯𝑺(∗),   𝒘𝒊𝒕𝒉 𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒘𝒉𝒆𝒏 ∶ 

(𝒃 − 𝒄)𝟐 = 𝟎  𝒐𝒓  
𝟐𝒂𝟐 + 𝒂𝒃 + 𝒄𝒂 + 𝟐𝒃𝒄

√𝟑(𝒃 + 𝒄)
= √𝟑𝒂 ⇔  𝒃 = 𝒄  𝒐𝒓  𝟐(𝒂 − 𝒃)(𝒂 − 𝒄) = 𝟎 

⇔  𝒂 = 𝒃  𝒐𝒓  𝒃 = 𝒄  𝒐𝒓  𝒄 = 𝒂.   𝑻𝒉𝒆𝒏 𝒕𝒉𝒆 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 𝑨𝑩𝑪 𝒊𝒔 𝒂𝒏 𝒊𝒔𝒐𝒔𝒄𝒆𝒍𝒆 𝒐𝒏𝒆. 

Solution 2 by Soumava Chakraborty-Kolkata-India  

𝐑𝐇𝐒 = 𝟑(∑𝒂𝐛(𝟐𝐬 − 𝐜)

𝐜𝐲𝐜

)

𝟐

= 𝟑(𝟐𝐬(𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐) − 𝟏𝟐𝐑𝐫𝐬)
𝟐

 

∴ 𝐑𝐇𝐒 =
(𝟏)
𝟑.𝟒𝐬𝟐(𝐬𝟐 − 𝟐𝐑𝐫 + 𝐫𝟐)

𝟐
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∏(𝒂− 𝐛)𝟐

𝐜𝐲𝐜

=
(⦁)
∑𝒂𝟒𝐛𝟐

𝐜𝐲𝐜

+∑𝒂𝟐𝐛𝟒

𝐜𝐲𝐜

+ 𝟐𝒂𝐛𝐜(∑𝒂𝟐𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟐

𝐜𝐲𝐜

) 

−𝟐∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

− 𝟐𝒂𝐛𝐜∑𝒂𝟑

𝐜𝐲𝐜

− 𝟔𝒂𝟐𝐛𝟐𝐜𝟐 

⇒∑𝒂𝟒𝐛𝟐

𝐜𝐲𝐜

+∑𝒂𝟐𝐛𝟒

𝐜𝐲𝐜

+ 𝟐𝒂𝐛𝐜(∑𝒂𝟐𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟐

𝐜𝐲𝐜

) 

=
(∗)
∏(𝒂− 𝐛)𝟐

𝐜𝐲𝐜

+ 𝟐∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

+ 𝟐𝒂𝐛𝐜∑𝒂𝟑

𝐜𝐲𝐜

+ 𝟔𝒂𝟐𝐛𝟐𝐜𝟐 

𝐍𝐨𝐰, 𝐋𝐇𝐒 = 𝟒∏(𝒂𝟐 + 𝒂𝐛+ 𝐛𝟐)

𝐜𝐲𝐜

 

= 𝟒(∑𝒂𝟒𝐛𝟐

𝐜𝐲𝐜

+∑𝒂𝟐𝐛𝟒

𝐜𝐲𝐜

+ 𝟐𝒂𝐛𝐜(∑𝒂𝟐𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟐

𝐜𝐲𝐜

)) 

+𝟒(∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

+ 𝒂𝐛𝐜∑𝒂𝟑

𝐜𝐲𝐜

+ 𝟑𝒂𝟐𝐛𝟐𝐜𝟐) 

=
𝐯𝐢𝒂 (∗)

𝟒(∏(𝒂 − 𝐛)𝟐

𝐜𝐲𝐜

+ 𝟑∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

+ 𝟑𝒂𝐛𝐜∑𝒂𝟑

𝐜𝐲𝐜

+ 𝟗𝒂𝟐𝐛𝟐𝐜𝟐) =
(𝟐)
𝐋𝐇𝐒 

∴ (𝟏), (𝟐) ⇒∏(𝒂 − 𝐛)𝟐

𝐜𝐲𝐜

+ 𝟑∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

+ 𝟑𝒂𝐛𝐜∑𝒂𝟑

𝐜𝐲𝐜

+ 𝟗𝒂𝟐𝐛𝟐𝐜𝟐 

= 𝟑𝐬𝟐(𝐬𝟐 − 𝟐𝐑𝐫 + 𝐫𝟐)
𝟐
⇒∏(𝒂 − 𝐛)𝟐

𝐜𝐲𝐜

 

= 𝟑(𝐬𝟐(𝐬𝟐 − 𝟐𝐑𝐫 + 𝐫𝟐)
𝟐
− ((𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)

𝟑
− 𝟑.𝟒𝐑𝐫𝐬.𝟐𝐬(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐))

− 𝟖𝐑𝐫𝐬𝟐(𝐬𝟐 − 𝟔𝐑𝐫 − 𝟑𝐫𝟐) − 𝟒𝟖𝐑𝟐𝐫𝟐𝐬𝟐) 

⇒ ∏(𝒂 − 𝐛)𝟐

𝐜𝐲𝐜

=
(𝐢)
− 𝟑𝐫𝟐(𝐬𝟒 − 𝐬𝟐(𝟒𝐑𝟐 + 𝟐𝟎𝐑𝐫 − 𝟐𝐫𝟐) + 𝐫(𝟒𝐑 + 𝐫)𝟑)  

𝐀𝐠𝒂𝐢𝐧, 𝐯𝐢𝒂 (⦁),∏(𝒂− 𝐛)𝟐

𝐜𝐲𝐜

 

=∑(𝒂𝟐𝐛𝟐(∑𝒂𝟐

𝐜𝐲𝐜

− 𝐜𝟐))

𝐜𝐲𝐜

+ 𝟐𝒂𝐛𝐜∑𝒂𝐛(𝟐𝐬 − 𝐜)

𝐜𝐲𝐜

 

−𝟐((𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)
𝟑
− 𝟑.𝟒𝐑𝐫𝐬.𝟐𝐬(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)) − 𝟏𝟔𝐑𝐫𝐬𝟐(𝐬𝟐 − 𝟔𝐑𝐫 − 𝟑𝐫𝟐) 

−𝟔𝒂𝟐𝐛𝟐𝐜𝟐 = 𝟐(𝐬𝟐 − 𝟒𝐑𝐫 − 𝐫𝟐) ((𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)
𝟐
− 𝟏𝟔𝐑𝐫𝐬𝟐) − 𝟐𝟒𝟎𝐑𝟐𝐫𝟐𝐬𝟐 

+𝟏𝟔𝐑𝐫𝐬𝟐(𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐) − 𝟐((𝐬𝟐 + 𝟒𝐑𝐫+ 𝐫𝟐)
𝟑
− 𝟑. 𝟒𝐑𝐫𝐬.𝟐𝐬(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐))

− 𝟏𝟔𝐑𝐫𝐬𝟐(𝐬𝟐 − 𝟔𝐑𝐫 − 𝟑𝐫𝟐) 
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⇒
𝟑

𝟒
∏(𝒂 − 𝐛)𝟐

𝐜𝐲𝐜

=
(𝐢𝐢)
− 𝟑𝐫𝟐(𝐬𝟒 − 𝐬𝟐(𝟒𝐑𝟐 + 𝟐𝟎𝐑𝐫 − 𝟐𝐫𝟐) + 𝐫(𝟒𝐑 + 𝐫)𝟑)  

∴ (𝐢), (𝐢𝐢) ⇒∏(𝒂 − 𝐛)𝟐

𝐜𝐲𝐜

=
𝟑

𝟒
∏(𝒂 − 𝐛)𝟐

𝐜𝐲𝐜

⇒∏(𝒂 − 𝐛)𝟐

𝐜𝐲𝐜

= 𝟎 

⇒ (𝒂 − 𝐛)(𝐛 − 𝐜)(𝐜 − 𝒂) = 𝟎 ⇒ 𝟑 𝐩𝐨𝐬𝐬𝐢𝐛𝐢𝐥𝐢𝐭𝐢𝐞𝐬 𝒂𝐫𝐢𝐬𝐞 ∶ 

𝒂 − 𝐛 = 𝟎,𝐛 − 𝐜 = 𝟎, 𝐜 − 𝒂 = 𝟎 
⇒ 𝒂𝒕 𝒍𝒆𝒂𝒔𝒕 𝒐𝒏𝒆 𝒂𝒎𝒐𝒏𝒈 (𝒂 − 𝐛), (𝐛 − 𝐜), (𝐜 − 𝒂) = 𝟎 ⇒ ∆ 𝐀𝐁𝐂 𝐢𝐬 𝐢𝐬𝐨𝐬𝐜𝐞𝐥𝐞 (𝐐𝐄𝐃) 

  

834. 𝑰𝒇 𝟎 < 𝒙 < 𝟏 𝒕𝒉𝒆𝒏 𝒊𝒏 ∆𝑨𝑩𝑪 𝒉𝒐𝒍𝒅𝒔 ∶ 

𝟐𝒙−𝟏(
𝒂𝒏𝒂 − (√𝒃𝒏𝒃 − √𝒄𝒏𝒄)

𝟐

𝟒√𝒃𝒄𝒏𝒃𝒏𝒄
)

𝒙
𝟐

≤
(𝒂𝒏𝒂)

𝒙
𝟐

(𝒃𝒏𝒃)
𝒙
𝟐 + (𝒄𝒏𝒄)

𝒙
𝟐

.   

Proposed by Bogdan Fuștei-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  

 (𝒂𝒏𝒂)
𝟐 = 𝒂𝟐 (𝒔(𝒔 − 𝒂) +

𝒔(𝒃 − 𝒄)𝟐

𝒂
) = 𝒔(𝒔 − 𝒂)[𝒂𝟐 − (𝒃 − 𝒄)𝟐] + 𝒔𝟐(𝒃 − 𝒄)𝟐 = 

= 𝟒𝒔(𝒔 − 𝒂)(𝒔 − 𝒃)(𝒔 − 𝒄) + 𝒔𝟐(𝒃 − 𝒄)𝟐 = 𝟒𝒔𝟐𝒓𝟐 + 𝒔𝟐(𝒃 − 𝒄)𝟐 = 𝒔𝟐(𝟒𝒓𝟐 + (𝒃 − 𝒄)𝟐).  

𝑻𝒉𝒆𝒏 ∶  𝒂𝒏𝒂 = 𝒔√𝟒𝒓𝟐 + (𝒃 − 𝒄)𝟐  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑵𝒐𝒘,   (√𝒂𝒏𝒂 + √𝒃𝒏𝒃)
𝟐
> 𝑎𝒏𝒂 + 𝒃𝒏𝒃 = 𝒔 (√(𝟐𝒓)𝟐 + (𝒃 − 𝒄)𝟐 +√(𝟐𝒓)𝟐 + (𝒄 − 𝒂)𝟐) ≥ 

≥⏞
𝑴𝒊𝒏𝒌𝒐𝒘𝒔𝒌𝒊

𝒔√(𝟐𝒓 + 𝟐𝒓)𝟐 + [(𝒃 − 𝒄) + (𝒄 − 𝒂)]𝟐 = 𝒔√𝟏𝟔𝒓𝟐 + (𝒂 − 𝒃)𝟐 > 𝑠√𝟒𝒓𝟐 + (𝒂 − 𝒃)𝟐

= 𝒄𝒏𝒄. 

𝑻𝒉𝒆𝒏  √𝒂𝒏𝒂 +√𝒃𝒏𝒃 > √𝒄𝒏𝒄  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔)  

⇒ √𝒂𝒏𝒂, √𝒃𝒏𝒃, √𝒄𝒏𝒄 𝒄𝒂𝒏 𝒃𝒆 𝒕𝒉𝒆 𝒔𝒊𝒅𝒆𝒔 𝒐𝒇 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆. 

𝑺𝒐 𝒊𝒕 𝒔𝒖𝒇𝒇𝒊𝒄𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 ∶   𝟐𝒙−𝟏 (
𝒂𝟐 − (𝒃 − 𝒄)𝟐

𝟒𝒃𝒄
)

𝒙
𝟐

≤
𝒂𝒙

𝒃𝒙 + 𝒄𝒙
,   ∀∆𝑨𝑩𝑪. 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   𝟐𝒙−𝟏 (
𝒂𝟐 − (𝒃 − 𝒄)𝟐

𝟒𝒃𝒄
)

𝒙
𝟐

= 𝟐𝒙−𝟏 (
(𝒔 − 𝒃)(𝒔 − 𝒄)

𝒃𝒄
)

𝒙
𝟐

= 𝟐𝒙−𝟏 𝐬𝐢𝐧𝒙
𝑨

𝟐
= 
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=⏞
𝑴𝒐𝒍𝒍𝒘𝒆𝒊𝒅𝒆

𝟐𝒙−𝟏(
𝒂𝐜𝐨𝐬

𝑩 − 𝑪
𝟐

𝒃 + 𝒄
)

𝒙

≤ 𝟐𝒙−𝟏 (
𝒂

𝒃 + 𝒄
)
𝒙

 ≤⏞
?

 
𝒂𝒙

𝒃𝒙 + 𝒄𝒙
 ⇔  𝒃𝒙 + 𝒄𝒙 ≤ 𝟐(

𝒃 + 𝒄

𝟐
)
𝒙

, 

𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒃𝒚 𝑱𝒆𝒏𝒔𝒆𝒏′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒖𝒔𝒊𝒏𝒈 𝒕𝒉𝒆 𝒄𝒐𝒏𝒄𝒂𝒗𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒕 → 𝒕𝒙 ,   (𝒙 ∈ (𝟎, 𝟏)). 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒅. 

835. 𝑨𝟏𝑨𝟐…𝑨𝒏 → 𝐜𝐨𝐧𝐯𝐞𝐱 𝐩𝐨𝐥𝐲𝐠𝐨𝐧 𝒂𝐧𝐝 𝐧 ≥ 𝟑, 𝒂𝟏𝒂𝟐…𝒂𝒏 → 𝐬𝐢𝐝𝐞𝐬  

𝒂𝐧𝐝 𝒂𝟏 + 𝒂𝟐 +⋯+ 𝒂𝒏 = 𝟐𝐩. 𝐏𝐫𝐨𝐯𝐞 𝐭𝐡𝒂𝐭 ∶ 

(
𝐀̂𝟏
𝟑

𝐀̂𝟏
𝟐 + 𝐀̂𝟐

𝟐
+

𝐀̂𝟐
𝟑

𝐀̂𝟐
𝟐 + 𝐀̂𝟑

𝟐
+⋯+

𝐀̂𝐧
𝟑

𝐀̂𝐧
𝟐 + 𝐀̂𝟏

𝟐
)(

𝒂𝟏
𝟑

𝒂𝟏
𝟐 + 𝒂𝟐

𝟐
+

𝒂𝟐
𝟑

𝒂𝟐
𝟐 + 𝒂𝟑

𝟐
+⋯+

𝒂𝐧
𝟑

𝒂𝐧
𝟐 + 𝒂𝟏

𝟐
) ≥

(𝐧 − 𝟐)𝛑.𝐩

𝟐
 

  Proposed by Radu Diaconu-Romania 
Solution by Soumava Chakraborty-Kolkata-India 
 

𝐀̂𝟏
𝟑

𝐀̂𝟏
𝟐 + 𝐀̂𝟐

𝟐
=
𝐀̂𝟏(𝐀̂𝟏

𝟐 + 𝐀̂𝟐
𝟐 − 𝐀̂𝟐

𝟐)

𝐀̂𝟏
𝟐 + 𝐀̂𝟐

𝟐
= 𝐀̂𝟏 −

𝐀̂𝟏. 𝐀̂𝟐
𝟐

𝐀̂𝟏
𝟐 + 𝐀̂𝟐

𝟐
≥
𝐀−𝐆

𝐀̂𝟏 −
𝐀̂𝟏 . 𝐀̂𝟐

𝟐

𝟐𝐀̂𝟏. 𝐀̂𝟐
 

⇒
𝐀̂𝟏
𝟑

𝐀̂𝟏
𝟐 + 𝐀̂𝟐

𝟐
≥ 𝐀̂𝟏 −

𝐀̂𝟐
𝟐
 𝒂𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐬 ⇒

𝐀̂𝟏
𝟑

𝐀̂𝟏
𝟐 + 𝐀̂𝟐

𝟐
+

𝐀̂𝟐
𝟑

𝐀̂𝟐
𝟐 + 𝐀̂𝟑

𝟐
+⋯+

𝐀̂𝐧
𝟑

𝐀̂𝐧
𝟐 + 𝐀̂𝟏

𝟐
 

≥ 𝐀̂𝟏 −
𝐀̂𝟐
𝟐
+ 𝐀̂𝟐 −

𝐀̂𝟑
𝟐
+⋯+ 𝐀̂𝐧 −

𝐀̂𝟏
𝟐
=∑𝐀̂𝐢

𝐧

𝐢=𝟏

−
𝟏

𝟐
∑𝐀̂𝐢

𝐧

𝐢=𝟏

=
𝟏

𝟐
∑𝐀̂𝐢

𝐧

𝐢=𝟏

=
(𝐧 − 𝟐)𝛑

𝟐
 

∴
𝐀̂𝟏
𝟑

𝐀̂𝟏
𝟐 + 𝐀̂𝟐

𝟐
+

𝐀̂𝟐
𝟑

𝐀̂𝟐
𝟐 + 𝐀̂𝟑

𝟐
+⋯+

𝐀̂𝐧
𝟑

𝐀̂𝐧
𝟐 + 𝐀̂𝟏

𝟐
≥
(∗) (𝐧 − 𝟐)𝛑

𝟐
 

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚,
𝒂𝟏
𝟑

𝒂𝟏
𝟐 + 𝒂𝟐

𝟐
+

𝒂𝟐
𝟑

𝒂𝟐
𝟐 + 𝒂𝟑

𝟐
+⋯+

𝒂𝐧
𝟑

𝒂𝐧
𝟐 + 𝒂𝟏

𝟐
≥
𝐀−𝐆

𝒂𝟏 −
𝒂𝟐
𝟐
+ 𝒂𝟐 −

𝒂𝟑
𝟐
+⋯𝒂𝐧 −

𝒂𝟏
𝟐

 

=
𝟏

𝟐
∑𝒂𝐢

𝐧

𝐢=𝟏

=
𝟐𝐩

𝟐
∴

𝒂𝟏
𝟑

𝒂𝟏
𝟐 + 𝒂𝟐

𝟐
+

𝒂𝟐
𝟑

𝒂𝟐
𝟐 + 𝒂𝟑

𝟐
+⋯+

𝒂𝐧
𝟑

𝒂𝐧
𝟐 + 𝒂𝟏

𝟐
≥
(∗∗)

𝐩 ∴ (∗)⦁(∗∗) ⇒ 

(
𝐀̂𝟏
𝟑

𝐀̂𝟏
𝟐 + 𝐀̂𝟐

𝟐
+

𝐀̂𝟐
𝟑

𝐀̂𝟐
𝟐 + 𝐀̂𝟑

𝟐
+⋯+

𝐀̂𝐧
𝟑

𝐀̂𝐧
𝟐 + 𝐀̂𝟏

𝟐
)(

𝒂𝟏
𝟑

𝒂𝟏
𝟐 + 𝒂𝟐

𝟐
+

𝒂𝟐
𝟑

𝒂𝟐
𝟐 + 𝒂𝟑

𝟐
+⋯+

𝒂𝐧
𝟑

𝒂𝐧
𝟐 + 𝒂𝟏

𝟐
) 

≥
(𝐧 − 𝟐)𝛑. 𝐩

𝟐
, 𝐰𝐢𝐭𝐡 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐟𝐟 𝑨𝟏𝑨𝟐…𝑨𝒏 𝐢𝐬 𝒂 𝐫𝐞𝐠𝐮𝐥𝒂𝐫 𝐜𝐨𝐧𝐯𝐞𝐱 𝐩𝐨𝐥𝐲𝐠𝐨𝐧 (𝐐𝐄𝐃) 

836. 
𝑰𝒏 ∆𝑨𝑩𝑪 𝒕𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔𝒉𝒊𝒑 𝒉𝒐𝒍𝒅𝒔 ∶ 

𝒂𝟑

𝟏𝟐𝒂𝟐 − 𝟖𝒂𝒃 + 𝟑𝒃𝟐
+

𝒃𝟑

𝟏𝟐𝒃𝟐 − 𝟖𝒃𝒄 + 𝟑𝒄𝟐
+

𝒄𝟑

𝟏𝟐𝒄𝟐 − 𝟖𝒄𝒂 + 𝟑𝒂𝟐
≤
𝟑√𝟑𝑹

𝟕
 

Proposed by Daniel Sitaru-Romania 
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Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑳𝒆𝒎𝒎𝒂 ∶   𝑰𝒇 𝒂, 𝒃 > 0 𝑡ℎ𝑒𝑛 ∶  
𝒂𝟑

𝟏𝟐𝒂𝟐 − 𝟖𝒂𝒃+ 𝟑𝒃𝟐
≤
𝟓𝒂+ 𝟐𝒃

𝟒𝟗
. 

𝑷𝒓𝒐𝒐𝒇 ∶ 𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   
𝒂𝟑

𝟏𝟐𝒂𝟐 − 𝟖𝒂𝒃+ 𝟑𝒃𝟐
≤
𝟓𝒂+ 𝟐𝒃

𝟒𝟗
 

⇔ (𝟓𝒂 + 𝟐𝒃)(𝟏𝟐𝒂𝟐 − 𝟖𝒂𝒃+ 𝟑𝒃𝟐) − 𝟒𝟗𝒂𝟑 ≥ 𝟎 

⇔ 𝟏𝟏𝒂𝟑 − 𝟏𝟔𝒂𝟐𝒃− 𝒂𝒃𝟐 + 𝟔𝒃𝟑 ≥ 𝟎 ⇔ (𝒂 − 𝒃)𝟐(𝟏𝟏𝒂 + 𝟔𝒃) ≥ 𝟎 

𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒂, 𝒃 > 0. 

𝑻𝒉𝒆𝒏 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   
𝒂𝟑

𝟏𝟐𝒂𝟐 − 𝟖𝒂𝒃+ 𝟑𝒃𝟐
≤
𝟓𝒂+ 𝟐𝒃

𝟒𝟗
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   ∑
𝒂𝟑

𝟏𝟐𝒂𝟐 − 𝟖𝒂𝒃+ 𝟑𝒃𝟐
𝒄𝒚𝒄

≤∑
𝟓𝒂+ 𝟐𝒃

𝟒𝟗
𝒄𝒚𝒄

=
𝒂 + 𝒃 + 𝒄

𝟕
=
𝟐𝒔

𝟕
 ≤⏞
𝑴𝒊𝒕𝒓𝒊𝒏𝒐𝒗𝒊𝒄

 
𝟑√𝟑𝑹

𝟕
. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 ∆𝑨𝑩𝑪 𝒊𝒔 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍. 

837. On the sides of the triangle 𝑨𝑩𝑪 the squares 𝑩𝑫𝑬𝑪, 𝑨𝑪𝑭𝑮, 𝑨𝑩𝑳𝑲 are 

drawn outside the triangle. Let 𝑶 be the centroid of the square 𝑨𝑩𝑳𝑲. Prove 

that: 𝑶𝑮𝟐 + 𝑶𝑬𝟐 = 𝑶𝑭𝟐 + 𝑶𝑫𝟐 

 

Proposed by Mehmet Șahin, Alican Gullu-Ankara-Turkiye 
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Solution by Hikmat Mammadov-Azerbaijan 
𝑹 −radius of circumcircle of 𝚫𝑨𝑩𝑪 

𝑶𝑨 = 𝑶𝑩 =
𝒄

√𝟐
 

𝑨𝑪 = 𝑨𝑮 = 𝒃,𝑩𝑫 = 𝑩𝑪 = 𝒂 

𝑨𝑭 = 𝒃√𝟐,𝑩𝑬 = 𝒂√𝟐 

𝑶𝑮𝟐 = (
𝒄

√𝟐
)
𝟐

+ 𝒃𝟐 − 𝟐 ⋅
𝒄

√𝟐
⋅ 𝒃 𝐜𝐨𝐬 (𝑨+

𝝅

𝟐
+
𝝅

𝟒
) 

𝑶𝑮𝟐 =
𝒄𝟐

𝟐
+ 𝒃𝟐 + √𝟐𝒃𝒄 𝐬𝐢𝐧 (𝑨 +

𝝅

𝟒
) 

𝑶𝑮𝟐 =
𝒄𝟐

𝟐
+ 𝒃𝟐 + 𝒃𝒄(𝐬𝐢𝐧𝑨 + 𝐜𝐨𝐬𝑨) 

𝑶𝑮𝟐 =
𝒄𝟐

𝟐
+ 𝒃𝟐 + 𝒃𝒄 (

𝒂

𝟐𝑹
+
𝒄𝟐 + 𝒃𝟐 − 𝒂𝟐

𝟐𝒃𝒄
) 

𝑶𝑮𝟐 = 𝒄𝟐 +
𝒂𝒃𝒄

𝟐𝑹
+
𝟑𝒃𝟐 − 𝒂𝟐

𝟐
 

𝑶𝑬𝟐 = (
𝒄

√𝟐
)
𝟐

+ (√𝟐𝒂)
𝟐
− 𝟐𝒄𝒂 𝐜𝐨𝐬 (𝑩 +

𝝅

𝟒
+
𝝅

𝟒
) 

𝑶𝑬𝟐 =
𝒄𝟐

𝟐
+ 𝟐𝒂𝟐 + 𝟐𝒄𝒂 𝐬𝐢𝐧𝑩 ⇒ 𝑶𝑬𝟐 =

𝒄𝟐

𝟐
+ 𝟐𝒂𝟐 +

𝒂𝒃𝒄

𝑹
 

𝑶𝑮𝟐 = 𝑶𝑬𝟐 =
𝟑

𝟐
(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 +

𝒂𝒃𝒄

𝑹
) 

Similarly, 

𝑶𝑫𝟐 +𝑶𝑬𝟐 =
𝟑

𝟐
(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 +

𝒂𝒃𝒄

𝑹
) 

Therefore, 

𝑶𝑮𝟐 + 𝑶𝑬𝟐 = 𝑶𝑭𝟐 + 𝑶𝑫𝟐 

838. 

𝐈𝐧 𝒂𝐧𝐲 ∆ 𝐀𝐁𝐂 𝐡𝐨𝐥𝐝𝐬: 

𝟒√𝟑𝐒 ≤ 𝟑√𝒂𝐛𝐜
𝟑

. √𝒂𝟐𝐛𝟐𝐜𝟐 − (𝒂 − 𝐛)𝟐(𝐛 − 𝐜)𝟐(𝐜 − 𝒂)𝟐
𝟔

≤ 𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 

  Proposed by Alp Eren Koken-Turkiye 
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Solution 1 by Soumava Chakraborty-Kolkata-India 

∏(𝒂− 𝐛)𝟐

𝐜𝐲𝐜

=∑𝒂𝟒𝐛𝟐

𝐜𝐲𝐜

+∑𝒂𝟐𝐛𝟒

𝐜𝐲𝐜

+ 𝟐𝒂𝐛𝐜(∑𝒂𝟐𝐛

𝐜𝐲𝐜

+∑𝒂𝐛𝟐

𝐜𝐲𝐜

) 

−𝟐∑𝒂𝟑𝐛𝟑

𝐜𝐲𝐜

− 𝟐𝒂𝐛𝐜∑𝒂𝟑

𝐜𝐲𝐜

− 𝟔𝒂𝟐𝐛𝟐𝐜𝟐 

=∑(𝒂𝟐𝐛𝟐(∑𝒂𝟐

𝐜𝐲𝐜

− 𝐜𝟐))

𝐜𝐲𝐜

+ 𝟐𝒂𝐛𝐜∑𝒂𝐛(𝟐𝐬 − 𝐜)

𝐜𝐲𝐜

 

−𝟐((𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)
𝟑
− 𝟑.𝟒𝐑𝐫𝐬. 𝟐𝐬(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)) 

−𝟏𝟔𝐑𝐫𝐬𝟐(𝐬𝟐 − 𝟔𝐑𝐫 − 𝟑𝐫𝟐) − 𝟔𝒂𝟐𝐛𝟐𝐜𝟐 

= 𝟐(𝐬𝟐 − 𝟒𝐑𝐫 − 𝐫𝟐) ((𝐬𝟐 + 𝟒𝐑𝐫+ 𝐫𝟐)
𝟐
− 𝟏𝟔𝐑𝐫𝐬𝟐) − 𝟐𝟒𝟎𝐑𝟐𝐫𝟐𝐬𝟐 

+𝟏𝟔𝐑𝐫𝐬𝟐(𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐) − 𝟐((𝐬𝟐 + 𝟒𝐑𝐫+ 𝐫𝟐)
𝟑
− 𝟑. 𝟒𝐑𝐫𝐬.𝟐𝐬(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)) 

−𝟏𝟔𝐑𝐫𝐬𝟐(𝐬𝟐 − 𝟔𝐑𝐫 − 𝟑𝐫𝟐) 

⇒ (𝒂 − 𝐛)𝟐(𝐛 − 𝐜)𝟐(𝐜 − 𝒂)𝟐 =
(∗)
− 𝟒𝐫𝟐(𝐬𝟒 − 𝐬𝟐(𝟒𝐑𝟐 + 𝟐𝟎𝐑𝐫 − 𝟐𝐫𝟐) + 𝐫(𝟒𝐑+ 𝐫)𝟑) 

𝐍𝐨𝐰, 𝟒√𝟑𝐒 ≤ 𝟑√𝒂𝐛𝐜
𝟑

. √𝒂𝟐𝐛𝟐𝐜𝟐 − (𝒂 − 𝐛)𝟐(𝐛 − 𝐜)𝟐(𝐜 − 𝒂)𝟐
𝟔

⇔
𝐯𝐢𝒂 (∗)

𝟒𝟔. 𝟑𝟑. 𝐒𝟔  

≤ 𝟑𝟔. 𝟏𝟔𝐑𝟐𝐒𝟐. (𝟏𝟔𝐑𝟐𝐫𝟐𝐬𝟐 + 𝟒𝐫𝟐(𝐬𝟒 − 𝐬𝟐(𝟒𝐑𝟐 + 𝟐𝟎𝐑𝐫 − 𝟐𝐫𝟐) + 𝐫(𝟒𝐑 + 𝐫)𝟑)) 

⇔ 𝟔𝟒𝐒𝟐. 𝐬𝟐 ≤
(𝐢)

𝟐𝟕𝐑𝟐(𝐬𝟒 − 𝐬𝟐(𝟐𝟎𝐑𝐫 − 𝟐𝐫𝟐) + 𝐫(𝟒𝐑+ 𝐫)𝟑) 𝒂𝐧𝐝 ∵ 𝟐𝟕𝐑𝟐 ≥
𝐌𝐢𝐭𝐫𝐢𝐧𝐨𝐯𝐢𝐜

𝟒𝐬𝟐 

∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (𝐢), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

𝐬𝟒 − 𝐬𝟐(𝟐𝟎𝐑𝐫 − 𝟐𝐫𝟐) + 𝐫(𝟒𝐑 + 𝐫)𝟑 ≥ 𝟏𝟔𝐫𝟐𝐬𝟐 

⇔ 𝐬𝟒 − 𝐬𝟐(𝟐𝟎𝐑𝐫 + 𝟏𝟒𝐫𝟐) + 𝐫(𝟒𝐑 + 𝐫)𝟑 ≥
(𝐢𝐢)

𝟎 

𝒂𝐧𝐝 ∵ 𝐋𝐇𝐒 𝐨𝐟 (𝐢𝐢) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

𝐬𝟐(𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐) − 𝐬𝟐(𝟐𝟎𝐑𝐫 + 𝟏𝟒𝐫𝟐) + 𝐫(𝟒𝐑+ 𝐫)𝟑 

∴ 𝐢𝐧 𝐨𝐫𝐝𝐞𝐫 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 (𝐢𝐢), 𝐢𝐭 𝐬𝐮𝐟𝐟𝐢𝐜𝐞𝐬𝐬 𝐭𝐨 𝐩𝐫𝐨𝐯𝐞 ∶ 

𝐫(𝟒𝐑 + 𝐫)𝟑 ≥ 𝐬𝟐(𝟒𝐑𝐫 + 𝟏𝟗𝐫𝟐) ⇔ (𝟒𝐑 + 𝟏𝟗𝐫)𝐬𝟐 ≤
(𝐢𝐢𝐢)

(𝟒𝐑 + 𝐫)𝟑 

𝐍𝐨𝐰,𝐋𝐇𝐒 𝐨𝐟 (𝐢𝐢𝐢) ≤
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

(𝟒𝐑 + 𝟏𝟗𝐫)(𝟒𝐑𝟐 + 𝟒𝐑𝐫 + 𝟑𝐫𝟐) ≤
?
(𝟒𝐑 + 𝐫)𝟑 

⇔ 𝟏𝟐𝐑𝟑 − 𝟏𝟏𝐑𝟐𝐫 − 𝟏𝟗𝐑𝐫𝟐 − 𝟏𝟒𝐫𝟑 ≥
?
𝟎 ⇔ (𝐑 − 𝟐𝐫)(𝟏𝟐𝐑𝟐 + 𝟏𝟑𝐑𝐫 + 𝟕𝐫𝟐) ≥

?
𝟎 

→ 𝐭𝐫𝐮𝐞 ∵ 𝐑 ≥
𝐄𝐮𝐥𝐞𝐫

𝟐𝐫 ⇒ (𝐢𝐢𝐢) ⇒ (𝐢𝐢) ⇒ (𝐢) 𝐢𝐬 𝐭𝐫𝐮𝐞 
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∴ 𝟒√𝟑𝐒 ≤ 𝟑√𝒂𝐛𝐜
𝟑

. √𝒂𝟐𝐛𝟐𝐜𝟐 − (𝒂 − 𝐛)𝟐(𝐛 − 𝐜)𝟐(𝐜 − 𝒂)𝟐
𝟔

 

𝐀𝐥𝐬𝐨, 𝟑√𝒂𝐛𝐜
𝟑

. √𝒂𝟐𝐛𝟐𝐜𝟐 − (𝒂 − 𝐛)𝟐(𝐛 − 𝐜)𝟐(𝐜 − 𝒂)𝟐
𝟔

≤ 𝟑√𝒂𝐛𝐜
𝟑

. √𝒂𝟐𝐛𝟐𝐜𝟐
𝟔

 

= 𝟑√𝒂𝟐𝐛𝟐𝐜𝟐
𝟑

≤
𝐀−𝐆

𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 

∴ 𝟑√𝒂𝐛𝐜
𝟑

. √𝒂𝟐𝐛𝟐𝐜𝟐 − (𝒂 − 𝐛)𝟐(𝐛 − 𝐜)𝟐(𝐜 − 𝒂)𝟐
𝟔

≤ 𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐  

𝐒𝐨, 𝐢𝐧 𝒂𝐧𝐲 ∆ 𝐀𝐁𝐂,𝟒√𝟑𝐒 ≤ 𝟑√𝒂𝐛𝐜
𝟑

. √𝒂𝟐𝐛𝟐𝐜𝟐 − (𝒂 − 𝐛)𝟐(𝐛 − 𝐜)𝟐(𝐜 − 𝒂)𝟐
𝟔

 

≤ 𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐, 𝐰𝐢𝐭𝐡 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐢𝐞𝐬 𝐢𝐟𝐟 ∆ 𝐀𝐁𝐂 𝐢𝐬 𝐞𝐪𝐮𝐢𝒍𝒂𝐭𝐞𝐫𝒂𝒍 (𝐐𝐄𝐃) 

 Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝟒√𝟑𝑺 ≤⏞
(𝒊𝒊)

𝟑√𝒂𝒃𝒄
𝟑

√𝒂𝟐𝒃𝟐𝒄𝟐 − (𝒂 − 𝒃)𝟐(𝒃 − 𝒄)𝟐(𝒄 − 𝒂)𝟐
𝟔

≤⏞
(𝒊)

𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 

 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 ≥⏞
𝑨𝑴−𝑮𝑴

𝟑√𝒂𝟐𝒃𝟐𝒄𝟐
𝟑

= 𝟑√𝒂𝒃𝒄
𝟑 √𝒂𝟐𝒃𝟐𝒄𝟐

𝟔

≥ 𝟑√𝒂𝒃𝒄
𝟑

√𝒂𝟐𝒃𝟐𝒄𝟐 − (𝒂 − 𝒃)𝟐(𝒃 − 𝒄)𝟐(𝒄 − 𝒂)𝟐
𝟔

. 

𝑵𝒐𝒘, 𝒍𝒆𝒕 ∶   𝒂 ≔ 𝒙 + 𝒚,   𝒃 ≔ 𝒚 + 𝒛,   𝒄 ≔ 𝒛 + 𝒙,   𝒙, 𝒚, 𝒛 > 0,   𝑠 =
𝒂 + 𝒃 + 𝒄

𝟐
= 𝒙 + 𝒚 + 𝒛  𝒂𝒏𝒅  

 𝒓 = √𝒙𝒚𝒛
𝟑 . 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   𝑺 = √𝒔(𝒔 − 𝒂)(𝒔 − 𝒃)(𝒔 − 𝒄) = √𝒙𝒚𝒛(𝒙+ 𝒚 + 𝒛) = √𝒔𝒓𝟑  (𝟏) 

𝑨𝒍𝒔𝒐,   𝒂𝟐𝒃𝟐𝒄𝟐 −∏(𝒂− 𝒃)𝟐

𝒄𝒚𝒄

= (𝒂𝒃𝒄 −∏(𝒂− 𝒃)

𝒄𝒚𝒄

)(𝒂𝒃𝒄+∏(𝒂 − 𝒃)

𝒄𝒚𝒄

) = 

= (∏(𝒙 + 𝒚)

𝒄𝒚𝒄

−∏(𝒙 − 𝒚)

𝒄𝒚𝒄

)(∏(𝒙 + 𝒚)

𝒄𝒚𝒄

+∏(𝒙 − 𝒚)

𝒄𝒚𝒄

)

= 𝟐(∑𝒙𝟐𝒚

𝒄𝒚𝒄

+ 𝒙𝒚𝒛) . 𝟐(∑𝒙𝒚𝟐

𝒄𝒚𝒄

+ 𝒙𝒚𝒛). 

𝑨𝒏𝒅 𝒔𝒊𝒏𝒄𝒆 ∶   ∑𝒙𝟐𝒚

𝒄𝒚𝒄

=∑
𝟏

𝟑
(𝒙𝟐𝒚+ 𝒙𝟐𝒚+ 𝒛𝟐𝒙)

𝒄𝒚𝒄

≥⏞
𝑨𝑴−𝑮𝑴

∑√𝒙𝟓𝒚𝟐𝒛𝟐
𝟑

𝒄𝒚𝒄

= 𝒓𝟐𝒔, 

𝒕𝒉𝒆𝒏 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶  𝒂𝟐𝒃𝟐𝒄𝟐 −∏(𝒂 − 𝒃)𝟐

𝒄𝒚𝒄

≥ (𝟐(𝒔𝒓𝟐 + 𝒓𝟑))
𝟐

  (𝟐) 
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𝑨𝒍𝒔𝒐,   𝒂𝒃𝒄 =∏(𝒙+ 𝒚)

𝒄𝒚𝒄

≥
𝟖(𝒙 + 𝒚 + 𝒛)(𝒙𝒚+ 𝒚𝒛 + 𝒛𝒙)

𝟗
≥⏞

𝑨𝑴−𝑮𝑴

 
𝟖𝒔

𝟗
. 𝟑√𝒙𝟐𝒚𝟐𝒛𝟐

𝟑
=
𝟖𝒔𝒓𝟐

𝟑
  (𝟑) 

𝑭𝒓𝒐𝒎 (𝟏), (𝟐) 𝒂𝒏𝒅 (𝟑), 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 𝒕𝒉𝒆 𝒍𝒆𝒇𝒕 𝒔𝒊𝒅𝒆 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒊𝒕 𝒔𝒖𝒇𝒇𝒊𝒄𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 ∶ 

𝟒√𝟑𝒔𝒓𝟑 ≤ 𝟑√
𝟖𝒔𝒓𝟐

𝟑

𝟑

√(𝟐𝒓𝟐(𝒔 + 𝒓))
𝟐𝟔

 ⇔ 𝟏𝟔𝒔𝒓 ≤ 𝟑(𝒔 + 𝒓)𝟐  ⇔  (𝒔 − 𝟑𝒓)(𝟑𝒔 − 𝒓) ≥ 𝟎 

𝑾𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒃𝒚 𝑨𝑴− 𝑮𝑴 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 ∴ 𝒔 ≥ 𝟑𝒓.  𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆. 

839.  

𝑪𝑫

𝑨𝑩
=? 

Proposed by Murat Oz-Turkiye 
Solution 1 by Ravi Prakash-New Delhi-India 

 

𝑳𝒆𝒕 𝑪𝑫 = 𝒒;𝑩𝑫 = 𝒑;𝑩𝑪 = 𝒂; 𝑨𝑫 = 𝒑, 𝒕𝒉𝒆𝒏: 
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𝒑 = 𝒂𝐬𝐢𝐧
𝑨

𝟐
 𝒂𝒏𝒅 𝒒 = 𝒂𝐜𝐨𝐬

𝑨

𝟐
 

𝝁(𝑨𝑫𝑩̂) = 𝝅 − 𝑨  

𝑨𝑩𝟐 = 𝒑𝟐 + 𝒑𝟐 − 𝟐𝒑𝟐 𝐜𝐨𝐬(𝝅 − 𝑨) 

𝑨𝑩𝟐 = 𝟐𝒑𝟐(𝟏 + 𝐜𝐨𝐬 𝑨) = 𝟒𝒑𝟐 𝐜𝐨𝐬𝟐
𝑨

𝟐
 

𝑨𝑩 = 𝟐𝒑𝐜𝐨𝐬
𝑨

𝟐
 

𝑪𝑫

𝑨𝑩
=
𝒂𝐜𝐨𝐬

𝑨
𝟐

𝟐𝒑𝐜𝐨𝐬
𝑨
𝟐

=
𝒂

𝟐𝒑
=

𝟏

𝟐𝐬𝐢𝐧
𝑨
𝟐

   

Solution 2 by Tapas Das-India 

 

𝑳𝒆𝒕: 𝑨𝑫 = 𝑩𝑫 = 𝒙.  

𝑵𝒐𝒘, [𝑨𝑩𝑪] = [𝑨𝑫𝑩] + [𝑩𝑫𝑪] + [𝑨𝑫𝑪];       (𝟏) 

𝑭𝒓𝒐𝒎 𝚫𝑩𝑫𝑪,𝒘𝒆 𝒈𝒆𝒕: 𝐬𝐢𝐧
𝑨

𝟐
=
𝑩𝑫

𝑩𝑪
⇒ 𝐬𝐢𝐧

𝑨

𝟐
=

𝒙

𝑩𝑪
⇒ 𝑩𝑪 =

𝒙

𝐬𝐢𝐧
𝑨
𝟐

 

[𝑨𝑩𝑪] =
𝟏

𝟐
𝑨𝑩 ⋅ 𝑩𝑪 =

𝟏

𝟐
𝑨𝑩 ⋅

𝒙

𝐬𝐢𝐧
𝑨
𝟐

;   (𝟐) 

[𝑨𝑫𝑩] + [𝑩𝑫𝑪] + [𝑨𝑫𝑪] =
𝟏

𝟐
𝑨𝑩 ⋅ 𝒙 ⋅ 𝐬𝐢𝐧

𝑨

𝟐
+
𝟏

𝟐
𝑩𝑫 ⋅ 𝑫𝑪 +

𝟏

𝟐
𝑨𝑫 ⋅ 𝑫𝑪 ⋅ 𝐬𝐢𝐧 (

𝝅

𝟐
+ 𝑨) = 

=
𝟏

𝟐
𝑨𝑩 ⋅ 𝒙 ⋅ 𝐬𝐢𝐧

𝑨

𝟐
+
𝟏

𝟐
⋅ 𝒙 ⋅ 𝑫𝑪 +

𝟏

𝟐
⋅ 𝒙 ⋅ 𝑫𝑪 ⋅ 𝐜𝐨𝐬𝑨 = 



 
www.ssmrmh.ro 

50 RMM-GEOMETRY MARATHON 801-900 

 

=
𝟏

𝟐
𝒙(𝑨𝑩 ⋅ 𝐬𝐢𝐧

𝑨

𝟐
+ 𝑫𝑪 + 𝑫𝑪 ⋅ 𝐜𝐨𝐬 𝑨) 

𝑭𝒓𝒐𝒎 (𝟏) 𝒂𝒏𝒅 (𝟐) 𝒘𝒆 𝒉𝒂𝒗𝒆: 

𝟏

𝟐
⋅ 𝑨𝑩 ⋅

𝒙

𝐬𝐢𝐧
𝑨
𝟐

=
𝟏

𝟐
𝒙 (𝑨𝑩 ⋅ 𝐬𝐢𝐧

𝑨

𝟐
+ 𝑫𝑪 +𝑫𝑪 ⋅ 𝐜𝐨𝐬 𝑨) 

𝑨𝑩

𝐬𝐢𝐧
𝑨
𝟐

= 𝑨𝑩 ⋅ 𝐬𝐢𝐧
𝑨

𝟐
+ 𝑫𝑪 +𝑫𝑪 ⋅ 𝐜𝐨𝐬𝑨 

𝑨𝑩 ⋅
𝟏 − 𝐬𝐢𝐧𝟐

𝑨
𝟐

𝐬𝐢𝐧
𝑨
𝟐

= 𝑫𝑪(𝟏 + 𝐜𝐨𝐬𝑨),   
𝑪𝑫

𝑨𝑩
=
𝟏 − 𝐬𝐢𝐧𝟐

𝑨
𝟐

𝟏 + 𝐜𝐨𝐬𝑨
=

𝟏

𝟐 𝐬𝐢𝐧
𝑨
𝟐

   

Solution 3 by Ertan Yildirim-Turkiye 

 

𝑰𝒏 𝚫𝑨𝑩𝑪: 𝐭𝐚𝐧(𝟐𝜶) =
𝑩𝑪

𝑨𝑩
=
𝐭𝐚𝐧𝜶 + 𝐜𝐨𝐭𝜶

𝟐
. 

𝑳𝒆𝒕: 𝐭𝐚𝐧 𝜶 = 𝒎, 𝒕𝒉𝒆𝒏 𝐭𝐚𝐧(𝟐𝜶) =
𝟐𝒎

𝟏 −𝒎𝟐
=
𝒎+

𝟏
𝒎

𝟐
 

𝟐𝒎

𝟏 −𝒎𝟐
=
𝒎𝟐 + 𝟏

𝟐𝒎
⇒ 𝟒𝒎𝟐 = 𝟏 −𝒎𝟒 ⇒ 𝒎𝟒 + 𝟒𝒎𝟐 = 𝟏 

𝒎𝟒 + 𝟒𝒎𝟐 + 𝟒 = 𝟓 ⇒ (𝒎𝟐 + 𝟐)𝟐 = 𝟓 ⇒ 𝒎𝟐 = √𝟓 − 𝟐 

𝐭𝐚𝐧𝟐 𝜶 = √𝟓 − 𝟐 

𝑰𝒏 𝚫𝑫𝑯𝑪: 𝒙𝟐 = 𝟏 + 𝐜𝐨𝐭𝟐 𝜶 = 𝟏 +
𝟏

√𝟓− 𝟐
= 𝟑 + √𝟓 
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𝝓 =
√𝟓 + 𝟏

𝟐
⇒ 𝝓𝟐 =

𝟔 + 𝟐√𝟓

𝟒
=
𝟑 + √𝟓

𝟐
 

𝒙𝟐

𝟒
=
𝟑 + √𝟓

𝟒
=
𝝓𝟐

𝟐
⇒
𝒙

𝟐
=
𝝓

√𝟐
=
𝑪𝑫

𝑨𝑩
   

840. 𝐀𝐁𝐂 𝐢𝐬 𝐚 𝐭𝐫𝐢𝐚𝐧𝐠𝐥𝐞 𝐰𝐢𝐭𝐡 ∠𝐁𝐀𝐂 > 90° 𝑎𝑛𝑑 ∠𝐴𝐵𝐶 = 15°. 

