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24/ GENERATING INEQUALITIES USING SCHWEITZER’S THEOREM

Generating inequalities using

Schweitzer’s theorem
Daniel Sitaru and Claudia Nanuti

In 1914 P. Schweitzer published a theorem (see [1]) that later featured in the 1978
Russian Olympiad. Romanian mathematician Daniel Culea has since proposed
several applications of Schweitzer’s theorem [2]. In this article, we will present
other applications of this theorem.

Theorem. (Kantorovic) If py € (0,00);k € 1...n;2; € R;0 < m <z < M then
- - m+ M)? [ & 2 (m—M) 2
(o) (R 2) < Py () = (S 32 )’
where AUB ={1,2,--- ,n}; ANB =10
Proof. From (z, — m)(zr — M) < 0 we obtain successively:
x3 — (m+ M)z +mM <0,

M
xk—&-m—gm—i—M,
Tk

M
m—ngrM—zk,
Tk
i<m—|—M—xk’
T mM
M. —
pe  mAMpe —pete g,
xk mM
Pk 1 ( )
Pk = Mp, —
Zxk_m Z(er )Pk — Pk ),

k=1

() (S 2) <(Comwes) s (4 A0S = Yomeas). ()

We compute the maximum value of the right-hand side from (1). Let z; = m,i €
Ajzj=M,j € BLANB =0, ANB ={1,2,...,n}and a = ,capi; 6 = > jepDj-
Then

M( sz)[m+M)(Zpi+ij) *mZPi*MZ%}

€A jEB €A JjEB

(T n ) (s s S5

i€A JEB

- (m(HMm(% + %) _ (2m[3+2MfTZL(]\24ma+2MB) _
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_ (ma+mpB+Ma+MpB—ma+mpB+Ma—MpB)(ma+mpB+Ma+MpB+ma—mpB—Ma+Mpj)
- AmM

[(m + M)(a + 8) — (m = M)(a = B)][(m + m)(e + B) + (m — M)(a — 5)]

dmM
_ (m+M)*(a+B)? — (m— M)*(a — §)°
dmM
_ (m+M)P*(a+p)?  (m—M)*(a—p)?
dmM 4dmM

The maximum value of the right-hand side from (1) is obtained when (a — 8)? is

minimum, namely when

mjn(Zpi—ij), AuB=1{1,2,..,n}, ANB=40.

icA jeB

Theorem. (Schweitzer) If 2 e Rjk€1...nand 0 < m < z; < M then

n n m 2,2 m— M2 P
(Son) (3 4) < gl (e )

Proof. In the Kantorovic theorem, let the weights be py = 1,k € 1...n,z =
|Al,n —x = |B|. Tt follows that:

(Z xk) (Z": é) L mA M (M) e

AmM AmM
k=1 k=1
and )
16
min (422 — 4nzx) = — 12 = —n?

The minimum value is reached for = % if n is even when min(42* —4nz+n?) = 0.

If n is odd, the minimum is reached when = = "T_l < 3.

n—1>2 n—1

-n

2 2

n2—2n+1-2n%+2n 9

= )on
4

=-n+1+n?=1

min[4(z? — nx) +n?] = 4[( ] + n?

For n even: . . ( M)2 ,
1 +
(3)(3 ) < et
For n odd: N N ( e ( 2y
1 + -
(;xk)(; ﬁ) < m4mM - TriLmM
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26/ GENERATING INEQUALITIES USING SCHWEITZER’S THEOREM

For n = 2, 3,4 the inequality becomes, respectively,
1 1 m+ M)?
SUPTENN PRUESY

x T2

)

1 - mM
1 1 1 (m+M)?-9— (m— M)>? m M
1iled)s 5o 2,
(x1+x2+x3)(x1+x2+x3)_ 4dmM + M+m
11 1 (m+ M)?%-16 m M
S ) < D (g ),
(9:1+x2+:c3+x4)($1+m2+$3+$4)_ 4mM 8+ Mer)

Let 0 <a <bm=a,M=>and x1,x9,x3,24 € [a,b]. The inequality is

(a + b)? @)

(1 +a2)(+ ) <
LTt 1 T2/~ ab

1 1 1 b
(w1 + @3+ ag) (— + — + =) <54+2(F +-), (3)
r1 Ty I3 b a
1 1 1 b
(x1+x2+$3+1‘4)<*+f—|—f—|—*)§8—|—4(g—|—*). (4)
Ty T2 T3 T4 b a

The following inequality is well known:

2KH2 2 2
0<a§”2327<2@ g%%ga;bgva;h <b (5)

a2+b2 ~ a+b

Problem. Prove that if x,y, z,t € [a,b],0 < a < b then:
r+y+z+t a+b

< .
VIY + Uz + Vet + iz T 2Vab

Proof. From (2) for m = a, M = b,z1 = x,x2 = y it follows that
11 (a+b)?
Z+2)<
(x+y)($ + y) S
(z+y)? - (a+b)?
zy — ab
ab(z +y)* < zy(a+0)?,

(z +y)Vab < \/zy(a +b).
Analogously, (y+ 2)vVab < /yz(a+b), (z +t)Vab < Vzt(a+b) and (t+z)vab <

Vtz(a + b) and by adding
2z +y+ 2+ t)Vab < (a +b)(\ /Ty + Vyz + Vzt + Vi),

and we obtain the result.
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Problem. In triangle ABC, let M, N, P € [BC|. Prove that
1 1 1 5 2/AB AC
A . . R T R Rl (el i I
ANCAN AP+ x5+ 4p) <3+ 5030 + a8)
Proof. WLOG we assume that AB < AC. In (3) we take m = AB, M = AC and
then AM, AN, AP € [m, M]. Let be z; = AM, 25 = AN,x3 = AP. Then

From AM-GM inequality, we obtain:
AM + AN + AP > 3V AM - AN - AP.
It follows that

3VAM AN AP(oo + 5o+ 45) <5+ 2( 40 + 25,

VAN AN AP( gt ot o) < o2 (G 55,

AM " AN " AP AC " AB
O
Problem. Prove that if 0 < a < b then
a+b 1 1 2 1 a b
0 (c ) <8 a2y
(a+ Vab+ 5 +)(a+¢@+a+b+b)—8+ <b+a), (6)
2ab a+b fa? 4+ b2\ 7a+b 1 2 [ 2
b
(a—l—bJr\/CTJr 2 * 2 )(2ab+m+a+b+ a2+b2)
a b
< —+-).
_8+4(b+a) (7)

Proof. For (6), in (4) take m = a, M = bz, = a, 2o = Vab,x3 = %2 2, =b.

For (7), in (4) take m = a, M = b,z = %,xg = Vab,zy = b g, = /2202
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