𝐓𝐡𝐞 𝐜𝐢𝐫𝐜𝐮𝐦𝐜𝐞𝐧𝐭𝐞𝐫 𝐨𝐟 ∆ 𝐀𝐁𝐂 𝐢𝐬 𝐎 𝐚𝐧𝐝 𝐀𝐎 𝐢𝐧𝐭𝐞𝐫𝐬𝐞𝐜𝐭𝐬 𝐁𝐂 𝒂𝐭 𝐃.   

𝐈𝐟 |𝐎𝐃|𝟐 + |𝐎𝐂||𝐃𝐂| = |𝐎𝐂|𝟐, 𝐭𝐡𝐞𝐧,𝐰𝐡𝐚𝐭 𝐢𝐬 𝐭𝐡𝐞 𝐯𝐚𝐥𝐮𝐞 𝐨𝐟 ∠𝐁𝐂𝐀 ? 

 

  Proposed by Alp Eren Koken-Turkiye 
Solution 1 by Soumava Chakraborty-Kolkata-India 

 
𝐀𝐧𝐠𝐥𝐞 𝒂𝒕 𝐜𝐞𝐧𝐭𝐞𝐫 𝐢𝐬 𝟐 𝐭𝐢𝐦𝐞𝐬 𝒂𝐧𝐠𝐥𝐞 𝒂𝒕 𝐜𝐢𝐫𝐜𝐮𝐦𝐟𝐞𝐫𝐞𝐧𝐜𝐞 

∴ ∠𝐀𝐎𝐂 = 𝟑𝟎° 𝒂𝐧𝐝 ∠𝐀𝐎𝐁 = 𝟐𝒙 ⇒ ∠𝐎𝐂𝐃 =
𝟏𝟖𝟎° − 𝟑𝟎° − 𝟐𝒙

𝟐
= 𝟕𝟓° − 𝒙  

𝒂𝐧𝐝 𝐯𝐢𝒂 𝒔𝒊𝒏𝒆 𝒍𝒂𝒘 𝐨𝐧 ∆ 𝐎𝐂𝐃,
𝐃𝐂

𝐬𝐢𝐧𝟑𝟎°
=

𝐎𝐃

𝐬𝐢𝐧(𝟕𝟓° − 𝒙)
=

𝐑

𝐬𝐢𝐧(𝟏𝟖𝟎° − (𝟕𝟓° − 𝒙 + 𝟑𝟎°))
 

∴ 𝐃𝐂 =
(∗) 𝐑

𝟐𝐬𝐢𝐧(𝟕𝟓° + 𝒙)
 𝒂𝐧𝐝 𝐎𝐃 =

(∗∗) 𝐑𝐬𝐢𝐧(𝟕𝟓° − 𝒙)

𝐬𝐢𝐧(𝟕𝟓° + 𝒙)
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𝐍𝐨𝐰, |𝐎𝐃|𝟐 + |𝐎𝐂||𝐃𝐂| = |𝐎𝐂|𝟐 ⇒
𝐯𝐢𝒂 (∗),(∗∗) 𝐑𝟐 𝐬𝐢𝐧𝟐(𝟕𝟓° − 𝒙)

𝐬𝐢𝐧𝟐(𝟕𝟓° + 𝒙)
+

𝐑𝟐

𝟐𝐬𝐢𝐧(𝟕𝟓° + 𝒙)
= 𝐑𝟐 

⇒
𝟐𝐬𝐢𝐧𝟐(𝟕𝟓° − 𝒙) + 𝐬𝐢𝐧(𝟕𝟓° + 𝒙)

𝟐 𝐬𝐢𝐧𝟐(𝟕𝟓° + 𝒙)
= 𝟏 

⇒ 𝟏− 𝐜𝐨𝐬(𝟏𝟓𝟎° − 𝟐𝒙) + 𝐬𝐢𝐧(𝟕𝟓° + 𝒙) = 𝟏 − 𝐜𝐨𝐬(𝟏𝟓𝟎° + 𝟐𝒙) 
⇒ 𝐬𝐢𝐧(𝟕𝟓° + 𝒙) = 𝐜𝐨𝐬(𝟏𝟓𝟎° − 𝟐𝒙) − 𝐜𝐨𝐬(𝟏𝟓𝟎° + 𝟐𝒙) = 𝟐𝐬𝐢𝐧𝟏𝟓𝟎°. 𝐬𝐢𝐧𝟐𝒙 = 𝐬𝐢𝐧𝟐𝒙 

⇒ 𝐬𝐢𝐧(𝟕𝟓° + 𝒙) − 𝐬𝐢𝐧𝟐𝒙 = 𝟎 ⇒ 𝟐𝐜𝐨𝐬
𝟕𝟓° + 𝟑𝒙

𝟐
. 𝐬𝐢𝐧

𝟕𝟓° − 𝒙

𝟐
= 𝟎 

⇒ 𝟐 𝐩𝐨𝐬𝐬𝐢𝐛𝐢𝐥𝐢𝐭𝐢𝐞𝐬 ∶ 𝐬𝐢𝐧
𝟕𝟓° − 𝒙

𝟐
= 𝟎; 𝐜𝐨𝐬

𝟕𝟓° + 𝟑𝒙

𝟐
= 𝟎 

𝒂𝐧𝐝 ∵ −𝟕
𝟏

𝟐
° <

𝟕𝟓° − 𝒙

𝟐
< 3𝟕

𝟏

𝟐
° 𝒂𝐧𝐝 𝟑𝟕

𝟏

𝟐
° <

𝟕𝟓° + 𝟑𝒙

𝟐
< 172

𝟏

𝟐
° (∵ 𝟎 < 𝑥 < 90°) 

∴ 𝟐 𝐩𝐨𝐬𝐬𝐢𝐛𝐢𝐥𝐢𝐭𝐢𝐞𝐬 𝒂𝐫𝐞 ∶
𝟕𝟓° − 𝒙

𝟐
= 𝟎; 

𝟕𝟓° + 𝟑𝒙

𝟐
= 𝟗𝟎° 

⇒
𝟕𝟓° + 𝟑𝒙

𝟐
= 𝟗𝟎° (∵ 𝟕𝟓° − 𝒙 > 0) ⇒ 𝒙 = 𝐦(∡𝐁𝐂𝐀) = 𝟑𝟓° (𝒂𝒏𝒔) 

 

 Solution 2 by Murat Oz-Turkiye 

 
𝒂𝟐 + (𝒂 + 𝒃)𝒄 = (𝒂 + 𝒃)𝟐 ⇒ 𝝁(𝑨𝑪𝑩̂) = 𝒙 =? 

𝒂𝟐 + 𝒂𝒄 + 𝒃𝒄 = 𝒂𝟐 + 𝒃𝟐 + 𝟐𝒂𝒃 
𝒂 + 𝒃

𝒃
=
𝟐𝒂 + 𝒃

𝒄
  𝒂𝒏𝒅 

𝟐𝒂 + 𝒃

𝒄
=
𝐬𝐢𝐧(𝟗𝟎° − 𝒙)

𝐬𝐢𝐧𝟏𝟓°
 

 

{

𝒃

𝐬𝐢𝐧 𝒙
=

𝒄

𝐬𝐢𝐧𝟕𝟓°
𝒂

𝐬𝐢𝐧(𝟕𝟓° − 𝒙)
=

𝒄

𝐬𝐢𝐧 𝟑𝟎°

⇒
𝒂

𝒃
⋅

𝐬𝐢𝐧 𝒙

𝐬𝐢𝐧(𝟕𝟓° − 𝒙)
= 𝟐 𝐬𝐢𝐧𝟕𝟓° 

𝒂 + 𝒃

𝒃
=
𝒂

𝒃
+ 𝟏 =

𝟐𝒂 + 𝒃

𝒄
⇒
𝟐𝐬𝐢𝐧 𝟕𝟓° 𝐬𝐢𝐧(𝟕𝟓° − 𝒙)

𝐬𝐢𝐧 𝒙
+ 𝟏 =

𝐜𝐨𝐬 𝒙

𝐬𝐢𝐧𝟏𝟓°
 

𝐬𝐢𝐧 𝒙 𝐜𝐨𝐬 𝒙 = 𝟐𝐬𝐢𝐧 𝟏𝟓° 𝐜𝐨𝐬 𝟏𝟓° 𝐬𝐢𝐧(𝟕𝟓° − 𝒙) + 𝐬𝐢𝐧𝟏𝟓° 𝐬𝐢𝐧 𝒙 
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𝐬𝐢𝐧𝟐𝒙 = 𝐬𝐢𝐧(𝟕𝟓° − 𝒙) + 𝟐𝐬𝐢𝐧 𝟏𝟓° 𝐬𝐢𝐧 𝒙 

𝐬𝐢𝐧𝟐𝒙 = 𝐜𝐨𝐬(𝟏𝟓 + 𝒙) + 𝟐(−
𝟏

𝟐
) [𝐜𝐨𝐬(𝒙 + 𝟏𝟓°) − 𝐜𝐨𝐬(𝒙 − 𝟏𝟓°)] 

𝐬𝐢𝐧𝟐𝒙 = 𝐜𝐨𝐬(𝒙 − 𝟏𝟓°) ⇒ 𝒙 = 𝟕𝟓° 𝒐𝒓 𝒙 = 𝟑𝟓° 
𝝁(𝑩𝑨𝑪̂) > 90°, 𝑡ℎ𝑒𝑛 𝑥 = 35°    

841. 𝑰𝒏 𝒂𝒄𝒖𝒕𝒆 ∆𝑨𝑩𝑪 𝒉𝒐𝒍𝒅𝒔 ∶ 

√
(𝝅 − 𝑨̂)(𝝅 − 𝑩̂)

𝑨̂𝑩̂
+ √

(𝝅 − 𝑩̂)(𝝅 − 𝑪̂)

𝑩̂𝑪̂
+ √

(𝝅 − 𝑪̂)(𝝅 − 𝑨̂)

𝑪̂𝑨̂
<
𝟏

𝟐
√𝟗 +

𝟏𝟎𝝅𝟑𝑹𝟐

𝑺
 

Proposed by Radu Diaconu-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒌𝒏𝒐𝒘 𝒕𝒉𝒂𝒕 ∶   𝐬𝐢𝐧 𝑨̂ 𝐬𝐢𝐧 𝑩̂ 𝐬𝐢𝐧 𝑪̂ =
𝑺

𝟐𝑹𝟐
  𝒂𝒏𝒅  𝐬𝐢𝐧 𝒙 < 𝑥,   ∀𝑥 ∈ (𝟎,

𝝅

𝟐
], 

𝑻𝒉𝒆𝒏 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   
𝟐𝑹𝟐

𝑺
=

𝟏

𝐬𝐢𝐧 𝑨̂ 𝐬𝐢𝐧 𝑩̂ 𝐬𝐢𝐧 𝑪̂
>

𝟏

𝑨̂𝑩̂𝑪̂
. 

𝑺𝒐 𝒊𝒕 𝒔𝒖𝒇𝒇𝒊𝒄𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

√
(𝑩̂ + 𝑪̂)(𝑪̂ + 𝑨̂)

𝑨̂𝑩̂
+ √

(𝑪̂ + 𝑨̂)(𝑨̂ + 𝑩̂)

𝑩̂𝑪̂
+ √

(𝑨̂ + 𝑩̂)(𝑩̂ + 𝑪̂)

𝑪̂𝑨̂
≤
𝟏

𝟐
√𝟗+

𝟓(𝑨̂ + 𝑩̂ + 𝑪̂)
𝟑

𝑨̂𝑩̂𝑪̂
  (𝟏) 

𝑳𝒆𝒕 𝒑 ≔ 𝑨̂ + 𝑩̂ + 𝑪̂,   𝒒 ≔ 𝑨̂𝑩̂ + 𝑩̂𝑪̂ + 𝑪̂𝑨̂,   𝒓 ≔ 𝑨̂𝑩̂𝑪̂. 

  𝑳𝑯𝑺(𝟏)  ≤⏞
𝑪𝑩𝑺

 √(∑(𝑩̂ + 𝑪̂)(𝑪̂ + 𝑨̂)

𝒄𝒚𝒄

)(∑
𝟏

𝑨̂𝑩̂
𝒄𝒚𝒄

) = √(𝒑𝟐 + 𝒒).
𝒑

𝒓
= 

= √
𝟒𝒑𝟑 + 𝟒𝒑𝒒

𝟒𝒓
 ≤⏞
𝑺𝒄𝒉𝒖𝒓

 √
𝟒𝒑𝟑 + (𝒑𝟑 + 𝟗𝒓)

𝟒𝒓
=
𝟏

𝟐
√𝟗 +

𝟓𝒑𝟑

𝒓
= 𝑹𝑯𝑺(𝟏). 

842. In 𝚫𝑨𝑩𝑪 the following relationship holds: 

∑
𝐜𝐨𝐬𝟑

𝑨
𝟐

𝐜𝐨𝐬
𝑩
𝟐
+ √𝐜𝐨𝐬

𝑩
𝟐
𝐜𝐨𝐬

𝑪
𝟐
+ √𝐜𝐨𝐬

𝑨
𝟐
𝐜𝐨𝐬

𝑩
𝟐
𝐜𝐨𝐬

𝑪
𝟐

𝟑
𝒄𝒚𝒄

≥ 𝟑(
𝒓

𝑹
)
𝟐

 

Proposed by Marin Chirciu-Romania 
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Solution by Tapas Das-India 

𝐜𝐨𝐬
𝑩

𝟐
+ √𝐜𝐨𝐬

𝑩

𝟐
𝐜𝐨𝐬

𝑪

𝟐
+ √𝐜𝐨𝐬

𝑨

𝟐
𝐜𝐨𝐬

𝑩

𝟐
𝐜𝐨𝐬

𝑪

𝟐

𝟑

≤
𝑨𝑴−𝑮𝑴

 

≤ 𝐜𝐨𝐬
𝑩

𝟐
+
𝐜𝐨𝐬

𝑩
𝟐 + 𝐜𝐨𝐬

𝑪
𝟐

𝟐
+
𝐜𝐨𝐬

𝑨
𝟐 + 𝐜𝐨𝐬

𝑩
𝟐 + 𝐜𝐨𝐬

𝑪
𝟐

𝟑
=
𝟏𝟏

𝟔
𝐜𝐨𝐬

𝑩

𝟐
+
𝟓

𝟔
𝐜𝐨𝐬

𝑪

𝟐
+
𝟏

𝟑
𝐜𝐨𝐬

𝑨

𝟐
 

  ∑
𝐜𝐨𝐬𝟑

𝑨
𝟐

𝐜𝐨𝐬
𝑩
𝟐 +

√𝐜𝐨𝐬
𝑩
𝟐 𝐜𝐨𝐬

𝑪
𝟐 +

√𝐜𝐨𝐬
𝑨
𝟐 𝐜𝐨𝐬

𝑩
𝟐 𝐜𝐨𝐬

𝑪
𝟐

𝟑
𝒄𝒚𝒄

≥∑
𝐜𝐨𝐬𝟑

𝑨
𝟐

𝟏𝟏
𝟔 𝐜𝐨𝐬

𝑩
𝟐 +

𝟓
𝟔𝐜𝐨𝐬

𝑪
𝟐 +

𝟏
𝟑𝐜𝐨𝐬

𝑨
𝟐𝒄𝒚𝒄

≥
𝑯𝒐𝒍𝒅𝒆𝒓

 

≥
(∑𝐜𝐨𝐬

𝑨
𝟐)

𝟑

𝟑[(
𝟏𝟏
𝟔 +

𝟓
𝟔 +

𝟏
𝟑)
∑ 𝐜𝐨𝐬

𝑨
𝟐

=
(∑ 𝐜𝐨𝐬

𝑨
𝟐)

𝟐

𝟑 ⋅ 𝟑
≥

𝑨𝑴−𝑮𝑴
 

≥

(𝟑 ⋅ √∏𝐜𝐨𝐬
𝑨
𝟐

𝟑

)

𝟐

𝟗
= (∏𝐜𝐨𝐬

𝑨

𝟐
𝒄𝒚𝒄

)

𝟐
𝟑

= (
𝒔

𝟒𝑹
)

𝟐
𝟑
≥ 

≥ (
𝟑√𝟑𝒓

𝟒𝑹
)

𝟐
𝟑

= (
𝟑√𝟑𝒓 ⋅ 𝒓𝟐

𝟒𝑹 ⋅ 𝒓𝟐
)

𝟐
𝟑

≥ [
𝟑√𝟑𝒓𝟑

𝟒𝑹 ⋅ (
𝑹
𝟐)

𝟐
]

𝟐
𝟑

= 𝟑(
𝒓

𝑹
)
𝟐

    

843. Let 𝚫𝑰𝒂𝑰𝒃𝑰𝒄 −be the excentral triangle of acute 𝚫𝑨𝑩𝑪,𝑷, 𝑸, 𝑹 −the 

midpoints of arcs 𝑩𝑪, 𝑪𝑨, 𝑨𝑩 and 𝝆 −inradii of 𝚫𝑷𝑸𝑹. Prove that: 

𝟒[𝑷𝑸𝑹] = [𝑰𝒂𝑰𝒃𝑰𝒄], 𝝆 ≤
𝟑√𝟑

𝟐
𝑹  

Proposed by Mehmet Șahin-Ankara-Turkiye 
Solution by Marian Dincă-Romania 

𝒂𝒓𝒄(𝑷𝑸) = 𝑨 +𝑩 

𝒂𝒓𝒄(𝑸𝑹) = 𝑩 + 𝑪 

𝒂𝒓𝒄(𝑹𝑷) = 𝑪 + 𝑨 
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[𝑷𝑸𝑹] = 𝟐𝑹𝟐 𝐬𝐢𝐧 (
𝑨 + 𝑩

𝟐
) 𝐬𝐢𝐧 (

𝑨 + 𝑪

𝟐
) 𝐬𝐢𝐧 (

𝑩 + 𝑪

𝟐
) 

Lemma.  

The triangle formed by the feet of the heights of a sharp triangle 𝑨𝑩𝑪 denote by 𝑫𝑬𝑭, will 

have side lengths equal to 𝒂 𝐜𝐨𝐬𝑨 , 𝒃 𝐜𝐨𝐬𝑩 , 𝒄 𝐜𝐨𝐬𝑪. 

Back to the triangle 𝑨𝑩𝑪 is formed by the feet of the heights of the triangle 𝑰𝒂𝑰𝒃𝑰𝒄. 

According to Lemma: 

𝑩𝑪 = 𝒂 = 𝑰𝒃𝑰𝒄 𝐜𝐨𝐬(𝑰𝒂𝑰𝒃𝑰𝒄)̂ = 𝑰𝒃𝑰𝒄 𝐜𝐨𝐬 (
𝑩 + 𝑪

𝟐
) 

𝒂 = 𝟐𝑹𝐬𝐢𝐧𝑨 = 𝟐𝑹𝐬𝐢𝐧(𝑩 + 𝑪) = 𝟒𝑹𝐬𝐢𝐧 (
𝑩 + 𝑪

𝟐
)𝐜𝐨𝐬 (

𝑩 + 𝑪

𝟐
) 

𝟒𝑹𝐬𝐢𝐧 (
𝑩 + 𝑪

𝟐
) 𝐜𝐨𝐬 (

𝑩 + 𝑪

𝟐
) = 𝑰𝒃𝑰𝒄 𝐜𝐨𝐬 (

𝑩 + 𝑪

𝟐
) ⇒ 𝑰𝒃𝑰𝒄 = 𝟒𝑹𝐬𝐢𝐧 (

𝑩 + 𝑪

𝟐
)  

Similarly: 

𝑰𝒂𝑰𝒄 = 𝟒𝑹𝐬𝐢𝐧 (
𝑨 + 𝑪

𝟐
)  𝐚𝐧𝐝 𝑰𝒂𝑰𝒃 = 𝟒𝑹𝐬𝐢𝐧 (

𝑨 + 𝑩

𝟐
) 

It follows that the radius of the circle circumscribed by the triangle 𝑰𝒂𝑰𝒃𝑰𝒄 is equal to 𝟐𝑹 

and  

[𝑰𝒂𝑰𝒃𝑰𝒄] = 𝟐(𝟐𝑹)
𝟐 𝐬𝐢𝐧 (

𝑨 + 𝑩

𝟐
) 𝐬𝐢𝐧 (

𝑨 + 𝑪

𝟐
) 𝐬𝐢𝐧 (

𝑩 + 𝑪

𝟐
) = 

= 𝟖𝑹𝟐 𝐬𝐢𝐧 (
𝑨 + 𝑩

𝟐
) 𝐬𝐢𝐧 (

𝑨 + 𝑪

𝟐
) 𝐬𝐢𝐧 (

𝑩 + 𝑪

𝟐
) 

For the 𝚫𝑨𝑩𝑪: 

𝒓 = 𝟒𝑹𝐬𝐢𝐧
𝑨

𝟐
𝐬𝐢𝐧

𝑩

𝟐
𝐬𝐢𝐧

𝑪

𝟐
 

For the 𝚫𝑷𝑸𝑹: 

𝝆 = 𝟒𝑹𝐬𝐢𝐧 (
𝑨 + 𝑩

𝟐
) 𝐬𝐢𝐧 (

𝑨 + 𝑪

𝟐
) 𝐬𝐢𝐧 (

𝑩 + 𝑪

𝟐
) ≤ 

≤ 𝟒𝑹𝐬𝐢𝐧𝟑 (

𝑨 +𝑩
𝟒 +

𝑩+ 𝑪
𝟒 +

𝑪 + 𝑩
𝟒

𝟑
) = 𝟒𝑹𝐬𝐢𝐧𝟑 (

𝝅

𝟔
) = 𝟒𝑹 ⋅

𝟑√𝟑

𝟖
=
𝟑√𝟑

𝟐
𝑹 

Where we use Jensen’s inequality for the concave function  
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𝒇(𝒙) = 𝐥𝐨𝐠(𝒔𝒊𝒏𝒙) ; 𝒙 ∈ (𝟎, 𝝅) 

844. 𝑨𝑩𝑪𝑫 − 𝐭𝐞𝐭𝐫𝐚𝐡𝐞𝐝𝐫𝐨𝐧, 𝑮 − 𝐜𝐞𝐧𝐭𝐫𝐨𝐢𝐝 𝐨𝐟 𝚫𝑩𝑪𝑫, 𝑨𝑷 = 𝒑𝑨𝑩, 

𝑨𝑸 = 𝒒𝑨𝑪, 𝑨𝑹 = 𝒓𝑨𝑫, 𝑨𝑺 = 𝒔𝑨𝑮. 𝐏𝐫𝐨𝐯𝐞 𝐭𝐡𝐚𝐭: 

(
𝟏

𝒑
+
𝟏

𝒒
+
𝟏

𝒓
) 𝒔 = 𝟑   

 

Proposed by Thanasis Gakopoulos-Farsala-Greece 
Solution by Rajarshi Chakraborty-India 
 

𝑺⃗⃗ = 𝒔 (
𝒅⃗⃗ + 𝒃⃗⃗ + 𝒄⃗ 

𝟑
) 

𝑺𝒊𝒏𝒄𝒆 𝑷, 𝑸,𝑹 𝒂𝒏𝒅 𝑺 𝒂𝒓𝒆 𝒊𝒏 𝒕𝒉𝒆 𝒔𝒂𝒎𝒆 𝒑𝒍𝒂𝒏𝒆,𝒘𝒆 𝒉𝒂𝒗𝒆: 

[(𝒑𝒃⃗⃗ − 𝒓𝒅⃗⃗ ) × (𝒒𝒄⃗ − 𝒓𝒅⃗⃗ )] ⋅ (𝑺⃗⃗ − 𝒓𝒅⃗⃗ ) = 𝟎 

          [𝒑𝒒(𝒃⃗⃗ × 𝒄⃗ ) − 𝒓𝒒(𝒅⃗⃗ × 𝒄⃗ ) − 𝒑𝒓(𝒃⃗⃗ × 𝒅⃗⃗ )], (𝑺⃗⃗ − 𝒓𝒅⃗⃗ ) = 𝟎;             (𝟏) 

𝑵𝒐𝒘, (𝒃⃗⃗ × 𝒄⃗ ) ⋅ 𝑺⃗⃗ = 𝒔 ⋅
(𝒃⃗⃗ × 𝒄⃗ ) ⋅ 𝒅⃗⃗ 

𝟑
; (𝒅⃗⃗ × 𝒄⃗ ) ⋅ 𝑺⃗⃗ = 𝒔 ⋅

(𝒅⃗⃗ × 𝒄⃗ ) ⋅ 𝒃⃗⃗ 

𝟑
= −𝒔 ⋅

(𝒄⃗ × 𝒅⃗⃗ ) ⋅ 𝒃⃗⃗ 

𝟑
 

(𝒃⃗⃗ × 𝒅⃗⃗ ) ⋅ 𝑺⃗⃗ = 𝒔 ⋅
(𝒃⃗⃗ × 𝒅⃗⃗ ) ⋅ 𝒄⃗ 

𝟑
= −𝒔 ⋅

(𝒅⃗⃗ × 𝒃⃗⃗ ) ⋅ 𝒄⃗ 

𝟑
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𝑺𝒐 (𝟏) 𝒄𝒂𝒏 𝒃𝒆 𝒘𝒓𝒊𝒕𝒕𝒆𝒏 𝒂𝒔: 

[𝒑𝒒𝒔 ⋅
(𝒃⃗⃗ × 𝒄⃗ ) ⋅ 𝒅⃗⃗ 

𝟑
+ 𝒓𝒒𝒔 ⋅

(𝒄⃗ × 𝒅⃗⃗ ) ⋅ 𝒃⃗⃗ 

𝟑
+ 𝒑𝒓𝒔 ⋅

(𝒅⃗⃗ × 𝒃⃗⃗ ) ⋅ 𝒄⃗ 

𝟑
= 𝒑𝒒𝒓[(𝒃⃗⃗ × 𝒄⃗ ) ⋅ 𝒅⃗⃗  

⇒
𝒑𝒒𝒔

𝟑
+
𝒓𝒒𝒔

𝟑
+
𝒑𝒓𝒔

𝟑
= 𝒑𝒒𝒓 ⇒ (

𝟏

𝒑
+
𝟏

𝒒
+
𝟏

𝒓
) ⋅ 𝒔 = 𝟑   

845. If 𝒙, 𝒚, 𝒛 > 0 then in 𝚫𝑨𝑩𝑪 holds: 

𝒙𝟐𝒂𝟑

(𝒚 + 𝒛)𝟐
+

𝒚𝟐𝒃𝟑

(𝒛 + 𝒙)𝟐
+

𝒛𝟐𝒄𝟑

(𝒙 + 𝒚)𝟐
≥ 𝟔𝒓𝑭 

Proposed by D.M. Bătineţu-Giurgiu, Florică Anastase-Romania 
Solution by Tapas Das-India 

𝒙𝟐𝒂𝟑

(𝒚 + 𝒛)𝟐
+

𝒚𝟐𝒃𝟑

(𝒛 + 𝒙)𝟐
+

𝒛𝟐𝒄𝟑

(𝒙 + 𝒚)𝟐
=
(
𝒙

𝒚 + 𝒛𝒂
𝟐)

𝟐

𝒂
+
(
𝒚

𝒛 + 𝒙𝒃
𝟐)

𝟐

𝒃
+
(

𝒛
𝒙 + 𝒚𝒄

𝟐)
𝟐

𝒄
≥ 

≥
(
𝒙

𝒚 + 𝒛𝒂
𝟐 +

𝒚
𝒛 + 𝒙𝒃

𝟐 +
𝒛

𝒙 + 𝒚 𝒄
𝟐)

𝟐

𝒂 + 𝒃 + 𝒄
≥

𝑻𝒔𝒊𝒏𝒕𝒔𝒊𝒇𝒂𝒔 (𝟐√𝟑𝑭)
𝟐

𝟐𝒔
=
𝟏𝟐𝑭𝟐

𝟐𝒔
=
𝟔𝑭 ⋅ 𝒓𝒔

𝒔
= 𝟔𝒓𝑭   
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846.  𝑶𝑨𝑩𝑪 − 𝐭𝐞𝐭𝐫𝐚𝐡𝐞𝐝𝐫𝐨𝐧, 𝑶𝑨 = 𝟔, 𝑶𝑩 = 𝑶𝑪 = 𝟏𝟐, 

𝑶𝑫 =
𝟏

𝟑
𝑶𝑨, 𝑨𝑬 =

𝟏

𝟐
𝑨𝑩,𝑩𝑭 =

𝟐

𝟑
𝑩𝑪 

∢𝑩𝑶𝑪 = ∢𝑪𝑶𝑨 = ∢𝑨𝑶𝑩 = 𝜽 = 𝟔𝟎°, 𝐩𝐥𝐚𝐧𝐞(𝑫, 𝑬, 𝑭) = (𝑷), 

(𝑷) ∩ 𝑶𝑪 = 𝑲, (𝑷) ∩ 𝑶𝑩 = 𝑳, (𝑷) ∩ 𝑨𝑪 = 𝑴. 𝐕𝐨𝐥𝐮𝐦𝐞(𝑶𝑲𝑳𝑴) = 𝑽 =? 

 
Proposed by Thanasis Gkopoulos-Farsala-Greece 

Solution by proposer 
Plagiogonal system 3D: 

𝑶𝑨 ≡ 𝑶𝒙;𝑶𝑩 ≡ 𝑶𝒚;𝑶𝑪 ≡ 𝑶𝒛 

𝑶(𝟎,𝟎, 𝟎), 𝑨(𝟔, 𝟎, 𝟎),𝑫(𝟐, 𝟎, 𝟎),𝑩(𝟎, 𝟏𝟐, 𝟎), 𝑬(𝟑, 𝟔, 𝟎), 𝑪(𝟎, 𝟎, 𝟏𝟐), 𝑭(𝟎, 𝟒, 𝟖) 

(𝑷): |

𝟏 𝟏
𝒙 𝟐

𝟏 𝟏
𝟑 𝟎

𝒚 𝟎
𝟐 𝟎

𝟔 𝟒
𝟎 𝟖

| = 𝟎 ⇒ 𝟔𝒙 − 𝒚 + 𝟐𝒛 − 𝟏𝟐 = 𝟎;   (𝟏) 

𝑶𝑪: {𝒙 = 𝟎, 𝒚 = 𝟎}; (𝟐) 

(𝟏), (𝟐) ⇒ 𝑲(𝟎, 𝟎, 𝟔) 

𝑶𝑩: {𝒙 = 𝟎, 𝒛 = 𝟎};   (𝟑) 

(𝟏), (𝟑) ⇒ 𝑳(𝟎,−𝟏𝟐, 𝟎) 

𝑨𝑪: {
𝒙 − 𝟔

𝟎 − 𝟔
=
𝒛 − 𝟎

𝟏𝟐 − 𝟎
⇒ 𝟐𝒙 + 𝒛 = 𝟏𝟐, 𝒚 = 𝟎} ;   (𝟒) 



 
www.ssmrmh.ro 

59 RMM-GEOMETRY MARATHON 801-900 

 

(𝟏), (𝟒) ⇒ 𝑴(𝟔, 𝟎, 𝟐𝟒) 

𝐈𝐬 𝑶𝑲𝟐 = 𝟑𝟔 ⇒ 𝑶𝑳𝟐 = 𝟏𝟒𝟒,𝑶𝑴𝟐 = 𝟔𝟐 + 𝟐𝟒𝟐 + 𝟔 ⋅ 𝟐𝟒 = 𝟕𝟓𝟔 

𝑲𝑳𝟐 = 𝟏𝟐𝟐 + 𝟔𝟐 + 𝟏𝟐 ⋅ 𝟔 = 𝟐𝟓𝟐 

𝑳𝑴𝟐 = 𝟔𝟐 + 𝟏𝟐𝟐 + 𝟐𝟒𝟐 + 𝟔 ⋅ 𝟏𝟐 + 𝟏𝟐 ⋅ 𝟐𝟒 + 𝟔 ⋅ 𝟐𝟒 = 𝟏𝟐𝟔𝟎 

𝑲𝑴𝟐 = 𝟔𝟐 + 𝟏𝟖𝟐 + 𝟔 ⋅ 𝟏𝟖 = 𝟒𝟔𝟖 

𝟐𝟖𝟖 ⋅ 𝑽𝟐 = |𝚫|,𝐰𝐡𝐞𝐫𝐞 𝚫 = |
|

𝟎 𝟏 𝟏     𝟏      𝟏
𝟏 𝟎 𝟑𝟔 𝟏𝟒𝟒  𝟕𝟓𝟔
𝟏
𝟏
𝟏

𝟑𝟔
𝟏𝟒𝟒
𝟕𝟓𝟔

𝟎    𝟐𝟓𝟐  𝟒𝟔𝟖
 𝟐𝟓𝟐    𝟎    𝟏𝟐𝟔𝟎
 𝟒𝟔𝟖 𝟏𝟐𝟔𝟎    𝟎   

|
|    

𝑽 =
𝟔 ⋅ 𝟏𝟐 ⋅ 𝟏𝟐

𝟔
⋅
𝟏

√𝟐
= 𝟕𝟐√𝟐 

847. If 𝒎,𝒏, 𝒑, 𝒙, 𝒚, 𝒛 > 0 then in 𝚫𝑨𝑩𝑪 holds: 

(𝒎 + 𝒏)(𝒛 + 𝒙)

𝒑𝒚
⋅ 𝒂𝒃 +

(𝒑 +𝒎)(𝒚 + 𝒛)

𝒎𝒛
⋅ 𝒃𝒄 +

(𝒏 + 𝒑)(𝒙 + 𝒚)

𝒏𝒙
⋅ 𝒄𝒂 ≥ 𝟏𝟔√𝟑 ⋅ 𝑭 

Proposed by D.M.Bătinețu-Giurgiu, Florică Anastase-Romania 
Solution by Tapas Das-India 

 

(𝒎 + 𝒏)(𝒛 + 𝒙)

𝒑𝒚
⋅ 𝒂𝒃 +

(𝒑 +𝒎)(𝒚 + 𝒛)

𝒎𝒛
⋅ 𝒃𝒄 +

(𝒏 + 𝒑)(𝒙 + 𝒚)

𝒏𝒙
⋅ 𝒄𝒂 ≥

𝑨𝑴−𝑮𝑴
 

≥
𝟐√𝒎𝒏 ⋅ 𝟐√𝒛𝒙

𝒑𝒚
⋅ 𝒂𝒃 +

𝟐√𝒑𝒎 ⋅ 𝟐√𝒚𝒛

𝒎𝒛
⋅ 𝒃𝒄 +

𝟐√𝒏𝒑 ⋅ 𝟐√𝒙𝒚

𝒏𝒙
⋅ 𝒄𝒂 ≥

𝑨𝑴−𝑮𝑴
 

≥ 𝟑 [
𝟐√𝒎𝒏 ⋅ 𝟐√𝒛𝒙

𝒑𝒚
⋅ 𝒂𝒃 ⋅

𝟐√𝒑𝒎 ⋅ 𝟐√𝒚𝒛

𝒎𝒛
⋅ 𝒃𝒄 ⋅

𝟐√𝒏𝒑 ⋅ 𝟐√𝒙𝒚

𝒏𝒙
⋅ 𝒄𝒂]

𝟏
𝟑

= 

= 𝟑 [𝟖 ⋅ 𝟖 ⋅
𝒎𝒏𝒑 ⋅ 𝒙𝒚𝒛

𝒎𝒏𝒑 ⋅ 𝒙𝒚𝒛
⋅ (𝒂𝒃𝒄)𝟐]

𝟏
𝟑
≥ 𝟒 ⋅ 𝟑 [(

𝟒𝑭

√𝟑
)
𝟑

]

𝟏
𝟑

= 𝟏𝟔√𝟑 ⋅ 𝑭  

∵ (𝒂𝒃𝒄)𝟐 ≥ (
𝟒𝑭

√𝟑
)
𝟑

   

848.  𝑶𝑨𝑩𝑪 − 𝐭𝐞𝐭𝐫𝐚𝐡𝐞𝐝𝐫𝐨𝐧,𝑲𝑩 = 𝑲𝑪, 𝑳𝑪 = 𝑳𝑨,𝑴𝑨 = 𝑴𝑩,  

𝑶𝑷 = 𝒌𝑶𝑲,𝑶𝑸 = 𝒒𝑶𝑳, 𝑶𝑹 = 𝒓𝑶𝑴, 𝐩𝐥𝐚𝐧𝐞(𝑷,𝑸, 𝑹) = (𝝅),  

(𝝅) ∩ 𝑶𝑨 = 𝑫, (𝝅) ∩ 𝑶𝑩 = 𝑬, (𝝅) ∩ 𝑶𝑪 = 𝑭 
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𝐕𝐨𝐥𝐮𝐦𝐞(𝑶𝑨𝑩𝑪) = 𝑽𝟎, 𝐕𝐨𝐥𝐮𝐦𝐞(𝑶𝑫𝑬𝑭) = 𝑽. 𝐅𝐢𝐧𝐝:  
𝑽𝟎
𝑽
=?   

 

Proposed by Thanasis Gakopoulos-Farsala-Greece 
Solution by Rajarshi Chakraborty-India 

𝑽𝟎 =
𝟏

𝟔
[𝒂⃗⃗ ⋅ (𝒃⃗⃗ × 𝒄⃗ )], 𝑽 =

𝟏

𝟔
[𝒅⃗⃗ ⋅ (𝒆⃗ × 𝒇⃗ )], 𝒆⃗ = 𝝁𝒃⃗⃗ , 𝒅⃗⃗ = 𝝈𝒂⃗⃗ , 𝒇⃗ = 𝝀𝒄⃗  

𝑽 =
𝟏

𝟔
⋅ 𝝀𝝁𝝈[𝒂⃗⃗ ⋅ (𝒃⃗⃗ × 𝒄⃗ )] ⇒   

𝑽𝟎
𝑽
=

𝟏

𝝀𝝁𝝈
;    (𝒍) 

𝑺𝒊𝒏𝒄𝒆 𝑫,𝑹 𝒂𝒏𝒅 𝑬 𝒂𝒓𝒆 𝒄𝒐𝒍𝒍𝒊𝒏𝒆𝒂𝒓  (𝝈𝒂⃗⃗ − 𝝁𝒃⃗⃗ ) × (𝒓
𝒂⃗⃗ + 𝒃⃗⃗ 

𝟐
− 𝝁𝒃⃗⃗ ) = 𝟎 

𝝈
𝒓

𝟐
(𝒂⃗⃗ × 𝒃⃗⃗ ) + 𝝁

𝒓

𝟐
(𝒂⃗⃗ × 𝒃⃗⃗ ) = 𝝈𝝁(𝒂⃗⃗ × 𝒃⃗⃗ ),

𝝈 + 𝝁

𝟐
⋅ 𝒓 = 𝝈𝝁 ⇒

𝟏

𝟐
(
𝟏

𝝁
+
𝟏

𝝈
) =

𝟏

𝒓
;   (𝟏)   
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𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚,
𝟏

𝟐
(
𝟏

𝝁
+
𝟏

𝝀
) =

𝟏

𝒑
;   (𝟐) 

𝟏

𝟐
(
𝟏

𝝀
+
𝟏

𝝈
) =

𝟏

𝒒
;     (𝟑) 

𝑭𝒓𝒐𝒎 (𝟏), (𝟐) 𝒂𝒏𝒅 (𝟑): 

𝟏

𝝁
+
𝟏

𝝈
+
𝟏

𝝀
=
𝟏

𝒓
+
𝟏

𝒑
+
𝟏

𝒒
;   (𝟒) 

𝑭𝒓𝒐𝒎 (𝟏) 𝒂𝒏𝒅 (𝟒): 

𝟏

𝝀
= −

𝟏

𝒓
+
𝟏

𝒑
+
𝟏

𝒒
;   (𝒎) 

𝟏

𝝈
=
𝟏

𝒓
−
𝟏

𝒑
+
𝟏

𝒒
;  (𝒏) 

𝟏

𝝁
=
𝟏

𝒓
−
𝟏

𝒑
+
𝟏

𝒒
 ;  (𝒐) 

𝑻𝒉𝒖𝒔,
𝑽𝟎
𝑽
=

𝟏

𝝀𝝁𝝈
= (

𝟏

𝒓
−
𝟏

𝒑
+
𝟏

𝒒
) (
𝟏

𝒓
−
𝟏

𝒑
+
𝟏

𝒒
) (−

𝟏

𝒓
+
𝟏

𝒑
+
𝟏

𝒒
)    

849. 𝑨𝑩𝑪𝑫𝑷𝑸𝑹𝑺 − 𝐩𝐚𝐫𝐚𝐥𝐥𝐞𝐥𝐢𝐩𝐢𝐩𝐞𝐝,  

𝑨𝑷 = 𝟖, 𝑨𝑩 = 𝟏𝟐, 𝑨𝑫 = 𝟐𝟒, 𝑨𝑴 =
𝟏

𝟑
𝑨𝑫 

𝑩𝑳 =
𝟏

𝟐
𝑩𝑸, 𝑨𝑲 =

𝟐

𝟑
𝑨𝑩, ∢𝑷𝑨𝑫 = 𝜽𝟏 = 𝟔𝟎°, ∢𝑩𝑨𝑫 = 𝜽𝟐 = 𝟒𝟓°, 

∢𝑩𝑨𝑷 = 𝜽𝟑 = 𝟑𝟎°. 𝐕𝐨𝐥𝐮𝐦𝐞(𝐑𝐊𝐋𝐌) = 𝐕 =? 

 

Proposed by Thanasis Gakopoulos-Farsala-Greece 
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Solution by proposer 
𝑷𝒍𝒂𝒈𝒊𝒐𝒈𝒐𝒏𝒂𝒍 𝟑𝑫 𝒔𝒚𝒔𝒕𝒆𝒎:𝑨𝑩 ≡ 𝑨𝒙,𝑨𝑷 ≡ 𝑨𝒚,𝑨𝑫 ≡ 𝑨𝒛 

𝑨(𝟎, 𝟎, 𝟎),𝑩(𝟏𝟐, 𝟎, 𝟎),𝑲(𝟖, 𝟎, 𝟎),𝑫(𝟎, 𝟎, 𝟐𝟒),𝑴(𝟎, 𝟎, 𝟖), 𝑸(𝟏𝟐,𝟖, 𝟎), 𝑳(𝟏𝟐, 𝟒, 𝟎), 𝑹(𝟏𝟐, 𝟖, 𝟐𝟒) 

𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏: 𝑨(𝟎, 𝟎, 𝟎) → 𝑨(𝟎, 𝟎, 𝟎) 

𝑳(𝟏𝟐, 𝟒, 𝟎) → 𝑳(𝟏𝟐 + 𝟐√𝟑, 𝟐, 𝟎) 

𝑲(𝟖, 𝟎, 𝟎) → 𝑲(𝟖, 𝟎, 𝟎) 

𝑴(𝟎, 𝟎, 𝟖) → 𝑴(𝟒√𝟐, 𝟖 − 𝟒√𝟔, 𝟖√√𝟔 − 𝟐) 

𝑹(𝟏𝟐, 𝟖, 𝟐𝟒) → 𝑹(𝟏𝟐 + 𝟒√𝟑 + 𝟏𝟐√𝟐, 𝟐𝟖 − 𝟏𝟐√𝟔, 𝟐𝟒√√𝟔− 𝟐) 

𝑽 =
𝟏

𝟔
|𝚫|, 𝒘𝒉𝒆𝒓𝒆 𝚫 =

|

|

𝟖                𝟎

𝟏𝟐 + 𝟐√𝟑                 𝟐
             

𝟎      𝟏
𝟎      𝟏

𝟒√𝟐 𝟖 − 𝟒√𝟔

𝟏𝟐 + 𝟒√𝟑 + 𝟏𝟐√𝟐 𝟐𝟖− 𝟏𝟐√𝟔

𝟖√√𝟔 − 𝟐 𝟏

𝟐𝟒√√𝟔− 𝟐 𝟏

|

|

   

𝑽 =
𝟏𝟔𝟎√√𝟔− 𝟐

𝟑
 

850. 𝑶𝑨𝑩𝑪 −tetrahedron, ∢𝑩𝑶𝑪 = ∢𝑪𝑶𝑨 = ∢𝑨𝑶𝑩 = 𝜽 = 𝟔𝟎° 

𝑶𝑨 = 𝟒𝒂, 𝑶𝑩 = 𝟒𝒃, 𝑶𝑪 = 𝟒𝒄,𝑶𝑷 = 𝒑 ⋅ 𝑶𝑨, 𝑶𝑸 = 𝒒 ⋅ 𝑶𝑩,𝑶𝑹 = 𝒓 ⋅ 𝑶𝑪 

Find 𝑨𝒓𝒆𝒂(𝑷𝑸𝑹) = 𝑺 =? 

 

Proposed by Thanasis Gakopoulos-Farsala-Greece 
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Solution by proposer 
𝑷𝒍𝒂𝒈𝒊𝒐𝒈𝒐𝒏𝒂𝒍 𝒔𝒚𝒔𝒕𝒆𝒎:𝑶𝑨 ≡ 𝑶𝒙;𝑶𝑩 ≡ 𝑶𝒚;𝑶𝑪 ≡ 𝑶𝒛 

𝑶(𝟎, 𝟎, 𝟎), 𝑨(𝟒𝒂, 𝟎, 𝟎),𝑩(𝟎, 𝟒𝒃, 𝟎), 𝑪(𝟎, 𝟎, 𝟒𝒄) 

𝑷(𝟒𝒑𝒂, 𝟎, 𝟎),𝑸(𝟎, 𝟒𝒃𝒒, 𝟎), 𝑹(𝟎, 𝟎, 𝟒𝒓𝒄) 

𝑷𝑸⃗⃗⃗⃗⃗⃗ = (−𝟒𝒑𝒂, 𝟒𝒒𝒃, 𝟎), 𝑷𝑹⃗⃗⃗⃗⃗⃗ = (−𝟒𝒑𝒂, 𝟎, 𝟒𝒓𝒄) 

|𝑷𝑸⃗⃗⃗⃗⃗⃗  |
𝟐
= 𝟏𝟔𝒑𝟐𝒂𝟐 + 𝟏𝟔𝒒𝟐𝒃𝟐 − 𝟏𝟔𝒑𝒒𝒂𝒃 

|𝑷𝑹⃗⃗⃗⃗⃗⃗ |
𝟐
= 𝟏𝟔𝒑𝟐𝒂𝟐 + 𝟏𝟔𝒓𝟐𝒄𝟐 − 𝟏𝟔𝒑𝒓𝒂𝒄 

𝑰𝒔 𝟒𝑺𝟐 = |𝑷𝑸⃗⃗⃗⃗⃗⃗ |
𝟐
⋅ |𝑷𝑹⃗⃗⃗⃗⃗⃗ |

𝟐
− (𝑷𝑸⃗⃗⃗⃗⃗⃗ ⋅ 𝑹𝑪⃗⃗ ⃗⃗  ⃗) 

𝑺 = 𝟒√𝟑(𝒂𝟐𝒃𝟐𝒑𝟐𝒒𝟐 + 𝒃𝟐𝒄𝟐𝒒𝟐𝒓𝟐 + 𝒄𝟐𝒂𝟐𝒓𝟐𝒑𝟐) − 𝟐(𝒂𝒃𝟐𝒄𝒑𝟐𝒒𝒓 + 𝒂𝒃𝟐𝒄𝒑𝒒𝟐𝒓 + 𝒂𝒃𝒄𝟐𝒑𝒒𝒓𝟐) 

𝑺 = 𝟒𝒂𝒃𝒄𝒑𝒒𝒓√𝟑(
𝟏

𝒂𝟐𝒑𝟐
+

𝟏

𝒃𝟐𝒒𝟐
+

𝟏

𝒄𝟐𝒓𝟐
) − 𝟐(

𝟏

𝒂𝒃𝒑𝒒
+

𝟏

𝒃𝒄𝒒𝒓
+

𝟏

𝒄𝒂𝒓𝒑
) 

𝑺 =
𝑶𝑷 ⋅ 𝑶𝑸 ⋅ 𝑶𝑹

𝟒
√𝟑(

𝟏

𝑶𝑷𝟐
+

𝟏

𝑶𝑸𝟐
+

𝟏

𝑶𝑹𝟐
) − 𝟐(

𝟏

𝑶𝑷 ⋅ 𝑶𝑸
+

𝟏

𝑶𝑸 ⋅ 𝑶𝑹
+

𝟏

𝑶𝑹 ⋅ 𝑶𝑷
)   

851. 𝑶𝑨𝑩𝑪 −tetrahedron,𝑮 −centroid of 𝑶𝑨𝑩𝑪,  

∢𝑩𝑶𝑪 = ∢𝑪𝑶𝑨 = ∢𝑨𝑶𝑩 = 𝜽 = 𝟔𝟎° 

𝑶𝑨 = 𝟒𝒂, 𝑶𝑩 = 𝟒𝒃, 𝑶𝑪 = 𝟒𝒄, 𝑶𝑷 = 𝒑𝑶𝑨,𝑶𝑸 = 𝒒𝑶𝑩,𝑶𝑹 = 𝒓𝑶𝑪 

Find: 𝑽𝒐𝒍𝒖𝒎𝒆(𝑮𝑷𝑸𝑹) = 𝑽 =? 

 

Proposed by Thanasis Gakopoulos-Farsala-Greece 
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Solution by proposer 
𝑷𝒍𝒂𝒈𝒊𝒐𝒈𝒐𝒏𝒂𝒍 𝟑𝑫 𝒔𝒚𝒔𝒕𝒆𝒎:𝑶𝑨 ≡ 𝑶𝒙;𝑶𝑩 ≡ 𝑶𝒚;𝑶𝑪 ≡ 𝑶𝒛 

𝑶(𝟎, 𝟎, 𝟎), 𝑨(𝟒𝒂, 𝟎, 𝟎), 𝑩(𝟎, 𝟒𝒃, 𝟎), 𝑪(𝟎, 𝟎, 𝟒𝒄), 𝑮(𝒂, 𝒃, 𝒄) 

𝑷(𝟒𝒑𝒂, 𝟎, 𝟎),𝑸(𝟎, 𝟒𝒒𝒃, 𝟎), 𝑹(𝟎, 𝟎, 𝟒𝒓𝒄) 

𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏:𝑨𝟏 = 𝟒𝒑𝒂;𝑨𝟐 = 𝟎;𝑨𝟑 = 𝟎;𝑩𝟏 = 𝟒𝒒𝒃 ⋅
𝟏

𝟐
;𝑩𝟐 = 𝟒𝒒𝒃 ⋅

√𝟑

𝟐
 

𝑪𝟏 = 𝟒𝒓𝒄 ⋅
𝟏

𝟐
; 𝑪𝟐 = 𝟒𝒓𝒄 ⋅

√𝟑

𝟔
;𝑪𝟑 = 𝟒𝒓𝒄 ⋅

√𝟔

𝟑
 

𝑫𝟏 = 𝒂 +
𝒃

𝟐
+
𝒄

𝟑
;𝑫𝟐 = 𝒃 ⋅

√𝟑

𝟐
+ 𝑪 ⋅

√𝟑

𝟔
;𝑫𝟑 =

√𝟔

𝟑
 

𝑽 =
𝟏

𝟔
|𝚫|, 𝒘𝒉𝒆𝒓𝒆 𝚫 = |

𝟏 𝑨𝟏
𝟏 𝑩𝟏

𝑨𝟐 𝑨𝟑
𝑩𝟐 𝑩𝟑

𝟏 𝑪𝟏
𝟏 𝑫𝟏

𝑪𝟐 𝑪𝟑
𝑫𝟐 𝑫𝟑

| . 𝑻𝒉𝒖𝒔, 

𝑽 =
𝟒√𝟐

𝟑
𝒂𝒃𝒄𝒑𝒒𝒓 |

𝟏

𝒑
+
𝟏

𝒒
+
𝟏

𝒓
− 𝟒| 

𝑵𝒐𝒕𝒆: 𝑰𝒔 𝑽 =
𝟏

𝟑
[𝑷𝑸𝑹] ⋅ 𝒉; 𝒉 = 𝒅(𝑶, (𝑷𝑸𝑹)) 

𝒉 = √𝟐 ⋅
|
𝟏
𝒑 +

𝟏
𝒒 +

𝟏
𝒓 − 𝟒

|

√𝟑(
𝟏

𝒂𝟐𝒑𝟐
+

𝟏
𝒃𝟐𝒒𝟐

+
𝟏
𝒄𝟐𝒓𝟐

) − 𝟐(
𝟏

𝒂𝒃𝒑𝒒 +
𝟏

𝒃𝒄𝒒𝒓 +
𝟏

𝒄𝒂𝒓𝒑)

 

𝑽 =
√𝟐

𝟒𝟖
𝑶𝑷 ⋅ 𝑸𝑶 ⋅ 𝑶𝑹 ⋅ |

𝑶𝑨

𝑶𝑷
+
𝑶𝑩

𝑶𝑸
+
𝑶𝑪

𝑶𝑹
− 𝟒|   

852. In 𝚫𝑨𝑩𝑪 the following relationship holds: 

√𝟏𝟔𝟐𝑹𝒓(𝒔𝟐 + 𝟗𝒓𝟐) ≤ 𝟒𝒔𝟐 ≤ 𝟏𝟕𝑹𝟐 + 𝟏𝟖𝑹𝒓 + 𝟒𝒓𝟐 

Proposed by Radu Diaconu-Romania 
Solution by Tapas Das-India 

𝒔𝟐 ≥
𝟐𝟕𝑹𝒓

𝟐
⇒ 𝟏𝟔𝟐𝑹𝒓(𝒔𝟐 + 𝟗𝒓𝟐) = 𝟏𝟐 ⋅

𝟐𝟕𝑹𝒓

𝟐
(𝒔𝟐 + 𝟗𝒓𝟐) ≤ 𝟏𝟐𝒔𝟐(𝒔𝟐 + 𝟗𝒓𝟐) 

√𝟏𝟔𝟐𝑹𝒓(𝒔𝟐 + 𝟗𝒓𝟐) ≤ 𝒔√𝟏𝟐(𝒔𝟐 + 𝟗𝒓𝟐) 

𝑾𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒔𝒉𝒐𝒘: 

𝒔√𝟏𝟐(𝒔𝟐 + 𝟗𝒓𝟐) ≤ 𝟗𝒔𝟐 ⇔√𝟏𝟐(𝒔𝟐 + 𝟗𝒓𝟐) ≤ 𝟒𝒔 ⇔ 𝟏𝟐(𝒔𝟐 + 𝟗𝒓𝟐) ≤ 𝟏𝟔𝒔𝟐 
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⇔ 𝟒𝒔𝟐 ≥ 𝟏𝟎𝟖𝒓𝟐 𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒔𝒊𝒏𝒄𝒆 𝒔𝟐 ≥ 𝟐𝟕𝒓𝟐(𝑴𝒊𝒕𝒓𝒊𝒏𝒐𝒗𝒊𝒄) 

𝑵𝒐𝒘,𝟒𝒔𝟐 ≤ 𝟒(𝟒𝑹𝟐 + 𝟒𝑹𝒓 + 𝟑𝒓𝟐); (𝑮𝒆𝒓𝒓𝒆𝒕𝒔𝒆𝒏) 

𝟒(𝟒𝑹𝟐 + 𝟒𝑹𝒓 + 𝟑𝒓𝟐) ≤ 𝟏𝟕𝑹𝟐 + 𝟏𝟖𝑹𝒓 + 𝟒𝒓𝟐 ⇔ 

(𝑹 + 𝟒𝒓)(𝑹 − 𝟐𝒓) ≥ 𝟎 𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒇𝒓𝒐𝒎 𝑹 ≥ 𝟐(𝑬𝒖𝒍𝒆𝒓). 

  853. 𝑫𝑨𝑩𝑪 −tetrahedron, 𝑮 −centroid of 𝑫𝑨𝑩𝑪,  

plane(𝑷, 𝑸,𝑹) = (𝝅), 𝑮 ∈ (𝝅) 

Prove: 
𝑫𝑨

𝑫𝑷
+
𝑫𝑩

𝑫𝑸
+
𝑫𝑪

𝑫𝑹
= 𝟒 or 

𝑷𝑨

𝑷𝑫
+
𝑸𝑩

𝑸𝑫
+

𝑹𝑪

𝑹𝑫
= 𝟏. 

 

Proposed by Thanasis Gakopoulos-Farsala-Greece 
Solution by proposer 

𝑷𝒍𝒂𝒈𝒊𝒐𝒈𝒐𝒏𝒂𝒍 𝟑𝑫 𝒔𝒚𝒔𝒕𝒆𝒎:𝑫𝑨 ≡ 𝑫𝒙;𝑫𝑩 ≡ 𝑫𝒚;𝑫𝑪 ≡ 𝑫𝒛 

𝑫(𝟎, 𝟎, 𝟎), 𝑮 (
𝑫𝑨

𝟒
,
𝑫𝑩

𝟒
,−
𝑫𝑪

𝟒
) 

(𝝅):
𝒙

𝑫𝑷
+

𝒚

𝑫𝑸
+

𝒛

𝑫𝑹
= 𝟏;𝑮 ∈ (𝝅) ⇒

𝑫𝑨

𝑫𝑷
+
𝑫𝑩

𝑫𝑸
+
𝑫𝑪

𝑫𝑹
= 𝟒 

𝑫𝑷+ 𝑷𝑨

𝑫𝑷
+
𝑫𝑸+ 𝑸𝑩

𝑫𝑸
+
𝑫𝑹 +𝑹𝑪

𝑫𝑹
= 𝟒 ⇒

𝑷𝑨

𝑷𝑫
+
𝑸𝑩

𝑸𝑫
+
𝑹𝑪

𝑹𝑫
= 𝟏.   

854. In 𝚫𝑨𝑩𝑪 the following relationship holds: 

𝒂𝟐𝒎𝒂 + 𝒃
𝟐𝒎𝒃 + 𝒄

𝟐𝒎𝒄 ≥ 𝟓𝟒𝑹𝒓𝟐 

Proposed by Marin Chirciu-Romania 
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Solution 1 by Marian Ursărescu-Romania 

∑𝒂𝟐𝒎𝒂

𝒄𝒚𝒄

=∑
𝒂𝟐

𝟏
𝒎𝒂

𝒄𝒚𝒄

≥
𝑩𝒆𝒓𝒈𝒔𝒕𝒓𝒐𝒎 (𝒂 + 𝒃 + 𝒄)𝟐

𝟏
𝒎𝒂

+
𝟏
𝒎𝒃

+
𝟏
𝒎𝒄

 

𝑾𝒆 𝒎𝒖𝒔𝒕 𝒔𝒉𝒐𝒘 𝒕𝒉𝒂𝒕: 

𝟒𝒔𝟐

𝟏
𝒎𝒂

+
𝟏
𝒎𝒃

+
𝟏
𝒎𝒄

≥ 𝟓𝟒𝑹𝒓𝟐 ⇔
𝟐𝒔𝟐

𝟏
𝒎𝒂

+
𝟏
𝒎𝒃

+
𝟏
𝒎𝒄

≥ 𝟐𝟕𝑹𝒓𝟐;   (𝟏) 

𝑩𝒖𝒕 𝟐𝒔𝟐 ≥ 𝟐𝟕𝑹𝒓 (𝑪𝒐𝒔𝒏𝒊𝒕𝒂 − 𝑻𝒖𝒓𝒕𝒐𝒊𝒖); (𝟐) 

𝑭𝒓𝒐𝒎 (𝟏) 𝒂𝒏𝒅 (𝟐),𝒘𝒆 𝒎𝒖𝒔𝒕 𝒔𝒉𝒐𝒘: 

𝟏

𝟏
𝒎𝒂

+
𝟏
𝒎𝒃

+
𝟏
𝒎𝒄

≥
𝟏

𝒓
⇔

𝟏

𝒎𝒂
+

𝟏

𝒎𝒃
+
𝟏

𝒎𝒄
≤
𝟏

𝒓
 𝒕𝒓𝒖𝒆 𝒃𝒆𝒄𝒂𝒖𝒔𝒆 

𝒎𝒂 ≥ 𝒉𝒂 𝒂𝒏𝒅 
𝟏

𝒎𝒂
+

𝟏

𝒎𝒃
+
𝟏

𝒎𝒄
≤
𝟏

𝒉𝒂
+
𝟏

𝒉𝒃
+
𝟏

𝒉𝒄
.   

Solution 2 by Tapas Das-India 

∑𝒂𝟐𝒎𝒂

𝒄𝒚𝒄

≥∑𝒂𝟐𝒉𝒂
𝒄𝒚𝒄

=∑𝒂𝟐 ⋅
𝟐𝑭

𝒂
𝒄𝒚𝒄

= 𝟐𝑭∑𝒂

𝒄𝒚𝒄

= 𝟒𝑭𝒔 

𝑵𝒐𝒘,𝒘𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆: 

𝟒𝑭𝒔 ≥ 𝟓𝟒𝑹𝒓𝟐 ⇔ 𝟒𝒓𝒔𝟐 ≥ 𝟐𝟕𝑹𝒓 ⇔ 𝟐(𝟏𝟔𝑹𝒓 − 𝟓𝒓𝟐) ≥ 𝟐𝟕𝑹𝒓(𝑮𝒆𝒓𝒓𝒆𝒕𝒔𝒆𝒏) 

𝟑𝟐𝑹𝒓 − 𝟏𝟎𝒓𝟐 ≥ 𝟐𝟕𝑹𝒓 ⇔ 𝟓𝑹𝒓 − 𝟏𝟎𝒓𝟐 ≥ 𝟎 ⇔ 𝟓𝒓(𝑹 − 𝟐𝒓) ≥ 𝟎 𝒕𝒓𝒖𝒆 𝒇𝒓𝒐𝒎  

𝑹 ≥ 𝟐𝒓 (𝑬𝒖𝒍𝒆𝒓).   

855. In 𝚫𝑨𝑩𝑪 the following relationship holds: 

∑
√𝒔𝒂

√𝒉𝒃 + √𝒉𝒄
(𝒘𝒂

𝟐 +𝒎𝒃𝒎𝒄)

𝒄𝒚𝒄

+∑𝒉𝒂
𝟐

𝒄𝒚𝒄

≥
𝟏𝟎𝟖𝒓𝟑

𝑹
 

Proposed by Florică Anastase, Mihai Ghenoiu-Romania 
Solution by Tapas Das-India 

𝑩𝒆𝒄𝒂𝒖𝒔𝒆: 𝒔𝒂 ≥ 𝒉𝒂, 𝒘𝒂 ≥ 𝒉𝒂,𝒎𝒂 ≥ 𝒉𝒂, 𝒘𝒆 𝒉𝒂𝒗𝒆: 

∑
√𝒔𝒂

√𝒉𝒃 + √𝒉𝒄
(𝒘𝒂

𝟐 +𝒎𝒃𝒎𝒄)

𝒄𝒚𝒄

≥∑
√𝒉𝒂

√𝒉𝒃 +√𝒉𝒄
(𝒉𝒂

𝟐 + 𝒉𝒃𝒉𝒄)

𝒄𝒚𝒄

≥ 
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≥
𝑨𝑴−𝑮𝑴

∑
√𝒉𝒂

√𝒉𝒃 +√𝒉𝒄
⋅ 𝟐√𝒉𝒂𝟐𝒉𝒃𝒉𝒄

𝒄𝒚𝒄

= 𝟐∑
𝒉𝒂√𝒉𝒂𝒉𝒃𝒉𝒄

√𝒉𝒃 + √𝒉𝒄𝒄𝒚𝒄

= 

= 𝟐√𝒉𝒂𝒉𝒃𝒉𝒄∑
(√𝒉𝒂)

𝟐

√𝒉𝒃 + √𝒉𝒄𝒄𝒚𝒄

≥ 𝟐√𝒉𝒂𝒉𝒃𝒉𝒄 ⋅
(√𝒉𝒂 + √𝒉𝒃 +√𝒉𝒄)

𝟐

𝟐(√𝒉𝒂 +√𝒉𝒃 +√𝒉𝒄)
= 

= √𝒉𝒂𝒉𝒃𝒉𝒄(√𝒉𝒂 +√𝒉𝒃 +√𝒉𝒄) ≥
𝑨𝑴−𝑮𝑴

𝟑√𝒉𝒂𝒉𝒃𝒉𝒄 ⋅ √𝒉𝒂𝒉𝒃𝒉𝒄
𝟔 = 

= 𝟑√(𝒉𝒂𝒉𝒃𝒉𝒄)
𝟐𝟑
≥ 𝟑√(𝟐𝟕𝒓𝟑)𝟐

𝟑
= 𝟐𝟕𝒓𝟐 =

𝟐𝟕𝒓𝟑

𝒓
≥
𝟐𝟕𝒓𝟑

𝑹
𝟐

=
𝟓𝟒𝒓𝟑

𝑹
 

∑𝒉𝒂
𝟐

𝒄𝒚𝒄

= 𝒉𝒂
𝟐 + 𝒉𝒃

𝟐 + 𝒉𝒄
𝟐 ≥

(𝒉𝒂 + 𝒉𝒃 + 𝒉𝒄)
𝟐

𝟑
≥
(𝟗𝒓)𝟐

𝟑
= 𝟐𝟕𝒓𝟐 = 

=
𝟐𝟕𝒓𝟑

𝒓
≥
𝟐𝟕𝒓𝟑

𝑹
𝟐

=
𝟓𝟒𝒓𝟑

𝑹
 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 

∑
√𝒔𝒂

√𝒉𝒃 +√𝒉𝒄
(𝒘𝒂

𝟐 +𝒎𝒃𝒎𝒄)

𝒄𝒚𝒄

+∑𝒉𝒂
𝟐

𝒄𝒚𝒄

≥
𝟏𝟎𝟖𝒓𝟑

𝑹
 

  856. Find 𝝀 > 0 so that the double inequality holds in any 𝚫𝑨𝑩𝑪: 

𝑹 ≥∑
𝒃 + 𝒄

𝝀 ⋅ 𝐜𝐨𝐬
𝑨
𝟐𝒄𝒚𝒄

≥ 𝟐𝒓 

Proposed by Alex Szoros-Romania 
Solution by Tapas Das-India 

𝑹 ≥∑
𝒃+ 𝒄

𝝀 ⋅ 𝐜𝐨𝐬
𝑨
𝟐𝒄𝒚𝒄

≥ 𝟐𝒓;  (𝟏) 

𝑺𝒊𝒏𝒄𝒆 𝒊𝒕 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒇𝒐𝒓 𝒂𝒏𝒚 𝚫𝑨𝑩𝑪, 𝒇𝒐𝒓 𝒂𝒏 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆,𝒘𝒆 𝒉𝒂𝒗𝒆: 

𝒂 = 𝒃 = 𝒄 𝒂𝒏𝒅 𝑨 = 𝑩 = 𝑪 =
𝝅

𝟑
, 𝑹 = 𝟐𝒓 

𝑵𝒐𝒘, 𝒇𝒓𝒐𝒎 (𝟏),∑
𝒃+ 𝒄

𝝀𝐜𝐨𝐬
𝑨
𝟐𝒄𝒚𝒄

= 𝟐𝒓 ⇔∑
𝟐𝒂

𝝀𝐜𝐨𝐬
𝑨
𝟐𝒄𝒚𝒄

= 𝟐𝒓 ⇔ 
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𝟔𝒂

𝝀 𝐜𝐨𝐬
𝑨
𝟐

= 𝟐𝒓 ⇔ 𝝀 =
𝟑𝒂

𝒓 𝐜𝐨𝐬
𝑨
𝟐

=
𝟑𝒂

𝝀𝐜𝐨𝐬 𝟑𝟎°
= 𝟏𝟐 

𝑾𝒆 𝒌𝒏𝒐𝒘 𝒕𝒉𝒂𝒕: 𝒔𝟐 ≥ 𝟐𝟕𝒓𝟐 𝒂𝒏𝒅 𝒇𝒐𝒓 𝒂𝒏 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆: 𝒔𝟐 = 𝟐𝟕𝒓𝟐 

𝒔 = 𝟑√𝟑𝒓 

𝑺𝒐, 𝒊𝒕 𝒊𝒔 𝒔𝒖𝒇𝒇𝒊𝒄𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 𝒕𝒉𝒆 𝒓𝒆𝒔𝒖𝒍𝒕 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒇𝒐𝒓 𝝀 = 𝟏𝟐. 

𝑾𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆:𝑹 ≥∑
𝒃+ 𝒄

𝟏𝟐𝐜𝐨𝐬
𝑨
𝟐𝒄𝒚𝒄

≥ 𝟐 

∑
𝒃+ 𝒄

𝟏𝟐𝐜𝐨𝐬
𝑨
𝟐𝒄𝒚𝒄

=∑
𝟐𝒃𝒄

𝟏𝟐𝒘𝒂
𝒄𝒚𝒄

=
𝟏

𝟔
∑

𝒃𝒄

𝒘𝒂
𝒄𝒚𝒄

≥
𝑨𝑴−𝑮𝑴 𝟏

𝟔
⋅ 𝟑√

(𝒂𝒃𝒄)𝟐

𝒘𝒂𝒘𝒃𝒘𝒄

𝟑

≥ 

≥
𝟏

𝟐
⋅ √
𝟒𝑹𝑭 ⋅ 𝟒𝑹𝑭

𝒓𝒔𝟐

𝟑

=
𝟏

𝟐
⋅ √

𝟏𝟔𝑹𝟐𝑭𝟐

𝒓𝒔𝟐

𝟑

≥
𝟏

𝟐
√
𝟏𝟔(𝟐𝒓)𝟐𝒓𝟐𝒔𝟐

𝒓𝒔𝟐

𝟑

= 𝟐𝒓;  (𝟐) 

𝑶𝒏 𝒕𝒉𝒆 𝒐𝒕𝒉𝒆𝒓 𝒉𝒂𝒏𝒅,𝒘𝒆 𝒉𝒂𝒗𝒆: 

∑
𝒃+ 𝒄

𝟏𝟐𝐜𝐨𝐬
𝑨
𝟐 𝒄𝒚𝒄

=∑
𝟐𝒃𝒄

𝟏𝟐𝒘𝒂
𝒄𝒚𝒄

=
𝟏

𝟔
∑

𝒃𝒄

𝒘𝒂
𝒄𝒚𝒄

≤
𝟏

𝟔
∑

𝒃𝒄

𝒉𝒂
𝒄𝒚𝒄

= 

=
𝒂𝒃𝒄

𝟔
∑

𝟏

𝟐𝑭
𝒄𝒚𝒄

=
𝒂𝒃𝒄

𝟔
⋅
𝟑

𝟐𝑭
=
𝟏𝟐𝑹𝒓𝒔

𝟏𝟐𝒓𝒔
= 𝑹;  (𝟑)   

𝑭𝒓𝒐𝒎 (𝟏), (𝟐)𝒂𝒏𝒅 (𝟑),𝒘𝒆 𝒉𝒂𝒗𝒆 𝝀 = 𝟏𝟐. 

857. In 𝚫𝑨𝑩𝑪 the following relationship holds: 

√
𝒂𝟒𝒏 + 𝒃𝟒𝒏 + 𝒄𝟒𝒏

𝒂𝟐𝒏 + 𝒃𝟐𝒏 + 𝒄𝟐𝒏
⋅ √
𝑨𝟒𝒏 + 𝒃𝟒𝒏 + 𝑪𝟒𝒏

𝑨𝟐𝒏 + 𝑩𝟐𝒏 + 𝑪𝟐𝒏
⋅ √
𝒓𝒂𝟒𝒏 + 𝒓𝒃

𝟒𝒏 + 𝒓𝒄𝟒𝒏

𝒓𝒂𝟐𝒏 + 𝒓𝒃
𝟐𝒏 + 𝒓𝒄𝟐𝒏

≥
[𝟐𝝅𝒔(𝟒𝑹+ 𝒓)]𝒏

𝟑𝟑𝒏
 

Proposed by Radu Diaconu-Romania 
Solution  by Tapas Das-India 

  𝒂𝟒𝒏 + 𝒃𝟒𝒏 + 𝒄𝟒𝒏 = (𝒂𝟐𝒏)𝟐 + (𝒃𝟐𝒏)𝟐 + (𝒄𝟐𝒏)𝟐 ≥
(𝒂𝟐𝒏 + 𝒃𝟐𝒏 + 𝒄𝟐𝒏)𝟐

𝟑
 

𝒂𝟒𝒏 + 𝒃𝟒𝒏 + 𝒄𝟒𝒏

𝒂𝟐𝒏 + 𝒃𝟐𝒏 + 𝒄𝟐𝒏
≥
𝒂𝟐𝒏 + 𝒃𝟐𝒏 + 𝒄𝟐𝒏

𝟑
≥
𝟏

𝟑
⋅
(𝒂 + 𝒃 + 𝒄)𝟐𝒏

𝟑𝟐𝒏−𝟏
=
(𝒂 + 𝒃 + 𝒄)𝟐𝒏

𝟑𝟐𝒏
 

√
𝒂𝟒𝒏 + 𝒃𝟒𝒏 + 𝒄𝟒𝒏

𝒂𝟐𝒏 + 𝒃𝟐𝒏 + 𝒄𝟐𝒏
≥ √

(𝒂 + 𝒃 + 𝒄)𝟐𝒏

𝟑𝟐𝒏
=
(𝒂 + 𝒃 + 𝒄)𝒏

𝟑𝒏
= (

𝟐𝒔

𝟑
)
𝒏
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𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚, 

√
𝑨𝟒𝒏 + 𝒃𝟒𝒏 + 𝑪𝟒𝒏

𝑨𝟐𝒏 +𝑩𝟐𝒏 + 𝑪𝟐𝒏
≥
(𝑨 + 𝑩 + 𝑪)𝒏

𝟑𝒏
=
𝝅𝒏

𝟑𝒏
 

√
𝒓𝒂𝟒𝒏 + 𝒓𝒃

𝟒𝒏 + 𝒓𝒄𝟒𝒏

𝒓𝒂𝟐𝒏 + 𝒓𝒃
𝟐𝒏 + 𝒓𝒄𝟐𝒏

≥
(𝒓𝒂 + 𝒓𝒃 + 𝒓𝒄)

𝒏

𝟑𝒏
=
(𝟒𝑹+ 𝒓)𝒏

𝟑𝒏
 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 

√
𝒂𝟒𝒏 + 𝒃𝟒𝒏 + 𝒄𝟒𝒏

𝒂𝟐𝒏 + 𝒃𝟐𝒏 + 𝒄𝟐𝒏
⋅ √
𝑨𝟒𝒏 + 𝒃𝟒𝒏 + 𝑪𝟒𝒏

𝑨𝟐𝒏 + 𝑩𝟐𝒏 + 𝑪𝟐𝒏
⋅ √
𝒓𝒂𝟒𝒏 + 𝒓𝒃

𝟒𝒏 + 𝒓𝒄𝟒𝒏

𝒓𝒂𝟐𝒏 + 𝒓𝒃
𝟐𝒏 + 𝒓𝒄𝟐𝒏

≥ 

≥ (
𝟑𝒔

𝟐
)
𝒏

⋅ (
𝝅

𝟑
)
𝒏

⋅ (
𝟒𝑹 + 𝒓

𝟑
)
𝒏

=
[𝟐𝝅𝒔(𝟒𝑹 + 𝒓)]𝒏

𝟑𝟑𝒏
 

858. Given four squares. Prove that: 

[𝑨𝑩𝑪𝑫] + [𝑪𝑬𝑭𝑮] = [𝑩𝑯𝑬𝑰] + [𝑫𝑯𝑮𝑲] 

 

Proposed by Binh Luc-Vietnam 
Solution 1 by Jose Ferreira Queiroz-Olinda-Brazil 

𝑳𝒆𝒕 𝑮𝑭 = 𝒂; 𝑮𝑯 = 𝒄;𝑯𝑬 = 𝒃; 𝑨𝑫 = 𝒅 

 𝑰𝒏 𝚫𝑮𝑬𝑯: 𝟐𝒂𝟐 = 𝒃𝟐 + 𝒄𝟐 − 𝟐𝒃𝒄 ⋅ 𝐜𝐨𝐬𝜽 ,𝒘𝒉𝒆𝒓𝒆 𝜽 = 𝝁(𝑮𝑯𝑬̂);  (𝟏) 

𝑰𝒏 𝚫𝑯𝑩𝑫: 𝟐𝒅𝟐 = 𝒃𝟐 + 𝒄𝟐 − 𝟐𝒃𝒄 ⋅ 𝐜𝐨𝐬(𝝅 − 𝜽) 
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𝟐𝒅𝟐 = 𝒃𝟐 + 𝒄𝟐 + 𝟐𝒃𝒄 𝐜𝐨𝐬 𝜽 ;  (𝟐) 

𝑭𝒓𝒐𝒎 (𝟏) 𝒂𝒏𝒅 (𝟐): 𝟐𝒂𝟐 + 𝟐𝒅𝟐 = 𝟐𝒃𝟐 + 𝟐𝒄𝟐 

𝒂𝟐 + 𝒅𝟐 = 𝒃𝟐 + 𝒄𝟐 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, [𝑨𝑩𝑪𝑫] + [𝑪𝑬𝑭𝑮] = [𝑩𝑯𝑬𝑰] + [𝑫𝑯𝑮𝑲] 

Solution 2 by Hikmat Mammadov-Azerbaijan 

𝑩𝑬𝟐 = 𝒂𝟐 + 𝒃𝟐 − 𝟐𝒂𝒃 𝐜𝐨𝐬 (𝝅 −
𝝅

𝟐
− 𝜽) 

𝑩𝑬𝟐 = 𝒂𝟐 + 𝒃𝟐 − 𝟐𝒂𝒃 𝐬𝐢𝐧𝜽 = (√𝟐𝒄)
𝟐
;   (𝒊) 

𝑹𝒆𝒑𝒍𝒂𝒄𝒆 𝜽 𝒘𝒊𝒕𝒉 − 𝜽,𝒘𝒆 𝒈𝒆𝒕: 𝑩𝑫𝟐 = 𝒂𝟐 + 𝒃𝟐 + 𝟐𝒂𝒃 𝐬𝐢𝐧𝜽 = (√𝟐𝒅)
𝟐
;   (𝒊𝒊) 

𝑭𝒓𝒐𝒎 (𝒊) 𝒂𝒏𝒅 (𝒊𝒊), 𝒊𝒕 𝒇𝒐𝒍𝒍𝒐𝒘𝒔: 

𝟐(𝒂𝟐 + 𝒃𝟐) = 𝟐𝒄𝟐 + 𝟐𝒅𝟐 ⇒ 𝒂𝟐 + 𝒃𝟐 = 𝒄𝟐 + 𝒅𝟐 

𝑰𝒕 𝒄𝒂𝒏 𝒂𝒍𝒔𝒐 𝒃𝒆 𝒑𝒓𝒐𝒗𝒆𝒅 𝒕𝒉𝒂𝒕 𝒕𝒉𝒆 𝒃𝒍𝒖𝒆 𝒔𝒒𝒖𝒂𝒓𝒆 𝒂𝒏𝒅 𝒕𝒉𝒆 𝒈𝒓𝒆𝒆𝒏 𝒔𝒒𝒖𝒂𝒓𝒆  

𝒂𝒍𝒘𝒂𝒚𝒔 𝒕𝒐𝒖𝒄𝒉 𝒆𝒂𝒄𝒉 𝒐𝒕𝒉𝒆𝒓 𝒂𝒔 𝒔𝒉𝒐𝒘𝒏. 

𝐬𝐢𝐧 (𝜶 +
𝝅

𝟒
) =

𝒂𝐜𝐨𝐬 𝜽

√𝒂𝟐 + 𝒃𝟐 − 𝟐𝒂𝒃𝐬𝐢𝐧 𝜽
 

𝐬𝐢𝐧 (𝜷 +
𝝅

𝟒
) =

𝒂𝐬𝐢𝐧 𝜽

√𝒂𝟐 + 𝒃𝟐 − 𝟐𝒂𝒃𝐬𝐢𝐧 𝜽
 

(√𝟐𝒂)
𝟐
= 𝒄𝟐 + 𝒅𝟐 + 𝟐𝒄𝒅𝐬𝐢𝐧(𝜶 + 𝜷) ; (𝒕𝒐 𝒑𝒓𝒐𝒗𝒆) 

𝟐𝒂𝟐 = 𝒄𝟐 + 𝒅𝟐 − 𝟐𝒄𝒅 𝐜𝐨𝐬 (𝜶 +
𝝅

𝟒
+ 𝜷 +

𝝅

𝟒
) 

𝒃𝟐 − 𝒂𝟐 𝐬𝐢𝐧𝟐 𝜽 = √(𝒂𝟐 𝐬𝐢𝐧𝟐 𝜽 + 𝒃𝟐)𝟐 − 𝟒𝒂𝟐𝒃𝟐 𝐬𝐢𝐧𝟐 𝜽 

𝒃𝟒 + 𝒂𝟒 𝐬𝐢𝐧𝟒 𝜽 = √(𝒂𝟐 𝐬𝐢𝐧𝟐 𝜽 + 𝒃𝟐)𝟐 − 𝟐𝒂𝟐𝒃𝟐 𝐬𝐢𝐧𝟐 𝜽 ; (𝒕𝒓𝒖𝒆)   

859. 

𝑨𝟏𝑨𝟐…𝑨𝒏 − 𝒄𝒐𝒏𝒗𝒆𝒙 𝒑𝒐𝒍𝒚𝒈𝒐𝒏,   
𝟏

𝝁(𝑨𝟏)
+

𝟏

𝝁(𝑨𝟐)
+⋯+

𝟏

𝝁(𝑨𝒏)
=

𝒏𝟐

(𝒏 − 𝟑)𝝅
, 𝒏 ≥ 𝟒. 

𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶  ∑ √
𝝁𝟑(𝑨𝟏) + 𝝁

𝟑(𝑨𝟐)

𝟐

𝟑

𝒄𝒚𝒄

≤ (𝒏 − 𝟏)𝝅 

Proposed by Radu Diaconu-Romania 
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Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑳𝒆𝒕 𝒙, 𝒚 > 𝟎.  𝑩𝒚 𝑨𝑴−𝑮𝑴 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

(𝒙 + 𝒚)√
𝒙𝟑 + 𝒚𝟑

𝟐

𝟑

= 𝟐√(
𝒙 + 𝒚

𝟐
)
𝟒

(𝒙𝟐 − 𝒙𝒚+ 𝒚𝟐)
𝟑

≤ 

≤
𝟐

𝟑
[(
𝒙 + 𝒚

𝟐
)
𝟐

+ (
𝒙 + 𝒚

𝟐
)
𝟐

+ (𝒙𝟐 − 𝒙𝒚+ 𝒚𝟐)] = 𝒙𝟐 + 𝒚𝟐. 

𝑻𝒉𝒆𝒏 ∶  √
𝒙𝟑 + 𝒚𝟑

𝟐

𝟑

 ≤
𝒙𝟐 + 𝒚𝟐

𝒙 + 𝒚
= 𝒙+ 𝒚−

𝟐𝒙𝒚

𝒙 + 𝒚
,   ∀𝒙, 𝒚 > 0. 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   ∑ √
𝝁𝟑(𝑨𝟏) + 𝝁

𝟑(𝑨𝟐)

𝟐

𝟑

𝒄𝒚𝒄

≤∑(𝝁(𝑨𝟏) + 𝝁(𝑨𝟐) −
𝟐𝝁(𝑨𝟏)𝝁(𝑨𝟐)

𝝁(𝑨𝟏) + 𝝁(𝑨𝟐)
)

𝒄𝒚𝒄

= 

= 𝟐∑𝝁(𝑨𝟏)

𝒄𝒚𝒄

− 𝟐∑
𝟏

𝟏
𝝁(𝑨𝟏)

+
𝟏

𝝁(𝑨𝟐)
𝒄𝒚𝒄

 ≤⏞
𝑪𝑩𝑺

 𝟐(𝒏 − 𝟐)𝝅 − 𝟐.
𝒏𝟐

∑ (
𝟏

𝝁(𝑨𝟏)
+

𝟏
𝝁(𝑨𝟐)

)𝒄𝒚𝒄

= 

= 𝟐(𝒏− 𝟐)𝝅 − 𝟐.
𝒏𝟐

𝟐.
𝒏𝟐

(𝒏 − 𝟑)𝝅

= (𝒏 − 𝟏)𝝅,   𝒂𝒔 𝒅𝒆𝒔𝒊𝒓𝒆𝒅. 

860. 𝑨𝟏𝑨𝟐…𝑨𝒏 −convexe polygon 𝒏 ≥ 𝟑, 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 −sides, 

𝒂𝟏 + 𝒂𝟐 +⋯+ 𝒂𝒏 = 𝟐𝒑. Prove that: 

(∑
𝑨𝟏𝑨𝟐

𝟏𝟎𝑨𝟏 + 𝑨𝟐
𝒄𝒚𝒄

)(∑
𝒂𝟏𝒂𝟐

𝟏𝟎𝒂𝟏 + 𝒂𝟐
𝒄𝒚𝒄

) ≤
𝟐𝒑(𝒏 − 𝟐)𝝅

𝟏𝟐𝟏
 

Proposed by Radu Diaconu-Romania 
Solution 1 by Tapas Das-India 

𝟏𝟐𝟏𝑨𝟏𝑨𝟐 − (𝟏𝟎𝑨𝟏 + 𝑨𝟐)(𝟏𝟎𝑨𝟐 + 𝑨𝟏) = 

= 𝟏𝟐𝟏𝑨𝟏𝑨𝟐 − (𝟏𝟎𝟎𝑨𝟏𝑨𝟐 + 𝟏𝟎𝑨𝟏
𝟐 + 𝟏𝟎𝑨𝟐

𝟐 + 𝑨𝟏𝑨𝟐) < 0 

𝑺𝒊𝒏𝒄𝒆: 

𝟏𝟎𝟎𝑨𝟏𝑨𝟐 + 𝟏𝟎𝑨𝟏
𝟐 + 𝟏𝟎𝑨𝟐

𝟐 + 𝑨𝟏𝑨𝟐 ≥ 𝟏𝟎𝟎𝑨𝟏𝑨𝟐 + 𝑨𝟏𝑨𝟐 + 𝟐𝟎𝑨𝟏𝑨𝟐 ≥ 𝟏𝟐𝟏𝑨𝟏𝑨𝟐 
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𝑨𝟏𝑨𝟐
𝟏𝟎𝑨𝟏 + 𝑨𝟐

<
𝟏𝟎𝑨𝟐 + 𝑨𝟏

𝟏𝟐𝟏
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

∑
𝑨𝟏𝑨𝟐

𝟏 − 𝑨𝟏 + 𝑨𝟐
𝒄𝒚𝒄

≤∑
𝟏𝟎𝑨𝟐 + 𝑨𝟏

𝟏𝟐𝟏
𝒄𝒚𝒄

=
𝟏𝟏(𝑨𝟏 + 𝑨𝟐 +⋯+𝑨𝒏)

𝟏𝟐𝟏
= 

=
𝟏

𝟏𝟏
(𝑨𝟏 + 𝑨𝟐 +⋯+ 𝑨𝒏) =

𝟏

𝟏𝟏
[𝟐(𝒏 − 𝟐) ⋅

𝝅

𝟐
] =

(𝒏 − 𝟐)𝝅

𝟏𝟏
 

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚, ∑
𝒂𝟏𝒂𝟐

𝟏𝟎𝒂𝟏 + 𝒂𝟐
𝒄𝒚𝒄

≤∑
𝟏𝟎𝒂𝟐 + 𝒂𝟏

𝟏𝟐𝟏
𝒄𝒚𝒄

=
𝟏𝟏(𝒂𝟏 + 𝒂𝟐 +⋯+ 𝒂𝒏)

𝟏𝟐𝟏
= 

=
𝟏

𝟏𝟏
(𝒂𝟏 + 𝒂𝟐 +⋯+ 𝒂𝒏) =

𝟏

𝟏𝟏
⋅ 𝟐𝒑 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,           (∑
𝑨𝟏𝑨𝟐

𝟏𝟎𝑨𝟏 + 𝑨𝟐
𝒄𝒚𝒄

)(∑
𝒂𝟏𝒂𝟐

𝟏𝟎𝒂𝟏 + 𝒂𝟐
𝒄𝒚𝒄

) ≤
𝟐𝒑(𝒏 − 𝟐)𝝅

𝟏𝟐𝟏
 

Solution 2 by Marian Dincă-Romania 

𝒂𝟏𝒂𝟐
𝟏𝟎𝒂𝟏 + 𝒂𝟐

=
𝟏

𝟏𝟎
𝒂𝟐
+
𝟏
𝒂𝟏

≤
𝟏

(𝟏𝟎 + 𝟏) ⋅
𝟏

𝟏𝟎𝒂𝟐 + 𝒂𝟏
𝟏𝟎 + 𝟏

=
𝟏𝟎𝒂𝟐 + 𝒂𝟏

𝟏𝟏𝟐
 

𝒖𝒔𝒆 𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝑱𝒆𝒏𝒔𝒆𝒏′𝒔𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒇𝒐𝒓 𝒄𝒐𝒏𝒗𝒆𝒙 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝒇(𝒙) =
𝟏

𝒙
; 𝒙 > 0 

𝟏𝟎

𝒂𝟐
+
𝟏

𝒂𝟏
= 𝟏𝟎𝒇(𝒂𝟐) + 𝒇(𝒂𝟏) ≥ (𝟏𝟎 + 𝟏)𝒇 (

𝟏𝟎𝒂𝟐 + 𝒂𝟏
𝟏𝟎 + 𝟏

) 

𝒘𝒆 𝒐𝒃𝒕𝒂𝒊𝒏: 

∑
𝒂𝟏𝒂𝟐

𝟏𝟎𝒂𝟏 + 𝒂𝟐
𝒄𝒚𝒄

≤∑
𝟏𝟎𝒂𝟐 + 𝒂𝟏

𝟏𝟏𝟐
𝒄𝒚𝒄

=
𝟏

𝟏𝟏𝟐
⋅ 𝟏𝟏∑𝒂𝒌

𝒏

𝒌=𝟏

=
𝟏

𝟏𝟏
∑𝒂𝒌

𝒏

𝒌=𝟏

 

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚, 

∑
𝑨𝟏𝑨𝟐

𝟏𝟎𝑨𝟏 + 𝑨𝟐
𝒄𝒚𝒄

≤∑
𝟏𝟎𝑨𝟐 + 𝑨𝟏

𝟏𝟏𝟐
𝒄𝒚𝒄

=
𝟏

𝟏𝟏𝟐
⋅ 𝟏𝟏∑𝑨𝒌

𝒏

𝒌=𝟏

=
𝟏

𝟏𝟏
∑𝑨𝒌

𝒏

𝒌=𝟏

=
𝝅(𝒏 − 𝟐)

𝟏𝟏
   

861. 𝑨𝟏𝑨𝟐…𝑨𝒑 −convex polygon, 𝒑 ∈ ℕ, 𝒑 ≥ 𝟑, 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒑 −sides, 

𝒂𝟏 + 𝒂𝟐 +⋯+ 𝒂𝒑 = 𝟐𝒔,𝒎, 𝒏, 𝒌 > 0,𝑚 + 𝑛 = 𝒌𝟒. Prove that: 



 
www.ssmrmh.ro 

73 RMM-GEOMETRY MARATHON 801-900 

 

(∑√𝒏𝒂𝟏
𝟒 +𝒎𝒂𝟐

𝟒𝟒

𝒄𝒚𝒄

)(∑ √𝒏𝑨𝟏
𝟒 +𝒎𝑨𝟐

𝟒𝟒

𝒄𝒚𝒄

) ≥ 𝟐𝒌𝟐𝒔(𝒑 − 𝟐)𝝅 

Proposed by Radu Diaconu-Romania 
Solution by Tapas Das-India 

 

(𝒎 + 𝒏)
𝟑
𝟒 ⋅ √𝒏𝒂𝟏

𝟒 +𝒎𝒂𝟐
𝟒𝟒

≥
𝑯𝒐𝒍𝒅𝒆𝒓

𝒏𝒂𝟏 +𝒎𝒂𝟐 

√𝒏𝒂𝟏
𝟒 +𝒎𝒂𝟐

𝟒𝟒
≥
𝒏𝒂𝟏 +𝒎𝒂𝟐

(𝒎 + 𝒏)
𝟑
𝟒

;   (𝒎 + 𝒏 = 𝒌𝟒) 

√𝒏𝒂𝟏
𝟒 +𝒎𝒂𝟐

𝟒𝟒
≥
𝒏𝒂𝟏 +𝒎𝒂𝟐

𝒌𝟑
 

∑√𝒏𝒂𝟏
𝟒 +𝒎𝒂𝟐

𝟒𝟒
≥

𝒄𝒚𝒄

𝟏

𝒌𝟑
(𝒎 + 𝒏)(𝒂𝟏 + 𝒂𝟐 +⋯+ 𝒂𝒑) =

𝟏

𝒌𝟑
⋅ 𝒌𝟒 ⋅ 𝟐𝒔 = 𝒌 ⋅ 𝟐𝒔;   (𝟏) 

  ∑ √𝒏𝑨𝟏
𝟒 +𝒎𝑨𝟐

𝟒𝟒
≥

𝒄𝒚𝒄

𝟏

𝒌𝟑
(𝒎 + 𝒏)(𝑨𝟏 + 𝑨𝟐 +⋯+ 𝑨𝒑) =

𝟏

𝒌𝟑
⋅ 𝒌𝟒(𝒑 − 𝟐)𝝅

= 𝒌(𝒑 − 𝟐)𝝅;  (𝟐) 

𝑭𝒓𝒐𝒎 (𝟏) 𝒂𝒏𝒅 (𝟐), 𝒊𝒕 𝒇𝒐𝒍𝒍𝒐𝒘𝒔: 

(∑√𝒏𝒂𝟏
𝟒 +𝒎𝒂𝟐

𝟒𝟒

𝒄𝒚𝒄

)(∑√𝒏𝑨𝟏
𝟒 +𝒎𝑨𝟐

𝟒𝟒

𝒄𝒚𝒄

) ≥ 𝒌 ⋅ 𝟐𝒔 ⋅ 𝒌(𝒑 − 𝟐)𝝅 = 𝟐𝒌𝟐𝒔(𝒑 − 𝟐)𝝅 

862. 𝑰𝒏 ∆𝑨𝑩𝑪 𝒉𝒐𝒍𝒅𝒔 ∶ 

𝟐

𝝅𝟐
<

𝑨̂ + 𝝅

𝑨̂𝟑 + 𝝅𝟑
+

𝑩̂ + 𝝅

𝑩̂𝟑 + 𝝅𝟑
+

𝑪̂ + 𝝅

𝑪̂𝟑 + 𝝅𝟑
≤
𝟐𝟕

𝟕𝝅𝟐
 

Proposed by Radu Diaconu-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑳𝒆𝒕 𝒇(𝒙) =
𝒙 + 𝝅

𝒙𝟑 + 𝝅𝟑
=

𝟏

𝒙𝟐 −𝝅𝒙 + 𝝅𝟐
,   𝒙 ∈ (𝟎,𝝅). 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  𝒇′(𝒙) =
𝝅 − 𝟐𝒙

(𝒙𝟐 −𝝅𝒙 + 𝝅𝟐)𝟐
  𝒂𝒏𝒅  𝒇′(𝒙) =

−𝟔𝒙(𝝅 − 𝒙)

(𝒙𝟐 −𝝅𝒙 + 𝝅𝟐)𝟑
≤ 𝟎, 
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𝑺𝒐 𝒇 𝒊𝒔 𝒄𝒐𝒏𝒄𝒂𝒗𝒆 𝒐𝒏 (𝟎, 𝝅) 𝒂𝒏𝒅 𝒃𝒚 𝑱𝒆𝒏𝒔𝒆𝒏′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚, 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

∑
𝑨̂+ 𝝅

𝑨̂𝟑 + 𝝅𝟑
𝒄𝒚𝒄

= 𝒇(𝑨̂) + 𝒇(𝑩̂) + 𝒇(𝑪̂) ≤ 𝟑𝒇(
𝑨̂ + 𝑩̂ + 𝑪̂

𝟑
) = 𝟑𝒇 (

𝝅

𝟑
) =

𝟐𝟕

𝟕𝝅𝟐
. 

𝑵𝒐𝒘,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶  ∑
𝑨̂ + 𝝅

𝑨̂𝟑 +𝝅𝟑
𝒄𝒚𝒄

=∑(
𝟏

𝝅𝟐
+
𝑨̂(𝝅𝟐 − 𝑨̂𝟐)

𝝅𝟐(𝑨̂𝟑 +𝝅𝟑)
)

𝒄𝒚𝒄

>⏞
𝝅 > 𝑨̂

∑
𝟏

𝝅𝟐
𝒄𝒚𝒄

=
𝟑

𝝅𝟐
>
𝟐

𝝅𝟐
. 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   
𝟐

𝝅𝟐
<

𝑨̂ + 𝝅

𝑨̂𝟑 +𝝅𝟑
+

𝑨̂ + 𝝅

𝑨̂𝟑 +𝝅𝟑
+

𝑨̂ + 𝝅

𝑨̂𝟑 + 𝝅𝟑
≤
𝟐𝟕

𝟕𝝅𝟐
. 

863.  𝑨𝑩 = 𝒎𝑨𝑹,𝑨𝑪 = 𝒏𝑨𝑺, 𝑷𝑹 = 𝑷𝑩,𝑸𝑺 = 𝑸𝑪 

𝑹𝑭

𝑭𝑺
= 𝒙,

𝑷𝑬

𝑬𝑸
= 𝒚, 𝒚 = 𝒙 + 𝟏,

𝑩𝑫

𝑫𝑪
= 𝒛,𝒎, 𝒏, 𝒛 − 𝐢𝐧𝐭𝐞𝐠𝐞𝐫𝐬. 𝐅𝐢𝐧𝐝: (𝒎, 𝒏, 𝒛) =? 

 

Proposed by Thanasis Gakopoulos-Farsala-Greece 
Solution by proposer 

𝑨𝑷

𝑨𝑩
=
𝑨𝑹 +

𝑩𝑹
𝟐

𝑨𝑩
=
𝑨𝑹

𝑨𝑩
+
𝑨𝑩− 𝑨𝑹

𝟐𝑨𝑩
=
𝑨𝑹 + 𝑨𝑩

𝟐𝑨𝑩
=
𝟏 +𝒎

𝒎
 

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚,
𝑨𝑸

𝑨𝑪
=
𝟏 + 𝒏

𝟐𝒏
 

            
𝑹𝑭

𝑭𝑺
=
𝑩𝑫

𝑫𝑪
⋅
𝑨𝑹

𝑨𝑩
⋅
𝑨𝑪

𝑨𝑺
⇒ 𝒙 =

𝒛𝒏

𝒎
;   (𝑮𝒂𝒌𝒐𝒑𝒐𝒖𝒍𝒐𝒔 𝑳𝒆𝒎𝒎𝒂);     (𝟏) 
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𝑷𝑬

𝑬𝑸
=
𝑩𝑫

𝑫𝑪
⋅
𝑨𝑷

𝑨𝑩
⋅
𝑨𝑪

𝑨𝑸
⇒ 𝒚 = 𝒛 ⋅

𝟏 +𝒎

𝟐𝒎
⋅
𝟐𝒏

𝟐 + 𝒏
⇒ 𝒚 =

𝒏

𝒎
⋅
𝒎+ 𝟏

𝒏 + 𝟏
⋅ 𝒛 

𝒙

𝒚
=
𝒏 + 𝟏

𝒎+ 𝟏
⇒

𝒙

𝒙+ 𝟏
=
𝒏 + 𝟏

𝒎+ 𝟏
⇒ 𝒙 =

𝒏 + 𝟏

𝒎− 𝒏
,𝒎 > 𝑛;  (𝟐) 

𝑭𝒓𝒐𝒎 (𝟏) 𝒂𝒏𝒅 (𝟐): 
𝒏 + 𝟏

𝒎− 𝒏
= 𝒛 ⋅

𝒏

𝒎
⇒ 𝒛 =

𝒎

𝒏
⋅
𝒏 + 𝟏

𝒎− 𝒏
 

𝑰𝒔 𝒎, 𝒏, 𝒛 𝒊𝒏𝒕𝒆𝒈𝒆𝒓,𝒎 > 1, 𝑛 > 1, 𝑡ℎ𝑒𝑛: 

(𝒎, 𝒏, 𝒛) = (𝟒, 𝟐, 𝟑), (𝟖, 𝟐, 𝟐), (𝟗, 𝟑, 𝟐) 

𝑰𝒇 𝒎 = 𝒏, 𝒕𝒉𝒆𝒏 𝒙 = 𝒛, 𝒚 = 𝒛, (𝒚 = 𝒙 + 𝟏).   

864. If 𝑿 ∈ 𝑰𝒏𝒕(𝚫𝑨𝑩𝑪), 𝑿𝑨′ = 𝑿𝑩′ = 𝑿𝑪′ = 𝑹,𝑹 −circumradii, 𝑿𝑨′ ⊥ 𝑩𝑪, 

𝑿𝑩′ ⊥ 𝑪𝑨, 𝑿𝑪′ ⊥ 𝑨𝑩, 𝒂′, 𝒃′, 𝒄′, 𝑰𝒂′ , 𝑰𝒃′ , 𝑰𝒄′ −sides and excenters in 𝚫𝑨′𝑩′𝑪′, 

then: 

[𝑰𝒂′𝑰𝒃′𝑰𝒄′] = 𝟐𝑹𝟐 (𝐜𝐨𝐬
𝑨

𝟐
+ 𝐜𝐨𝐬

𝑩

𝟐
+ 𝐜𝐨𝐬

𝑪

𝟐
) 

Proposed by Mehmet Şahin-Ankara-Turkiye 
Solution by Hikmat Mammadov-Azerbaijan 

 

𝒂′ = 𝑩𝑪 = 𝟐𝑹 𝐬𝐢𝐧
𝝅 − 𝑨

𝟐
= 𝟐𝑹𝐬𝐢𝐧𝑨′ , 𝑨′ =

𝝅

𝟐
−
𝑨

𝟐
⇒ 𝐬𝐢𝐧𝑨′ = 𝐜𝐨𝐬

𝑨

𝟐
 

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚,𝑩′ =
𝝅

𝟐
−
𝑩

𝟐
⇒ 𝐬𝐢𝐧𝑩′ = 𝐜𝐨𝐬

𝑩

𝟐
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𝑪′ =
𝝅

𝟐
−
𝑪

𝟐
⇒ 𝐬𝐢𝐧 𝑪′ = 𝐜𝐨𝐬

𝑪

𝟐
 

[𝑰𝒂′𝑰𝒃′𝑰𝒄′] = 𝟖𝑹
𝟐 𝐜𝐨𝐬

𝑨′

𝟐
𝐜𝐨𝐬

𝑩′

𝟐
𝐜𝐨𝐬

𝑪′

𝟐
, [𝑰𝒂′𝑰𝒃′𝑰𝒄′] = 𝟐𝑹𝟐(𝐬𝐢𝐧𝑨′ + 𝐬𝐢𝐧𝑩′ + 𝐬𝐢𝐧𝑪′) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, [𝑰𝒂′𝑰𝒃′𝑰𝒄′] = 𝟐𝑹𝟐 (𝐜𝐨𝐬
𝑨

𝟐
+ 𝐜𝐨𝐬

𝑩

𝟐
+ 𝐜𝐨𝐬

𝑪

𝟐
)  

865. 

𝑰𝒏 𝒂𝒄𝒖𝒕𝒆 ∆𝑨𝑩𝑪,𝑵 − 𝒇𝒊𝒓𝒔𝒕 𝑵𝒂𝒈𝒆𝒍′𝒔 𝒑𝒐𝒊𝒏𝒕, 𝑮 − 𝒇𝒊𝒓𝒔𝒕 𝑮𝒆𝒓𝒈𝒐𝒏𝒏𝒆′𝒔 𝒑𝒐𝒊𝒏𝒕, 

𝑰 − 𝒊𝒏𝒄𝒆𝒏𝒕𝒆𝒓, 𝜴 − 𝒄𝒆𝒏𝒕𝒓𝒐𝒊𝒅.  𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶   𝑵𝑮 ≥ 𝑰𝜴 

Proposed by Nguyen Van Canh-BenTre-Vietnam 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   𝑰𝜴𝟐 =
𝒔𝟐 − 𝟏𝟔𝑹𝒓 + 𝟓𝒓𝟐

𝟗
  𝒂𝒏𝒅  𝑵𝑮𝟐 =

𝟏𝟔𝑹𝒔𝟐(𝑹+ 𝒓)

(𝟒𝑹 + 𝒓)𝟐
− 𝟏𝟔𝑹𝒓, 

𝑺𝒆𝒆 ∶ 𝑮𝒆𝒓𝒈𝒐𝒏𝒏𝒆′𝒔 𝒑𝒐𝒊𝒏𝒕 𝒂𝒏𝒅 𝒐𝒖𝒕𝒔𝒕𝒂𝒏𝒅𝒊𝒏𝒈 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆𝒔 −𝒘𝒘𝒘. 𝒔𝒔𝒎𝒓𝒎𝒉.𝒓𝒐. 

𝑻𝒉𝒆𝒏 ∶   𝑵𝑮𝟐 − 𝑰𝜴𝟐 = (
𝟏𝟔𝑹𝒔𝟐(𝑹+ 𝒓)

(𝟒𝑹 + 𝒓)𝟐
− 𝟏𝟔𝑹𝒓)−

𝒔𝟐 − 𝟏𝟔𝑹𝒓+ 𝟓𝒓𝟐

𝟗
= 

=
(𝟏𝟐𝟖𝑹𝟐 + 𝟏𝟑𝟔𝑹𝒓− 𝒓𝟐)𝒔𝟐

𝟗(𝟒𝑹+ 𝒓)𝟐
−
𝟏𝟐𝟖𝑹𝒓 + 𝟓𝒓𝟐

𝟗
≥ 

≥⏞
𝑮𝒆𝒓𝒓𝒆𝒕𝒔𝒆𝒏

 
(𝟏𝟐𝟖𝑹𝟐 + 𝟏𝟑𝟔𝑹𝒓 − 𝒓𝟐)(𝟏𝟔𝑹𝒓 − 𝟓𝒓)

𝟗(𝟒𝑹 + 𝒓)𝟐
−
𝟏𝟐𝟖𝑹𝒓 + 𝟓𝒓𝟐

𝟗
= 

=
𝟒𝟖𝑹𝒓𝟐(𝑹− 𝟐𝒓)

(𝟒𝑹+ 𝒓)𝟐
 ≥⏞
𝑬𝒖𝒍𝒆𝒓

 𝟎.  𝑯𝒆𝒏𝒄𝒆,   𝑵𝑮 ≥ 𝑰𝜴. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 ∆𝑨𝑩𝑪 𝒊𝒔 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍. 

866.  𝑰𝒏 ∆𝑨𝑩𝑪,𝑷 ∈ (𝑩𝑪), 𝑸 ∈ (𝑪𝑨), 𝑹 ∈ (𝑨𝑩), 

𝟑(𝑨𝑹 + 𝑨𝑸) = 𝟑(𝑩𝑷 + 𝑩𝑹) = 𝟑(𝑪𝑸 + 𝑪𝑷) = 𝑨𝑩 + 𝑩𝑪 + 𝑪𝑨.  

 𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 𝑷𝑹 + 𝑹𝑸 + 𝑸𝑷 ≥ 𝟑√𝟑𝒓 

Proposed by Daniel Sitaru-Romania 
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Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑳𝒆𝒕 𝟐𝒔 ≔ 𝑨𝑩+ 𝑩𝑪 + 𝑪𝑨.  𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   𝑨𝑹 + 𝑨𝑸 = 𝑩𝑷 + 𝑩𝑹 = 𝑪𝑸+ 𝑪𝑷 =
𝟐𝒔

𝟑
. 

𝑩𝒚 𝒕𝒉𝒆 𝑳𝒂𝒘 𝒐𝒇 𝑪𝒐𝒔𝒊𝒏𝒆𝒔 𝒊𝒏 ∆𝑩𝑷𝑹,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝑷𝑹 = √𝑩𝑷𝟐 +𝑩𝑹𝟐 − 𝟐𝑩𝑷.𝑩𝑹. 𝐜𝐨𝐬𝑩 = √(𝑩𝑷 +𝑩𝑹)𝟐 − 𝟐𝑩𝑷.𝑩𝑹. (𝟏 + 𝐜𝐨𝐬𝑩) = 

= √(
𝟐𝒔

𝟑
)
𝟐

− 𝟐𝑩𝑷.𝑩𝑹. 𝟐 𝐜𝐨𝐬𝟐
𝑩

𝟐
 ≥⏞
𝑨𝑴−𝑮𝑴

√(
𝟐𝒔

𝟑
)
𝟐

− (𝑩𝑷+ 𝑩𝑹)𝟐. 𝐜𝐨𝐬𝟐
𝑩

𝟐
= 

=
𝟐𝒔

𝟑
.√𝟏 − 𝐜𝐨𝐬𝟐

𝑩

𝟐
=
𝟐𝒔

𝟑
. 𝐬𝐢𝐧

𝑩

𝟐
   ⇒   𝑷𝑹 ≥

𝟐𝒔

𝟑
. 𝐬𝐢𝐧

𝑩

𝟐
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒏 ∶   𝑷𝑹+ 𝑹𝑸 +𝑸𝑷 ≥
𝟐𝒔

𝟑
.∑𝐬𝐢𝐧

𝑨

𝟐
𝒄𝒚𝒄

 ≥⏞
𝑨𝑴−𝑮𝑴

 𝟐𝒔. √∏𝐬𝐢𝐧
𝑨

𝟐
𝒄𝒚𝒄

𝟑
= 𝟐𝒔√

𝒓

𝟒𝑹

𝟑
= 

= √
𝒓. 𝒔. 𝟐𝒔𝟐

𝑹

𝟑

 ≥⏞
𝑴𝒊𝒕𝒓𝒊𝒏𝒐𝒗𝒊𝒄 & 𝐶𝑜𝑠𝑛𝑖𝑡𝑎−𝑇𝑢𝑟𝑡𝑜𝑖𝑢

  √
𝒓.𝟑√𝟑𝒓.𝟐𝟕𝑹𝒓

𝑹

𝟑

= 𝟑√𝟑𝒓,   𝒂𝒔 𝒅𝒆𝒔𝒊𝒓𝒆𝒅. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝑷,𝑸, 𝑹 𝒂𝒓𝒆 𝒕𝒉𝒆 𝒎𝒊𝒅𝒑𝒐𝒊𝒏𝒕𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒔𝒊𝒅𝒆𝒔 𝒐𝒇 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍 ∆𝑨𝑩𝑪. 

867. 𝐈𝐧 𝒂𝐧𝐲 𝒂𝐜𝐮𝐭𝐞 ∆ 𝐀𝐁𝐂 𝐡𝐨𝐥𝐝𝐬: 

𝟓𝟒√𝟑

𝟏𝟑𝛑
< (∑

𝟏

𝐀̂𝟐 + 𝛑𝐀̂ + 𝛑𝟐
𝐜𝐲𝐜

)(∑√𝐀̂𝟐 + 𝛑𝐀̂ + 𝛑𝟐

𝐜𝐲𝐜

) <
𝟏𝟐

𝛑
 

  Proposed by Radu Diaconu-Romania 
Solution 1 by Soumava Chakraborty-Kolkata-India 

(∑
𝟏

𝐀̂𝟐 + 𝛑𝐀̂ + 𝛑𝟐
𝐜𝐲𝐜

)(∑√𝐀̂𝟐 +𝛑𝐀̂ + 𝛑𝟐

𝐜𝐲𝐜

) 

= (∑
𝟏

𝐀̂𝟐 + 𝛑𝐀̂ + 𝛑𝟐
𝐜𝐲𝐜

)(∑√𝐀̂𝟐 +𝛑𝐀̂ + 𝛑𝟐

𝐜𝐲𝐜

)(∑√𝐀̂𝟐 +𝛑𝐀̂ + 𝛑𝟐

𝐜𝐲𝐜

) .
𝟏

(∑ √𝐀̂𝟐 +𝛑𝐀̂ + 𝛑𝟐𝐜𝐲𝐜 )
 

≥
𝐇𝐨𝐥𝐝𝐞𝐫 (𝟏

𝟏
𝟑 + 𝟏

𝟏
𝟑 + 𝟏

𝟏
𝟑)
𝟑

(∑ √𝐀̂𝟐 +𝛑𝐀̂ + 𝛑𝟐𝐜𝐲𝐜 )
>
? 𝟓𝟒√𝟑

𝟏𝟑𝛑
⇔∑√𝐀̂𝟐 + 𝛑𝐀̂ + 𝛑𝟐

𝐜𝐲𝐜

<
?
⏟
(∗)

𝟏𝟑𝛑

𝟐√𝟑
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∵ 𝐀, 𝐁, 𝐂 <
𝛑

𝟐
∴∑√𝐀̂𝟐 +𝛑𝐀̂ + 𝛑𝟐

𝐜𝐲𝐜

<∑√𝐀̂(
𝛑

𝟐
) + 𝛑𝐀̂ + 𝛑𝟐

𝐜𝐲𝐜

 

= √𝛑.∑√𝛑+
𝟑𝐀

𝟐
𝐜𝐲𝐜

≤
𝐉𝐞𝐧𝐬𝐞𝐧

𝟑√𝛑.√𝛑 +
𝟑

𝟐
.
𝛑

𝟑
  

(

 
 
∵ 𝐟(𝒙) = √𝛑 +

𝟑𝒙

𝟐
 ∀ 𝒙 ∈ (𝟎,

𝛑

𝟐
) 𝐢𝐬 𝐜𝐨𝐧𝐜𝒂𝐯𝐞 𝒂𝐬 𝐟 ′′(𝒙) =

−𝟗

𝟏𝟔(𝛑 +
𝟑𝒙
𝟐
)

𝟑
𝟐

< 0

)

 
 

 

<
? 𝟏𝟑𝛑

𝟐√𝟑
⇔ 𝟗.

𝟑

𝟐
<
? 𝟏𝟔𝟗

𝟏𝟐
⇔ 𝟏𝟔𝟐 <

?
𝟏𝟔𝟗 → 𝐭𝐫𝐮𝐞 ∴∑√𝐀̂𝟐 +𝛑𝐀̂ + 𝛑𝟐

𝐜𝐲𝐜

<
𝟏𝟑𝛑

𝟐√𝟑
 

⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ⇒ (∑
𝟏

𝐀̂𝟐 +𝛑𝐀̂ + 𝛑𝟐
𝐜𝐲𝐜

)(∑√𝐀̂𝟐 +𝛑𝐀̂ + 𝛑𝟐

𝐜𝐲𝐜

) >
𝟓𝟒√𝟑

𝟏𝟑𝛑
 

𝑨𝒍𝒔𝒐, ∵ 𝟎 < 𝐀,𝐁, 𝐂 <
𝛑

𝟐
∴ (∑

𝟏

𝐀̂𝟐 + 𝛑𝐀̂ + 𝛑𝟐
𝐜𝐲𝐜

)(∑√𝐀̂𝟐 +𝛑𝐀̂ + 𝛑𝟐

𝐜𝐲𝐜

) 

< (∑
𝟏

𝛑𝟐
𝐜𝐲𝐜

)(∑√
𝛑𝟐

𝟒
+
𝛑𝟐

𝟐
+ 𝛑𝟐

𝐜𝐲𝐜

) =
𝟑𝛑

𝛑𝟐
.
𝟑√𝟕

𝟐
<
? 𝟏𝟐

𝛑
⇔ 𝟑√𝟕 <

?
𝟖 ⇔ 𝟔𝟑 <

?
𝟔𝟒 

→ 𝐭𝐫𝐮𝐞 ⇒ (∑
𝟏

𝐀̂𝟐 + 𝛑𝐀̂ + 𝛑𝟐
𝐜𝐲𝐜

)(∑√𝐀̂𝟐 + 𝛑𝐀̂ + 𝛑𝟐

𝐜𝐲𝐜

) <
𝟏𝟐

𝛑
∴ 𝐢𝐧 𝒂𝐧𝐲 𝒂𝐜𝐮𝐭𝐞 ∆ 𝐀𝐁𝐂, 

𝟓𝟒√𝟑

𝟏𝟑𝛑
< (∑

𝟏

𝐀̂𝟐 +𝛑𝐀̂ + 𝛑𝟐
𝐜𝐲𝐜

)(∑√𝐀̂𝟐 +𝛑𝐀̂ + 𝛑𝟐

𝐜𝐲𝐜

) <
𝟏𝟐

𝛑
 (𝐐𝐄𝐃) 

 

Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑳𝒆𝒕 𝒇(𝒙) =
𝟏

𝒙𝟐 +𝝅𝒙+ 𝝅𝟐
,   𝒙 ∈ (𝟎,

𝝅

𝟐
). 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  𝒇′(𝒙) = −
𝟐𝒙 + 𝝅

(𝒙𝟐 +𝝅𝒙+ 𝝅𝟐)𝟐
  𝒂𝒏𝒅  𝒇′′(𝒙) =

𝟔𝒙(𝒙 + 𝝅)

(𝒙𝟐 +𝝅𝒙+ 𝝅𝟐)𝟑
≥ 𝟎 

𝑺𝒐 𝒇 𝒊𝒔 𝒄𝒐𝒏𝒗𝒆𝒙 𝒐𝒏 (𝟎,
𝝅

𝟐
)  𝒂𝒏𝒅 𝒃𝒚 𝑱𝒆𝒏𝒔𝒆𝒏′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

∑
𝟏

𝑨̂𝟐 + 𝝅𝑨̂ + 𝝅𝟐
𝒄𝒚𝒄

= 𝒇(𝑨̂) + 𝒇(𝑩̂) + 𝒇(𝑪̂) ≥ 𝟑𝒇(
𝑨̂ + 𝑩̂ + 𝑪̂

𝟑
) = 𝟑𝒇(

𝝅

𝟑
) =

𝟐𝟕

𝟏𝟑𝝅𝟐
. 

𝑨𝒏𝒅,   
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 ∑√𝑨̂𝟐 + 𝝅𝑨̂ + 𝝅𝟐

𝒄𝒚𝒄

=∑√𝟑(𝑨̂ + 𝝅)
𝟐
+ (𝑨̂ − 𝝅)

𝟐

𝟒
𝒄𝒚𝒄

>∑
√𝟑(𝑨̂ + 𝝅)

𝟐
𝒄𝒚𝒄

=
√𝟑(𝝅 + 𝟑𝝅)

𝟐
= 𝟐√𝟑𝝅. 

𝑻𝒉𝒆𝒏 ∶   (∑
𝟏

𝑨̂𝟐 +𝝅𝑨̂ + 𝝅𝟐
𝒄𝒚𝒄

)(∑√𝑨̂𝟐 +𝝅𝑨̂ + 𝝅𝟐

𝒄𝒚𝒄

) >
𝟐𝟕

𝟏𝟑𝝅𝟐
. 𝟐√𝟑𝝅 =

𝟓𝟒√𝟑

𝟏𝟑𝝅
. 

𝑵𝒐𝒘,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶  ∑√𝑨̂𝟐 + 𝝅𝑨̂ + 𝝅𝟐

𝒄𝒚𝒄

<∑√(𝑨̂ + 𝝅)
𝟐

𝒄𝒚𝒄

=∑(𝑨̂ + 𝝅)

𝒄𝒚𝒄

= 𝝅 + 𝟑𝝅 = 𝟒𝝅. 

𝑨𝒏𝒅,   ∑
𝟏

𝑨̂𝟐 + 𝝅𝑨̂ + 𝝅𝟐
𝒄𝒚𝒄

<∑
𝟏

𝝅𝟐
𝒄𝒚𝒄

=
𝟑

𝝅𝟐
. 

𝑻𝒉𝒆𝒏 ∶   (∑
𝟏

𝑨̂𝟐 +𝝅𝑨̂ + 𝝅𝟐
𝒄𝒚𝒄

)(∑√𝑨̂𝟐 +𝝅𝑨̂ + 𝝅𝟐

𝒄𝒚𝒄

) <
𝟑

𝝅𝟐
. 𝟒𝝅 =

𝟏𝟐

𝝅
. 

868. 𝑰𝒏 ∆𝑨𝑩𝑪 𝒕𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔𝒉𝒊𝒑 𝒉𝒐𝒍𝒅𝒔 ∶ 

∏(𝟐 + 𝒂𝟒)

𝒄𝒚𝒄

≥ (𝟏𝟐𝑭 +
√𝟑

𝟐
.∑(𝒂 − 𝒃)𝟐

𝒄𝒚𝒄

)

𝟐

 

Proposed by D.M.Bătinețu-Giurgiu,Florică Anastase-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   (𝟐 + 𝒂𝟒)(𝟐+ 𝒃𝟒) = (𝒂𝟒 + 𝟏)(𝟏+ 𝒃𝟒) + (𝒂𝟒 + 𝒃𝟒) + 𝟑 ≥ 

≥⏞
𝑪𝑩𝑺

 (𝒂𝟐 + 𝒃𝟐)
𝟐
+
(𝒂𝟐 + 𝒃𝟐)

𝟐

𝟐
+ 𝟑 = 𝟑 [

(𝒂𝟐 + 𝒃𝟐)
𝟐

𝟐
+ 𝟏]. 

𝑻𝒉𝒆𝒏 ∶  ∏(𝟐+ 𝒂𝟒)

𝒄𝒚𝒄

≥ 𝟑 [
(𝒂𝟐 + 𝒃𝟐)

𝟐

𝟐
+ 𝟏](𝟐 + 𝒄𝟒) ≥⏞

𝑪𝑩𝑺

 𝟑(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)
𝟐
= 

= (√𝟑∑𝒂𝒃

𝒄𝒚𝒄

+
√𝟑

𝟐
.∑(𝒂 − 𝒃)𝟐

𝒄𝒚𝒄

)

𝟐

 ≥⏞
𝑮𝒐𝒓𝒅𝒐𝒏

 (√𝟑.𝟒√𝟑𝑭 +
√𝟑

𝟐
.∑(𝒂 − 𝒃)𝟐

𝒄𝒚𝒄

)

𝟐

 = 
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= (𝟏𝟐𝑭+
√𝟑

𝟐
.∑(𝒂 − 𝒃)𝟐

𝒄𝒚𝒄

)

𝟐

.  𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒅. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄 = 𝟏. 

869. 𝐈𝐧 𝒂𝐧𝐲 𝒂𝐜𝐮𝐭𝐞 ∆ 𝐀𝐁𝐂, 

𝛑

𝟐
≤

𝐀̂𝐧+𝟏

𝐁̂𝐧 + 𝐂̂𝐧
+

𝐁̂𝐧+𝟏

𝐂̂𝐧 + 𝐀̂𝐧
+

𝐂̂𝐧+𝟏

𝐀̂𝐧 + 𝐁̂𝐧
<
𝛑𝐧+𝟏

𝟐𝐧+𝟐
. (
𝐩𝟐 + 𝐫𝟐 + 𝟒𝐑𝐫

𝟐𝐫𝐩
)

𝐧

 ∀ 𝐧 ∈ ℕ − {𝟎} 

  Proposed by Radu Diaconu-Romania 
Solution 1 by Soumava Chakraborty-Kolkata-India 

𝐀̂𝐧+𝟏

𝐁̂𝐧 + 𝐂̂𝐧
+

𝐁̂𝐧+𝟏

𝐂̂𝐧 + 𝐀̂𝐧
+

𝐂̂𝐧+𝟏

𝐀̂𝐧 + 𝐁̂𝐧
≤

𝐫𝐞𝐩𝐞𝒂𝐭𝐞𝐝 𝐂𝐡𝐞𝐛𝐲𝐬𝐡𝐞𝐯

∑
𝐀̂. 𝐀̂𝐧

𝟏
𝟐𝐧−𝟏

(𝐁̂ + 𝐂̂)
𝐧

𝐜𝐲𝐜

 

= 𝟐𝐧−𝟏.∑𝐀̂. (
𝐀̂

𝛑 − 𝐀̂
)

𝐧

𝐜𝐲𝐜

<
𝐀̂ < 

𝛑
𝟐
 𝒂𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐬

𝟐𝐧−𝟏.∑ 𝐀̂. (

𝛑
𝟐

𝛑 −
𝛑
𝟐

)

𝐧

𝐜𝐲𝐜

= 𝟐𝐧−𝟏.∑𝐀̂

𝐜𝐲𝐜

 

⇒
𝐀̂𝐧+𝟏

𝐁̂𝐧 + 𝐂̂𝐧
+

𝐁̂𝐧+𝟏

𝐂̂𝐧 + 𝐀̂𝐧
+

𝐂̂𝐧+𝟏

𝐀̂𝐧 + 𝐁̂𝐧
<
(∗)

𝛑.
𝟐𝐧

𝟐
 

𝐀𝐠𝒂𝐢𝐧,
𝛑𝐧+𝟏

𝟐𝐧+𝟐
. (
𝐩𝟐 + 𝐫𝟐 + 𝟒𝐑𝐫

𝟐𝐫𝐩
)

𝐧

≥
𝐆𝐨𝐫𝐝𝐨𝐧 𝛑𝐧+𝟏

𝟐𝐧+𝟐
. (𝟐√𝟑)

𝐧
=
𝛑𝐧+𝟏

𝟐𝐧+𝟐
. 𝟐𝐧. (√𝟑)

𝐧
>
?
𝛑.
𝟐𝐧

𝟐
 

⇔ (
𝛑√𝟑

𝟐
)

𝐧

>
?
𝟐 → 𝐭𝐫𝐮𝐞 ∵

𝛑√𝟑

𝟐
≈ 𝟐.𝟕𝟐𝟎𝟔𝟗𝟗 > 2 𝑎𝐧𝐝 𝐧 ≥ 𝟏 

∴ ∀ 𝐧 ∈ ℕ − {𝟎},
𝛑𝐧+𝟏

𝟐𝐧+𝟐
. (
𝐩𝟐 + 𝐫𝟐 + 𝟒𝐑𝐫

𝟐𝐫𝐩
)

𝐧

> 𝛑.
𝟐𝐧

𝟐
 

>
𝐯𝐢𝒂 (∗) 𝐀̂𝐧+𝟏

𝐁̂𝐧 + 𝐂̂𝐧
+

𝐁̂𝐧+𝟏

𝐂̂𝐧 + 𝐀̂𝐧
+

𝐂̂𝐧+𝟏

𝐀̂𝐧 + 𝐁̂𝐧
 

⇒
𝐀̂𝐧+𝟏

𝐁̂𝐧 + 𝐂̂𝐧
+

𝐁̂𝐧+𝟏

𝐂̂𝐧 + 𝐀̂𝐧
+

𝐂̂𝐧+𝟏

𝐀̂𝐧 + 𝐁̂𝐧
<
𝛑𝐧+𝟏

𝟐𝐧+𝟐
. (
𝐩𝟐 + 𝐫𝟐 + 𝟒𝐑𝐫

𝟐𝐫𝐩
)

𝐧

 ∀ 𝐧 ∈ ℕ − {𝟎}  

𝐍𝐨𝐰,𝐖𝐋𝐎𝐆 𝐰𝐞 𝐦𝒂𝐲 𝒂𝐬𝐬𝐮𝐦𝐞 𝐀̂ ≥ 𝐁̂ ≥ 𝐂̂ 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶
𝐀̂𝐧

𝐁̂𝐧 + 𝐂̂𝐧
≥
? 𝐁̂𝐧

𝐂̂𝐧 + 𝐀̂𝐧
 

⇔ 𝐀̂𝟐𝐧 − 𝐁̂𝟐𝐧 + 𝐂̂𝐧(𝐀̂𝐧 − 𝐁̂𝐧) ≥
?
𝟎 ⇔ (𝐀̂𝐧 − 𝐁̂𝐧)(𝐀̂𝐧 + 𝐁̂𝐧 + 𝐂̂𝐧) ≥

?
𝟎 

→ 𝐭𝐫𝐮𝐞 𝐯𝐢𝒂 𝒂𝐬𝐬𝐮𝐦𝐩𝐭𝐢𝐨𝐧 ∴
𝐀̂𝐧

𝐁̂𝐧 + 𝐂̂𝐧
≥

𝐁̂𝐧

𝐂̂𝐧 + 𝐀̂𝐧
 𝒂𝐧𝐝 𝐬𝐢𝐦𝐢𝐥𝒂𝐫𝐥𝐲,

𝐁̂𝐧

𝐂̂𝐧 + 𝐀̂𝐧
≥

𝐂̂𝐧

𝐀̂𝐧 + 𝐁̂𝐧
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⇒
𝐀̂𝐧

𝐁̂𝐧 + 𝐂̂𝐧
≥

𝐁̂𝐧

𝐂̂𝐧 + 𝐀̂𝐧
≥

𝐂̂𝐧

𝐀̂𝐧 + 𝐁̂𝐧
∴

𝐀̂𝐧+𝟏

𝐁̂𝐧 + 𝐂̂𝐧
+

𝐁̂𝐧+𝟏

𝐂̂𝐧 + 𝐀̂𝐧
+

𝐂̂𝐧+𝟏

𝐀̂𝐧 + 𝐁̂𝐧
 

= 𝐀̂.
𝐀̂𝐧

𝐁̂𝐧 + 𝐂̂𝐧
+ 𝐁̂.

𝐁̂𝐧

𝐂̂𝐧 + 𝐀̂𝐧
+ 𝐂̂.

𝐂̂𝐧

𝐀̂𝐧 + 𝐁̂𝐧
 

≥
𝐂𝐡𝐞𝐛𝐲𝐬𝐡𝐞𝐯 𝟏

𝟑
(∑𝐀̂

𝐜𝐲𝐜

)(∑
𝐀̂𝐧

𝐁̂𝐧 + 𝐂̂𝐧
𝐜𝐲𝐜

) ≥
𝐍𝐞𝐬𝐛𝐢𝐭𝐭 𝛑

𝟑
.
𝟑

𝟐
=
𝛑

𝟐
 

∴
𝛑

𝟐
≤

𝐀̂𝐧+𝟏

𝐁̂𝐧 + 𝐂̂𝐧
+

𝐁̂𝐧+𝟏

𝐂̂𝐧 + 𝐀̂𝐧
+

𝐂̂𝐧+𝟏

𝐀̂𝐧 + 𝐁̂𝐧
 ∀ 𝐧 ∈ ℕ − {𝟎}  𝒂𝐧𝐝 ∴ 𝐢𝐧 𝒂𝐧𝐲 𝒂𝐜𝐮𝐭𝐞 ∆ 𝐀𝐁𝐂, 

𝛑

𝟐
≤

𝐀̂𝐧+𝟏

𝐁̂𝐧 + 𝐂̂𝐧
+

𝐁̂𝐧+𝟏

𝐂̂𝐧 + 𝐀̂𝐧
+

𝐂̂𝐧+𝟏

𝐀̂𝐧 + 𝐁̂𝐧
<
𝛑𝐧+𝟏

𝟐𝐧+𝟐
. (
𝐩𝟐 + 𝐫𝟐 + 𝟒𝐑𝐫

𝟐𝐫𝐩
)

𝐧

  

∀ 𝐧 ∈ ℕ − {𝟎},𝐰𝐢𝐭𝐡 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐟𝐟 ∆ 𝐀𝐁𝐂 𝐢𝐬 𝐞𝐪𝐮𝐢𝒍𝒂𝐭𝐞𝐫𝒂𝒍 (𝐐𝐄𝐃) 

Solution 2 by Tapas Das-India 

𝑰𝒏 𝚫𝑨𝑩𝑪,  𝐬𝐢𝐧 𝑨 < 𝐴. 

𝑰𝒏 𝒂𝒄𝒖𝒕𝒆 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆  𝑨 <
𝝅

𝟐
, 𝑩 <

𝝅

𝟐
,𝑪 <

𝝅

𝟐
. 

𝑨𝒏+𝟏

𝑩𝒏 + 𝑪𝒏
+

𝑩𝒏+𝟏

𝑪𝒏 + 𝑨𝒏
+

𝑪𝒏+𝟏

𝑨𝒏 + 𝑩𝒏
≤
(
𝝅
𝟐)

𝒏+𝟏

𝑩𝒏 + 𝑪𝒏
+
(
𝝅
𝟐)

𝒏+𝟏

𝑪𝒏 + 𝑨𝒏
+
(
𝝅
𝟐)

𝒏+𝟏

𝑨𝒏 +𝑩𝒏
< 

<
𝝅𝒏+𝟏

𝟐𝒏+𝟏
⋅
𝟏

𝟒
[(
𝟏

𝑩𝒏
+
𝟏

𝑪𝒏
) + (

𝟏

𝑪𝒏
+
𝟏

𝑨𝒏
) + (

𝟏

𝑨𝒏
+
𝟏

𝑩𝒏
)] =

𝝅𝒏+𝟏

𝟐𝒏+𝟏
⋅
𝟏

𝟒
(
𝟏

𝑨𝒏
+
𝟏

𝑩𝒏
+
𝟏

𝑪𝒏
) < 

<
𝝅𝒏+𝟏

𝟐𝒏+𝟏
⋅ (

𝟏

𝐬𝐢𝐧𝒏 𝑨
+

𝟏

𝐬𝐢𝐧𝒏 𝑩
+

𝟏

𝐬𝐢𝐧𝒏 𝑪
) =

𝝅𝒏+𝟏

𝟐𝒏+𝟐
⋅
∑(𝐬𝐢𝐧𝑨𝐬𝐢𝐧𝑩)𝒏

(∑ 𝐬𝐢𝐧𝑨)𝒏
< 

<
𝝅𝒏+𝟏

𝟐𝒏+𝟐
⋅ (
𝒔𝟐 + 𝒓𝟐 + 𝟒𝑹𝒓

𝟒𝑹𝟐
⋅
𝟐𝑹𝟐

𝑹𝒔
)

𝒏

=
𝝅𝒏+𝟏

𝟐𝒏+𝟐
⋅ (
𝒔𝟐 + 𝒓𝟐 + 𝟒𝑹𝒓

𝟐𝒓𝒔
)

𝒏

 

𝑼𝒔𝒊𝒏𝒈 𝑪𝒉𝒆𝒃𝒚𝒔𝒉𝒆𝒗′𝒔 𝒂𝒏𝒅 𝑵𝒆𝒔𝒃𝒊𝒕𝒕′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒊𝒆𝒔:   

  
𝑨𝒏+𝟏

𝑩𝒏 + 𝑪𝒏
+

𝑩𝒏+𝟏

𝑪𝒏 + 𝑨𝒏
+

𝑪𝒏+𝟏

𝑨𝒏 +𝑩𝒏
= 𝑨 ⋅

𝑨𝒏

𝑩𝒏 + 𝑪𝒏
+ 𝑩 ⋅

𝑩𝒏

𝑪𝒏 + 𝑨𝒏
+ 𝑪 ⋅

𝑪𝒏

𝑨𝒏 +𝑩𝒏
≥ 

≥
𝟏

𝟑
(∑𝑨

𝒄𝒚𝒄

)(∑
𝑨𝒏

𝑩𝒏 + 𝑪𝒏
𝒄𝒚𝒄

) =
𝝅

𝟑
⋅
𝟑

𝟐
=
𝝅

𝟐
   

    870. 𝑰𝒏 ∆𝑨𝑩𝑪 𝒕𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔𝒉𝒊𝒑 𝒉𝒐𝒍𝒅𝒔: 

𝟏 +
𝟏

𝒔𝟐
(∑𝒏𝒂𝒏𝒃
𝒄𝒚𝒄

)

𝟏
𝟐

(∑𝒎𝒂𝒎𝒃

𝒄𝒚𝒄

)

𝟏
𝟐

≤
𝑹

𝒓
 

Proposed by Bogdan Fuștei-Romania 
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Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

(∗) ∶ 𝟏 +
𝟏

𝒔𝟐
(∑𝒏𝒂𝒏𝒃
𝒄𝒚𝒄

)

𝟏
𝟐

(∑𝒎𝒂𝒎𝒃

𝒄𝒚𝒄

)

𝟏
𝟐

≤
𝑹

𝒓
 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  𝒏𝒂
𝟐 = 𝒔(𝒔 − 𝒂) +

𝒔(𝒃 − 𝒄)𝟐

𝒂
=  𝒔𝟐 −

𝒔[𝒂𝟐 − (𝒃 − 𝒄)𝟐]

𝒂
= 

= 𝒔𝟐 −
𝒔. 𝟒(𝒔 − 𝒃)(𝒔 − 𝒄)

𝒂
= 𝒔𝟐 −

𝟒𝒔. 𝒔𝒓𝟐

𝒂(𝒔 − 𝒂)
= 𝒔𝟐 − 𝟐𝒓𝒂𝒉𝒂  (𝒊) 

𝑨𝒍𝒔𝒐,   𝟐𝒓𝒂(𝒏𝒂 + 𝒉𝒂) ≤⏞
𝑨𝑴−𝑮𝑴

𝒓𝒂
𝟐 + 𝒏𝒂

𝟐 + 𝟐𝒓𝒂𝒉𝒂  =⏞
(𝒊)

 𝒓𝒂
𝟐 + 𝒔𝟐 = 𝒔𝟐 (𝐭𝐚𝐧𝟐

𝑨

𝟐
+ 𝟏) = 

=
𝒔𝟐

𝐜𝐨𝐬𝟐
𝑨
𝟐

=
𝒔. 𝒃𝒄

𝒔 − 𝒂
=
𝒓𝒂
𝒓
. 𝟐𝑹𝒉𝒂 .   ⇒   𝒏𝒂 + 𝒉𝒂 ≤

𝑹𝒉𝒂
𝒓
  𝒐𝒓  𝒏𝒂 ≤ (

𝑹

𝒓
− 𝟏)𝒉𝒂  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒏 ∶   ∑𝒏𝒂𝒏𝒃
𝒄𝒚𝒄

≤ (
𝑹

𝒓
− 𝟏)

𝟐

.∑𝒉𝒂𝒉𝒃
𝒄𝒚𝒄

= (
𝑹

𝒓
− 𝟏)

𝟐

.
𝟐𝒔𝟐𝒓

𝑹
  (𝟏) 

𝑵𝒐𝒘,   ∑𝒎𝒂𝒎𝒃

𝒄𝒚𝒄

≤⏞
𝑷𝒂𝒏𝒂𝒊𝒕𝒐𝒑𝒐𝒍

 ∑
𝑹𝒉𝒂
𝟐𝒓

.
𝑹𝒉𝒃
𝟐𝒓

𝒄𝒚𝒄

= (
𝑹

𝟐𝒓
)
𝟐

.∑𝒉𝒂𝒉𝒃
𝒄𝒚𝒄

= (
𝑹

𝟐𝒓
)
𝟐

.
𝟐𝒔𝟐𝒓

𝑹
=
𝑹𝒔𝟐

𝟐𝒓
  (𝟐) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   𝑳𝑯𝑺(∗)  ≤⏞
(𝟏) & (𝟐)

 𝟏 +
𝟏

𝒔𝟐
. √(

𝑹

𝒓
− 𝟏)

𝟐

.
𝟐𝒔𝟐𝒓

𝑹
.
𝑹𝒔𝟐

𝟐𝒓
= 𝟏 +

𝟏

𝒔𝟐
. (
𝑹

𝒓
− 𝟏)𝒔𝟐 =

𝑹

𝒓
. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 ∆𝑨𝑩𝑪 𝒊𝒔 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍. 

871. If 𝑴 ∈ 𝑰𝒏𝒕(𝚫𝑨𝑩𝑪), 𝒅𝒂 = 𝒅(𝑴,𝑩𝑪), 𝒅𝒃 = 𝒅(𝑴, 𝑪𝑨), 𝒅𝒄 = 𝒅(𝑴,𝑨𝑩) and 

𝒈𝒂, 𝒈𝒃 , 𝒈𝒄 −Gergonne’s cevians, then holds: 

𝒈𝒂
𝒅𝒂

+
𝒈𝒃
𝒅𝒃
+
𝒈𝒄
𝒅𝒄
≥ 𝟗 

Proposed by D.M. Bătinețu-Giurgiu, Florică Anastase-Romania 
Solution by Tapas Das-India 
 

𝑳𝒆𝒕 𝑴𝑫 = 𝒅𝒂, 𝑴𝑭 = 𝒅𝒃, 𝑴𝑬 = 𝒅𝒄 , [𝑨𝑩𝑪] = [𝑨𝑴𝑩] + [𝑩𝑴𝑪] + [𝑪𝑴𝑨] 
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[𝑨𝑩𝑪] =
𝟏

𝟐
𝒂 ⋅ 𝒅𝒂 +

𝟏

𝟐
𝒃 ⋅ 𝒅𝒃 +

𝟏

𝟐
𝒄 ⋅ 𝒅𝒄 

𝑭 =
𝟏

𝟐
(𝒂 ⋅ 𝒅𝒂 + 𝒃 ⋅ 𝒅𝒃 + 𝒄 ⋅ 𝒅𝒄) 

𝟐𝑭 = 𝒂 ⋅ 𝒅𝒂 + 𝒃 ⋅ 𝒅𝒃 + 𝒄 ⋅ 𝒅𝒄;    (𝟏) 

𝑵𝒐𝒘, 𝒈𝒂 ≥ 𝒉𝒂, 𝒈𝒃 ≥ 𝒉𝒃, 𝒈𝒄 ≥ 𝒉𝒄, 𝒕𝒉𝒖𝒔 

  
𝒈𝒂
𝒅𝒂
+
𝒈𝒃
𝒅𝒃
+
𝒈𝒄
𝒅𝒄
≥
𝒉𝒂
𝒅𝒂
+
𝒉𝒃
𝒅𝒃
+
𝒉𝒄
𝒅𝒄
=
𝟐𝑭

𝒂𝒅𝒂
+
𝟐𝑭

𝒃𝒅𝒃
+
𝟐𝑭

𝒄𝒅𝒄
= 

= 𝟐𝑭 (
𝟏

𝒂𝒅𝒂
+

𝟏

𝒃𝒅𝒃
+

𝟏

𝒄𝒅𝒄
) ≥ 𝟐𝑭 ⋅

(𝟏 + 𝟏 + 𝟏)𝟐

𝒂𝒅𝒂 + 𝒃𝒅𝒃 + 𝒄𝒅𝒄
= 𝟐𝑭 ⋅

𝟗

𝟐𝑭
= 𝟗   

872. 𝐈𝐧 𝒂𝐧𝐲 ∆ 𝐀𝐁𝐂 𝐡𝐨𝐥𝐝𝐬: 

(𝟐(𝒂𝟑 + 𝐛𝟑 + 𝐜𝟑) +
𝟏

𝟗
)(∑

𝟏

(𝟏 + √𝐀̂)
𝟐

𝐜𝐲𝐜

) ≥
𝟗𝐫(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐)

(𝛑 + 𝟑)𝐑
 

  Proposed by Radu Diaconu-Romania 
Solution 1 by Soumava Chakraborty-Kolkata-India 
 

𝟏 ≥
𝐄𝐮𝐥𝐞𝐫 𝟖𝐫𝟑

𝐑𝟑
⇒ 𝟐(𝒂𝟑 + 𝐛𝟑 + 𝐜𝟑) +

𝟏

𝟗
≥∑𝒂𝟑

𝐜𝐲𝐜

+∑𝒂𝟑

𝐜𝐲𝐜

+
𝟖𝐫𝟑

𝟗𝐑𝟑
 

≥
𝐀−𝐆

𝟑. √(∑𝒂𝟑

𝐜𝐲𝐜

)

𝟐

.
𝟖𝐫𝟑

𝟗𝐑𝟑

𝟑

≥
? 𝟐𝐫(∑ 𝒂𝟐𝐜𝐲𝐜 )

𝐑
⇔ 𝟐𝟕(∑𝒂𝟑

𝐜𝐲𝐜

)

𝟐

≥
?
𝟗(∑𝒂𝟐

𝐜𝐲𝐜

)

𝟑

 

⇔ √𝟑.(∑𝒂𝟑

𝐜𝐲𝐜

)

𝟏
𝟑

≥
?

√𝟑
𝟑
. (∑𝒂𝟐

𝐜𝐲𝐜

)

𝟏
𝟐

⇔ (
∑ 𝒂𝟑𝐜𝐲𝐜

𝟑
)

𝟏
𝟑

≥
?
(
∑ 𝒂𝟐𝐜𝐲𝐜

𝟑
)

𝟏
𝟐

 

→ 𝐭𝐫𝐮𝐞 𝐯𝐢𝒂 𝐏𝐨𝐰𝐞𝐫 − 𝐌𝐞𝒂𝐧 𝐢𝐧𝐞𝐪𝒂𝒍𝐢𝐭𝐲 ∴ 𝟐(𝒂𝟑 + 𝐛𝟑 + 𝐜𝟑) +
𝟏

𝟗
≥
(∗) 𝟐𝐫(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐)

𝐑
 

𝐀𝐠𝒂𝐢𝐧,∑
𝟏

(𝟏 + √𝐀̂)
𝟐

𝐜𝐲𝐜

=∑
𝟏𝟑

(𝟏 + √𝐀̂)
𝟐

𝐜𝐲𝐜

≥
𝐑𝒂𝐝𝐨𝐧 𝟐𝟕

(𝟑 + ∑ √𝐀̂𝐜𝐲𝐜 )
𝟐
 

≥
𝐂𝐁𝐒 𝟐𝟕

(𝟑 + √𝟑.√∑ 𝐀̂𝐜𝐲𝐜 )

𝟐 =
𝟐𝟕

𝟑(√𝟑 + √𝛑)
𝟐 ≥
𝐂𝐁𝐒 𝟗

(√𝟐.√𝟑 + 𝛑)
𝟐 
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∴∑
𝟏

(𝟏 +√𝐀̂)
𝟐

𝐜𝐲𝐜

≥
(∗∗) 𝟗

𝟐(𝛑 + 𝟑)
 

∴ (∗)⦁(∗∗) ⇒ (𝟐(𝒂𝟑 + 𝐛𝟑 + 𝐜𝟑) +
𝟏

𝟗
)(∑

𝟏

(𝟏+ √𝐀̂)
𝟐

𝐜𝐲𝐜

) ≥
𝟗𝐫(𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐)

(𝛑 + 𝟑)𝐑
 (𝐐𝐄𝐃) 

 

Solution 2 by Tapas Das-India 
𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑

𝟑
≥ (

𝒂 + 𝒃 + 𝒄

𝟑
)
𝟑

⇒ 𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑 ≥
(𝒂 + 𝒃 + 𝒄)𝟑

𝟗
 

𝟐(𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑) +
𝟏

𝟗
. =

𝟐

𝟗
(𝒂 + 𝒃 + 𝒄)𝟑 +

𝟏

𝟗

=
𝟏

𝟗
(𝒂 + 𝒃 + 𝒄)𝟑 +

𝟏

𝟗
(𝒂 + 𝒃 + 𝒄)𝟑 +

𝟏

𝟗
≥

𝑨𝑴−𝑮𝑴
 

≥ 𝟑√
𝟏

𝟗
(𝒂 + 𝒃 + 𝒄)𝟑 ⋅

𝟏

𝟗
(𝒂 + 𝒃 + 𝒄)𝟑 ⋅

𝟏

𝟗

𝟑

=
𝟑

𝟗
(𝒂 + 𝒃 + 𝒄)𝟐 =

𝟏

𝟑
(𝒂 + 𝒃 + 𝒄)𝟐;   (𝟏) 

𝑵𝒐𝒘,𝒘𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒔𝒉𝒐𝒘: 
𝟏

𝟔
(𝒂 + 𝒃 + 𝒄)𝟐 ≥

𝒓

𝑹
(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐), 𝑹(𝒂 + 𝒃 + 𝒄)𝟐 ≥ 𝟔𝒓(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) 

𝑹 ⋅ 𝟒𝒔𝟐 ≥ 𝟔𝒓(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐), 𝟒𝑹 ⋅ 𝒔𝟐 ≥ 𝟔𝒓(𝒔𝟐 − 𝒓𝟐 − 𝟒𝑹𝒓) 
𝟐𝑹𝒔𝟐 ≥ 𝟔𝒓(𝒔𝟐 − 𝒓𝟐 − 𝟒𝑹𝒓) 

𝑩𝒚 𝑮𝒆𝒓𝒓𝒆𝒕𝒔𝒆𝒏′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚:  𝟐𝑹(𝟏𝟔𝑹𝒓 − 𝟓𝒓𝟐) ≥ 𝟔𝒓(𝟒𝑹𝟐 + 𝟒𝑹𝒓 + 𝟑𝒓𝟐 − 𝒓𝟐 − 𝟒𝑹𝒓) 
𝟏𝟔𝑹𝟐 − 𝟏𝟐𝑹𝟐𝒓 − 𝟓𝑹𝒓𝟐 − 𝟔𝒓𝟑 ≥ 𝟎 

(𝑹 − 𝟐𝒓)(𝟒𝑹+ 𝟑𝒓) ≥ 𝟎 𝒕𝒓𝒖𝒆 𝒇𝒓𝒐𝒎 𝑹 ≥ 𝟐𝒓 (𝑬𝒖𝒍𝒆𝒓). 

𝑺𝒐, 𝟐(𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑) +
𝟏

𝟗
≥
𝒓

𝑹
(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐);  (𝟐) 

𝟐(𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑) +
𝟏

𝟗
≥
𝟏

𝟑
(𝒂 + 𝒃 + 𝒄)𝟐 ≥

𝟏

𝟔
(𝒂 + 𝒃 + 𝒄)𝟐 ≥

𝒓

𝑹
(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) 

(𝟏 + √𝑨)
𝟐
≤ (𝟏 + 𝟏)(𝟏 + 𝑨) 

(𝟏 + √𝑨)
𝟐
≤ 𝟐(𝟏 + 𝑨)  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

∑
𝟏

(𝟏 + √𝑨)
𝟐

𝒄𝒚𝒄

≥∑
𝟏

𝟐(𝟏 + 𝑨)
𝒄𝒚𝒄

=
𝟏

𝟐
∑

𝟏

𝟏 + 𝑨
𝒄𝒚𝒄

 

𝑳𝒆𝒕 𝒇(𝒙) =
𝟏

𝟏 + 𝒙
, 𝒕𝒉𝒆𝒏 𝒇′(𝒙) = −

𝟏

(𝟏 + 𝒙)𝟐
 𝒂𝒏𝒅 𝒇′′(𝒙) =

𝟐

(𝟏 + 𝒙)𝟑
> 0. 

𝑼𝒔𝒊𝒏𝒈 𝑱𝒆𝒏𝒔𝒆𝒏′𝒔𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚,𝒘𝒆 𝒈𝒆𝒕: 

𝒇(𝑨) + 𝒇(𝑩) + 𝒇(𝑪) ≥ 𝟑𝒇(
𝑨 + 𝑩 + 𝑪

𝟑
) 

𝟏

𝟏 + 𝑨
+

𝟏

𝟏 + 𝑩
+

𝟏

𝟏 + 𝑪
≥ 𝟑𝒇 (

𝝅

𝟑
) 
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∑
𝟏

𝟏+𝑨
𝒄𝒚𝒄

≥ 𝟑 ⋅
𝟏

𝟏 +
𝝅
𝟑

 

𝑵𝒐𝒘, ∑
𝟏

(𝟏 + √𝑨)
𝟐

𝒄𝒚𝒄

≥∑
𝟏

𝟐(𝟏 + 𝑨)
𝒄𝒚𝒄

≥
𝟗

𝟐(𝝅 + 𝟑)
;  (𝟑) 

𝑯𝒆𝒏𝒄𝒆,   

(𝟐∑𝒂𝟐

𝒄𝒚𝒄

+
𝟏

𝟗
)(∑

𝟏

(𝟏 + √𝑨)
𝟐

𝒄𝒚𝒄

) ≥
𝟏

𝟑
(∑𝒂

𝒄𝒚𝒄

)

𝟐

⋅
𝟗

𝟐(𝝅 + 𝟑)
=
𝟏

𝟔
(∑𝒂

𝒄𝒚𝒄

)

𝟐

⋅
𝟗

𝝅 + 𝟑

≥
𝒓

𝑹
(∑𝒂𝟐

𝒄𝒚𝒄

) ⋅
𝟗

𝝅 + 𝟑
=

𝟗𝒓

(𝝅 + 𝟑)𝑹
∑𝒂𝟐

𝒄𝒚𝒄

   

   873. 𝐈𝐟 𝒙, 𝐲, 𝐳 ∈ [𝟎,
𝛑

𝟐
) , 𝐭𝐡𝐞𝐧 𝐢𝐧 ∆ 𝐀𝐁𝐂, 

𝒂𝟐. 𝐞𝒙

𝟐 + 𝐬𝐢𝐧𝐲 + 𝐬𝐢𝐧𝐳
+

𝐛𝟐. 𝐞𝐲

𝟐 + 𝐬𝐢𝐧𝐳 + 𝐬𝐢𝐧𝒙
+

𝒂𝟐. 𝐞𝐳

𝟐 + 𝐬𝐢𝐧𝒙 + 𝐬𝐢𝐧𝐲
≥ 𝟐√𝟑. 𝐅 

  Proposed by D.M.Bătinețu-Giurgiu, Florică Anastase-Romania 
Solution by Soumava Chakraborty-Kolkata-India 
 

 𝐞𝒙 ≥ 𝟏 + 𝒙 ≥ 𝟏 + 𝐬𝐢𝐧𝒙 ∀ 𝒙 ∈ [𝟎,
𝛑

𝟐
)  𝒂𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐬 

⇒ 𝐋𝐇𝐒 ≥ 𝒂𝟐.
𝛂

𝛃 + 𝛄
+ 𝐛𝟐.

𝛃

𝛄 + 𝛂
+ 𝐜𝟐.

𝛄

𝛂 + 𝛃
  

(𝛂 = 𝟏 + 𝐬𝐢𝐧𝒙, 𝛃 = 𝟏 + 𝐬𝐢𝐧𝐲, 𝛄 = 𝟏 + 𝐬𝐢𝐧𝐳 𝒂𝐧𝐝 𝛂, 𝛃, 𝛄 ≥ 𝟏 > 0) 

≥
𝐎𝐩𝐩𝐞𝐧𝐡𝐞𝐢𝐦

𝟒𝐅.√
𝛂

𝛃 + 𝛄
.
𝛃

𝛄 + 𝛂
+

𝛃

𝛄 + 𝛂
.
𝛄

𝛂 + 𝛃
+

𝛄

𝛂 + 𝛃
.
𝛂

𝛃 + 𝛄
≥
?
𝟐√𝟑. 𝐅 

⇔ 𝟒∑(
𝛂

𝛃 + 𝛄
.
𝛃

𝛄 + 𝛂
)

𝐜𝐲𝐜

≥
?
𝟑 ⇔

𝟒∑ 𝛂𝛃(𝛂 + 𝛃)𝐜𝐲𝐜

(𝛂 + 𝛃)(𝛃+ 𝛄)(𝛄 + 𝛂)
≥
?
𝟑 

⇔ 𝟒∑𝛂𝟐𝛃

𝐜𝐲𝐜

+ 𝟒∑𝛂𝛃𝟐

𝐜𝐲𝐜

≥
?
𝟑(∑𝛂𝟐𝛃

𝐜𝐲𝐜

+∑𝛂𝛃𝟐

𝐜𝐲𝐜

+ 𝟐𝛂𝛃𝛄) 

⇔∑𝛂𝟐𝛃

𝐜𝐲𝐜

+∑𝛂𝛃𝟐

𝐜𝐲𝐜

≥
?
𝟔𝛂𝛃𝛄 ⇔∑𝛂(𝛃 − 𝛄)𝟐

𝐜𝐲𝐜

≥
?
𝟎 → 𝐭𝐫𝐮𝐞 

∴ 𝐢𝐟 𝒙, 𝐲, 𝐳 ∈ [𝟎,
𝛑

𝟐
) , 𝐭𝐡𝐞𝐧 𝐢𝐧 ∆ 𝐀𝐁𝐂, 

𝒂𝟐. 𝐞𝒙

𝟐 + 𝐬𝐢𝐧𝐲 + 𝐬𝐢𝐧𝐳
+

𝐛𝟐. 𝐞𝐲

𝟐 + 𝐬𝐢𝐧𝐳 + 𝐬𝐢𝐧𝒙
+

𝒂𝟐. 𝐞𝐳

𝟐 + 𝐬𝐢𝐧𝒙 + 𝐬𝐢𝐧𝐲
≥ 𝟐√𝟑. 𝐅, 

𝐰𝐢𝐭𝐡 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐟𝐟 𝒙 = 𝐲 = 𝐳 = 𝟎 (𝐐𝐄𝐃) 
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874. Let 𝚫𝑰𝒂𝑰𝒃𝑰𝒄 −be the excentral triangle of 𝚫𝑨𝑩𝑪 and 𝑴, 𝑳, 𝑲 the 

midpoints of  𝑨𝑰𝒂, 𝑩𝑰𝒃, 𝑪𝑰𝒄. Prove that: 

[𝑨𝑩𝑪] = 𝟒[𝑴𝑳𝑲],   𝑨𝑩 + 𝑩𝑪 + 𝑪𝑨 ≤ 𝟐(𝑴𝑳 + 𝑳𝑲+ 𝑲𝑴) 

Proposed by Mehmet Șahin, Alican Gullu-Turkiye 
Solution by Hikmat Mammadov-Azerbaijan 

 

𝑴−𝒎𝒊𝒅𝒑𝒐𝒊𝒏𝒕 𝒐𝒇 𝑨𝒂; 𝑳 −𝒎𝒊𝒅𝒑𝒐𝒊𝒏𝒕 𝒐𝒇 𝑩𝒃, 𝑲 −𝒎𝒊𝒅𝒑𝒐𝒊𝒏𝒕 𝒐𝒇 𝑪𝒄 

𝑨𝑯 =
𝑨𝒄

𝐬𝐢𝐧𝑩
=
𝒃𝒄 𝐜𝐨𝐬𝑨

𝐬𝐢𝐧𝑩
=
𝟐𝑹𝐬𝐢𝐧𝑩𝐜𝐨𝐬 𝑨

𝐬𝐢𝐧𝑩
= 𝟐𝑹𝐜𝐨𝐬𝑨 

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚, 𝑩𝑯 = 𝟐𝑹𝐜𝐨𝐬𝑩  𝒂𝒏𝒅 𝑪𝑯 = 𝟐𝑹 𝐜𝐨𝐬𝑪 

𝑯𝑴 = 𝑨𝑯 −
𝑨𝑯 + 𝑯𝒂

𝟐
=
𝟏

𝟐
(𝑨𝑯 −𝑯𝒂) = 𝑹(𝐜𝐨𝐬𝑨 − 𝐜𝐨𝐬𝑩𝐜𝐨𝐬𝑪) 

𝑯𝑳 = 𝑩𝑯−
𝑩𝑯 −𝑯𝒃

𝟐
=
𝟏

𝟐
(𝑩𝑯 −𝑯𝒃) = 𝑹(𝐜𝐨𝐬𝑩 − 𝐜𝐨𝐬 𝑪 𝐜𝐨𝐬𝑨) 

𝑯𝑲 = 𝑪𝑯 −
𝑪𝑯 − 𝑯𝒄

𝟐
=
𝟏

𝟐
(𝑪𝑯− 𝑯𝒄) = 𝑹(𝐜𝐨𝐬𝑪 − 𝐜𝐨𝐬 𝑨𝐜𝐨𝐬 𝑩) 

𝟐𝚫𝒂𝒃𝒄 = 𝑯𝑴 ⋅ 𝑯𝑳 𝐬𝐢𝐧𝑪 + 𝑯𝑳 ⋅ 𝑯𝑲𝐬𝐢𝐧𝑨 +𝑯𝑲 ⋅ 𝑯𝑴𝐬𝐢𝐧𝑩 = 

= 𝟒𝑹𝟐 (∑𝐜𝐨𝐬 𝑨𝐜𝐨𝐬𝑩 𝐜𝐨𝐬𝟐 𝑪

𝒄𝒚𝒄

) = 𝟒𝑹𝟐∏𝐜𝐨𝐬𝑨

𝒄𝒚𝒄

⋅∑𝐬𝐢𝐧 𝟐𝑨

𝒄𝒚𝒄

= 

= 𝟒𝑹𝟐∏𝐬𝐢𝐧𝑨𝐜𝐨𝐬 𝑨

𝒄𝒚𝒄

=
𝑹𝟐

𝟐
∏𝐬𝐢𝐧 𝟐𝑨

𝒄𝒚𝒄

 

𝟐𝚫𝑴𝑳𝑲 = 𝑯𝑴 ⋅ 𝑯𝑳 𝐬𝐢𝐧 𝑪 + 𝑯𝑳 ⋅ 𝑯𝑲𝐬𝐢𝐧𝑨 + 𝑯𝑲 ⋅ 𝑯𝑴𝐬𝐢𝐧𝑩 
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𝟐

𝑹𝟐
𝚫𝑴𝑳𝑲 =∑(𝐜𝐨𝐬 𝑨 − 𝐜𝐨𝐬 𝑩𝐜𝐨𝐬𝑪)(𝐜𝐨𝐬𝑩 − 𝐜𝐨𝐬 𝑪 𝐜𝐨𝐬𝑨) 𝐬𝐢𝐧𝑪

𝒄𝒚𝒄

= 

=∏𝐜𝐨𝐬 𝑨

𝒄𝒚𝒄

⋅∑𝐭𝐚𝐧𝑨

𝒄𝒚𝒄

−
𝟏

𝟐
∑𝐬𝐢𝐧𝟐𝑨

𝒄𝒚𝒄

−
𝟏

𝟒
∑(𝐜𝐨𝐬𝟐𝑨 + 𝐜𝐨𝐬𝟐𝑩) 𝐬𝐢𝐧𝟐𝑪

𝒄𝒚𝒄

+ 

+
𝟏

𝟐
∏𝐜𝐨𝐬𝑨

𝒄𝒚𝒄

⋅∑𝐬𝐢𝐧 𝟐𝑨

𝒄𝒚𝒄

= 

=∏𝐜𝐨𝐬𝑨

𝒄𝒚𝒄

⋅∑𝐭𝐚𝐧𝑨

𝒄𝒚𝒄

−
𝟏

𝟐
∑𝐬𝐢𝐧𝟐𝑨

𝒄𝒚𝒄

−
𝟏

𝟒
∑𝐬𝐢𝐧𝟐(𝑨 + 𝑩)

𝒄𝒚𝒄

+
𝟏

𝟐
∏𝐜𝐨𝐬𝑨

𝒄𝒚𝒄

⋅∑𝐬𝐢𝐧𝟐𝑨

𝒄𝒚𝒄

= 

=∏𝐜𝐨𝐬𝑨

𝒄𝒚𝒄

⋅∏𝐭𝐚𝐧𝑨

𝒄𝒚𝒄

−
𝟏

𝟐
∑𝐬𝐢𝐧𝟐𝑨

𝒄𝒚𝒄

+
𝟏

𝟒
∑𝐬𝐢𝐧𝟐𝑨

𝒄𝒚𝒄

+
𝟏

𝟒
∏𝐜𝐨𝐬𝑨

𝒄𝒚𝒄

⋅∑𝐬𝐢𝐧𝟐𝑨

𝒄𝒚𝒄

= 

= 𝐬𝐢𝐧𝑨𝐬𝐢𝐧𝑩𝐬𝐢𝐧 𝑪 − 𝐬𝐢𝐧𝑨𝐬𝐢𝐧𝑩𝐬𝐢𝐧 𝑪 + 𝟐𝐜𝐨𝐬𝑨 𝐜𝐨𝐬𝑩 𝐜𝐨𝐬𝑪 𝐬𝐢𝐧𝑨𝐬𝐢𝐧𝑩𝐬𝐢𝐧 𝑪 = 

=
𝟏

𝟒
𝐬𝐢𝐧𝟐𝑨𝐬𝐢𝐧 𝟐𝑩𝐬𝐢𝐧𝟐𝑪 , 𝚫𝑴𝑳𝑲 =

𝑹𝟐

𝟖
𝐬𝐢𝐧𝟐𝑨𝐬𝐢𝐧 𝟐𝑩𝐬𝐢𝐧𝟐𝑪 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝚫𝒂𝒃𝒄 = 𝟒𝚫𝑴𝑳𝑲 . 

𝑵𝒐𝒕𝒆: 
𝒂

𝐬𝐢𝐧𝑨
=

𝒃

𝐬𝐢𝐧𝑩
=

𝒄

𝐬𝐢𝐧𝑪
 

𝐬𝐢𝐧 𝟐𝑨 + 𝐬𝐢𝐧𝟐𝑩 + 𝐬𝐢𝐧 𝟐𝑪 = 𝟒𝐬𝐢𝐧 𝑨𝐬𝐢𝐧𝑩 𝐬𝐢𝐧𝑪 

𝐭𝐚𝐧 𝑨 + 𝐭𝐚𝐧𝑩 + 𝐭𝐚𝐧 𝑪 = 𝐭𝐚𝐧𝑨 𝐭𝐚𝐧𝑩 𝐭𝐚𝐧𝑪 

𝑪𝒂 = 𝒃 𝐜𝐨𝐬𝑪 = 𝟐𝑹𝐜𝐨𝐬𝑩 𝐜𝐨𝐬𝑪 

𝑪𝒃 = 𝒂 𝐜𝐨𝐬𝑨 𝐜𝐨𝐬𝑪 

(𝒂𝒃)𝟐 = (𝟐𝑹𝐜𝐨𝐬𝑩𝐜𝐨𝐬 𝑪)𝟐 + (𝟐𝑹𝐜𝐨𝐬𝑨 𝐜𝐨𝐬𝑪)𝟐 + 𝟐 ⋅ 𝟐𝑹𝐜𝐨𝐬𝑩𝐜𝐨𝐬 𝑪 ⋅ 𝟐𝑹𝐜𝐨𝐬𝑨 𝐜𝐨𝐬𝑪 ⋅ 𝐜𝐨𝐬 𝑪 

(𝒂𝒃)𝟐

𝟒𝑹𝟐
= (∑𝐜𝐨𝐬𝟐 𝑨

𝒄𝒚𝒄

+ 𝟐∏𝐜𝐨𝐬𝑨

𝒄𝒚𝒄

− 𝐜𝐨𝐬𝟐 𝑪)𝐜𝐨𝐬𝟐 𝑪 

= (𝟑 −∑𝐬𝐢𝐧𝟐 𝑨

𝒄𝒚𝒄

+ 𝟐∏𝐜𝐨𝐬 𝑨

𝒄𝒚𝒄

− 𝐜𝐨𝐬𝟐 𝑪)𝐜𝐨𝐬𝟐 𝑪 = 𝐬𝐢𝐧𝟐 𝑪 𝐜𝐨𝐬𝟐 𝑪 

𝒂𝒃 = 𝑹𝐬𝐢𝐧𝟐𝑪 

𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝑹∑𝐬𝐢𝐧𝟐𝑨 = 𝟒𝑹∏𝐬𝐢𝐧𝑨

𝒄𝒚𝒄𝒄𝒚𝒄

 

𝑲𝑳𝟐 = 𝑹𝟐(𝐜𝐨𝐬 𝑩 − 𝐜𝐨𝐬 𝑪𝐜𝐨𝐬 𝑨)𝟐 +𝑹𝟐(𝐜𝐨𝐬𝑪 − 𝐜𝐨𝐬𝑨𝐜𝐨𝐬𝑩)𝟐 + 
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+𝟐𝑹𝟐(𝐜𝐨𝐬 𝑩 − 𝐜𝐨𝐬 𝑪𝐜𝐨𝐬 𝑨)(𝐜𝐨𝐬𝑪 − 𝐜𝐨𝐬𝑨 𝐜𝐨𝐬𝑩) 𝐜𝐨𝐬 𝑨 

𝑲𝑳𝟐

𝑹𝟐
= (𝐜𝐨𝐬 𝑩 − 𝐜𝐨𝐬 𝑪𝐜𝐨𝐬 𝑨)𝟐 + (𝐜𝐨𝐬 𝑪 − 𝐜𝐨𝐬𝑨𝐜𝐨𝐬𝑩)𝟐 + 

+𝟐(𝐜𝐨𝐬𝑩 − 𝐜𝐨𝐬𝑪 𝐜𝐨𝐬𝑨)(𝐜𝐨𝐬𝑪 − 𝐜𝐨𝐬𝑨 𝐜𝐨𝐬𝑩) 𝐜𝐨𝐬 𝑨 = 

= 𝐬𝐢𝐧𝟐 𝑨(𝐜𝐨𝐬𝟐𝑩+ 𝐜𝐨𝐬𝟐 𝑪 − 𝟐𝐜𝐨𝐬 𝑨𝐜𝐨𝐬𝑩𝐜𝐨𝐬𝑪) = 

= 𝐬𝐢𝐧𝟐 𝑨(𝟑 − 𝐬𝐢𝐧𝟐 𝑨 − 𝐬𝐢𝐧𝟐𝑩− 𝐬𝐢𝐧𝟐 𝑪 − 𝟐 𝐜𝐨𝐬𝑨 𝐜𝐨𝐬𝑩𝐜𝐨𝐬 𝑪 − 𝐜𝐨𝐬𝟐 𝑨) = 

= 𝐬𝐢𝐧𝟐 𝑨 (𝟏 − 𝐜𝐨𝐬𝟐 𝑨) 

𝑲𝑳𝟐

𝑹𝟐
= 𝐬𝐢𝐧𝟒 𝑨 ⇒ 𝑲𝑳 = 𝑹𝐬𝐢𝐧𝟐 𝑨 

𝑲𝑳 + 𝑳𝑴+ 𝑲𝑴 = 𝑹(𝐬𝐢𝐧𝟐 𝑨 + 𝐬𝐢𝐧𝟐𝑩 + 𝐬𝐢𝐧𝟐 𝑪) 

𝟐(𝑲𝑳 + 𝑳𝑴 +𝑲𝑴) = 𝟐𝑹(𝐬𝐢𝐧𝟐 𝑨 + 𝐬𝐢𝐧𝟐𝑩 + 𝐬𝐢𝐧𝟐 𝑪) ≥ 

≥ 𝟐𝑹 ⋅ 𝟑(𝐬𝐢𝐧𝑨𝐬𝐢𝐧𝑩𝐬𝐢𝐧 𝑪)
𝟐
𝟑 > 6𝑹𝐬𝐢𝐧 𝑨𝐬𝐢𝐧𝑩 𝐬𝐢𝐧𝑪 > 4𝑹𝐬𝐢𝐧𝑨 𝐬𝐢𝐧𝑩𝐬𝐢𝐧 𝑪 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝟐(𝑲𝑳 + 𝑳𝑴 +𝑲𝑴) > 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎   

875. If 𝒎,𝒏 > 0 then in 𝚫𝑨𝑩𝑪 holds: 

𝒂𝟑

𝒎𝒂 + 𝒏√𝒃𝒄
+

𝒃𝟑

𝒎𝒃 + 𝒏√𝒄𝒂
+

𝒄𝟑

𝒎𝒄 + 𝒏√𝒂𝒃
≥

𝟒√𝟑

𝒎+ 𝒏
⋅ 𝑭 

Proposed by D.M. Bătinețu-Giurgiu, Florică Anastase-Romania 
Solution 1 by Tapas Das-India 

𝒂𝟑

𝒎𝒂+ 𝒏√𝒃𝒄
+

𝒃𝟑

𝒎𝒃 + 𝒏√𝒄𝒂
+

𝒄𝟑

𝒎𝒄+ 𝒏√𝒂𝒃
≥

𝑯𝒐𝒍𝒅𝒆𝒓
 

≥
(𝒂 + 𝒃 + 𝒄)𝟑

𝟑[𝒎(𝒂 + 𝒃 + 𝒄) + 𝒏(√𝒂𝒃 + √𝒃𝒄 + √𝒄𝒂)]
≥

𝑨𝑴−𝑮𝑴
 

≥
(𝒂 + 𝒃 + 𝒄)𝟑

𝟑 [𝒎(𝒂 + 𝒃 + 𝒄) + 𝒏(
𝒂 + 𝒃
𝟐 +

𝒃 + 𝒄
𝟐 +

𝒄 + 𝒂
𝟐 )]

= 

=
(𝒂 + 𝒃 + 𝒄)𝟑

𝟑(𝒎+ 𝒏)(𝒂 + 𝒃 + 𝒄)
=
(𝒂 + 𝒃 + 𝒄)𝟐

𝟑(𝒎 + 𝒏)
≥

𝑨𝑴−𝑮𝑴
 

≥
𝟑𝟐[(𝒂𝒃𝒄)𝟐]

𝟏
𝟑

𝟑(𝒎+ 𝒏)
≥

𝟑

𝒎+ 𝒏
[(
𝟒𝑭

√𝟑
)
𝟑

]

𝟏
𝟑

=
𝟑

𝒎 +𝒏
⋅
𝟒𝑭

√𝟑
=

𝟒√𝟑

𝒎+ 𝒏
⋅ 𝑭    
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Solution 2 by Adrian Popa-Romania 

𝒂𝟑

𝒎𝒂+ 𝒏√𝒃𝒄
+

𝒃𝟑

𝒎𝒃 + 𝒏√𝒄𝒂
+

𝒄𝟑

𝒎𝒄+ 𝒏√𝒂𝒃
≥

𝑯𝒐𝒍𝒅𝒆𝒓
 

≥
(𝒂 + 𝒃 + 𝒄)𝟑

𝟑[𝒎(𝒂 + 𝒃 + 𝒄) + 𝒏(√𝒂𝒃 + √𝒃𝒄 + √𝒄𝒂)]
≥

𝑨𝑴−𝑮𝑴
 

≥
(𝒂 + 𝒃 + 𝒄)𝟑

𝟑 [𝒎(𝒂 + 𝒃 + 𝒄) + 𝒏(
𝒂 + 𝒃
𝟐

+
𝒃 + 𝒄
𝟐

+
𝒄 + 𝒂
𝟐

)]
= 

=
(𝒂 + 𝒃 + 𝒄)𝟑

𝟑(𝒎+ 𝒏)(𝒂 + 𝒃 + 𝒄)
=
(𝒂 + 𝒃 + 𝒄)𝟐

𝟑(𝒎+ 𝒏)
≥
(?) 𝟒√𝟑

𝒎 + 𝒏
⋅ 𝑭 ⇔ (𝒂 + 𝒃 + 𝒄)𝟐 ≥ 𝟒 ⋅ 𝟑√𝟑𝑭 

(𝒂 + 𝒃 + 𝒄)𝟐 = 𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 + 𝟐𝒂𝒃 + 𝟐𝒃𝒄 + 𝟐𝒄𝒂 > 

> 𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 + 2𝒂𝒃 + 𝟐𝒃𝒄 + 𝟐𝒄𝒂 = 𝟑(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) ≥ 𝟑 ⋅ 𝟒√𝟑𝑭 𝒕𝒓𝒖𝒆. 

∵ 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝒂𝒃𝒄 (
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) ≥
𝑩𝒆𝒓𝒈𝒔𝒕𝒓𝒐𝒎

𝒂𝒃𝒄 ⋅
(𝟏 + 𝟏 + 𝟏)𝟐

𝒂 + 𝒃 + 𝒄
= 

=
𝟗𝒂𝒃𝒄

𝟐𝒔
=
𝟗 ⋅ 𝟒𝑹𝑭

𝟐𝒔
= 𝟒𝑭 ⋅ 𝟗 ⋅

𝑹

𝟐𝒔
≥

𝑴𝒊𝒕𝒓𝒊𝒏𝒐𝒗𝒊𝒄
𝟒𝑭 ⋅ 𝟗 ⋅

𝑹

𝟐 ⋅
𝟑√𝟑
𝟐

𝑹

= 𝟒𝑭 ⋅
𝟑

√𝟑
= 𝟒√𝟑𝑭   

876. 𝑰𝒏 ∆𝑨𝑩𝑪 𝒕𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔𝒉𝒊𝒑 𝒉𝒐𝒍𝒅𝒔: 

  (∑
𝟕𝑨̂𝟑 + 𝟑𝑨̂𝟐𝑩̂

𝑨̂ + 𝑩̂
𝒄𝒚𝒄

)(∑
𝑨̂𝟐 − 𝟑𝑨̂ + 𝟒 + 𝑩̂

𝑨̂𝑩̂
𝒄𝒚𝒄

) >
𝟖𝟏𝟎

𝝅
(
𝒓

𝑹
)
𝟐

 

Proposed by Radu Diaconu-Romania 
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  ∑
𝑨̂𝟐 − 𝟑𝑨̂ + 𝟒 + 𝑩̂

𝑨̂𝑩̂
𝒄𝒚𝒄

=∑
(𝑨̂ − 𝟐)

𝟐
+ 𝑨̂ + 𝑩̂

𝑨̂𝑩̂
𝒄𝒚𝒄

≥∑
𝑨̂ + 𝑩̂

𝑨̂𝑩̂
𝒄𝒚𝒄

= 

=∑(
𝟏

𝑨̂
+
𝟏

𝑩̂
)

𝒄𝒚𝒄

= 𝟐∑
𝟏

𝑨̂
𝒄𝒚𝒄

 ≥⏞
𝑪𝑩𝑺

 𝟐.
𝟑𝟐

𝑨̂ + 𝑩̂ + 𝑪̂
=
𝟏𝟖

𝝅
. 

𝑨𝒍𝒔𝒐,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   ∑
𝟕𝑨̂𝟑 + 𝟑𝑨̂𝟐𝑩̂

𝑨̂ + 𝑩̂
𝒄𝒚𝒄

> 7∑
𝑨̂𝟑

𝑨̂ + 𝑩̂
𝒄𝒚𝒄

 ≥⏞
𝑯ӧ𝒍𝒅𝒆𝒓

 
𝟕(𝑨̂ + 𝑩̂ + 𝑪̂)

𝟑

𝟑. 𝟐(𝑨̂ + 𝑩̂ + 𝑪̂)
=
𝟕𝝅𝟐

𝟔
>
𝟒𝟓

𝟒
. 
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𝑻𝒉𝒆𝒏 ∶   (∑
𝟕𝑨̂𝟑 + 𝟑𝑨̂𝟐𝑩̂

𝑨̂ + 𝑩̂
𝒄𝒚𝒄

)(∑
𝑨̂𝟐 − 𝟑𝑨̂ + 𝟒 + 𝑩̂

𝑨̂𝑩̂
𝒄𝒚𝒄

) >
𝟒𝟓

𝟒
.
𝟏𝟖

𝝅
 ≥⏞
𝑬𝒖𝒍𝒆𝒓

 
𝟖𝟏𝟎

𝟒𝝅
. (
𝟐𝒓

𝑹
)
𝟐

=
𝟖𝟏𝟎

𝝅
(
𝒓

𝑹
)
𝟐

. 

Solution 2 by Tapas Das-India 

∑
𝟕𝑨𝟑 + 𝟑𝑨𝟐𝑩

𝑨 +𝑩
𝒄𝒚𝒄

=∑
𝑨𝟐(𝟕𝑨 + 𝟑𝑩)

𝑨 + 𝑩
𝒄𝒚𝒄

≥
𝑪𝒉𝒆𝒃𝒚𝒔𝒉𝒆𝒗 𝟏

𝟑
∑

𝑨𝟐

𝑨 + 𝑩
𝒄𝒚𝒄

⋅∑(𝟕𝑨 + 𝟑𝑩)

𝒄𝒚𝒄

≥ 

≥
𝑪𝒉𝒆𝒃𝒚𝒔𝒉𝒆𝒗 𝟏

𝟑
⋅
𝟏

𝟑
(𝑨 + 𝑩 + 𝑪) ⋅∑

𝑨

𝑨 +𝑩
𝒄𝒚𝒄

⋅∑(𝟕𝑨 + 𝟑𝑩)

𝒄𝒚𝒄

≥
𝑵𝒆𝒔𝒃𝒊𝒕𝒕 𝟏

𝟗
⋅ 𝝅 ⋅

𝟑

𝟐
⋅ 𝟏𝟎∑𝑨

𝒄𝒚𝒄

= 

=
𝟓𝝅𝟐

𝟑
>
𝟒𝟓

𝟒
 

∑
𝑨𝟐 − 𝟑𝑨 + 𝟒 +𝑩

𝑨𝑩
𝒄𝒚𝒄

=
𝟏

𝑨𝑩𝑪
[(𝑨𝟐𝑪 + 𝑩𝟐𝑨 + 𝑪𝟐𝑩) − 𝟐(𝑨𝑩 + 𝑩𝑪 + 𝑪𝑨) + 𝟒(𝑨 + 𝑩 + 𝑪)] 

=
𝟏

𝑨𝑩𝑪
[𝑪(𝑨𝟐 + 𝟒) + 𝑩(𝑪𝟐 + 𝟒) + 𝑨(𝑩𝟐 + 𝟒) − 𝟐(𝑨𝑩 + 𝑩𝑪 + 𝑪𝑨)] ≥

𝑨𝑴−𝑮𝑴
 

≥
𝟒(𝑨𝑪 + 𝑩𝑪 + 𝑪𝑨) − 𝟐(𝑨𝑩 + 𝑩𝑪 + 𝑪𝑨)

𝑨𝑩𝑪
=
𝟐(𝑨𝑩 + 𝑩𝑪 + 𝑪𝑨)

𝑨𝑩𝑪
= 

= 𝟐 (
𝟏

𝑨
+
𝟏

𝑩
+
𝟏

𝑪
) ≥

𝟐(𝟏 + 𝟏 + 𝟏)𝟐

𝑨 + 𝑩+ 𝑪
=
𝟏𝟖

𝝅
 

∑
𝟕𝑨𝟑 + 𝟑𝑨𝟐𝑩

𝑨 + 𝑩
𝒄𝒚𝒄

⋅∑
𝑨𝟐 − 𝟑𝑨 + 𝟒 + 𝑩

𝑨𝑩
𝒄𝒚𝒄

≥
𝟒𝟓

𝟒
⋅
𝟏𝟖

𝝅
 

𝑾𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒔𝒉𝒐𝒘: 

  
𝟒𝟓

𝟒
⋅
𝟏𝟖

𝝅
≥
𝟖𝟏𝟎

𝝅
(
𝒓

𝑹
)
𝟐

⇔ 𝑹 ≥ 𝟐𝒓 (𝑬𝒖𝒍𝒆𝒓).   

877. In ∆𝑨𝑩𝑪 the following relationship holds: 

𝟏

𝑹𝟐
∑(𝒘𝒂

𝟐 +𝒘𝒃𝒘𝒄)

𝒄𝒚𝒄

≤
𝟐𝟕

𝟐
 

Proposed by Ertan Yildirim-Izmir-Turkiye 
Solution by Daniel Sitaru-Romania 

𝒘𝒂 =
𝟐

𝒃 + 𝒄
√𝒃𝒄√𝒔(𝒔 − 𝒂) ≤⏞

𝑨𝑴−𝑮𝑴 𝟐

𝒃 + 𝒄
∙
𝒃 + 𝒄

𝟐
∙ √𝒔(𝒔 − 𝒂) = √𝒔(𝒔 − 𝒂) 

𝟏

𝑹𝟐
∑(𝒘𝒂

𝟐 +𝒘𝒃𝒘𝒄)

𝒄𝒚𝒄

=
𝟏

𝑹𝟐
(∑𝒘𝒂

𝟐

𝒄𝒚𝒄

+∑𝒘𝒃𝒘𝒄

𝒄𝒚𝒄

) ≤ 

≤
𝟏

𝑹𝟐
(∑(√𝒔(𝒔 − 𝒂))

𝟐

𝒄𝒚𝒄

+∑√𝒔(𝒔 − 𝒃) ∙ √𝒔(𝒔 − 𝒄)

𝒄𝒚𝒄

) = 
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=
𝟏

𝑹𝟐
(∑𝒔(𝒔 − 𝒂)

𝒄𝒚𝒄

+ 𝒔∑√(𝒔 − 𝒃)(𝒔 − 𝒄)

𝒄𝒚𝒄

) ≤⏞
𝑨𝑴−𝑮𝑴

 

≤
𝟏

𝑹𝟐
(𝒔∑(𝒔 − 𝒂)

𝒄𝒚𝒄

+ 𝒔∑
𝒔− 𝒃 + 𝒔 − 𝒄

𝟐
𝒄𝒚𝒄

) = 

=
𝟏

𝑹𝟐
(𝒔(𝟑𝒔 − 𝒂 − 𝒃 − 𝒄) + 𝒔∑

𝟐𝒔 − 𝒃 − 𝒄

𝟐
𝒄𝒚𝒄

) =

=
𝟏

𝑹𝟐
(𝒔(𝟑𝒔 − 𝟐𝒔) + 𝒔∑

𝒂+ 𝒃 + 𝒄 − 𝒃 − 𝒄

𝟐
𝒄𝒚𝒄

) = 

=
𝟏

𝑹𝟐
(𝒔𝟐 + 𝒔∑

𝒂

𝟐
𝒄𝒚𝒄

) =
𝟏

𝑹𝟐
(𝒔𝟐 + 𝒔𝟐) =

𝟐𝒔𝟐

𝑹𝟐
≤⏞

𝑴𝑰𝑻𝑹𝑰𝑵𝑶𝑽𝑰𝑪 𝟐

𝑹𝟐
∙ (
𝟑√𝟑

𝟐
∙ 𝑹)

𝟐

=
𝟐𝟕

𝟐
 

Equality holds for 𝒂 = 𝒃 = 𝒄. 

878. 𝑰𝒏 ∆𝑨𝑩𝑪 𝒕𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔𝒉𝒊𝒑 𝒉𝒐𝒍𝒅𝒔 ∶ 

𝒂𝟐

(𝒃 + 𝒄)𝟐
+

𝒃𝟐

(𝒄 + 𝒂)𝟐
+

𝒄𝟐

(𝒂 + 𝒃)𝟐
+
𝑹𝟐

𝒓𝟐
≥ 𝟒 +

𝟏

𝟏𝟔
(
(𝒃 + 𝒄)𝟐

𝒂𝟐
+
(𝒄 + 𝒂)𝟐

𝒃𝟐
+
(𝒂 + 𝒃)𝟐

𝒄𝟐
). 

Proposed by Nguyen Van Canh-BenTre-Vietnam 
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  ∑
(𝒃 + 𝒄)𝟐

𝒂𝟐
𝒄𝒚𝒄

=∑(
𝟐𝒔

𝒂
− 𝟏)

𝟐

𝒄𝒚𝒄

= 𝟒𝒔𝟐∑
𝟏

𝒂𝟐
𝒄𝒚𝒄

− 𝟒𝒔∑
𝟏

𝒂
𝒄𝒚𝒄

+ 𝟑 ≤ 

≤⏞
𝑺𝒕𝒆𝒊𝒏𝒊𝒈 & 𝐶𝐵𝑆

𝟒𝒔𝟐.
𝟏

𝟒𝒓𝟐
− 𝟒𝒔.

𝟑𝟐

𝒂 + 𝒃 + 𝒄
+ 𝟑 ≤⏞

𝑮𝒆𝒓𝒓𝒆𝒕𝒔𝒆𝒏 𝟒𝑹𝟐 + 𝟒𝑹𝒓+ 𝟑𝒓𝟐

𝒓𝟐
− 𝟏𝟓. 

𝑻𝒉𝒆𝒏 ∶   
(𝒃 + 𝒄)𝟐

𝒂𝟐
+
(𝒄 + 𝒂)𝟐

𝒃𝟐
+
(𝒂 + 𝒃)𝟐

𝒄𝟐
≤ 𝟒(

𝑹𝟐

𝒓𝟐
+
𝑹

𝒓
− 𝟑). 

𝑨𝒍𝒔𝒐,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶    ∑
𝒂𝟐

(𝒃 + 𝒄)𝟐
𝒄𝒚𝒄

 ≥⏞
𝑪𝑩𝑺

 
𝟏

𝟑
(∑

𝒂

𝒃 + 𝒄𝒄𝒚𝒄
)

𝟐

 ≥⏞
𝑵𝒆𝒔𝒃𝒊𝒕𝒕

 
𝟏

𝟑
(
𝟑

𝟐
)
𝟐

=
𝟑

𝟒
. 

𝑺𝒐 𝒊𝒕 𝒔𝒖𝒇𝒇𝒊𝒄𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

𝟑

𝟒
+
𝑹𝟐

𝒓𝟐
≥ 𝟒 +

𝟏

𝟒
(
𝑹𝟐

𝒓𝟐
+
𝑹

𝒓
− 𝟑) ⇔ (

𝑹

𝟐𝒓
− 𝟏)(

𝟑𝑹

𝟐𝒓
+
𝟓

𝟐
) ≥ 𝟎, 
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𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒂𝒏𝒅 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒅𝒐𝒏𝒆.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 ∆𝑨𝑩𝑪 𝒊𝒔 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍. 

Solution 2 by Tapas Das-India  

∑
(𝒃+ 𝒄)𝟐

𝒂𝟐
𝒄𝒚𝒄

≤∑
𝟐(𝒃𝟐 + 𝒄𝟐)

𝒂𝟐
𝒄𝒚𝒄

= 𝟐∑(
𝒂𝟐

𝒃𝟐
+
𝒃𝟐

𝒂𝟐
)

𝒄𝒚𝒄

= 

= 𝟐∑[(
𝒂

𝒃
+
𝒃

𝒂
)
𝟐

− 𝟐
𝒂

𝒃
⋅
𝒃

𝒂
]

𝒄𝒚𝒄

≤
𝑩𝒂𝒏𝒅𝒊𝒍𝒂

𝟐 [𝟑 (
𝑹

𝒓
)
𝟐

− 𝟔] = 𝟔
𝑹𝟐

𝒓𝟐
− 𝟏𝟐 

𝟒 +
𝟏

𝟏𝟔
∑

(𝒃 + 𝒄)𝟐

𝒂𝟐
𝒄𝒚𝒄

≤ 𝟒 +
𝟏

𝟏𝟔
(𝟔
𝑹𝟐

𝒓𝟐
− 𝟏𝟐) =

𝟏𝟑

𝟒
+
𝟑

𝟖
⋅
𝑹𝟐

𝒓𝟐
 

𝑵𝒐𝒘,∑
𝒂𝟐

(𝒃 + 𝒄)𝟐
𝒄𝒚𝒄

≥
𝟏

𝟑
(∑

𝒂

𝒃 + 𝒄
𝒄𝒚𝒄

)

𝟐

≥
𝟏

𝟑
(
𝟑

𝟐
)
𝟐

=
𝟑

𝟒
 

𝑾𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒔𝒉𝒐𝒘: 

∑
𝒂𝟐

(𝒃 + 𝒄)𝟐
𝒄𝒚𝒄

≥
𝟏𝟑

𝟒
+
𝟑

𝟖
⋅
𝑹𝟐

𝒓𝟐
⇔
𝟑

𝟒
+
𝑹𝟐

𝒓𝟐
≥
𝟏𝟑

𝟒
+
𝟑

𝟖
⋅
𝑹𝟐

𝒓𝟐
⇔ 

𝟓

𝟖
⋅
𝑹𝟐

𝒓𝟐
≥
𝟏𝟎

𝟒
⇔
𝑹𝟐

𝒓𝟐
≥ 𝟒 ⇔ 𝑹𝟐 ≥ 𝟒𝒓𝟐 ⇔ 𝑹 ≥ 𝟐𝒓 (𝑬𝒖𝒍𝒆𝒓) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 

∑
𝒂𝟐

(𝒃 + 𝒄)𝟐
𝒄𝒚𝒄

≥ 𝟗 +
𝟏

𝟏𝟔
∑

(𝒃 + 𝒄)𝟐

𝒂𝟐
𝒄𝒚𝒄

   

879. In any ∆ 𝑨𝑩𝑪 the following relationship holds: 

𝒂√
𝒂 + 𝟐𝒃

𝟐𝒔

𝟑

+ 𝒃√
𝒃 + 𝟐𝒄

𝟐𝒔

𝟑

+ 𝒄√
𝒄 + 𝟐𝒂

𝟐𝒔

𝟑

≤ 𝟑√𝟑𝑹 

  Proposed by Daniel Sitaru-Romania 
Solution 1 by Tapas Das-India 

𝑳𝒆𝒕 𝒇(𝒙) = 𝒙
𝟏
𝟑, 𝒙 > 0, 𝑡ℎ𝑒𝑛 𝒇′(𝒙) =

𝟏

𝟑
𝒙−

𝟐
𝟑 𝒂𝒏𝒅 𝒇′′(𝒙) =

𝟏

𝟑
∙ (−

𝟐

𝟑
)𝒙−

𝟓
𝟑 < 0 

𝒇 − 𝒊𝒔 𝒄𝒐𝒏𝒄𝒂𝒗𝒆 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏, 𝒖𝒔𝒆 𝑱𝒆𝒏𝒔𝒆𝒏′𝒔𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚: 
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𝒂𝒇(𝒂 + 𝟐𝒃) + 𝒃𝒇(𝒃 + 𝟐𝒄) + 𝒄𝒇(𝒄 + 𝟐𝒂)

≤ (𝒂 + 𝒃 + 𝒄)𝒇(
𝒂(𝒂 + 𝟐𝒃) + 𝒃(𝒃 + 𝟐𝒄) + 𝒄(𝒄 + 𝟐𝒂)

𝒂 + 𝒃 + 𝒄
) 

𝒂 ∙ √𝒂 + 𝟐𝒃 + 𝒃 ∙ √𝒃 + 𝟐𝒄
𝟑

+ 𝒄 ∙ √𝒄 + 𝟐𝒂
𝟑

≤ 𝟐𝒔𝒇(
(𝒂 + 𝒃 + 𝒄)𝟐

𝒂 + 𝒃 + 𝒄
) = 

= 𝟐𝒔𝒇(𝒂 + 𝒃 + 𝒄) = 𝟐𝒔 ∙ √𝟐𝒔
𝟑

 

  𝒂 ∙ √
𝒂 + 𝟐𝒃

𝟐𝒔
+ 𝒃 ∙ √

𝒃 + 𝟐𝒄

𝟐𝒔

𝟑

+ 𝒄 ∙ √
𝒄 + 𝟐𝒂

𝟐𝒔

𝟑

≤ 𝟐𝒔 ≤
𝑴𝒊𝒕𝒓𝒊𝒏𝒐𝒗𝒊𝒄

𝟐 ∙
𝟑√𝟑

𝟐
𝑹 

Solution 2 by Soumava Chakraborty-Kolkata-India 

√
𝒂 + 𝟐𝒃

𝟐𝒔

𝟑

+ 𝒃√
𝒃 + 𝟐𝒄

𝟐𝒔

𝟑

+ 𝒄√
𝒄 + 𝟐𝒂

𝟐𝒔

𝟑

=∑𝒂√
𝒂 + 𝟐𝒃

𝟐𝒔
. 𝟏. 𝟏

𝟑

𝒄𝒚𝒄

 

≤
𝑨−𝑮

∑𝒂(

𝒂+ 𝟐𝒃
𝟐𝒔

+ 𝟐

𝟑
)

𝒄𝒚𝒄

=
∑ 𝒂𝟐𝒄𝒚𝒄 + 𝟐∑ 𝒂𝒃𝒄𝒚𝒄

𝟔𝒔
+
𝟐

𝟑
. 𝟐𝒔 =

(∑ 𝒂𝒄𝒚𝒄 )
𝟐

𝟔𝒔
+
𝟒𝒔

𝟑
=
𝟒𝒔𝟐

𝟔𝒔
+
𝟒𝒔

𝟑
 

= 𝟐𝒔 ≤
𝑴𝒊𝒕𝒓𝒊𝒏𝒐𝒗𝒊𝒄

𝟑√𝟑𝑹 

∴ 𝒂√
𝒂 + 𝟐𝒃

𝟐𝒔

𝟑

+ 𝒃√
𝒃 + 𝟐𝒄

𝟐𝒔

𝟑

+ 𝒄√
𝒄 + 𝟐𝒂

𝟐𝒔

𝟑

≤ 𝟑√𝟑𝑹, 

𝒘𝒊𝒕𝒉 𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒊𝒇𝒇 ∆ 𝑨𝑩𝑪 𝒊𝒔 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍 (𝑸𝑬𝑫) 

880. In 𝚫𝑨𝑩𝑪 the following relationship holds: 

√𝐜𝐬𝐜
𝑨

𝟐

𝟒

+ √𝐜𝐬𝐜
𝑩

𝟐

𝟒

+ √𝐜𝐬𝐜
𝑪

𝟐

𝟒

≤ 𝟑 ⋅ √
𝑹

𝒓

𝟒

 

Proposed by Marin Chirciu-Romania 
Solution by Tapas Das-India 

∑𝐜𝐬𝐜
𝑨

𝟐
𝒄𝒚𝒄

=∑√
𝒃𝒄

(𝒔 − 𝒃)(𝒔 − 𝒄)
𝒄𝒚𝒄

≤
𝑪𝑩𝑺

√(∑𝒂𝒃

𝒄𝒚𝒄

)(∑
𝟏

(𝒔 − 𝒂)(𝒔 − 𝒃)
𝒄𝒚𝒄

) = 

= √(𝒔𝟐 + 𝒓𝟐 + 𝟒𝑹𝒓) ⋅
𝒔 − 𝒂 + 𝒔 − 𝒃 + 𝒔 − 𝒄

(𝒔 − 𝒂)(𝒔 − 𝒃)(𝒔 − 𝒄)
= 

= √(𝒔𝟐 + 𝒓𝟐 + 𝟒𝑹𝒓) ⋅
𝒔

𝒔𝒓𝟐
≤

𝑮𝒆𝒓𝒓𝒆𝒕𝒔𝒆𝒏
√(𝟒𝑹𝟐 + 𝟒𝑹𝒓 + 𝟑𝒓𝟐 + 𝒓𝟐 + 𝟒𝑹𝒓) ⋅

𝒔

𝒔𝒓𝟐
≤ 
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≤
𝑬𝒖𝒍𝒆𝒓

√(𝟒𝑹𝟐 + 𝟒𝑹 ⋅
𝑹

𝟐
+ 𝟑 ⋅

𝑹𝟐

𝟒
+ 𝟒𝑹 ⋅

𝑹

𝟐
) ⋅

𝟏

𝒓𝟐
= √

𝟗𝑹𝟐

𝒓𝟐
=
𝟑𝑹

𝒓
 

𝑵𝒐𝒘, √𝐜𝐬𝐜
𝑨

𝟐

𝟒

+ √𝐜𝐬𝐜
𝑩

𝟐

𝟒

+ √𝐜𝐬𝐜
𝑪

𝟐

𝟒

≤
𝑪𝑩𝑺

𝟑 ⋅ √
𝐜𝐬𝐜

𝑨
𝟐 + 𝐜𝐬𝐜

𝑩
𝟐 + 𝐜𝐬𝐜

𝑪
𝟐

𝟑

𝟒

≤ 𝟑 ⋅ √
𝟑𝑹

𝟑𝒓

𝟒

= 𝟑 ⋅ √
𝑹

𝒓

𝟒

   

881. If 𝒙, 𝒚, 𝒛 > 0 then in 𝚫𝑨𝑩𝑪 holds: 

𝒙𝟐𝒂𝟑

(𝒚 + 𝒛)𝟐
+

𝒚𝟐𝒃𝟑

(𝒛 + 𝒙)𝟐
+

𝒛𝟐𝒄𝟑

(𝒙 + 𝒚)𝟐
≥ 𝟏𝟖√𝟑𝒓𝟑 

Proposed by D.M. Bătineţu-Giurgiu, Florică Anastase-Romania 
Solution by Tapas Das-India 

𝒙𝟐𝒂𝟑

(𝒚 + 𝒛)𝟐
+

𝒚𝟐𝒃𝟑

(𝒛 + 𝒙)𝟐
+

𝒛𝟐𝒄𝟑

(𝒙 + 𝒚)𝟐
=
(
𝒙

𝒚 + 𝒛𝒂
𝟐)

𝟐

𝒂
+
(
𝒚

𝒛 + 𝒙𝒃
𝟐)

𝟐

𝒃
+
(

𝒛
(𝒙 + 𝒚)

𝒄𝟐)
𝟐

𝒄
≥ 

≥
(
𝒙

𝒚 + 𝒛𝒂
𝟐 +

𝒚
𝒛 + 𝒙𝒃

𝟐 +
𝒛

𝒙 + 𝒚𝒄
𝟐)

𝟐

𝒂 + 𝒃 + 𝒄
≥

𝑻𝒔𝒊𝒏𝒕𝒔𝒊𝒇𝒂𝒔 (𝟐√𝟑𝑭)
𝟐

𝟐𝒔
=
𝟏𝟐𝑭𝟐

𝟐𝒔
=
𝟔𝑭𝟐

𝒔
= 

=
𝟔𝒓𝟐𝒔𝟐

𝒔
= 𝟔𝒓𝟐𝒔 ≥

𝑴𝒊𝒕𝒓𝒊𝒏𝒐𝒗𝒊𝒄
𝟔𝒓𝟐 ⋅ 𝟑√𝟑𝒓 = 𝟏𝟖√𝟑𝒓𝟑   

882. Given four equilateral triangles. Prove that:  𝟐(𝑩𝑪 + 𝑫𝑬) ≥ 𝑭𝑮 

 

Proposed by Luc Binh-Vietnam 
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Solution 1 by Rajarshi Chakraborty-India 

𝑾𝒆 𝒖𝒔𝒆 𝑷𝒕𝒐𝒍𝒆𝒎𝒚′𝒔𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒇𝒐𝒓 𝒒𝒖𝒂𝒅𝒓𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍𝒔. 

𝑰𝒏 𝒒𝒖𝒂𝒅𝒓𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍 𝑨𝑬𝑮𝑪,𝑨𝑬 ⋅ 𝑮𝑪 + 𝑨𝑪 ⋅ 𝑮𝑬 ≥ 𝑨𝑮 ⋅ 𝑬𝑪;  (𝒊) 

𝑵𝒐𝒘 𝚫𝑬𝑮𝑪 𝒊𝒔 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍, 𝒔𝒐 𝑬𝑪 = 𝑮𝑪 = 𝑬𝑮;   (𝒊𝒊) 

𝑭𝒓𝒐𝒎 (𝒊) 𝒂𝒏𝒅 (𝒊𝒊),𝒘𝒆 𝒈𝒆𝒕 𝑨𝑬 + 𝑨𝑪 ≥ 𝑨𝑮;  (𝒂) 

𝑰𝒏 𝒒𝒖𝒂𝒅𝒓𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍 𝑫𝑭𝑩𝑨,𝑫𝑭 ⋅ 𝑨𝑩 + 𝑭𝑩 ⋅ 𝑫𝑨 ≥ 𝑫𝑩 ⋅ 𝑭𝑨;  (𝒊𝒊𝒊) 

𝑵𝒐𝒘 𝚫𝑫𝑭𝑩 𝒊𝒔 𝒒𝒖𝒂𝒅𝒓𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍, 𝒔𝒐 𝑫𝑭 = 𝑭𝑩 = 𝑫𝑩;   (𝒊𝒗) 

𝑭𝒓𝒐𝒎 (𝒊𝒊𝒊) 𝒂𝒏𝒅 (𝒊𝒗),𝒘𝒆 𝒈𝒆𝒕 𝑨𝑩 + 𝑨𝑫 ≥ 𝑭𝑨;  (𝒃) 

(𝒂) + (𝒃) ⇒ 𝑨𝑬 + 𝑨𝑪 + 𝑨𝑩 + 𝑨𝑫 ≥ 𝑨𝑮 + 𝑭𝑨 = 𝑭𝑮;  (𝒄) 

𝑺𝒐, 𝑨𝑬 = 𝑨𝑫 = 𝑬𝑫 𝒂𝒏𝒅 𝑨𝑩 = 𝑩𝑪 = 𝑪𝑨. 

𝑻𝒉𝒖𝒔, 𝒇𝒓𝒐𝒎 (𝒄) 𝒘𝒆 𝒈𝒆𝒕 𝟐(𝑩𝑪 + 𝑬𝑫) ≥ 𝑭𝑮.   

Solution 2 by Hikmat Mammadov-Azerbaijan 

𝑳𝒆𝒕 𝑩𝑪 = 𝒂,𝑫𝑬 = 𝒃 𝒂𝒏𝒅 𝑩𝑫 = 𝒄. 

𝒄𝟐 = 𝒂𝟐 + 𝒃𝟐 − 𝟐𝒂𝒃 𝐜𝐨𝐬 (𝝅 − 𝜽 −
𝝅

𝟑
) 

𝒄𝟐 = 𝒂𝟐 + 𝒃𝟐 + 𝒂𝒃(𝐜𝐨𝐬𝜽 − √𝟑𝐬𝐢𝐧𝜽) 

𝐬𝐢𝐧(∢𝑨𝑩𝑫)

𝑨𝑫
=
𝐬𝐢𝐧 (𝜽 +

𝝅
𝟑)

𝑩𝑫
⇒ 𝐬𝐢𝐧(∢𝑨𝑩𝑫) =

𝒃

𝒄
𝐬𝐢𝐧 (𝜽 +

𝝅

𝟑
) 

𝑨𝑭𝟐 = 𝒂𝟐 + 𝒄𝟐 − 𝟐𝒂𝒄𝐜𝐨𝐬 (∢𝑨𝑩𝑫+
𝝅

𝟑
) = 𝒂𝟐 + 𝒄𝟐 − 𝒂𝒄(𝐜𝐨𝐬(∢𝑨𝑩𝑫) − √𝟑𝐬𝐢𝐧(∢𝑨𝑩𝑫))

= 𝒂𝟐 + 𝒄𝟐 − 𝒂𝒄 ⋅ 𝐜𝐨𝐬(∢𝑨𝑩𝑫) + √𝟑𝒂𝒃 ⋅ 𝐬𝐢𝐧 (𝜽 +
𝝅

𝟑
) = 

= 𝒂𝟐 + 𝒄𝟐 − 𝒂𝒄 ⋅
𝒂𝟐 + 𝒄𝟐 − 𝒃𝟐

𝒂𝒄
+ √𝟑𝒂𝒃 ⋅ 𝐬𝐢𝐧 (𝜽 +

𝝅

𝟑
) = 

=
𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐

𝟐
+ √𝟑𝒂𝒃 ⋅ 𝐬𝐢𝐧 (𝜽 +

𝝅

𝟑
) = 

=
𝒂𝟐 + 𝒃𝟐 + 𝒂𝟐 + 𝒃𝟐 + 𝒂𝒃(𝐜𝐨𝐬 𝜽 − √𝟑𝐬𝐢𝐧𝜽)

𝟐
+
√𝟑

𝟐
𝒂𝒃(𝐬𝐢𝐧 𝜽 + √𝟑𝐜𝐨𝐬 𝜽) 

𝑨𝑭𝟐 = 𝒂𝟐 + 𝒃𝟐 + 𝟐𝒂𝒃𝐜𝐨𝐬 𝜽 ⇒ 𝑨𝑭 = √𝒂𝟐 + 𝒃𝟐 + 𝟐𝒂𝒃 𝐜𝐨𝐬𝜽 

𝑹𝒆𝒑𝒍𝒂𝒄𝒆 (𝜽) 𝒘𝒊𝒕𝒉 (−𝜽) 𝒘𝒆 𝒈𝒆𝒕 

𝑨𝑮 = √𝒂𝟐 + 𝒃𝟐 + 𝟐𝒂𝒃𝐜𝐨𝐬 𝜽 , 𝒊. 𝒆. 𝑨𝑭 = 𝑨𝑮 
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𝑰𝒕 𝒄𝒂𝒏 𝒂𝒍𝒔𝒐 𝒃𝒆 𝒔𝒉𝒐𝒘𝒏 𝒕𝒉𝒂𝒕 𝑭, 𝑨, 𝑮 𝒂𝒓𝒆 𝒄𝒐𝒍𝒍𝒊𝒏𝒆𝒂𝒓 

𝑭𝑮 = 𝑨𝑭 + 𝑨𝑮 = 𝟐√𝒂𝟐 + 𝒃𝟐 + 𝟐𝒂𝒃𝐜𝐨𝐬 𝜽 ≤ 𝟐√𝒂𝟐 + 𝒃𝟐 + 𝟐𝒂𝒃 = 𝟐(𝒂 + 𝒃) 

𝒊. 𝒆. 𝟐(𝑩𝑪 + 𝑫𝑬) ≥ 𝑭𝑮   

883. 𝐈𝐧 𝒂𝐧𝐲 ∆ 𝐀𝐁𝐂 𝐡𝐨𝐥𝐝𝐬 

𝐫𝟐

𝐑𝟐
≤
𝟐(𝟐𝒂𝟐 − (𝐛 − 𝐜)𝟐)(𝟐𝐛𝟐 − (𝐜 − 𝒂)𝟐)(𝟐𝐜𝟐 − (𝒂 − 𝐛)𝟐)

(𝒂 + 𝐛)𝟐(𝐛 + 𝐜)𝟐(𝐜 + 𝒂)𝟐
 

  Proposed by Nguyen Van Canh-BenTre-Vietnam 
Solution by Soumava Chakraborty-Kolkata-India 

𝒂𝟐 − (𝐛 − 𝐜)𝟐 = 𝟒𝐫𝐫𝒂 𝒂𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐬 
⇒ (𝟐𝒂𝟐 − (𝐛 − 𝐜)𝟐)(𝟐𝐛𝟐 − (𝐜 − 𝒂)𝟐)(𝟐𝐜𝟐 − (𝒂 − 𝐛)𝟐) 

= (𝒂𝟐 + 𝟒𝐫𝐫𝒂)(𝐛
𝟐 + 𝟒𝐫𝐫𝐛)(𝐜

𝟐 + 𝟒𝐫𝐫𝐜) 

= 𝒂𝟐𝐛𝟐𝐜𝟐 + 𝟔𝟒𝐫𝟑. 𝐫𝒂𝐫𝐛𝐫𝐜 + 𝟒𝐫∑𝐛𝟐𝐜𝟐𝐫𝒂
𝐜𝐲𝐜

+ 𝟏𝟔𝐫𝟐∑𝒂𝟐𝐫𝐛𝐫𝐜
𝐜𝐲𝐜

 

= 𝟏𝟔𝐑𝟐𝐫𝟐𝐬𝟐 + 𝟔𝟒𝐫𝟒𝐬𝟐 + 𝟒𝐫𝟐𝐬∑
𝐛𝟐𝐜𝟐

𝐬 −  𝒂
𝐜𝐲𝐜

+ 𝟏𝟔𝐫𝟐𝐬∑𝒂𝟐(𝐬 −  𝒂)

𝐜𝐲𝐜

 

≥
𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦

𝟏𝟔𝐑𝟐𝐫𝟐𝐬𝟐 + 𝟔𝟒𝐫𝟒𝐬𝟐 + 𝟒𝐫𝟐𝐬.
(∑ 𝒂𝐛𝐜𝐲𝐜 )

𝟐

∑ (𝐬 −  𝒂)𝐜𝐲𝐜
+ 𝟏𝟔𝐫𝟐𝐬(𝐬∑𝒂𝟐

𝐜𝐲𝐜

−∑𝒂𝟑

𝐜𝐲𝐜

) 

= 𝟏𝟔𝐑𝟐𝐫𝟐𝐬𝟐 + 𝟔𝟒𝐫𝟒𝐬𝟐 + 𝟒𝐫𝟐(𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)𝟐 

+𝟏𝟔𝐫𝟐𝐬𝟐 (𝟐(𝐬𝟐 − 𝟒𝐑𝐫 − 𝐫𝟐) − 𝟐(𝐬𝟐 − 𝟔𝐑𝐫 − 𝟑𝐫𝟐)) 

≥
? (𝒂 + 𝐛)𝟐(𝐛 + 𝐜)𝟐(𝐜 + 𝒂)𝟐𝐫𝟐

𝟐𝐑𝟐
=
𝟐𝐫𝟐𝐬𝟐(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)𝟐

𝐑𝟐
 

⇔ 𝐑𝟐 (𝟖𝐑𝟐𝐬𝟐 + 𝟑𝟐𝐫𝟐𝐬𝟐 + 𝟐(𝐬𝟐 + 𝟒𝐑𝐫 + 𝐫𝟐)𝟐 + 𝟏𝟔𝐬𝟐(𝟐𝐑𝐫 + 𝟐𝐫𝟐)) 

≥
?
𝐬𝟐(𝐬𝟐 + 𝟐𝐑𝐫 + 𝐫𝟐)𝟐 

⇔ 𝐬𝟔 − (𝟐𝐑𝟐 − 𝟒𝐑𝐫 − 𝟐𝐫𝟐)𝐬𝟒 − (𝟖𝐑𝟒 + 𝟒𝟖𝐑𝟑𝐫 + 𝟔𝟒𝐑𝟐𝐫𝟐 − 𝟒𝐑𝐫𝟑 − 𝐫𝟒)𝐬𝟐 

−𝟐𝐑𝟐𝐫𝟐(𝟒𝐑+ 𝐫)𝟐 ≤
?
⏟
(∗)

𝟎 

𝐍𝐨𝐰, 𝐋𝐇𝐒 𝐨𝐟 (∗) ≤
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

(𝟐𝐑𝟐 + 𝟖𝐑𝐫 + 𝟓𝐫𝟐)𝐬𝟒 

−(𝟖𝐑𝟒 + 𝟒𝟖𝐑𝟑𝐫 + 𝟔𝟒𝐑𝟐𝐫𝟐 − 𝟒𝐑𝐫𝟑 − 𝐫𝟒)𝐬𝟐 − 𝟐𝐑𝟐𝐫𝟐(𝟒𝐑+ 𝐫)𝟐 ≤
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

 

((𝟐𝐑𝟐 + 𝟖𝐑𝐫 + 𝟓𝐫𝟐)(𝟒𝐑𝟐 + 𝟒𝐑𝐫 + 𝟑𝐫𝟐) − (𝟖𝐑𝟒 + 𝟒𝟖𝐑𝟑𝐫 + 𝟔𝟒𝐑𝟐𝐫𝟐 − 𝟒𝐑𝐫𝟑 − 𝐫𝟒)) 𝐬𝟐 

−𝟐𝐑𝟐𝐫𝟐(𝟒𝐑 + 𝐫)𝟐 ≤
?
𝟎 ⇔ (𝟒𝐑𝟑 + 𝟑𝐑𝟐𝐫 − 𝟐𝟒𝐑𝐫𝟐 − 𝟖𝐫𝟑)𝐬𝟐 +𝐑𝟐𝐫(𝟒𝐑 + 𝐫)𝟐 ≥

?
⏟
(∗∗)

𝟎 

𝐂𝒂𝐬𝐞 𝟏  𝟒𝐑𝟑 + 𝟑𝐑𝟐𝐫 − 𝟐𝟒𝐑𝐫𝟐 − 𝟖𝐫𝟑 ≥ 𝟎 𝒂𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 𝐋𝐇𝐒 𝐨𝐟 (∗∗) ≥ 𝐑𝟐𝐫(𝟒𝐑 + 𝐫)𝟐 
> 0 ⇒ (∗∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 (𝐬𝐭𝐫𝐢𝐜𝐭 𝐢𝐧𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲) 
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𝐂𝒂𝐬𝐞 𝟐  𝟒𝐑𝟑 + 𝟑𝐑𝟐𝐫 − 𝟐𝟒𝐑𝐫𝟐 − 𝟖𝐫𝟑 < 0 𝑎𝐧𝐝 𝐭𝐡𝐞𝐧 ∶ 

𝐋𝐇𝐒 𝐨𝐟 (∗∗) − (−(𝟒𝐑𝟑 + 𝟑𝐑𝟐𝐫 − 𝟐𝟒𝐑𝐫𝟐 − 𝟖𝐫𝟑)) 𝐬𝟐 + 𝐑𝟐𝐫(𝟒𝐑 + 𝐫)𝟐 

≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

− (−(𝟒𝐑𝟑 + 𝟑𝐑𝟐𝐫 − 𝟐𝟒𝐑𝐫𝟐 − 𝟖𝐫𝟑)(𝟒𝐑𝟐 + 𝟒𝐑𝐫 + 𝟑𝐫𝟐)) + 𝐑𝟐𝐫(𝟒𝐑+ 𝐫)𝟐 ≥
?
𝟎 

⇔ 𝟖𝐭𝟓 + 𝟐𝟐𝐭𝟒 − 𝟑𝟐𝐭𝟑 − 𝟓𝟗𝐭𝟐 − 𝟓𝟐𝐭 − 𝟏𝟐 ≥
?
𝟎 (𝐭 =

𝐑

𝐫
) 

⇔ (𝐭 − 𝟐)(𝟖𝐭𝟒 + 𝟑𝟖𝐭𝟑 + 𝟒𝟒𝐭𝟐 + 𝟐𝟗𝐭 + 𝟔) ≥
?
𝟎 → 𝐭𝐫𝐮𝐞 ∵ 𝐭 ≥

𝐄𝐮𝐥𝐞𝐫
𝟐 

⇒ (∗∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 𝒂𝐧𝐝 𝐜𝐨𝐦𝐛𝐢𝐧𝐢𝐧𝐠 𝐜𝒂𝐬𝐞𝐬 𝟏, 𝟐, (∗∗) ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 𝐟𝐨𝐫 𝒂𝒍𝒍 𝐭𝐫𝐢𝒂𝐧𝐠𝐥𝐞𝐬 

∴ (𝟐𝒂𝟐 − (𝐛 − 𝐜)𝟐)(𝟐𝐛𝟐 − (𝐜 − 𝒂)𝟐)(𝟐𝐜𝟐 − (𝒂 − 𝐛)𝟐) ≥
(𝒂 + 𝐛)𝟐(𝐛 + 𝐜)𝟐(𝐜 + 𝒂)𝟐𝐫𝟐

𝟐𝐑𝟐
 

⇒ 𝐢𝐧 𝒂𝐧𝐲 ∆ 𝐀𝐁𝐂,
𝐫𝟐

𝐑𝟐
≤
𝟐(𝟐𝒂𝟐 − (𝐛 − 𝐜)𝟐)(𝟐𝐛𝟐 − (𝐜 − 𝒂)𝟐)(𝟐𝐜𝟐 − (𝒂 − 𝐛)𝟐)

(𝒂 + 𝐛)𝟐(𝐛 + 𝐜)𝟐(𝐜 + 𝒂)𝟐
, 

𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐟𝐟 ∆ 𝐀𝐁𝐂 𝐢𝐬 𝐞𝐪𝐮𝐢𝒍𝒂𝐭𝐞𝐫𝒂𝒍 (𝐐𝐄𝐃) 

 
884. If 𝒎,𝒏 ≥ 𝟎, 𝒙, 𝒚, 𝒛 > 0 and 𝚫𝑨𝑩𝑪, 𝚫𝑨𝟏𝑩𝟏𝑪𝟏 has areas 𝑭, 𝑭𝟏, then: 

𝒙 + 𝒚

𝒛
⋅ 𝒂𝒎𝒃𝟏

𝒏 +
𝒚 + 𝒛

𝒙
⋅ 𝒃𝒎𝒄𝟏

𝒏 +
𝒛 + 𝒙

𝒚
⋅ 𝒄𝒎𝒂𝟏

𝒏 ≥ 𝟐𝟏+𝒎+𝒏(√𝟑
𝟒
)
𝟒−𝒎−𝒏

(√𝑭)
𝒎
(√𝑭𝟏)

𝒏
 

Proposed by D.M. Bătineţu-Giurgiu, Florică Anastase-Romania 
Solution by Tapas Das-India 

𝒙 + 𝒚

𝒛
⋅ 𝒂𝒎𝒃𝟏

𝒏 +
𝒚 + 𝒛

𝒙
⋅ 𝒃𝒎𝒄𝟏

𝒏 +
𝒛 + 𝒙

𝒚
⋅ 𝒄𝒎𝒂𝟏

𝒏 ≥
𝑨𝑴−𝑮𝑴

 

≥
𝟐√𝒙𝒚

𝒛
⋅ 𝒂𝒎𝒃𝟏

𝒏 +
𝟐√𝒚𝒛

𝒙
⋅ 𝒃𝒎𝒄𝟏

𝒏 +
𝟐√𝒛𝒙

𝒚
⋅ 𝒄𝒎𝒂𝟏

𝒏 ≥
𝑨𝑴−𝑮𝑴

 

≥ 𝟐 ⋅ 𝟑√
√𝒙𝒚

𝒛
⋅ 𝒂𝒎𝒃𝟏

𝒏 ⋅
√𝒚𝒛

𝒙
⋅ 𝒃𝒎𝒄𝟏

𝒏 ⋅
√𝒛𝒙

𝒚
⋅ 𝒄𝒎𝒂𝟏

𝒏
𝟑

= 

= 𝟔√(𝒂𝒃𝒄)𝒎
𝟑

⋅ √(𝒂𝟏𝒃𝟏𝒄𝟏)𝒏
𝟑

≥ 𝟔(
𝟒𝑭

√𝟑
)

𝟑
𝟐
⋅
𝒎
𝟑
⋅ (
𝟒𝑭𝟏

√𝟑
)

𝟑
𝟐
⋅
𝒏
𝟑
= 

= 𝟔(
𝟒𝑭

√𝟑
)

𝒎
𝟐
⋅ (
𝟒𝑭𝟏

√𝟑
)

𝒏
𝟐
= 𝟐𝟏+𝒎+𝒏 ⋅

(√𝟒
𝟒 )

𝟒

(√𝟑
𝟒
)
𝒎
(√𝟑
𝟒
)
𝒏 ⋅ (√𝑭)

𝒎
(√𝑭𝟏)

𝒏
= 

 = 𝟐𝟏+𝒎+𝒏(√𝟑
𝟒
)
𝟒−𝒎−𝒏

(√𝑭)
𝒎
(√𝑭𝟏)

𝒏
 

885. 
𝑵𝒆𝒘 𝑬𝒖𝒍𝒆𝒓′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒓𝒆𝒇𝒊𝒏𝒆𝒎𝒆𝒏𝒕𝒔 𝒊𝒏 ∆𝑨𝑩𝑪,𝝎 − 𝑩𝒓𝒐𝒄𝒂𝒓𝒅′𝒔 𝒂𝒏𝒈𝒍𝒆 
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𝑹 ≥ 𝟐𝒓.𝒎𝒂𝒙 {
𝒎𝒂

𝒉𝒂
,
𝒎𝒃

𝒉𝒃
,
𝒎𝒄

𝒉𝒄
} ≥

𝒓

𝐬𝐢𝐧𝝎
≥ 𝒓.𝒎𝒂𝒙 {

𝒂

𝒃
+
𝒃

𝒂
,
𝒃

𝒄
+
𝒄

𝒃
,
𝒄

𝒂
+
𝒂

𝒄
} ≥ 𝟐𝒓. 

𝑹 ≥ 𝟐𝒓.𝒎𝒂𝒙 {
𝒎𝒂

𝒉𝒂
,
𝒎𝒃

𝒉𝒃
,
𝒎𝒄

𝒉𝒄
} ≥

𝒓

𝐬𝐢𝐧𝝎
≥ 𝒓.𝒎𝒂𝒙 {

𝒎𝒂

𝒎𝒃
+
𝒎𝒃

𝒎𝒂
,
𝒎𝒃

𝒎𝒄
+
𝒎𝒄

𝒎𝒃
,
𝒎𝒄

𝒎𝒂
+
𝒎𝒂

𝒎𝒄

} ≥ 𝟐𝒓 

Proposed by Bogdan Fuștei-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑩𝒚 𝑷𝒂𝒏𝒂𝒊𝒕𝒐𝒑𝒐𝒍′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   
𝒎𝒂

𝒉𝒂
≤
𝑹

𝟐𝒓
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒏 ∶   𝑹 ≥ 𝟐𝒓.𝒎𝒂𝒙{
𝒎𝒂

𝒉𝒂
,
𝒎𝒃

𝒉𝒃
,
𝒎𝒄

𝒉𝒄
}  (𝟏) 

𝑾𝑳𝑶𝑮,𝒘𝒆 𝒎𝒂𝒚 𝒂𝒔𝒔𝒖𝒎𝒆 𝒕𝒉𝒂𝒕 ∶   𝒂 ≥ 𝒃 ≥ 𝒄.  𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 

(
𝒎𝒂

𝒉𝒂
)
𝟐

− (
𝒎𝒃

𝒉𝒃
)
𝟐

=
𝒂𝟐(𝟐𝒃𝟐 + 𝟐𝒄𝟐 − 𝒂𝟐) − 𝒃𝟐(𝟐𝒄𝟐 + 𝟐𝒂𝟐 − 𝒃𝟐)

𝟏𝟔𝑭𝟐
= 

=
(𝒂𝟐 − 𝒃𝟐)(𝟐𝒄𝟐 − 𝒂𝟐 − 𝒃𝟐)

𝟏𝟔𝑭𝟐
≤ 𝟎. 

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶  (
𝒎𝒃

𝒉𝒃
)
𝟐

− (
𝒎𝒄

𝒉𝒄
)
𝟐

=
(𝒃𝟐 − 𝒄𝟐)(𝟐𝒂𝟐 − 𝒃𝟐 − 𝒄𝟐)

𝟏𝟔𝑭𝟐
≥ 𝟎. 

𝑻𝒉𝒆𝒏 ∶   𝒎𝒂𝒙{
𝒎𝒂

𝒉𝒂
,
𝒎𝒃

𝒉𝒃
,
𝒎𝒄

𝒉𝒄
} =

𝒎𝒃

𝒉𝒃
. 

𝑵𝒐𝒘 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶  
𝟐𝒎𝒃

𝒉𝒃
 ≥⏞
?

 
𝟏

𝐬𝐢𝐧𝝎
 ⇔ 

𝒃√𝟐𝒄𝟐 + 𝟐𝒂𝟐 − 𝒃𝟐

𝟐𝑭
≥
√𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐

𝟐𝑭
 

⇔⏞
𝒔𝒒𝒖𝒂𝒓𝒊𝒏𝒈

 𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 − 𝒄𝟐𝒂𝟐 − 𝒃𝟒 ≥ 𝟎 ⇔ (𝒂𝟐 − 𝒃𝟐)(𝒃𝟐 − 𝒄𝟐) ≥ 𝟎,   𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆. 

𝑻𝒉𝒆𝒏 ∶  𝟐𝒓.𝒎𝒂𝒙 {
𝒎𝒂

𝒉𝒂
,
𝒎𝒃

𝒉𝒃
,
𝒎𝒄

𝒉𝒄
} = 𝒓.

𝟐𝒎𝒃

𝒉𝒃
≥

𝒓

𝐬𝐢𝐧𝝎
  (𝟐) 

𝑵𝒐𝒘,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶  
𝟏

𝐬𝐢𝐧𝝎
 ≥⏞
?

 
𝒃

𝒄
+
𝒄

𝒃
 ⇔ 

√𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐

𝟐𝑭
≥
𝒃𝟐 + 𝒄𝟐

𝒃𝒄
 

⇔  𝟐𝒃𝒄√𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐 ≥ (𝒃𝟐 + 𝒄𝟐)√𝟐(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐) − (𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒) 
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⇔⏞
𝒔𝒒𝒖𝒂𝒓𝒊𝒏𝒈

 𝟒𝒃𝟐𝒄𝟐(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐)

≥ (𝟐𝒃𝟐𝒄𝟐 + 𝒃𝟒 + 𝒄𝟒)[𝟐(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐) − (𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒)] 

⇔  𝟎 ≥ −𝒂𝟒(𝒃𝟐 + 𝒄𝟐)
𝟐
+ 𝟐(𝒃𝟒 + 𝒄𝟒)(𝒂𝟐𝒃𝟐 + 𝒄𝟐𝒂𝟐) − (𝒃𝟒 + 𝒄𝟒)

𝟐

= −[𝒂𝟐(𝒃𝟐 + 𝒄𝟐) − (𝒃𝟒 + 𝒄𝟒)]
𝟐
, 

𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆  ⇒   
𝟏

𝐬𝐢𝐧𝝎
≥
𝒃

𝒄
+
𝒄

𝒃
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔)  (𝒊) 

𝑻𝒉𝒆𝒏 ∶   
𝒓

𝐬𝐢𝐧𝝎
≥ 𝒓.𝒎𝒂𝒙{

𝒂

𝒃
+
𝒃

𝒂
,
𝒃

𝒄
+
𝒄

𝒃
,
𝒄

𝒂
+
𝒂

𝒄
}  (𝟑) 

𝒎𝒂,𝒎𝒃,𝒎𝒄 − 𝒄𝒂𝒏 𝒃𝒆 𝒕𝒉𝒆 𝒔𝒊𝒅𝒆𝒔 𝒐𝒇 𝒂 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆.  𝑨𝒑𝒑𝒍𝒚𝒊𝒏𝒈 (𝒊) 𝒊𝒏 𝜟𝒎𝒂𝒎𝒃𝒎𝒄,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝒎𝒃

𝒎𝒄
+
𝒎𝒄

𝒎𝒃
≤

𝟏

𝐬𝐢𝐧𝝎𝒎
=
√𝒎𝒂

𝟐𝒎𝒃
𝟐 +𝒎𝒃

𝟐𝒎𝒄
𝟐 +𝒎𝒄

𝟐𝒎𝒂
𝟐

𝟐𝑭𝒎
=

√ 𝟗
𝟏𝟔
(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐)

𝟑𝑭
𝟐

=
𝟏

𝐬𝐢𝐧𝝎
. 

𝑻𝒉𝒆𝒏 ∶   
𝒓

𝐬𝐢𝐧𝝎
≥ 𝒓.𝒎𝒂𝒙{

𝒎𝒂

𝒎𝒃
+
𝒎𝒃

𝒎𝒂
,
𝒎𝒃

𝒎𝒄
+
𝒎𝒄

𝒎𝒃
,
𝒎𝒄

𝒎𝒂
+
𝒎𝒂

𝒎𝒄
}  (𝟒) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 

𝑹 ≥⏞
(𝟏)

𝟐𝒓.𝒎𝒂𝒙{
𝒎𝒂

𝒉𝒂
,
𝒎𝒃

𝒉𝒃
,
𝒎𝒄

𝒉𝒄
} ≥⏞
(𝟐)

𝒓

𝐬𝐢𝐧𝝎
≥⏞
(𝟑)

𝒓.𝒎𝒂𝒙{
𝒂

𝒃
+
𝒃

𝒂
,
𝒃

𝒄
+
𝒄

𝒃
,
𝒄

𝒂
+
𝒂

𝒄
} ≥⏞
𝑨𝑴−𝑮𝑴

𝟐𝒓. 

𝑹 ≥⏞
(𝟏)

𝟐𝒓.𝒎𝒂𝒙{
𝒎𝒂

𝒉𝒂
,
𝒎𝒃

𝒉𝒃
,
𝒎𝒄

𝒉𝒄
} ≥⏞
(𝟐)

𝒓

𝐬𝐢𝐧𝝎
≥⏞
(𝟒)

𝒓.𝒎𝒂𝒙{
𝒎𝒂

𝒎𝒃
+
𝒎𝒃

𝒎𝒂
,
𝒎𝒃

𝒎𝒄
+
𝒎𝒄

𝒎𝒃
,
𝒎𝒄

𝒎𝒂
+
𝒎𝒂

𝒎𝒄
} ≥⏞
𝑨𝑴−𝑮𝑴

𝟐𝒓. 

886. 𝑰𝒏 ∆𝑨𝑩𝑪 𝒕𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔𝒉𝒊𝒑 𝒉𝒐𝒍𝒅𝒔 ∶ 

𝟒 <∑
𝝅 + 𝝁(𝑨)

𝝅 − 𝝁(𝑩)
𝒄𝒚𝒄

≤ 𝟔𝒎𝒂𝒙 (
𝝁(𝑩)

𝝁(𝑨)
,
𝝁(𝑪)

𝝁(𝑩)
,
𝝁(𝑨)

𝝁(𝑪)
) 

Proposed by Radu Diaconu-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 

 ∑
𝝅 + 𝝁(𝑨)

𝝅 − 𝝁(𝑩)
𝒄𝒚𝒄

=∑(𝟏+
𝝁(𝑨) + 𝝁(𝑩)

𝝅 − 𝝁(𝑩)
)

𝒄𝒚𝒄

= 𝟑 +∑
𝝁(𝑨) + 𝝁(𝑩)

𝝁(𝑪) + 𝝁(𝑨)
𝒄𝒚𝒄

≥ 
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≥⏞
𝑨𝑴−𝑮𝑴

𝟑 + 𝟑√∏
𝝁(𝑨) + 𝝁(𝑩)

𝝁(𝑪) + 𝝁(𝑨)
𝒄𝒚𝒄

𝟑
= 𝟑+ 𝟑 = 𝟔 > 4. 

𝑵𝒐𝒘,𝒔𝒊𝒏𝒄𝒆 ∶  𝟑𝒎𝒂𝒙(
𝝁(𝑩)

𝝁(𝑨)
,
𝝁(𝑪)

𝝁(𝑩)
,
𝝁(𝑨)

𝝁(𝑪)
) ≥

𝝁(𝑩)

𝝁(𝑨)
+
𝝁(𝑪)

𝝁(𝑩)
+
𝝁(𝑨)

𝝁(𝑪)
,  

𝒔𝒐 𝒊𝒕 𝒔𝒖𝒇𝒇𝒊𝒄𝒆𝒔 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆 ∶   ∑
𝝅 + 𝝁(𝑨)

𝝅 − 𝝁(𝑩)
𝒄𝒚𝒄

≤ 𝟐∑
𝝁(𝑩)

𝝁(𝑨)
𝒄𝒚𝒄

 ⇔  𝟑 +∑
𝝁(𝑨) + 𝝁(𝑩)

𝝁(𝑪) + 𝝁(𝑨)
𝒄𝒚𝒄

≤ 𝟐∑
𝝁(𝑩)

𝝁(𝑨)
𝒄𝒚𝒄

 

⇔ 𝟔 ≤∑(
𝟐𝝁(𝑩)

𝝁(𝑨)
+ 𝟏 −

𝝁(𝑨) + 𝝁(𝑩)

𝝁(𝑪) + 𝝁(𝑨)
)

𝒄𝒚𝒄

=∑
𝝁(𝑩)[𝝁(𝑪) + 𝝁(𝑨)] + 𝝁(𝑪)[𝝁(𝑨) + 𝝁(𝑩)]

𝝁(𝑨)[𝝁(𝑪) + 𝝁(𝑨)]
𝒄𝒚𝒄

, 

𝒘𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒃𝒆𝒄𝒂𝒖𝒔𝒆 ∶   𝑹𝑯𝑺 ≥⏞
𝑨𝑴−𝑮𝑴

∑
𝟐√𝝁(𝑩)𝝁(𝑪)[𝝁(𝑪) + 𝝁(𝑨)][𝝁(𝑨) + 𝝁(𝑩)]

𝝁(𝑨)[𝝁(𝑪) + 𝝁(𝑨)]
𝒄𝒚𝒄

= 

= 𝟐∑√
𝝁(𝑩)𝝁(𝑪)[𝝁(𝑨) + 𝝁(𝑩)]

𝝁𝟐(𝑨)[𝝁(𝑪) + 𝝁(𝑨)]
𝒄𝒚𝒄

 ≥⏞
𝑨𝑴−𝑮𝑴

 𝟐. 𝟑√∏
𝝁(𝑩)𝝁(𝑪)[𝝁(𝑨) + 𝝁(𝑩)]

𝝁𝟐(𝑨)[𝝁(𝑪) + 𝝁(𝑨)]
𝒄𝒚𝒄

𝟔
= 𝟔 = 𝑳𝑯𝑺. 

887. 𝑰𝒏 ∆𝑨𝑩𝑪, 𝑰 − 𝒊𝒏𝒄𝒆𝒏𝒕𝒆𝒓,𝝎 − 𝑩𝒓𝒐𝒄𝒂𝒓𝒅′𝒔 𝒂𝒏𝒈𝒍𝒆, 𝒏𝒂 −

𝑵𝒂𝒈𝒆𝒍′𝒔 𝒄𝒆𝒗𝒊𝒂𝒏, 𝒈𝒂 − 𝑮𝒆𝒓𝒈𝒐𝒏𝒏𝒆 𝒄𝒆𝒗𝒊𝒂𝒏. 𝑷𝒓𝒐𝒗𝒆 𝒕𝒉𝒂𝒕 ∶ 

  
𝟏

𝐬𝐢𝐧𝝎
≥ 𝝎𝟏 +𝝎𝟐,   𝒘𝒉𝒆𝒓𝒆 ∶ 

𝝎𝟏 =
∑ (𝑨𝑰 +

𝒎𝒂𝒘𝒂

𝒉𝒂
)𝒄𝒚𝒄

−𝟑𝒓 + ∑ (𝒎𝒂 + 𝒉𝒂)𝒄𝒚𝒄
,   𝝎𝟐 =

√
𝟓𝑹 − 𝒓 + ∑

𝒏𝒂𝒈𝒂
𝒉𝒂

𝒄𝒚𝒄

𝟐∑ 𝒉𝒂𝒄𝒚𝒄
 

Proposed by Bogdan Fuștei-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   𝑨𝑰 =
𝒓

𝐬𝐢𝐧
𝑨
𝟐

=
𝒓. 𝟒𝑹𝐜𝐨𝐬

𝑨
𝟐

𝒂
=
𝒃𝒄 𝐜𝐨𝐬

𝑨
𝟐

𝒔
=
𝒓. (𝒃 + 𝒄)𝒘𝒂

𝒂𝒉𝒂
. 

𝑨𝒍𝒔𝒐,   
𝒘𝒂
𝒉𝒂

=
𝟐√𝒃𝒄. 𝒔(𝒔 − 𝒂)

𝒃 + 𝒄
.
𝒂

𝟐𝑭
=
√𝟐𝒂𝒃𝒄𝒔.√𝒂(−𝒂 + 𝒃 + 𝒄)

𝟐𝑭(𝒃 + 𝒄)
 ≤⏞
𝑨𝑴−𝑮𝑴

 
√𝟖𝑹𝒔𝟐𝒓. (𝒃 + 𝒄)

𝟒𝒔𝒓(𝒃 + 𝒄)
= √

𝑹

𝟐𝒓
. 
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𝑻𝒉𝒆𝒏 ∶  ∑(𝑨𝑰 +
𝒎𝒂𝒘𝒂
𝒉𝒂

)

𝒄𝒚𝒄

=∑
𝒘𝒂
𝒉𝒂

(
𝒓(𝒃 + 𝒄)

𝒂
+𝒎𝒂)

𝒄𝒚𝒄

≤∑√
𝑹

𝟐𝒓
. (−𝒓 + 𝒉𝒂 +𝒎𝒂)

𝒄𝒚𝒄

= 

= √
𝑹

𝟐𝒓
(−𝟑𝒓 +∑(𝒎𝒂 + 𝒉𝒂)

𝒄𝒚𝒄

)  ⇒   𝝎𝟏 ≤ √
𝑹

𝟐𝒓
  (𝟏) 

𝑵𝒐𝒘,   ∑
𝒏𝒂𝒈𝒂
𝒉𝒂

𝒄𝒚𝒄

 ≤⏞
𝑨𝑴−𝑮𝑴

∑
𝒏𝒂

𝟐 + 𝒈𝒂
𝟐

𝟐𝒉𝒂
𝒄𝒚𝒄

=∑
(𝒔(𝒔 − 𝒂) +

𝒔(𝒃 − 𝒄)𝟐

𝒂 ) + (𝒔(𝒔 − 𝒂) −
(𝒔 − 𝒂)(𝒃 − 𝒄)𝟐

𝒂 )

𝟐𝒉𝒂
𝒄𝒚𝒄

= 

=∑
𝒂[𝟐𝒔(𝒔 − 𝒂) + (𝒃 − 𝒄)𝟐]

𝟒𝑭
𝒄𝒚𝒄

=
𝟏

𝟐𝒓
∑𝒂(𝒔 − 𝒂)

𝒄𝒚𝒄

+
𝟏

𝟒𝑭
∑𝒂(𝒃 − 𝒄)𝟐

𝒄𝒚𝒄

= 

=
𝟐𝒓(𝟒𝑹+ 𝒓)

𝟐𝒓
+
𝟐𝒔∑ 𝒃𝒄𝒄𝒚𝒄 − 𝟗𝒂𝒃𝒄

𝟒𝑭
= 𝟒𝑹+ 𝒓 +

𝟏

𝟐𝒓
.∑𝟐𝑹𝒉𝒂
𝒄𝒚𝒄

− 𝟗𝑹 = −𝟓𝑹+ 𝒓 +
𝑹

𝒓
∑𝒉𝒂
𝒄𝒚𝒄

. 

𝑻𝒉𝒆𝒏 ∶   𝟓𝑹− 𝒓 +∑
𝒏𝒂𝒈𝒂
𝒉𝒂

𝒄𝒚𝒄

≤
𝑹

𝒓
∑𝒉𝒂
𝒄𝒚𝒄

  ⇒   𝝎𝟐 ≤ √
𝑹

𝟐𝒓
  (𝟐) 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,  

  
𝟏

𝐬𝐢𝐧𝝎
=
√𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐

𝟐𝑭
≥
√𝒂𝒃𝒄(𝒂 + 𝒃 + 𝒄)

𝟐𝒔𝒓
= 𝟐√

𝑹

𝟐𝒓
 ≥⏞
(𝟏) & (𝟐)

 𝝎𝟏 +𝝎𝟐 

888. In 𝚫𝑨𝑩𝑪, 𝑰𝒂, 𝑰𝒃, 𝑰𝒄 −excenters. Prove that: 

𝟕𝟐𝑹𝒓 ≤∑(𝑰𝒃𝑰𝒄)
𝟐

𝒄𝒚𝒄

≤ 𝟑𝟔𝑹𝟐 

Proposed by Marin Chirciu-Romania 
Solution by Tapas Das-India 

𝑩𝑪 = 𝒂 = 𝑰𝒃𝑰𝒄 𝐜𝐨𝐬 (𝟗𝟎° −
𝑨

𝟐
) = 𝑰𝒃𝑰𝒄 𝐬𝐢𝐧

𝑨

𝟐
, 𝒂 = 𝟐𝑹𝐬𝐢𝐧 𝑨 = 𝑰𝒃𝑰𝒄 𝐬𝐢𝐧

𝑨

𝟐
 

𝟐𝑹 ⋅ 𝟐 𝐬𝐢𝐧
𝑨

𝟐
𝐜𝐨𝐬

𝑨

𝟐
= 𝑰𝒃𝑰𝒄 𝐬𝐢𝐧

𝑨

𝟐
, 𝑰𝒃𝑰𝒄 = 𝟒𝑹𝐜𝐨𝐬

𝑨

𝟐
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𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚: 𝑰𝒂𝑰𝒄 = 𝟒𝑹𝐬𝐢𝐧
𝑩

𝟐
 𝒂𝒏𝒅 𝑰𝒂𝑰𝒃 = 𝟒𝑹𝐬𝐢𝐧

𝑪

𝟐
 

∑(𝑰𝒃𝑰𝒄)
𝟐

𝒄𝒚𝒄

= 𝟏𝟔𝑹𝟐∑𝐜𝐨𝐬𝟐
𝑨

𝟐
𝒄𝒚𝒄

= 𝟏𝟔𝑹𝟐 (𝟐 +
𝒓

𝟐𝑹
) ≤
𝑬𝒖𝒍𝒆𝒓

𝟏𝟔𝑹𝟐 (𝟐 +
𝑹

𝟐𝑹
) = 𝟑𝟔𝑹𝟐; (𝟏) 

  ∑(𝑰𝒃𝑰𝒄)
𝟐

𝒄𝒚𝒄

= 𝟏𝟔𝑹𝟐∑𝐜𝐨𝐬𝟐
𝑨

𝟐
𝒄𝒚𝒄

=
𝟏𝟔𝑹𝟐(𝟒𝑹 + 𝒓)

𝟐𝑹
= 𝟖𝑹(𝟒𝑹+ 𝒓) 

𝑾𝒆 𝒏𝒆𝒆𝒅 𝒕𝒐 𝒑𝒓𝒐𝒗𝒆: 

𝟖𝑹(𝟒𝑹+ 𝒓) ≥ 𝟕𝟐𝑹𝒓 ⇔ 𝟒𝑹 + 𝒓 ≥ 𝟗𝒓 ⇔ 𝑹 ≥ 𝟐𝒓 (𝑬𝒖𝒍𝒆𝒓) 

𝑯𝒆𝒏𝒄𝒆,∑(𝑰𝒃𝑰𝒄)
𝟐

𝒄𝒚𝒄

≥ 𝟕𝟐𝑹𝒓;  (𝟐) 

𝑭𝒓𝒐𝒎 (𝟏) 𝒂𝒏𝒅 (𝟐), 𝒊𝒕 𝒇𝒐𝒍𝒍𝒐𝒘𝒔:  𝟕𝟐𝑹𝒓 ≤∑(𝑰𝒃𝑰𝒄)
𝟐

𝒄𝒚𝒄

≤ 𝟑𝟔𝑹𝟐 

889. 𝐈𝐧 𝒂𝐧𝐲 ∆ 𝐀𝐁𝐂 𝐡𝐨𝐥𝐝𝐬: 

𝒂𝟐 + 𝐛𝟐

𝐛𝟐 + 𝐜𝟐
+
𝐛𝟐 + 𝐜𝟐

𝐜𝟐 + 𝒂𝟐
+
𝐜𝟐 + 𝒂𝟐

𝒂𝟐 + 𝐛𝟐
+
𝐑

𝟐𝐫
≥ 𝟏 +

𝐛𝟐 + 𝐜𝟐

𝒂𝟐 + 𝐛𝟐
+
𝐜𝟐 + 𝒂𝟐

𝐛𝟐 + 𝐜𝟐
+
𝒂𝟐 + 𝐛𝟐

𝐜𝟐 + 𝒂𝟐
 

  Proposed by Nguyen Van Canh-BenTre-Vietnam 
Solution by Soumava Chakraborty-Kolkata-India 
 

𝒂𝟐 + 𝐛𝟐

𝐛𝟐 + 𝐜𝟐
+
𝐛𝟐 + 𝐜𝟐

𝐜𝟐 + 𝒂𝟐
+
𝐜𝟐 + 𝒂𝟐

𝒂𝟐 + 𝐛𝟐
+
𝐑

𝟐𝐫
≥ 𝟏 +

𝐛𝟐 + 𝐜𝟐

𝒂𝟐 + 𝐛𝟐
+
𝐜𝟐 + 𝒂𝟐

𝐛𝟐 + 𝐜𝟐
+
𝒂𝟐 + 𝐛𝟐

𝐜𝟐 + 𝒂𝟐
 

⇔
𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 − 𝐜𝟐

𝐛𝟐 + 𝐜𝟐
+
𝐛𝟐 + 𝐜𝟐 + 𝒂𝟐 − 𝒂𝟐

𝐜𝟐 + 𝒂𝟐
+
𝐜𝟐 + 𝒂𝟐 + 𝐛𝟐 − 𝐛𝟐

𝒂𝟐 + 𝐛𝟐
+
𝐑

𝟐𝐫
 

≥ 𝟏 +
𝐛𝟐 + 𝐜𝟐 + 𝒂𝟐 − 𝒂𝟐

𝒂𝟐 + 𝐛𝟐
+
𝐜𝟐 + 𝒂𝟐 + 𝐛𝟐 − 𝐛𝟐

𝐛𝟐 + 𝐜𝟐
+
𝒂𝟐 + 𝐛𝟐 + 𝐜𝟐 − 𝐜𝟐

𝐜𝟐 + 𝒂𝟐
 

⇔ (∑𝒂𝟐

𝐜𝐲𝐜

)(∑
𝟏

𝐛𝟐 + 𝐜𝟐
𝐜𝐲𝐜

) −
𝐜𝟐

𝐛𝟐 + 𝐜𝟐
−

𝒂𝟐

𝐜𝟐 + 𝒂𝟐
−

𝐛𝟐

𝒂𝟐 + 𝐛𝟐
+
𝐑 − 𝟐𝐫

𝟐𝐫
 

≥ (∑𝒂𝟐

𝐜𝐲𝐜

)(∑
𝟏

𝐛𝟐 + 𝐜𝟐
𝐜𝐲𝐜

) −
𝒂𝟐

𝒂𝟐 + 𝐛𝟐
−

𝐛𝟐

𝐛𝟐 + 𝐜𝟐
−

𝐜𝟐

𝐜𝟐 + 𝒂𝟐
 

⇔
𝐛𝟐 − 𝐜𝟐

𝐛𝟐 + 𝐜𝟐
+
𝐜𝟐 − 𝒂𝟐

𝐜𝟐 + 𝒂𝟐
+
𝒂𝟐 − 𝐛𝟐

𝒂𝟐 + 𝐛𝟐
+
𝐑− 𝟐𝐫

𝟐𝐫
≥ 𝟎 

⇔
𝐛𝟐 + 𝐜𝟐 − 𝟐𝐜𝟐

𝐛𝟐 + 𝐜𝟐
+
𝐜𝟐 + 𝒂𝟐 − 𝟐𝒂𝟐

𝐜𝟐 + 𝒂𝟐
+
𝒂𝟐 + 𝐛𝟐 − 𝟐𝐛𝟐

𝒂𝟐 + 𝐛𝟐
+
𝐑− 𝟐𝐫

𝟐𝐫
≥ 𝟎 
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⇔ 𝟑+
𝐑− 𝟐𝐫

𝟐𝐫
≥

𝟐𝐜𝟐

𝐛𝟐 + 𝐜𝟐
+

𝟐𝒂𝟐

𝐜𝟐 + 𝒂𝟐
+

𝟐𝐛𝟐

𝒂𝟐 + 𝐛𝟐
 

⇔ 𝟑+
𝐑− 𝟐𝐫

𝟐𝐫
+

𝟐𝐛𝟐

𝐛𝟐 + 𝐜𝟐
+

𝟐𝐜𝟐

𝐜𝟐 + 𝒂𝟐
+

𝟐𝒂𝟐

𝒂𝟐 + 𝐛𝟐
 

≥ (
𝟐𝐜𝟐

𝐛𝟐 + 𝐜𝟐
+

𝟐𝐛𝟐

𝐛𝟐 + 𝐜𝟐
) + (

𝟐𝒂𝟐

𝐜𝟐 + 𝒂𝟐
+

𝟐𝐜𝟐

𝐜𝟐 + 𝒂𝟐
) + (

𝟐𝐛𝟐

𝒂𝟐 + 𝐛𝟐
+

𝟐𝒂𝟐

𝒂𝟐 + 𝐛𝟐
) 

⇔
𝐑− 𝟐𝐫

𝟐𝐫
+ 𝟐∑

𝒂𝟐

𝒂𝟐 + 𝐛𝟐
𝐜𝐲𝐜

≥
(∗)

𝟑 

𝐍𝐨𝐰, 𝐋𝐇𝐒 𝐨𝐟 (∗) ≥
𝐁𝐞𝐫𝐠𝐬𝐭𝐫𝐨𝐦 𝐑 − 𝟐𝐫

𝟐𝐫
+

𝟐(𝟒𝐬𝟐)

𝟐∑ 𝒂𝟐𝐜𝐲𝐜
≥
?
𝟑 ⇔

𝐑− 𝟐𝐫

𝟐𝐫
≥
?
𝟑 −

𝟐𝐬𝟐

𝐬𝟐 − 𝟒𝐑𝐫 − 𝐫𝟐
 

⇔
𝐑− 𝟐𝐫

𝟐𝐫
≥
? 𝐬𝟐 − 𝟏𝟐𝐑𝐫 − 𝟑𝐫𝟐

𝐬𝟐 − 𝟒𝐑𝐫 − 𝐫𝟐
⇔ (𝐑 − 𝟒𝐫)𝐬𝟐 ≥ (𝐑 − 𝟖𝐫)(𝟒𝐑𝐫 + 𝐫𝟐) 

⇔ (𝐑− 𝟐𝐫)𝐬𝟐 − 𝟐𝐫𝐬𝟐 ≥
(∗∗)

(𝐑 − 𝟖𝐫)(𝟒𝐑𝐫 + 𝐫𝟐) 

𝐍𝐨𝐰, 𝐋𝐇𝐒 𝐨𝐟 (∗) ≥
𝐆𝐞𝐫𝐫𝐞𝐭𝐬𝐞𝐧

(𝐑 − 𝟐𝐫)(𝟏𝟔𝐑𝐫 − 𝟓𝐫𝟐) − 𝟐𝐫(𝟒𝐑𝟐 + 𝟒𝐑𝐫 + 𝟑𝐫𝟐) 

≥
?
(𝐑 − 𝟖𝐫)(𝟒𝐑𝐫 + 𝐫𝟐) ⇔ 𝟐𝐑𝟐 − 𝟕𝐑𝐫 + 𝟔𝐫𝟐 ≥

?
𝟎 ⇔ (𝐑 − 𝟐𝐫)(𝟐𝐑− 𝟑𝐫) ≥

?
𝟎 

→ 𝐭𝐫𝐮𝐞 ∵ 𝐑 ≥
𝐄𝐮𝐥𝐞𝐫

𝟐𝐫 ⇒ (∗∗) ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 ∴ 𝐢𝐧 𝒂𝐧𝐲 ∆ 𝐀𝐁𝐂, 
𝒂𝟐 + 𝐛𝟐

𝐛𝟐 + 𝐜𝟐
+
𝐛𝟐 + 𝐜𝟐

𝐜𝟐 + 𝒂𝟐
+
𝐜𝟐 + 𝒂𝟐

𝒂𝟐 + 𝐛𝟐
+
𝐑

𝟐𝐫
≥ 𝟏 +

𝐛𝟐 + 𝐜𝟐

𝒂𝟐 + 𝐛𝟐
+
𝐜𝟐 + 𝒂𝟐

𝐛𝟐 + 𝐜𝟐
+
𝒂𝟐 + 𝐛𝟐

𝐜𝟐 + 𝒂𝟐
, 

𝐰𝐢𝐭𝐡 𝐞𝐪𝐮𝒂𝒍𝐢𝐭𝐲 𝐢𝐟𝐟 ∆ 𝐀𝐁𝐂 𝐢𝐬 𝐞𝐪𝐮𝐢𝒍𝒂𝐭𝐞𝐫𝒂𝒍 (𝐐𝐄𝐃) 
 

890.  𝑺𝑨𝑩𝑪 − 𝐭𝐞𝐭𝐫𝐚𝐡𝐞𝐝𝐫𝐨𝐧,𝑶 − 𝐜𝐞𝐧𝐭𝐞𝐫 𝐨𝐟 𝐜𝐢𝐫𝐜𝐮𝐦𝐬𝐩𝐡𝐞𝐫𝐞,  
∢𝑩𝑺𝑪 = ∢𝑪𝑺𝑨 = 𝜽 = 𝟔𝟎° 

𝑺𝑷 = 𝑺𝑸 = 𝑺𝑹, 𝐩𝐥𝐚𝐧𝐞(𝑷, 𝑸, 𝑹) = (𝝅), 𝚶 ∈ (𝝅), 𝐕𝐨𝐥𝐮𝐦𝐞(𝑺𝑷𝑸𝑹) = 𝑽. 

𝐏𝐫𝐨𝐯𝐞: 𝑺𝑨 + 𝑺𝑩 + 𝑺𝑪 = 𝟒 ∙ √𝟕𝟐
𝟔

∙ √𝑽
𝟑
. 

 

Proposed by Thanasis Gakopoulos-Farsala-Greece 
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Solution by proposer 
𝑭𝒓𝒐𝒎 𝟎𝟏. 𝟎𝟓. 𝟐𝟎𝟐𝟐,𝒘𝒆 𝒉𝒂𝒗𝒆: 

𝑺𝑨 (
𝟑

𝑺𝑷
+
−𝟏

𝑺𝑸
+
−𝟏

𝑺𝑹
) + 𝑺𝑩 (

−𝟏

𝑺𝑷
+
𝟑

𝑺𝑸
+
−𝟏

𝑺𝑹
) + 𝑺𝑪 (

−𝟏

𝑺𝑷
+
−𝟏

𝑺𝑸
+
𝟑

𝑺𝑹
) = 𝟒 

𝑺𝑷 = 𝑺𝑸 = 𝑺𝑹 = 𝒅 ⇒ 𝑺𝑨 + 𝑺𝑩 + 𝑺𝑪 = 𝟒𝒅 

𝑽 =
𝒅𝟑

𝟔
∙
𝟏

√𝟐
⇒ 𝒅 = √𝟕𝟐

𝟔
∙ √𝑽
𝟑

⇒ 𝑺𝑨 + 𝑺𝑩 + 𝑺𝑪 = 𝟒 ∙ √𝟕𝟐
𝟔

∙ √𝑽
𝟑
.   

891. Prove that: 

√𝒔𝒊𝒏
𝝅

𝟏𝟒

𝟑
− √𝒔𝒊𝒏

𝟑𝝅

𝟏𝟒

𝟑

+ √𝒔𝒊𝒏
𝟓𝝅

𝟏𝟒

𝟑

= √−
𝟓

𝟐
+
𝟑

𝟐
√𝟕
𝟑

𝟑

 

Proposed by Vasile Mircea Popa-Romania 
Solution 1 by Pham Duc Nam-Vietnam 

Let: 𝒙 = √𝒔𝒊𝒏
𝝅

𝟏𝟒

𝟑
, 𝒚 = −√𝒔𝒊𝒏

𝟑𝝅

𝟏𝟒

𝟑

, 𝒛 = √𝒔𝒊𝒏
𝟓𝝅

𝟏𝟒

𝟑

 

∗ 𝒔𝒊𝒏
𝝅

𝟏𝟒
𝒔𝒊𝒏

𝟑𝝅

𝟏𝟒
𝒔𝒊𝒏

𝟓𝝅

𝟏𝟒
= 𝒔𝒊𝒏

𝝅

𝟏𝟒
𝒄𝒐𝒔

𝟒𝝅

𝟏𝟒
𝒄𝒐𝒔

𝟐𝝅

𝟏𝟒
=
𝟐𝒔𝒊𝒏

𝝅
𝟏𝟒
𝒄𝒐𝒔

𝝅
𝟏𝟒
𝒄𝒐𝒔

𝟒𝝅
𝟏𝟒

𝒄𝒐𝒔
𝟐𝝅
𝟏𝟒

𝟐𝒄𝒐𝒔
𝝅
𝟏𝟒

=
𝒔𝒊𝒏

𝟐𝝅
𝟏𝟒 𝒄𝒐𝒔

𝟐𝝅
𝟏𝟒 𝒄𝒐𝒔

𝟒𝝅
𝟏𝟒

𝟐𝒄𝒐𝒔
𝝅
𝟏𝟒

=
𝒔𝒊𝒏

𝟒𝝅
𝟏𝟒 𝒄𝒐𝒔

𝟒𝝅
𝟏𝟒

𝟒𝒄𝒐𝒔
𝝅
𝟏𝟒

=
𝒔𝒊𝒏

𝟖𝝅
𝟏𝟒

𝟖𝒄𝒐𝒔
𝝅
𝟏𝟒

=
𝒄𝒐𝒔

𝝅
𝟏𝟒

𝟖𝒄𝒐𝒔
𝝅
𝟏𝟒

=
𝟏

𝟖
 

⇒ 𝒙𝒚𝒛 = −√𝒔𝒊𝒏
𝝅

𝟏𝟒
𝒔𝒊𝒏

𝟑𝝅

𝟏𝟒
𝒔𝒊𝒏

𝟓𝝅

𝟏𝟒

𝟑

= −
𝟏

𝟐
⇒ (𝒙𝒚𝒛)𝟐 =

𝟏

𝟒
 

∗ 𝒔𝒊𝒏
𝝅

𝟏𝟒
− 𝒔𝒊𝒏

𝟑𝝅

𝟏𝟒
+ 𝒔𝒊𝒏

𝟓𝝅

𝟏𝟒
= 𝑺 ⇒ 𝑺𝒄𝒐𝒔

𝝅

𝟏𝟒
= 𝒄𝒐𝒔

𝝅

𝟏𝟒
(𝒔𝒊𝒏

𝝅

𝟏𝟒
− 𝒔𝒊𝒏

𝟑𝝅

𝟏𝟒
+ 𝒔𝒊𝒏

𝟓𝝅

𝟏𝟒
)

=
𝟏

𝟐
𝒔𝒊𝒏

𝝅

𝟕
−
𝟏

𝟐
(𝒔𝒊𝒏

𝝅

𝟕
+ 𝒄𝒐𝒔

𝟑𝝅

𝟏𝟒
) +

𝟏

𝟐
(𝒄𝒐𝒔

𝝅

𝟏𝟒
+ 𝒄𝒐𝒔

𝟑𝝅

𝟏𝟒
) ⇒ 𝑺 =

𝟏

𝟐
 

⇒ 𝒙𝟑 + 𝒚𝟑 + 𝒛𝟑 =
𝟏

𝟐
 

∗ 𝒔𝒊𝒏
𝝅

𝟏𝟒
𝒔𝒊𝒏

𝟓𝝅

𝟏𝟒
− 𝒔𝒊𝒏

𝟑𝝅

𝟏𝟒
𝒔𝒊𝒏

𝟓𝝅

𝟏𝟒
− 𝒔𝒊𝒏

𝝅

𝟏𝟒
𝒔𝒊𝒏

𝟑𝝅

𝟏𝟒

=
𝟏

𝟐
(𝒄𝒐𝒔

𝟐𝝅

𝟕
− 𝒄𝒐𝒔

𝟑𝝅

𝟕
+ 𝒄𝒐𝒔

𝟒𝝅

𝟕
− 𝒄𝒐𝒔

𝝅

𝟕
+ 𝒄𝒐𝒔

𝟐𝝅

𝟕
− 𝒄𝒐𝒔

𝝅

𝟕
)

=
𝟏

𝟐
(𝟐𝒄𝒐𝒔

𝟐𝝅

𝟕
− 𝒄𝒐𝒔

𝟑𝝅

𝟕
+ 𝒄𝒐𝒔

𝟒𝝅

𝟕
− 𝟐𝒄𝒐𝒔

𝝅

𝟕
) 
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=
𝟏

𝟐
(𝟒𝒄𝒐𝒔𝟐

𝝅

𝟕
− 𝟐 − 𝟒𝒄𝒐𝒔𝟑

𝝅

𝟕
+ 𝟑 𝒄𝒐𝒔

𝝅

𝟕
+ 𝟖𝒄𝒐𝒔𝟒

𝝅

𝟕
− 𝟖𝒄𝒐𝒔𝟐

𝝅

𝟕
+ 𝟏 − 𝟐𝒄𝒐𝒔

𝝅

𝟕
)

=
𝟏

𝟐
(𝟖𝒄𝒐𝒔𝟒

𝝅

𝟕
− 𝟒𝒄𝒐𝒔𝟑

𝝅

𝟕
− 𝟒 𝒄𝒐𝒔𝟐

𝝅

𝟕
+ 𝒄𝒐𝒔

𝝅

𝟕
− 𝟏)

=
𝟏

𝟐
(𝒄𝒐𝒔

𝝅

𝟕
(𝟖 𝒄𝒐𝒔𝟑

𝝅

𝟕
− 𝟒𝒄𝒐𝒔𝟐

𝝅

𝟕
− 𝟒𝒄𝒐𝒔

𝝅

𝟕
+ 𝟏) − 𝟏) 

Known:Minimal polynomial which root is cos (
𝝅

𝟕
)  is: 𝟖𝒙𝟑 − 𝟒𝒙𝟐 − 𝟒𝒙 + 𝟏

⇒ 𝟖𝒄𝒐𝒔𝟑
𝝅

𝟕
− 𝟒𝒄𝒐𝒔𝟐

𝝅

𝟕
− 𝟒𝒄𝒐𝒔

𝝅

𝟕
+ 𝟏 = 𝟎

⇒ 𝒔𝒊𝒏
𝝅

𝟏𝟒
𝒔𝒊𝒏

𝟓𝝅

𝟏𝟒
− 𝒔𝒊𝒏

𝟑𝝅

𝟏𝟒
𝒔𝒊𝒏

𝟓𝝅

𝟏𝟒
− 𝒔𝒊𝒏

𝝅

𝟏𝟒
𝒔𝒊𝒏

𝟑𝝅

𝟏𝟒
= −

𝟏

𝟐
 

⇒ (𝒙𝒚)𝟑 + (𝒚𝒛)𝟑 + (𝒙𝒛)𝟑 = −
𝟏

𝟐
 

∗ 𝒙𝟑 + 𝒚𝟑 + 𝒛𝟑 = (𝒙 + 𝒚)𝟑 + 𝒛𝟑 − 𝟑𝒙𝒚(𝒙 + 𝒚)

= (𝒙 + 𝒚 + 𝒛)((𝒙 + 𝒚)𝟐 − 𝒛(𝒙 + 𝒚) + 𝒛𝟐) − 𝟑𝒙𝒚(𝒙+ 𝒚) ⇒ 𝒙𝟑 + 𝒚𝟑 + 𝒛𝟑 − 𝟑𝒙𝒚𝒛

= (𝒙 + 𝒚 + 𝒛) ((𝒙 + 𝒚 + 𝒛)𝟐 − 𝟑(𝒙𝒚+ 𝒚𝒛 + 𝒙𝒛)) 

⇔ 𝟐 = 𝒔(𝒔𝟐 − 𝟑𝒑),where: 𝒔 = 𝒙 + 𝒚 + 𝒛, 𝒑 = 𝒙𝒚 + 𝒙𝒛 + 𝒚𝒛 

∗ Replace: 𝒙 = 𝒙𝒚,𝒚 = 𝒚𝒛, 𝒛 = 𝒙𝒛 ⇒ (𝒙𝒚)𝟑 + (𝒚𝒛)𝟑 + (𝒙𝒛)𝟑 − 𝟑𝒙𝟐𝒚𝟐𝒛𝟐

= (𝒙𝒛 + 𝒚𝒛 + 𝒙𝒚) ((𝒙𝒛 + 𝒚𝒛 + 𝒙𝒚)𝟐 − 𝟑𝒙𝒚𝒛(𝒙+ 𝒚 + 𝒛)) ⇔ −
𝟓

𝟒
= 𝒑(𝒑𝟐 +

𝟑

𝟐
𝒔)

⇒ 𝒑𝟑 = −
𝟑

𝟐
𝒑𝒔 −

𝟓

𝟒
 

∗ 𝟐 = 𝒔(𝒔𝟐 − 𝟑𝒑) ⇔ 𝟑𝒑𝒔 = 𝒔𝟑 − 𝟐 ⇒ 𝒑𝟑 = −
𝟏

𝟐
(𝒔𝟑 − 𝟐) −

𝟓

𝟒
= −

𝒔𝟑

𝟐
−
𝟏

𝟒
 

⇒ 𝟐𝟕𝒑𝟑𝒔𝟑 = (𝒔𝟑 − 𝟐)
𝟑
⇔ 𝟐𝟕(−

𝒔𝟑

𝟐
−
𝟏

𝟒
)𝒔𝟑 = (𝒔𝟑 − 𝟐)

𝟑
⇔ 𝟒𝒔𝟗 + 𝟑𝟎𝒔𝟔 + 𝟕𝟓𝒔𝟑 − 𝟑𝟐 = 𝟎

⇔ (𝒔𝟑 +
𝟓

𝟐
)
𝟑

=
𝟏𝟖𝟗

𝟖
= (

𝟑

𝟐
√𝟕
𝟑
)
𝟑

 

⇒ 𝒔𝟑 =
𝟑

𝟐
√𝟕
𝟑

−
𝟓

𝟐
⇒ 𝒔 = √

𝟑

𝟐
√𝟕
𝟑

−
𝟓

𝟐

𝟑

⇒ 𝒙 + 𝒚 + 𝒛 = √𝒔𝒊𝒏
𝝅

𝟏𝟒

𝟑
− √𝒔𝒊𝒏

𝟑𝝅

𝟏𝟒

𝟑

+ √𝒔𝒊𝒏
𝟓𝝅

𝟏𝟒

𝟑

= √
𝟑

𝟐
√𝟕
𝟑

−
𝟓

𝟐

𝟑

 

Solution 2 by Hikmat Mammadov-Azerbaijan 

𝑳𝑯𝑺 = √𝐜𝐨𝐬
𝝅

𝟕

𝟑
+ √𝐜𝐨𝐬

𝟑𝝅

𝟕

𝟑

+ √𝐜𝐨𝐬
𝟓𝝅

𝟕

𝟑

 

(𝒆𝒊
𝝅
𝟕)

𝟕

+ 𝟏 = 𝒆𝒊𝝅 + 𝟏 = 𝟎 

𝑰𝒇 𝒛 = 𝒆𝒊
𝝅
𝟕  𝒐𝒓 𝒛 = 𝒆𝒊

𝟑𝝅
𝟕  𝒐𝒓 𝒛 = 𝒆𝒊

𝟓𝝅
𝟕  

𝟎 = 𝒛𝟕 + 𝟏 = (𝒛 + 𝟏)(𝒛𝟔 − 𝒛𝟓 + 𝒛𝟒 − 𝒛𝟑 + 𝒛𝟐 − 𝒛 + 𝟏) 
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𝑺𝒊𝒏𝒄𝒆 𝒛 ≠ −𝟏 𝒂𝒏𝒅 𝒛 ≠ 𝟎.  
𝒛𝟕 + 𝟏

(𝒛 + 𝟏)𝒛𝟑
= 𝟎 ⇒ 𝒛𝟑 − 𝒛𝟐 + 𝒛 − 𝟏 − 𝒛−𝟐 + 𝒛−𝟑 = 𝟎 

(𝒛 +
𝟏

𝒛
)
𝟑

= 𝒛𝟑 − 𝒛−𝟑 + 𝟑(𝒛 + 𝒛−𝟏) ⇒ 𝒛𝟑 + 𝒛−𝟑 = (𝒛 + 𝒛−𝟏)𝟐 − 𝟐  

𝒛𝟑 − 𝒛𝟐 + 𝒛 − 𝟏 + 𝒛−𝟏 − 𝒛−𝟐 + 𝒛−𝟑 = (𝒛𝟑 + 𝒛−𝟑) − (𝒛𝟐 + 𝒛−𝟐) + (𝒛 + 𝒛−𝟏) − 𝟏 = 𝟎 
(𝒛 + 𝒛−𝟏)𝟑 − 𝟑(𝒛 + 𝒛−𝟏) − (𝒛 + 𝒛−𝟏)𝟐 + 𝟐 + (𝒛 + 𝒛−𝟏) − 𝟏 = 𝟎 

𝑳𝒆𝒕 𝝎 = 𝒛 + 𝒛−𝟏 ⇒ 𝝎𝟑 −𝝎𝟐 − 𝟐𝝎+ 𝟏 = 𝒈(𝝎) = 𝟎 

𝒈(𝝎) 𝒉𝒂𝒔 𝒆𝒊
𝝅
𝟕 + 𝒆−𝟏

𝝅
𝟕 = 𝟐𝐜𝐨𝐬

𝝅

𝟕
 𝒂𝒔 𝒂 𝒓𝒐𝒐𝒕. 

𝑨𝒍𝒔𝒐, 𝟐 𝐜𝐨𝐬
𝟑𝝅

𝟕
 𝒂𝒏𝒅 𝟐 𝐜𝐨𝐬

𝟓𝝅

𝟕
 𝒂𝒓𝒆 𝒓𝒐𝒐𝒕𝒔. 𝑪𝒂𝒍𝒍 𝒕𝒉𝒆𝒔𝒆 𝒓𝒐𝒐𝒕𝒔: 𝜶𝟑, 𝜷𝟑, 𝜸𝟑 

𝑮𝒐𝒂𝒍:
𝜶 + 𝜷 + 𝜸

√𝟐
𝟑  

𝑽𝒊𝒆𝒕𝒂′𝒔𝒇𝒐𝒓𝒎𝒖𝒍𝒂𝒔: 𝝎𝟑 −𝝎𝟐 − 𝟐𝝎+ 𝟏 = 𝟎  
𝜶𝟑 +𝜷𝟑 + 𝜸𝟑 = 𝟏 

𝜶𝟑𝜷𝟑 + 𝜷𝟑𝜸𝟑 + 𝜸𝟑𝜶𝟑 = −𝟐 
𝜶𝟑𝜷𝟑𝜸𝟑 = −𝟏 ⇒ 𝜶𝜷𝜸 = −𝟏 

  𝜶𝟑𝜷𝟑 +𝜷𝟑𝜸𝟑 + 𝜸𝟑𝜶𝟑 = 𝟑(𝜶𝜷𝜷𝜸𝜸𝜶) + (𝜶𝜷 +𝜷𝜸 + 𝜸𝜶)((𝜶𝜷+ 𝜷𝜸 + 𝜸𝜶)𝟐 − 𝟑𝜶𝜷𝜸(𝜶 + 𝜷 + 𝜸)) 

(𝜶𝜷+ 𝜷𝜸 + 𝜸𝜶)𝟐 + 𝟑(𝜶 + 𝜷 + 𝜸)(𝜶𝜷+ 𝜷𝜸 + 𝜸𝜶) = −𝟓 
(𝜶 + 𝜷 + 𝜸)𝟑 − 𝟑(𝜶 + 𝜷 + 𝜸)(𝜶𝜷+ 𝜷𝜸 + 𝜸𝜶) = 𝟒 

𝑮𝒂𝒍𝒐𝒊𝒔:  
𝚿

√𝟐
𝟑  

𝚿 = 𝜶 + 𝜷 + 𝜸 ⇒ 𝚽 = 𝜶𝜷+ 𝜷𝜸 + 𝜸𝜶 
𝚽𝟑 + 𝟑𝚿𝚽 = −𝟓 ⇒ 𝚿𝟑 − 𝟑𝚿𝚽 = 𝟒 
(𝚽𝟑 + 𝟑𝚿𝚽)(𝚿𝟑 − 𝟑𝚿𝚽) = −𝟐𝟎 

(𝚿𝚽)𝟑 − 𝟗(𝚽𝚿)𝟐 + 𝟑𝚿𝚽(𝚿𝟑 −𝚽𝟑) = −𝟐𝟎 
𝑨𝒍𝒔𝒐, (𝚿𝟑 − 𝟑𝚽𝚿)(𝚿𝟑 + 𝟑𝚿𝚽) = 𝟗 = 𝚿𝟑 −𝚽𝟑 − 𝟔𝚽𝚿 

(𝚿𝚽)𝟑 − 𝟗(𝚿𝚽)𝟐 + 𝟐𝟕(𝚿𝚽) + 𝟐𝟎 = 𝟎 ⇒ (𝚿𝚽 + 𝟑)𝟑 − 𝟕 = 𝟎 ⇒ 𝚿𝚽 = √𝟕
𝟑

− 𝟑 

𝚽𝟑 = 𝟒 + 𝟑𝚿𝚽 = 𝟑√𝟕
𝟑

− 𝟓 
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   

√𝒔𝒊𝒏
𝝅

𝟏𝟒

𝟑
− √𝒔𝒊𝒏

𝟑𝝅

𝟏𝟒

𝟑

+ √𝒔𝒊𝒏
𝟓𝝅

𝟏𝟒

𝟑

= √−
𝟓

𝟐
+
𝟑

𝟐
√𝟕
𝟑

𝟑

 

892.  𝑺𝑨𝑩𝑪 − 𝐭𝐞𝐭𝐫𝐚𝐡𝐞𝐝𝐫𝐨𝐧,𝑶 − 𝐜𝐞𝐧𝐭𝐞𝐫 𝐨𝐟 𝐜𝐢𝐫𝐜𝐮𝐦𝐬𝐩𝐡𝐞𝐫𝐞 

∢𝑩𝑺𝑪 = ∢𝑪𝑺𝑨 = ∢𝑨𝑺𝑩 = 𝜽 = 𝟔𝟎°, 𝑺𝑷 = 𝑺𝑸 = 𝑺𝑹 = 𝒅, 

𝐩𝐥𝐚𝐧𝐞(𝑷,𝑸, 𝑹) = (𝝅), 𝑶 ∈ (𝝅). 𝐏𝐫𝐨𝐯𝐞:   𝒅 ≥
𝟑

𝟒
⋅ √𝑺𝑨 ⋅ 𝑺𝑩 ⋅ 𝑺𝑪
𝟑
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Proposed by Thanasis Gakopoulos-Farsala-Greece 
Solution by proposer 

𝑭𝒓𝒐𝒎 𝟎𝟒. 𝟎𝟓. 𝟐𝟐 𝒘𝒆 𝒉𝒂𝒗𝒆: 

𝑺𝑨 + 𝑺𝑩 + 𝑺𝑪 = 𝟒 ⋅ √𝟕𝟐
𝟔

⋅ √𝑽
𝟑

 

𝑰𝒔 𝑺𝑨 + 𝑺𝑩 + 𝑺𝑪 ≥ 𝟑 ⋅ √𝑺𝑨 ⋅ 𝑺𝑩 ⋅ 𝑺𝑪
𝟑

 

𝑯𝒆𝒏𝒄𝒆, 𝟑√𝑺𝑨 ⋅ 𝑺𝑩 ⋅ 𝑺𝑪
𝟑

≤ 𝟒 ⋅ √𝟕𝟐
𝟔

⋅ √𝑽
𝟑
, 𝒕𝒉𝒆𝒏 

  𝟑 ⋅ √𝑺𝑨 ⋅ 𝑺𝑩 ⋅ 𝑺𝑪
𝟑

≤ 𝟒 ⋅ √𝟕𝟐
𝟔

⋅ √
𝒅𝟑

𝟔√𝟐

𝟑

 𝒂𝒏𝒅 𝒕𝒉𝒆𝒏  

𝒅 ≥
𝟑

𝟒
⋅ √𝑺𝑨 ⋅ 𝑺𝑩 ⋅ 𝑺𝑪
𝟑

 

893.  𝑰𝒏 ∆𝑨𝑩𝑪 𝒕𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔𝒉𝒊𝒑 𝒉𝒐𝒍𝒅𝒔 ∶ 

∑
𝟏

𝒂𝐬𝐢𝐧
𝑨
𝟐𝒄𝒚𝒄

.∑
𝒂

𝐬𝐢𝐧
𝑨
𝟐𝒄𝒚𝒄

≥
𝟒√𝟑𝑭

𝒓𝟐
 

Proposed by Daniel Sitaru-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑺𝒊𝒏𝒄𝒆 ∶   𝒂 = 𝟒𝑹𝐬𝐢𝐧
𝑨

𝟐
𝐜𝐨𝐬

𝑨

𝟐
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔),   𝒕𝒉𝒆𝒏 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 
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𝑳𝑯𝑺 =∑
𝟏

𝟒𝑹𝐬𝐢𝐧
𝑨
𝟐
𝐜𝐨𝐬

𝑨
𝟐
. 𝐬𝐢𝐧

𝑨
𝟐𝒄𝒚𝒄

.∑
𝟒𝑹𝐬𝐢𝐧

𝑨
𝟐
𝐜𝐨𝐬

𝑨
𝟐

𝐬𝐢𝐧
𝑨
𝟐𝒄𝒚𝒄

=∑
𝟏

𝐬𝐢𝐧𝟐
𝑨
𝟐
𝐜𝐨𝐬

𝑨
𝟐𝒄𝒚𝒄

.∑𝐜𝐨𝐬
𝑨

𝟐
𝒄𝒚𝒄

= 

=∑(
𝟏

𝐜𝐨𝐬
𝑨
𝟐

+
𝐜𝐨𝐬

𝑨
𝟐

𝐬𝐢𝐧𝟐
𝑨
𝟐

)

𝒄𝒚𝒄

.∑𝐜𝐨𝐬
𝑨

𝟐
𝒄𝒚𝒄

=∑
𝟏

𝐜𝐨𝐬
𝑨
𝟐𝒄𝒚𝒄

.∑𝐜𝐨𝐬
𝑨

𝟐
𝒄𝒚𝒄

+∑
𝐜𝐨𝐬

𝑨
𝟐

𝐬𝐢𝐧𝟐
𝑨
𝟐𝒄𝒚𝒄

.∑𝐜𝐨𝐬
𝑨

𝟐
𝒄𝒚𝒄

≥ 

≥⏞
𝑪𝑩𝑺

 𝟑𝟐 + (∑
𝐜𝐨𝐬

𝑨
𝟐

𝐬𝐢𝐧
𝑨
𝟐𝒄𝒚𝒄

)

𝟐

= 𝟗+ (
𝒔

𝒓
)
𝟐

=
𝟒√𝟑𝒔

𝒓
+ (

𝒔

𝒓
− 𝟑√𝟑)(

𝒔

𝒓
− √𝟑) ≥⏞

𝑴𝒊𝒕𝒓𝒊𝒏𝒐𝒗𝒊𝒄

 
𝟒√𝟑𝒔

𝒓
=
𝟒√𝟑𝑭

𝒓𝟐
. 

𝑺𝒐 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒅.  𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 ∆𝑨𝑩𝑪 𝒊𝒔 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍. 

894. 

 

𝑨𝑸

𝑸𝑪
=
𝟏

𝟐
, ∢𝑷𝑺𝑵 =? ,

𝑴𝑺

𝑺𝑵
=? ,

𝑸𝑺

𝑺𝑷
=? 

Proposed by Thanasis Gakopoulos-Farsala-Greece 
Solution by proposer 

𝐜𝐨𝐬 𝑩 =
𝟏𝟓𝟐 + 𝟔𝟐 − (𝟑√𝟏𝟗)

𝟐

𝟐 ⋅ 𝟏𝟓 ⋅ 𝟔
=
𝟏

𝟐
⇒ 𝜽 = 𝟔𝟎° 

𝑸𝑸𝟏 ∥ 𝑨𝑩 ⇒
𝑩𝑸𝟏
𝑩𝑪

=
𝑨𝑸

𝑨𝑪
⇒
𝑩𝑸𝟏
𝟏𝟓

=
𝟏

𝟑
⇒ 𝑩𝑸𝟏 = 𝒒𝟏 = 𝟓 

𝑸𝑸𝟐 ∥ 𝑩𝑪 ⇒
𝑩𝑸𝟐
𝑩𝑨

=
𝑪𝑸

𝑪𝑨
⇒
𝑩𝑸𝟐
𝟔

=
𝟐

𝟑
⇒ 𝑩𝑸𝟐 = 𝒒𝟐 = 𝟒 

𝑷𝒍𝒂𝒈𝒊𝒐𝒈𝒐𝒏𝒂𝒍 𝒔𝒚𝒔𝒕𝒆𝒎:𝑩𝑪 ≡ 𝑩𝒙, 𝑩𝑨 ≡ 𝑩𝒚 

𝑩(𝟎, 𝟎),𝑴(𝟔, 𝟎), 𝑷(𝟎, 𝟐),𝑵(𝟎, 𝟖),𝑸(𝒒𝟏, 𝒒𝟐) = 𝑸(𝟓,𝟒) 

𝝀𝑷𝑸 =
𝟒 − 𝟐

𝟓 − 𝟎
=
𝟐

𝟓
= 𝝀𝟐, 𝝀𝑴𝑵 =

−𝟖

𝟔
=
−𝟒

𝟑
= 𝝀𝟏 
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(𝝀𝟐 + 𝝀𝟏) 𝐜𝐨𝐬𝜽 + 𝝀𝟐𝝀𝟏 + 𝟏 = (
𝟐

𝟓
+
−𝟒

𝟑
) ⋅
𝟏

𝟐
+
𝟐

𝟓
⋅
𝟒

𝟑
+ 𝟏 = 𝟎 ⇒ 𝑷𝑸 ⊥ 𝑴𝑵 

𝑺𝑸

𝑺𝑷
=
𝑴𝑪

𝑩𝑴
⋅
𝑨𝑸

𝑨𝑪
⋅
𝑨𝑩

𝑵𝑷
+
𝑨𝑵

𝑵𝑷
(𝟏 −

𝑨𝑸

𝑨𝑪
⋅
𝑩𝑪

𝑩𝑴
) 

𝑺𝑸

𝑷𝑺
=
𝟗

𝟔
⋅
𝟏

𝟑
⋅
𝟔

𝟔
+
−𝟐

𝟔
(𝟏 −

𝟏

𝟑
⋅
𝟏𝟓

𝟔
) ⇒

𝑺𝑸

𝑷𝑺
=
𝟒

𝟗
 

𝑴𝑺

𝑺𝑵
=
𝑩𝑴

𝑩𝑪
⋅
𝑸𝑪

𝑨𝑸
⋅
𝑨𝑷

𝑵𝑷
+
𝑴𝑪

𝑩𝑪
⋅
𝑷𝑩

𝑵𝑷
 

𝑴𝑺

𝑺𝑵
=
𝟔

𝟏𝟓
⋅
𝟐

𝟏
⋅
𝟒

𝟔
+
𝟗

𝟏𝟓
⋅
𝟐

𝟔
⇒
𝑴𝑺

𝑺𝑵
=
𝟏𝟏

𝟏𝟓
   

895.  

𝑰𝒇 𝒙, 𝒚, 𝒛 ∈ 𝑹, 𝒙 + 𝒚, 𝒚 + 𝒛, 𝒛 + 𝒙, 𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙 > 𝟎 𝒕𝒉𝒆𝒏 𝒊𝒏 ∆𝑨𝑩𝑪 𝒉𝒐𝒍𝒅𝒔 ∶ 

∑(𝒚+ 𝒛)(
𝒏𝒂
𝒉𝒂
− (√

𝒏𝒃
𝒉𝒃
−√

𝒏𝒄
𝒉𝒄
)

𝟐

)

𝒄𝒚𝒄

≥ 𝟐√(𝟐∑
𝒏𝒂𝒏𝒃
𝒉𝒂𝒉𝒃

𝒄𝒚𝒄

−
𝟏

𝟒𝒓𝟐
∑𝒂𝟐

𝒄𝒚𝒄

+
𝟒𝑹

𝒓
− 𝟐)∑𝒙𝒚

𝒄𝒚𝒄

 

Proposed by Bogdan Fuștei-Romania 
Solution by Mohamd Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  

 (√𝒙 + 𝒚 +√𝒚 + 𝒛)
𝟐
= 𝒙 + 𝟐𝒚 + 𝒛 + 𝟐√𝒚𝟐 + 𝒙𝒚+ 𝒚𝒛 + 𝒛𝒙 > 𝑥 + 2𝒚 + 𝒛 + 𝟐|𝒚| ≥ 𝒛 + 𝒙. 

𝑻𝒉𝒆𝒏 ∶   √𝒙 + 𝒚 + √𝒚+ 𝒛 > √𝒛 + 𝒙  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑺𝒐 √𝒙 + 𝒚,√𝒚 + 𝒛,√𝒛 + 𝒙 𝒄𝒂𝒏 𝒃𝒆 𝒕𝒉𝒆 𝒔𝒊𝒅𝒆𝒔 𝒐𝒇 𝒂 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 ∆ 𝒘𝒊𝒕𝒉 𝒂𝒓𝒆𝒂 𝑺 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 ∶ 

𝟏𝟔𝑺𝟐 = 𝟐∑√𝒙 + 𝒚
𝟐
√𝒚+ 𝒛

𝟐

𝒄𝒚𝒄

−∑√𝒙 + 𝒚
𝟒

𝒄𝒚𝒄

= 𝟒∑𝒙𝒚

𝒄𝒚𝒄

  ⇒   𝟐𝑺 = √𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙. 

𝑵𝒐𝒘,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   (
𝒏𝒂
𝒉𝒂
)
𝟐

=
𝒂𝟐

𝟒𝒔𝟐𝒓𝟐
(𝒔(𝒔 − 𝒂) +

𝒔(𝒃 − 𝒄)𝟐

𝒂
) =

𝟏

𝟒𝒓𝟐
(
𝒂𝟐(𝒔 − 𝒂)

𝒔
+
𝒂(𝒃 − 𝒄)𝟐

𝒔
) = 

=
𝟏

𝟒𝒓𝟐
(
(𝒔−𝒂)[𝒂𝟐−(𝒃−𝒄)𝟐]

𝒔
+ (𝒃 − 𝒄)𝟐) =

𝟏

𝟒𝒓𝟐
(
𝟒(𝒔−𝒂)(𝒔−𝒃)(𝒔−𝒄)

𝒔
+ (𝒃 − 𝒄)𝟐) =

𝟒𝒓𝟐+(𝒃−𝒄)𝟐

𝟒𝒓𝟐
.  𝑻𝒉𝒆𝒏 ∶ 

  
𝒏𝒂
𝒉𝒂

= √𝟏 +
(𝒃 − 𝒄)𝟐

𝟒𝒓𝟐
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 
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⇒ (√
𝒏𝒂
𝒉𝒂
+√

𝒏𝒃
𝒉𝒃
)

𝟐

>
𝒏𝒂
𝒉𝒂
+
𝒏𝒃
𝒉𝒃

= √𝟏𝟐 + (
𝒃− 𝒄

𝟐𝒓
)
𝟐

+√𝟏𝟐 + (
𝒄 − 𝒂

𝟐𝒓
)
𝟐

 ≥⏞
𝑴𝒊𝒏𝒌𝒐𝒘𝒔𝒌𝒊

√(𝟏+ 𝟏)𝟐 + (
𝒃 − 𝒄

𝟐𝒓
+
𝒄 − 𝒂

𝟐𝒓
)
𝟐

= 

= √𝟒+
(𝒂 − 𝒃)𝟐

𝟒𝒓𝟐
> √𝟏 +

(𝒂 − 𝒃)𝟐

𝟒𝒓𝟐
=
𝒏𝒄
𝒉𝒄
  ⇒   √

𝒏𝒂
𝒉𝒂
+ √

𝒏𝒃
𝒉𝒃

> √
𝒏𝒄
𝒉𝒄
  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑳𝒆𝒕 𝜶 = √
𝒏𝒂
𝒉𝒂
, 𝜷 = √

𝒏𝒃
𝒉𝒃
, 𝜸 = √

𝒏𝒄
𝒉𝒄
 ⇒ 

  
𝒏𝒂
𝒉𝒂
− (√

𝒏𝒃
𝒉𝒃
−√

𝒏𝒄
𝒉𝒄
)

𝟐

= (𝜶 + 𝜷− 𝜸)(𝜶 − 𝜷 + 𝜸) > 0 (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔). 

𝑵𝒐𝒘,𝒃𝒚 𝑶𝒑𝒑𝒆𝒏𝒉𝒆𝒊𝒎′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒊𝒏 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 ∆,𝒘𝒆 𝒉𝒂𝒗𝒆, 𝒇𝒐𝒓 𝒂𝒏𝒚 𝒖, 𝒗,𝒘 > 0 ∶ 

𝒖.√𝒚 + 𝒛
𝟐
+ 𝒗.√𝒛 + 𝒙

𝟐
+𝒘.√𝒙 + 𝒚

𝟐
≥ 𝟒𝑺√𝒖𝒗 + 𝒗𝒘+𝒘𝒖

= 𝟐√(𝒙𝒚+ 𝒚𝒛 + 𝒛𝒙)(𝒖𝒗 + 𝒗𝒘+ 𝒘𝒖). 

𝑭𝒐𝒓 𝒖 =
𝒏𝒂
𝒉𝒂
−(√

𝒏𝒃
𝒉𝒃
− √

𝒏𝒄
𝒉𝒄
)

𝟐

,   𝒗 =
𝒏𝒃
𝒉𝒃
−(√

𝒏𝒄
𝒉𝒄
−√

𝒏𝒂
𝒉𝒂
)

𝟐

,   𝒘

=
𝒏𝒄
𝒉𝒄
−(√

𝒏𝒂
𝒉𝒂
− √

𝒏𝒃
𝒉𝒃
)

𝟐

, 𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝒖𝒗+ 𝒗𝒘+ 𝒘𝒖 =∑𝒖𝒗

𝒄𝒚𝒄

=∏(𝜶 +𝜷− 𝜸)

𝒄𝒚𝒄

.∑(𝜶 + 𝜷− 𝜸)

𝒄𝒚𝒄

=∏(𝜶 + 𝜷− 𝜸)

𝒄𝒚𝒄

.∑𝜶

𝒄𝒚𝒄

= 

= 𝟐∑𝜶𝟐𝜷𝟐

𝒄𝒚𝒄

−∑𝜶𝟒

𝒄𝒚𝒄

= 𝟐∑
𝒏𝒂𝒏𝒃
𝒉𝒂𝒉𝒃

𝒄𝒚𝒄

−∑(
𝒏𝒂
𝒉𝒂
)
𝟐

𝒄𝒚𝒄

= 𝟐∑
𝒏𝒂𝒏𝒃
𝒉𝒂𝒉𝒃

𝒄𝒚𝒄

−
𝟏

𝟒𝑭𝟐
∑𝒂𝟐 (𝒔(𝒔 − 𝒂) +

𝒔(𝒃 − 𝒄)𝟐

𝒂
)

𝒄𝒚𝒄

= 

= 𝟐∑
𝒏𝒂𝒏𝒃
𝒉𝒂𝒉𝒃

𝒄𝒚𝒄

−
𝟏

𝟒𝒓𝟐
∑𝒂𝟐

𝒄𝒚𝒄

+
𝒔

𝟒𝑭𝟐
∑𝒂(𝒂+ 𝒃 − 𝒄)(𝒂 − 𝒃 + 𝒄)

𝒄𝒚𝒄

= 𝟐∑
𝒏𝒂𝒏𝒃
𝒉𝒂𝒉𝒃

𝒄𝒚𝒄

−
𝟏

𝟒𝒓𝟐
∑𝒂𝟐

𝒄𝒚𝒄

+
𝒂𝒃𝒄

𝟒𝑭𝒓
∑𝟒𝐬𝐢𝐧𝟐

𝑨

𝟐
𝒄𝒚𝒄

= 

= 𝟐∑
𝒏𝒂𝒏𝒃
𝒉𝒂𝒉𝒃

𝒄𝒚𝒄

−
𝟏

𝟒𝒓𝟐
∑𝒂𝟐

𝒄𝒚𝒄

+
𝟒𝑹

𝒓
. (𝟏 −

𝒓

𝟐𝑹
) = 𝟐∑

𝒏𝒂𝒏𝒃
𝒉𝒂𝒉𝒃

𝒄𝒚𝒄

−
𝟏

𝟒𝒓𝟐
∑𝒂𝟐

𝒄𝒚𝒄

+
𝟒𝑹

𝒓
− 𝟐. 
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𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,  

  ∑(𝒚 + 𝒛)(
𝒏𝒂
𝒉𝒂
−(√

𝒏𝒃
𝒉𝒃
− √

𝒏𝒄
𝒉𝒄
)

𝟐

)

𝒄𝒚𝒄

≥ 𝟐√(𝟐∑
𝒏𝒂𝒏𝒃
𝒉𝒂𝒉𝒃

𝒄𝒚𝒄

−
𝟏

𝟒𝒓𝟐
∑𝒂𝟐

𝒄𝒚𝒄

+
𝟒𝑹

𝒓
− 𝟐)∑𝒙𝒚

𝒄𝒚𝒄

. 

896.  𝑰𝒏 ∆𝑨𝑩𝑪 𝒕𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔𝒉𝒊𝒑 𝒉𝒐𝒍𝒅𝒔 ∶ 

√
𝒉𝒂

𝟐𝒓𝒂
𝟐 + 𝒉𝒃

𝟐𝒓𝒃
𝟐 + 𝒉𝒄

𝟐𝒓𝒄
𝟐

𝒓(𝟒𝑹 + 𝒓)
≥
𝑭

𝑹
(
𝒃𝒓𝒄
𝒄𝒓𝒃

+
𝒄𝒓𝒃
𝒃𝒓𝒄

) 

Proposed by Bogdan Fuștei-Romania 
Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑳𝒆𝒕 𝒙 = 𝒔 − 𝒂,   𝒚 = 𝒔 − 𝒃,   𝒛 = 𝒔 − 𝒄.  𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝒂(𝒔 − 𝒂) + 𝒃(𝒔 − 𝒃) − 𝒄(𝒔 − 𝒄) = (𝒚 + 𝒛)𝒙 + (𝒛 + 𝒙)𝒚 − (𝒙 + 𝒚)𝒛 = 

= 𝟐𝒙𝒚 > 0  (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

𝑻𝒉𝒆𝒏  

 𝒂(𝒔 − 𝒂), 𝒃(𝒔 − 𝒃), 𝒄(𝒔 − 𝒄) 

 𝒄𝒂𝒏 𝒃𝒆 𝒕𝒉𝒆 𝒔𝒊𝒅𝒆𝒔 𝒐𝒇 𝒂 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 ∆ 𝒘𝒊𝒕𝒉 𝒂𝒓𝒆𝒂 𝑺 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 ∶ 

𝟏𝟔𝑺𝟐 =∑𝒂(𝒔 − 𝒂)

𝒄𝒚𝒄

.∏[𝒂(𝒔 − 𝒂) + 𝒃(𝒔 − 𝒃) − 𝒄(𝒔 − 𝒄)]

𝒄𝒚𝒄

= 𝟐𝒓(𝟒𝑹+ 𝒓)∏𝟐(𝒔 − 𝒂)(𝒔 − 𝒃)

𝒄𝒚𝒄

= 

= 𝟐𝒓(𝟒𝑹+ 𝒓). 𝟖(𝒔𝒓𝟐)𝟐 = 𝟏𝟔𝒔𝟐𝒓𝟓(𝟒𝑹 + 𝒓).  𝑻𝒉𝒆𝒏 ∶   𝑺 = 𝑭𝒓√𝒓(𝟒𝑹+ 𝒓). 

𝑳𝒆𝒎𝒎𝒂 ∶   𝑰𝒏 𝒂𝒏𝒚 ∆𝑨𝑩𝑪,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   
√𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐

𝟐𝑭
≥
𝒃

𝒄
+
𝒄

𝒃
  (∗) 

𝑷𝒓𝒐𝒐𝒇 ∶  (∗)  ⇔  𝟐𝒃𝒄√𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐

≥ (𝒃𝟐 + 𝒄𝟐)√𝟐(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐) − (𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒) 

⇔⏞
𝒔𝒒𝒖𝒂𝒓𝒊𝒏𝒈

 𝟒𝒃𝟐𝒄𝟐(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐)

≥ (𝟐𝒃𝟐𝒄𝟐 + 𝒃𝟒 + 𝒄𝟒)[𝟐(𝒂𝟐𝒃𝟐 + 𝒃𝟐𝒄𝟐 + 𝒄𝟐𝒂𝟐) − (𝒂𝟒 + 𝒃𝟒 + 𝒄𝟒)] 
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⇔  𝟎 ≥ −𝒂𝟒(𝒃𝟐 + 𝒄𝟐)𝟐 + 𝟐(𝒃𝟒 + 𝒄𝟒)(𝒂𝟐𝒃𝟐 + 𝒄𝟐𝒂𝟐) − (𝒃𝟒 + 𝒄𝟒)𝟐

= −[𝒂𝟐(𝒃𝟐 + 𝒄𝟐) − (𝒃𝟒 + 𝒄𝟒)]𝟐 

𝑾𝒉𝒊𝒄𝒉 𝒊𝒔 𝒕𝒓𝒖𝒆 𝒂𝒏𝒅 𝒕𝒉𝒆 𝒑𝒓𝒐𝒐𝒇 𝒐𝒇 𝒕𝒉𝒆 𝒍𝒆𝒎𝒎𝒂 𝒊𝒔 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆. 𝑨𝒑𝒑𝒍𝒚𝒊𝒏𝒈 𝒕𝒉𝒊𝒔 𝒍𝒆𝒎𝒎𝒂  

𝒊𝒏 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 ∆,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

𝒃(𝒔 − 𝒃)

𝒄(𝒔 − 𝒄)
+
𝒄(𝒔 − 𝒄)

𝒃(𝒔 − 𝒃)
≤
√∑ (𝒃(𝒔 − 𝒃))

𝟐
(𝒄(𝒔 − 𝒄))

𝟐

𝒄𝒚𝒄

𝟐𝑺
= 

√∑
(𝟒𝑹𝑭)𝟐(𝑭𝒓)𝟐

(𝒂(𝒔 − 𝒂))
𝟐𝒄𝒚𝒄

𝟐𝑭𝒓√𝒓(𝟒𝑹+ 𝒓)
=
𝑹

𝑭
.√
∑ 𝒉𝒂

𝟐𝒓𝒂𝟐𝒄𝒚𝒄

𝒓(𝟒𝑹+ 𝒓)
. 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   √
𝒉𝒂

𝟐𝒓𝒂𝟐 + 𝒉𝒃
𝟐𝒓𝒃𝟐 + 𝒉𝒄

𝟐𝒓𝒄𝟐

𝒓(𝟒𝑹+ 𝒓)
≥
𝑭

𝑹
(
𝒃𝒓𝒄
𝒄𝒓𝒃

+
𝒄𝒓𝒃
𝒃𝒓𝒄

). 

897.   

  Proposed by Israfilov Murad-Baku-Azerbaijan 
Solution by Soumava Chakraborty-Kolkata-India 
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𝐒𝐢𝐧𝐞 𝒍𝒂𝒘 𝐨𝐧 ∆ 𝐀𝐂𝐏 ⇒
𝐧

𝐬𝐢𝐧(𝟏𝟏𝟎° − 𝛂)
=

𝐛

𝐬𝐢𝐧(𝟔𝟎° + 𝛂)
 

⇒
𝐧

𝐛
=
(∗) 𝐬𝐢𝐧(𝟕𝟎° + 𝛂)

𝐬𝐢𝐧(𝟔𝟎° + 𝛂)
 

𝐒𝐢𝐧𝐞 𝒍𝒂𝒘 𝐨𝐧 ∆ 𝐁𝐂𝐏 ⇒
𝐧

𝐬𝐢𝐧𝟑𝟎°
=

𝒂

𝐬𝐢𝐧𝟏𝟒𝟎°
⇒ 𝐧 =

(∗∗) 𝒂

𝟐𝐬𝐢𝐧𝟒𝟎°
  

𝒂𝐧𝐝 𝐒𝐢𝐧𝐞 𝒍𝒂𝒘 𝐨𝐧 ∆ 𝐀𝐁𝐂 ⇒
𝐛

𝐬𝐢𝐧𝟓𝟎°
=

𝒂

𝐬𝐢𝐧𝟏𝟏𝟎°
⇒ 𝐛 =

(∗∗∗) 𝒂𝐬𝐢𝐧𝟓𝟎°

𝟐𝐬𝐢𝐧𝟕𝟎°
 

∴ (∗∗), (∗∗∗) ⇒
𝐧

𝐛
=

𝐬𝐢𝐧𝟕𝟎°

𝟐𝐬𝐢𝐧𝟒𝟎°𝐬𝐢𝐧𝟓𝟎°
=

𝐜𝐨𝐬𝟐𝟎°

𝐜𝐨𝐬𝟏𝟎° − 𝐜𝐨𝐬𝟗𝟎°
 

⇒
𝐧

𝐛
=

(∗∗∗∗)
=
𝐜𝐨𝐬𝟐𝟎°

𝐜𝐨𝐬𝟏𝟎°
∴ (∗∗∗), (∗∗∗∗) ⇒ 𝟐𝐬𝐢𝐧(𝟕𝟎° + 𝛂)𝐜𝐨𝐬𝟏𝟎° = 𝟐𝐬𝐢𝐧(𝟔𝟎° + 𝛂)𝐜𝐨𝐬𝟐𝟎° 

⇒ 𝐬𝐢𝐧(𝟖𝟎° + 𝛂) + 𝐬𝐢𝐧(𝟔𝟎° + 𝛂) = 𝐬𝐢𝐧(𝟖𝟎° + 𝛂) + 𝐬𝐢𝐧(𝟒𝟎° + 𝛂) 
⇒ 𝐬𝐢𝐧(𝟔𝟎° + 𝛂) − 𝐬𝐢𝐧(𝟒𝟎° + 𝛂) = 𝟎 ⇒ 𝟐𝐜𝐨𝐬(𝟓𝟎° + 𝛂)𝐬𝐢𝐧𝟏𝟎° = 𝟎 

⇒ 𝐜𝐨𝐬(𝟓𝟎° + 𝛂) = 𝟎 𝒂𝐧𝐝 ∵ 𝟓𝟎° < 𝟓𝟎° + 𝛂 < 𝟏𝟔𝟎° 
∴ 𝟓𝟎° + 𝛂 = 𝟗𝟎° ⇒ 𝛂 = 𝟒𝟎°  (𝒂𝒏𝒔) 

 

898. 

 

𝐏𝐫𝐨𝐯𝐞 ∶
𝐀𝐃

𝐁𝐂
= √

𝛗

𝟐
 

  Proposed by Murat Oz-Turkiye 
 Solution 1 by Miguel Angel Perez Ortega Lopez-Mexico 
 

𝒃 = 𝒄 ⇒

{
 

 𝑺𝑨 =
𝟐𝒃𝟐 − 𝒂𝟐

𝟐

𝑺𝑩 = 𝑺𝑪 =
𝒂𝟐

𝟐
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𝑩𝑫: 𝒃𝟐𝒙 + 𝒂(𝒂 + 𝒃)𝒛 = 𝟎 

𝑨𝑫:𝟐𝒃𝟐𝒚 + (𝟐𝒃𝟐 − 𝒂𝟐)𝒛 = 𝟎 

{𝑫} = 𝑩𝑫 ∩ 𝑨𝑫 = (𝟐𝒂(𝒂 + 𝒃); 𝟐𝒃𝟐 − 𝒂𝟐; −𝟐𝒃𝟐) 

𝑪𝑫: (𝟐𝒃𝟐 − 𝒂𝟐)𝒙 − 𝟐𝒂(𝒂 + 𝒃)𝒚 = 𝟎 

𝑺 = 𝑺 𝐜𝐨𝐭
𝝅

𝟒
=

𝑨𝑫 ∙ 𝑪𝑫

|
𝟏 𝟏 𝟏
𝟎 𝟐𝒃𝟐 𝟐𝒃𝟐 − 𝒂𝟐

𝟐𝒃𝟐 − 𝒂𝟐 −𝟐𝒂(𝒂 + 𝒃) 𝟎
|

=
𝒂(𝒂 − 𝟐𝒃)(𝒂𝟐 + 𝟐𝒂𝒃 + 𝟐𝒃𝟐)

𝟐(𝟐𝒃𝟐 − 𝒂𝟐)
 

𝟎 = 𝑺𝟐 − [
𝒂(𝒂 − 𝟐𝒃)(𝒂𝟐 + 𝟐𝒂𝒃 + 𝟐𝒃𝟐)

𝟐(𝟐𝒃𝟐 − 𝒂𝟐)
]

𝟐

= 

=
𝒂𝟐(𝟒𝒃𝟐 − 𝒂𝟐)

𝟒
− [
𝒂(𝒂 − 𝟐𝒃)(𝒂𝟐 + 𝟐𝒂𝒃 + 𝟐𝒃𝟐)

𝟐(𝟐𝒃𝟐 − 𝒂𝟐)
]

𝟐

= 

=
𝒂𝟑(𝟐𝒃 − 𝒂)(𝒂𝟒 + 𝟐𝒂𝟑𝒃 − 𝟐𝒂𝟐𝒃𝟐 − 𝟖𝒂𝒃𝟑 − 𝟒𝒃𝟒)

𝟐(𝟐𝒃𝟐 − 𝒂𝟐)𝟐
 

(
𝒂

𝒃
)
𝟒

+ 𝟐 (
𝒂

𝒃
)
𝟑

− 𝟐(
𝒂

𝒃
)
𝟐

− 𝟖(
𝒂

𝒃
) − 𝟒 = 𝟎 ⇒

𝒂

𝒃
= 𝝓− 𝟏 +√𝝓 

𝑪𝑫𝟐 = −
𝒂𝟑 − 𝟒𝒂𝒃𝟐 − 𝟒𝒃𝟑

𝒂 + 𝟐𝒃
 

𝑨𝑩𝟐

𝑪𝑫𝟐
= −

𝒃𝟐(𝒂 + 𝟐𝒃)

𝒂𝟑 − 𝟒𝒂𝒃𝟐 − 𝟒𝒃𝟑
= −

𝒂
𝒃 + 𝟐

(
𝒂
𝒃)

𝟑

− 𝟒(
𝒂
𝒃)

𝟐

− 𝟒
= 

=
𝟔 + 𝟒(

𝒂
𝒃) − (

𝒂
𝒃)

𝟐

− (
𝒂
𝒃)

𝟑

𝟒
 

𝑨𝑩𝟐

𝑪𝑫𝟐
=
𝟔 + 𝟒(𝝓 − 𝟏 + √𝝓) − (𝝓 − 𝟏 +√𝝓)

𝟐
− (𝝓 − 𝟏 +√𝝓)

𝟑

𝟒
= 

=
𝟐 + 𝟑√𝝓+ 𝟓𝝓+ 𝟑𝝓√𝝓− 𝝓𝟐√𝝓− 𝝓𝟑

𝟒
 

𝝓𝟐 −𝝓 − 𝟏 = 𝟎 ⇒ (√𝝓)
𝟒
− (√𝝓)

𝟐
− 𝟏 = 𝟎 

𝑨𝑩𝟐

𝑪𝑫𝟐
=
(√𝝓)

𝟐

𝟐
⇒
𝑨𝑩

𝑪𝑫
= √

𝝓

𝟐
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Solution 2 by Soumava Chakraborty-Kolkata-India 
 

𝐒𝐢𝐧𝐞 𝒍𝒂𝒘 𝐨𝐧 ∆ 𝐁𝐂𝐃 ⇒
𝒂

𝐬𝐢𝐧(𝟗𝟎° + 𝟒𝒙)
=

𝐦

𝐬𝐢𝐧𝟒𝟓°
=

𝐧

𝐬𝐢𝐧(𝟒𝟓° − 𝟒𝒙)
(𝐧 = 𝐁𝐃) 

⇒
𝐦

𝒂
=
(⦁) 𝟏

√𝟐𝐜𝐨𝐬𝟒𝒙
 𝒂𝐧𝐝 

𝐧

𝐦
=
(∗)
√𝟐𝐬𝐢𝐧(𝟒𝟓° − 𝟒𝒙) 

𝐀𝐠𝒂𝐢𝐧, 𝐬𝐢𝐧𝐞 𝒍𝒂𝒘 𝐨𝐧 ∆ 𝐀𝐁𝐃 ⇒
𝐦

𝐬𝐢𝐧(𝟗𝟎° − 𝒙)
=

𝐧

𝐬𝐢𝐧𝒙
⇒
𝐧

𝐦
=
(∗∗) 𝐬𝐢𝐧𝒙

𝐜𝐨𝐬𝒙
∴ (∗), (∗∗) 

⇒
𝐬𝐢𝐧𝒙

𝐜𝐨𝐬𝒙
= √𝟐 (

𝟏

√𝟐
𝐜𝐨𝐬𝟒𝒙 −

𝟏

√𝟐
𝐬𝐢𝐧𝟒𝒙) ⇒ 𝐬𝐢𝐧𝒙 = 𝐜𝐨𝐬𝒙. 𝐜𝐨𝐬𝟒𝒙 − 𝐜𝐨𝐬𝒙. 𝐬𝐢𝐧𝟒𝒙 

⇒ 𝐬𝐢𝐧𝒙(𝟏 + 𝟒𝐜𝐨𝐬𝟐𝒙. 𝐜𝐨𝐬𝟐𝒙) = 𝐜𝐨𝐬𝒙. (𝟐𝐜𝐨𝐬𝟐𝟐𝒙 − 𝟏) 

⇒ (𝟏 − 𝐜𝐨𝐬𝟐𝒙) (𝟏 + 𝟒𝐜𝐨𝐬𝟐𝒙. (𝟐𝐜𝐨𝐬𝟐𝒙 − 𝟏))
𝟐

= 𝐜𝐨𝐬𝟐𝒙(𝟐(𝟐𝐜𝐨𝐬𝟐𝒙 − 𝟏)𝟐 − 𝟏)𝟐 

⇒ (𝟏 − 𝐜𝐨𝐬𝟐𝒙)(𝟖𝐜𝐨𝐬𝟒𝒙 − 𝟒𝐜𝐨𝐬𝟐𝒙 + 𝟏)𝟐 = 𝐜𝐨𝐬𝟐𝒙. (𝟖𝐜𝐨𝐬𝟒𝒙 − 𝟖𝐜𝐨𝐬𝟐𝒙 + 𝟏)𝟐 
⇒ 𝐭(𝟖𝐭𝟐 − 𝟖𝐭 + 𝟏)𝟐 − (𝟏 − 𝐭)(𝟖𝐭𝟐 − 𝟒𝐭 + 𝟏)𝟐 = 𝟎 (𝐭 = 𝐜𝐨𝐬𝟐𝒙) 

⇒ 𝟏𝟐𝟖𝐭𝟓 − 𝟐𝟓𝟔𝐭𝟒 + 𝟏𝟕𝟔𝐭𝟑 − 𝟓𝟔𝐭𝟐 + 𝟏𝟎𝐭 − 𝟏 = 𝟎 
⇒ (𝟐𝐭 − 𝟏)(𝟔𝟒𝐭𝟒 − 𝟗𝟔𝐭𝟑 + 𝟒𝟎𝐭𝟐 − 𝟖𝐭 + 𝟏) = 𝟎 

⇒ 𝟔𝟒𝐭𝟒 − 𝟗𝟔𝐭𝟑 + 𝟒𝟎𝐭𝟐 − 𝟖𝐭 + 𝟏 =
(∗∗∗)

𝟎  (∵ 𝐜𝐨𝐬𝟐𝒙 ≠
𝟏

𝟐
 𝒂𝐬 𝒙 <

𝟒𝟓°

𝟒
) 

𝐍𝐨𝐰, 𝟔𝟒(𝐭𝟐 − 𝐭.
𝟑 + √𝟓

𝟒
+
𝟑 + √𝟓

𝟏𝟔
)(𝐭𝟐 − 𝐭.

𝟑 − √𝟓

𝟒
+
𝟑 − √𝟓

𝟏𝟔
) 

= 𝟔𝟒(𝐭𝟒 − 𝐭𝟑.
𝟑 − √𝟓

𝟒
+ 𝐭𝟐.

𝟑 − √𝟓

𝟏𝟔
− 𝐭𝟑.

𝟑 + √𝟓

𝟒
+ 𝐭𝟐.

𝟗 − 𝟓

𝟒
− 𝟐𝐭.

𝟗 − 𝟓

𝟔𝟒
+ 𝐭𝟐.

𝟑 + √𝟓

𝟏𝟔

+
𝟗 − 𝟓

𝟐𝟓𝟔
) 

= 𝟔𝟒𝐭𝟒 − 𝟗𝟔𝐭𝟑 + 𝟒𝟎𝐭𝟐 − 𝟖𝐭 + 𝟏 

∴ 𝟔𝟒𝐭𝟒 − 𝟗𝟔𝐭𝟑 + 𝟒𝟎𝐭𝟐 − 𝟖𝐭 + 𝟏 =
(∗∗∗∗)

𝟔𝟒(𝐭𝟐 − 𝐭.
𝟑 + √𝟓

𝟒
+
𝟑 + √𝟓

𝟏𝟔
)(𝐭𝟐 − 𝐭.

𝟑 − √𝟓

𝟒
+
𝟑 − √𝟓

𝟏𝟔
)  

∴ (∗∗∗), (∗∗∗∗) ⇒ (𝐭𝟐 − 𝐭.
𝟑 + √𝟓

𝟒
+
𝟑 + √𝟓

𝟏𝟔
)(𝐭𝟐 − 𝐭.

𝟑 − √𝟓

𝟒
+
𝟑 − √𝟓

𝟏𝟔
) = 𝟎 

⇒ 𝐭𝟐 − 𝐭.
𝟑 + √𝟓

𝟒
+
𝟑 + √𝟓

𝟏𝟔
= 𝟎 (∵ 𝐭 𝐢𝐬 𝐫𝐞𝒂𝒍) ⇒ 𝐭 =

𝟑 + √𝟓 ± √𝟐(√𝟓 + 𝟏)

𝟖
 

⇒ 𝐭 =
𝟑 + √𝟓 + √𝟐(√𝟓+ 𝟏)

𝟖
 (∵ 𝒙 <

𝟒𝟓°

𝟒
⇒ 𝐭 = 𝐜𝐨𝐬𝟐𝒙 > 𝐜𝐨𝐬𝟐

𝟒𝟓°

𝟒
) 

𝐜𝐨𝐬𝟒𝒙 = 𝟐𝐜𝐨𝐬𝟐𝟐𝒙 − 𝟏 = 𝟐(𝟐𝐜𝐨𝐬𝟐𝒙 − 𝟏)𝟐 − 𝟏 = 𝟖𝐭𝟐 − 𝟖𝐭 + 𝟏

=
𝟏𝟒 + 𝟔√𝟓+ 𝟐√𝟓 + 𝟐 + (𝟔 + 𝟐√𝟓).√𝟐(√𝟓 + 𝟏) − 𝟐𝟒 − 𝟖√𝟓 − 𝟖.√𝟐(√𝟓 + 𝟏) + 𝟖

𝟖
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=
(√𝟓 − 𝟏). √𝟐(√𝟓 + 𝟏)

𝟒
⇒

𝟏

√𝟐𝐜𝐨𝐬𝟒𝒙
=

𝟐

(√𝟓 − 𝟏). √√𝟓 + 𝟏
 

=
(√𝟓 − 𝟏)√√𝟓 + 𝟏. √√𝟓 + 𝟏

𝟐(√𝟓 − 𝟏). √√𝟓 + 𝟏
=
√√𝟓+ 𝟏

𝟐

√𝟐
=
√𝛗

√𝟐
⇒

𝐯𝐢𝒂 (⦁)𝐦

𝒂
= √

𝛗

𝟐
⇒
𝐀𝐃

𝐁𝐂
= √

𝛗

𝟐
 (𝐐𝐄𝐃) 

 

899. 𝐈𝐧 𝒂𝐧𝐲 ∆ 𝐀𝐁𝐂 holds: 

𝒂𝟑𝐬𝐛
𝐛𝐬𝒂

𝟑
+
𝐛𝟑𝐬𝐜

𝐜𝐬𝐛
𝟑 +

𝐜𝟑𝐬𝒂
𝒂𝐬𝐜

𝟑
≥ 𝟒 

  Proposed by Marin Chirciu-Romania 
Solution 1 by Soumava Chakraborty-Kolkata-India 

𝟏

𝒂𝐦𝒂
∑𝒂𝟐

𝐜𝐲𝐜

≥ 𝟐√𝟑 ⇔
𝟏

𝒂𝟐𝐦𝒂
𝟐
≥

𝟏𝟐

(∑ 𝒂𝟐𝐜𝐲𝐜 )
𝟐 

⇔ (∑𝒂𝟐

𝐜𝐲𝐜

)

𝟐

− 𝟑𝒂𝟐(𝟐𝐛𝟐 + 𝟐𝐜𝟐 − 𝒂𝟐) ≥ 𝟎 

⇔ (∑𝒂𝟐

𝐜𝐲𝐜

)

𝟐

− 𝟑𝒂𝟐(𝟐∑𝒂𝟐

𝐜𝐲𝐜

− 𝟑𝒂𝟐) ≥ 𝟎 ⇔ (∑𝒂𝟐

𝐜𝐲𝐜

)

𝟐

− 𝟔𝒂𝟐∑𝒂𝟐

𝐜𝐲𝐜

+ 𝟗𝒂𝟒 ≥ 𝟎 

⇔ (∑𝒂𝟐

𝐜𝐲𝐜

− 𝟑𝒂𝟐)

𝟐

≥ 𝟎 ⇔ (𝐛𝟐 + 𝐜𝟐 − 𝟐𝒂𝟐)𝟐 ≥ 𝟎 → 𝐭𝐫𝐮𝐞 ⇒ 𝒂𝐦𝒂 ≤
(⦁) 𝟏

𝟐√𝟑
∑𝒂𝟐

𝐜𝐲𝐜

 

𝐍𝐨𝐰,
𝒂𝟑𝐬𝐛
𝐛𝐬𝒂𝟑

+
𝐛𝟑𝐬𝐜

𝐜𝐬𝐛
𝟑 +

𝐜𝟑𝐬𝒂
𝒂𝐬𝐜𝟑

=∑
(
𝒂
𝐬𝒂
)
𝟑

𝐛
𝐬𝐛

𝐜𝐲𝐜

≥
𝐇𝐨𝐥𝐝𝐞𝐫 (∑

𝒂
𝐬𝒂𝐜𝐲𝐜 )

𝟑

𝟑∑
𝐛
𝐬𝐛𝐜𝐲𝐜

=
𝟏

𝟑
(∑

𝒂

𝐬𝒂
𝐜𝐲𝐜

)

𝟐

≥
?
𝟒 

⇔∑
𝒂

𝐬𝒂
𝐜𝐲𝐜

≥
?
𝟐√𝟑 ⇔∑

𝒂𝟑(𝐛𝟐 + 𝐜𝟐)

𝟐𝒂𝒃𝒄. 𝒂𝐦𝒂
𝐜𝐲𝐜

≥
?
⏟
(∗)

𝟐√𝟑 

𝐕𝐢𝒂 (⦁) 𝒂𝐧𝐝 𝒂𝐧𝒂𝒍𝐨𝐠𝐬,∑
𝒂𝟑(𝐛𝟐 + 𝐜𝟐)

𝟐𝒂𝒃𝒄. 𝒂𝐦𝒂
𝐜𝐲𝐜

≥∑
𝒂𝟑(𝐛𝟐 + 𝐜𝟐)

𝟐𝒂𝒃𝒄.
𝟏

𝟐√𝟑
. ∑ 𝒂𝟐𝐜𝐲𝐜𝐜𝐲𝐜

 

≥
𝐀−𝐆

𝟐√𝟑.∑
𝒂𝟑. 𝟐𝐛𝐜

𝟐𝒂𝒃𝒄. ∑ 𝒂𝟐𝐜𝐲𝐜
𝐜𝐲𝐜

= 𝟐√𝟑.
𝟐𝒂𝒃𝒄. ∑ 𝒂𝟐𝐜𝐲𝐜

𝟐𝒂𝒃𝒄. ∑ 𝒂𝟐𝐜𝐲𝐜
= 𝟐√𝟑 ⇒ (∗) 𝐢𝐬 𝐭𝐫𝐮𝐞 
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∴ 𝐢𝐧 𝒂𝐧𝐲 ∆ 𝐀𝐁𝐂,
𝒂𝟑𝐬𝐛
𝐛𝐬𝒂𝟑

+
𝐛𝟑𝐬𝐜

𝐜𝐬𝐛
𝟑 +

𝐜𝟑𝐬𝒂
𝒂𝐬𝐜𝟑

≥ 𝟒,′′ =′′ 𝐢𝐟𝐟 ∆ 𝐀𝐁𝐂 𝐢𝐬 𝐞𝐪𝐮𝐢𝒍𝒂𝐭𝐞𝐫𝒂𝒍 (𝐐𝐄𝐃) 

 

Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   𝟒√𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐. 𝒎𝒂 ≤⏞
𝑨𝑴−𝑮𝑴

(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) + 𝟒𝒎𝒂
𝟐 = 𝟑(𝒃𝟐 + 𝒄𝟐) 

𝑻𝒉𝒆𝒏 ∶   𝒔𝒂 =
𝟐𝒃𝒄

𝒃𝟐 + 𝒄𝟐
. 𝒎𝒂 ≤

𝟑𝒃𝒄

𝟐√𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐
≤⏞

𝑨𝑴−𝑮𝑴
√𝟑𝒃𝒄

𝟐√𝒂𝒃𝒄
𝟑   (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

⇒  𝒔𝒂𝒔𝒃𝒔𝒄 ≤
𝟑√𝟑

𝟖
. 𝒂𝒃𝒄. 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,
𝒂𝟑𝒔𝒃
𝒃𝒔𝒂

𝟑
+
𝒃𝟑𝒔𝒄
𝒄𝒔𝒃

𝟑
+
𝒄𝟑𝒔𝒂
𝒂𝒔𝒄

𝟑
≥⏞

𝑨𝑴−𝑮𝑴

 𝟑√(
𝒂𝒃𝒄

𝒔𝒂𝒔𝒃𝒔𝒄
)
𝟐𝟑

≥ 𝟑√(
𝟖

𝟑√𝟑
)
𝟐𝟑

= 𝟒. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 ∆𝑨𝑩𝑪 𝒊𝒔 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍. 

Solution 3 by Mohamed Amine Ben Ajiba-Tanger-Morocco 
 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   
𝒂𝟑𝒔𝒃
𝒃𝒔𝒂𝟑

+
𝒃𝟑𝒔𝒄
𝒄𝒔𝒃𝟑

+
𝒄𝟑𝒔𝒂
𝒂𝒔𝒄𝟑

=
(
𝒂𝟐

𝒔𝒂𝟐
)
𝟐

𝒂𝒃
𝒔𝒂𝒔𝒃

+
(
𝒃𝟐

𝒔𝒃𝟐
)
𝟐

𝒃𝒄
𝒔𝒃𝒔𝒄

+
(
𝒄𝟐

𝒔𝒄𝟐
)
𝟐

𝒄𝒂
𝒔𝒄𝒔𝒂

≥ 

≥⏞
𝑪𝑩𝑺

 
(
𝒂𝟐

𝒔𝒂𝟐
+
𝒃𝟐

𝒔𝒃𝟐
+
𝒄𝟐

𝒔𝒄𝟐
)
𝟐

𝒂𝒃
𝒔𝒂𝒔𝒃

+
𝒃𝒄
𝒔𝒃𝒔𝒄

+
𝒄𝒂
𝒔𝒄𝒔𝒂

≥
𝒂𝟐

𝒔𝒂𝟐
+
𝒃𝟐

𝒔𝒃𝟐
+
𝒄𝟐

𝒔𝒄𝟐
 ≥⏞
𝒔𝒂 ≤ 𝒎𝒂 𝒂𝟐

𝒎𝒂
𝟐
+

𝒃𝟐

𝒎𝒃
𝟐
+

𝒄𝟐

𝒎𝒄
𝟐
. 

𝑵𝒐𝒘 𝒊𝒇 𝒂 ≥ 𝒃 ≥ 𝒄 ⇒  𝒎𝒂 ≤ 𝒎𝒃 ≤ 𝒎𝒄 𝒕𝒉𝒆𝒏 𝒃𝒚 𝑪𝒉𝒆𝒃𝒚𝒔𝒉𝒆𝒗
′𝒔 𝒊𝒏𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚,  

𝒘𝒆 𝒉𝒂𝒗𝒆 ∶   
𝒂𝟐

𝒎𝒂
𝟐
+

𝒃𝟐

𝒎𝒃
𝟐
+

𝒄𝟐

𝒎𝒄
𝟐
≥
𝟏

𝟑
(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) (

𝟏

𝒎𝒂
𝟐
+

𝟏

𝒎𝒃
𝟐
+

𝟏

𝒎𝒄
𝟐
) ≥ 

≥⏞
𝑪𝑩𝑺

 
𝟏

𝟑
(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐).

𝟑𝟐

𝒎𝒂
𝟐 +𝒎𝒃

𝟐 +𝒎𝒄
𝟐
=
𝟑(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)

𝟑
𝟒
(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)

= 𝟒. 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,
𝒂𝟑𝒔𝒃
𝒃𝒔𝒂𝟑

+
𝒃𝟑𝒔𝒄
𝒄𝒔𝒃𝟑

+
𝒄𝟑𝒔𝒂
𝒂𝒔𝒄𝟑

≥ 𝟒. 
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𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 ∆𝑨𝑩𝑪 𝒊𝒔 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍. 

900. 𝑰𝒏  ∆𝑨𝑩𝑪 𝒕𝒉𝒆 𝒇𝒐𝒍𝒍𝒐𝒘𝒊𝒏𝒈 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏𝒔𝒉𝒊𝒑 𝒉𝒐𝒍𝒅𝒔 ∶ 

𝒃𝒎𝒂
𝟑

𝒂𝟑𝒎𝒃
+
𝒄𝒎𝒃

𝟑

𝒃𝟑𝒎𝒄
+
𝒂𝒎𝒄

𝟑

𝒄𝟑𝒎𝒂
≥
𝟗

𝟒
.    

Proposed Daniel Sitaru-Romania 

Solution 1 by Tapas Das-India 

∑
𝒃𝒎𝒂

𝟑

𝒂𝟑𝒎𝒃
𝒄𝒚𝒄

=∑
(
𝒎𝒂

𝒂
)
𝟑

𝒎𝒃

𝒃𝒄𝒚𝒄

≥
𝑯𝒐𝒍𝒅𝒆𝒓 (∑

𝒎𝒂

𝒂
)
𝟑

𝟑∑ (
𝒎𝒂

𝒂 )
=
𝟏

𝟑
(∑

𝒎𝒂

𝒂
𝒄𝒚𝒄

)

𝟐

≥ 

≥
𝟏

𝟑
(
𝟑√𝟑

𝟐
)

𝟐

=
𝟏

𝟑
⋅
𝟐𝟕

𝟒
=
𝟗

𝟒
 

∵ 𝒎𝒂 =
𝟏

𝟐
√𝟐(𝒃𝟐 + 𝒄𝟐) − 𝒂𝟐 (𝒂𝒏𝒅 𝒂𝒏𝒂𝒍𝒐𝒈𝒔) 

∑
𝒎𝒂

𝒂
𝒄𝒚𝒄

=
𝟏

𝟐
∑√𝟐(𝒂𝟐 + 𝒃𝟐) − 𝒃𝟐

𝒄𝒚𝒄

=
𝟏

√𝟑
∑

𝟏

𝟐
𝟑 ⋅
√

𝒂𝟐

𝟐(𝒃𝟐 + 𝒄𝟐) − 𝒂𝟐
𝒄𝒚𝒄

≥ 

≥
𝟏

√𝟑
∑

𝟏

𝟏
𝟑 +

𝒂𝟐

𝟐(𝒃𝟐 + 𝒄𝟐) − 𝒂𝟐
𝒄𝒚𝒄

=
√𝟑

𝟐
∑

𝟐𝒃𝟐 + 𝟐𝒄𝟐 − 𝒂𝟐

𝟐(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐)
𝒄𝒚𝒄

=
𝟑√𝟑

𝟐
 

Solution 2 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶   ∑
𝒙𝟑

𝒚
𝒄𝒚𝒄

=∑
𝒙𝟒

𝒙𝒚
𝒄𝒚𝒄

 ≥⏞
𝑪𝑩𝑺

 
(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐)𝟐

𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙
≥ 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐,   ∀𝒙, 𝒚, 𝒛 > 𝟎. 

𝑭𝒐𝒓 𝒙 =
𝒎𝒂

𝒂
,   𝒚 =

𝒎𝒃

𝒃
,   𝒛 =

𝒎𝒄

𝒄
,   𝒘𝒆 𝒈𝒆𝒕 ∶ 

∑
𝒃𝒎𝒂

𝟑

𝒂𝟑𝒎𝒃
𝒄𝒚𝒄

≥∑
𝒎𝒂

𝟐

𝒂𝟐
𝒄𝒚𝒄

=
𝟏

𝟒
∑

𝟐𝒃𝟐 + 𝟐𝒄𝟐 − 𝒂𝟐

𝒂𝟐
𝒄𝒚𝒄

=
𝟏

𝟒
(𝟐∑

𝒃𝟐

𝒂𝟐
𝒄𝒚𝒄

+ 𝟐∑
𝒄𝟐

𝒂𝟐
𝒄𝒚𝒄

− 𝟑) ≥ 
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≥⏞
𝑨𝑴−𝑮𝑴

 
𝟏

𝟒
(𝟐. 𝟑 + 𝟐. 𝟑 − 𝟑) =

𝟗

𝟒
,   𝒂𝒔 𝒅𝒆𝒔𝒊𝒓𝒆𝒅. 

𝑬𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒉𝒐𝒍𝒅𝒔 𝒊𝒇𝒇 ∆𝑨𝑩𝑪 𝒊𝒔 𝒆𝒒𝒖𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍. 
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It’s nice to be important but more important it’s to be nice. 

At this paper works a TEAM. 

This is RMM TEAM. 

To be continued! 

Daniel Sitaru 

 

 

 

 


