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3 Editorial Kseniya Garaschuk

4 The Contest Corner: No. 41 John McLoughlin

4 Problems: CC201–CC205

6 Solutions: CC151–CC155

10 Wobbling Bicycle Luis Goddyn

11 The Olympiad Corner: No. 339 Carmen Bruni

11 Problems: OC261–OC265

13 Solutions: OC201–OC205

18 Book Reviews Robert Bilinski

20 Focus On . . . : No. 20 Michel Bataille

24 Generating inequalities using Schweitzer’s theorem

Daniel Sitaru and Claudia Nănuţi
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Generating inequalities using

Schweitzer’s theorem
Daniel Sitaru and Claudia Nănuţi

In 1914 P. Schweitzer published a theorem (see [1]) that later featured in the 1978
Russian Olympiad. Romanian mathematician Daniel Culea has since proposed
several applications of Schweitzer’s theorem [2]. In this article, we will present
other applications of this theorem.

Theorem. (Kantorovic) If pk ∈ (0,∞); k ∈ 1 . . . n;xk ∈ R; 0 < m ≤ xk ≤M then( n∑
k=1

pkxk

)( n∑
k=1

pk
xk

)
≤ (m+M)2

4mM

( n∑
k=1

pk

)2
− (m−M)2

4mM
·min
A

(∑
i∈A

pi−
∑
j∈Bpj

pj

)2
,

where A ∪B = {1, 2, · · · , n};A ∩B = ∅

Proof. From (xk −m)(xk −M) ≤ 0 we obtain successively:

x2k − (m+M)xk +mM ≤ 0,

xk +
mM

xk
≤ m+M,

mM

xk
≤ m+M − xk,

1

xk
≤ m+M − xk

mM
,

pk
xk
≤ (m+M)pk − pkxk

mM
, k ∈ 1 . . . n,

n∑
k=1

pk
xk
≤ 1

mM

n∑
k=1

(
(m+M)pk − pkxk

)
,

( n∑
k=1

pkxk

)( n∑
k=1

pk
xk

)
≤
( n∑
k=1

pkxk

) 1

mM

(
(m+M)

n∑
k=1

pk −
n∑
k=1

pkxk

)
. (1)

We compute the maximum value of the right-hand side from (1). Let xi = m, i ∈
A, xj = M, j ∈ B,A∩B = ∅, A∩B = {1, 2, ..., n} and α =

∑
i∈A pi;β =

∑
j∈B pj .

Then

1

mM

(
m
∑
i∈B

pi

)[
(m+M)

(∑
i∈A

pi +
∑
j∈B

pj

)
−m

∑
i∈A

pi −M
∑
j∈B

pj

]
=
(
m
∑
i∈A

pi +M
∑
j∈B

pj

)(∑
i∈A pi
m

+

∑
j∈B pj

M

)
= (mα+Mβ)

( α
m

+
β

M

)
=

(2mβ + 2Mα)(2mα+ 2Mβ)

4mM
=
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= (mα+mβ+Mα+Mβ−mα+mβ+Mα−Mβ)(mα+mβ+Mα+Mβ+mα−mβ−Mα+Mβ)
4mM

=
[(m+M)(α+ β)− (m−M)(α− β)][(m+m)(α+ β) + (m−M)(α− β)]

4mM

=
(m+M)2(α+ β)2 − (m−M)2(α− β)2

4mM

=
(m+M)2(α+ β)2

4mM
− (m−M)2(α− β)2

4mM
.

The maximum value of the right-hand side from (1) is obtained when (α− β)2 is
minimum, namely when

min
A

(∑
i∈A

pi −
∑
j∈B

pj

)
, A ∪B = {1, 2, ..., n}, A ∩B = ∅.

2

Theorem. (Schweitzer) If xk ∈ R; k ∈ 1 . . . n and 0 < m ≤ xk ≤M then

( n∑
k=1

xk

)( n∑
k=1

1

xk

)
≤ (m+M)2n2

4mM
− (m−M)2[1 + (−1)n+1]

8mM
.

Proof. In the Kantorovic theorem, let the weights be pk = 1, k ∈ 1 . . . n, x =
|A|, n− x = |B|. It follows that:

( n∑
k=1

xk

)( n∑
k=1

1

xk

)
≤ (m+M)2n2

4mM
− (m−M)2

4mM
·min[4(x2 − nx) + n2]

and

min(4x2 − 4nx) = −16n2

16
= −n2.

The minimum value is reached for x = n
2 if n is even when min(4x2−4nx+n2) = 0.

If n is odd, the minimum is reached when x = n−1
2 < n

2 .

min[4(x2 − nx) + n2] = 4
[(n− 1

2

)2
− nn− 1

2

]
+ n2

= 4
(n2 − 2n+ 1− 2n2 + 2n

4

)
+ n2

= −n2 + 1 + n2 = 1.

For n even: ( n∑
k=1

xk

)( n∑
k=1

1

xk

)
≤ (m+M)2n2

4mM
.

For n odd: ( n∑
k=1

xk

)( n∑
k=1

1

xk

)
≤ (m+M)2n2

4mM
− (m−M)2

4mM
.
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For n = 2, 3, 4 the inequality becomes, respectively,

(x1 + x2)
( 1

x1
+

1

x2

)
≤ (m+M)2

mM
,

(x1 + x2 + x3)
( 1

x1
+

1

x2
+

1

x3

)
≤ (m+M)2 · 9− (m−M)2

4mM
= 5 + 2

(m
M

+
M

m

)
,

(x1 + x2 + x3 + x4)
( 1

x1
+

1

x2
+

1

x3
+

1

x4

)
≤ (m+M)2 · 16

4mM
= 8 + 4

(m
M

+
M

m

)
.

Let 0 < a ≤ b,m = a,M = b and x1, x2, x3, x4 ∈ [a, b]. The inequality is

(x1 + x2)
( 1

x1
+

1

x2

)
≤ (a+ b)2

ab
, (2)

(x1 + x2 + x3)
( 1

x1
+

1

x2
+

1

x3

)
≤ 5 + 2

(a
b

+
b

a

)
, (3)

(x1 + x2 + x3 + x4)
( 1

x1
+

1

x2
+

1

x3
+

1

x4

)
≤ 8 + 4

(a
b

+
b

a

)
. (4)

The following inequality is well known:

0 < a ≤

 
2a2b2

a2 + b2
≤ 2ab

a+ b
≤
√
ab ≤ a+ b

2
≤
…
a2 + b2

2
≤ b (5)

2

Problem. Prove that if x, y, z, t ∈ [a, b], 0 < a ≤ b then:

x+ y + z + t
√
xy +

√
yz +

√
zt+

√
tx
≤ a+ b

2
√
ab
.

Proof. From (2) for m = a,M = b, x1 = x, x2 = y it follows that

(x+ y)
( 1

x
+

1

y

)
≤ (a+ b)2

ab
,

(x+ y)2

xy
≤ (a+ b)2

ab

ab(x+ y)2 ≤ xy(a+ b)2,

(x+ y)
√
ab ≤ √xy(a+ b).

Analogously, (y+ z)
√
ab ≤ √yz(a+ b), (z+ t)

√
ab ≤

√
zt(a+ b) and (t+x)

√
ab ≤√

tx(a+ b) and by adding

2(x+ y + z + t)
√
ab ≤ (a+ b)(

√
xy +

√
yz +

√
zt+

√
tx),

and we obtain the result. 2
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Problem. In triangle ABC, let M,N,P ∈ [BC]. Prove that

3
√
AM ·AN ·AP

( 1

AM
+

1

AN
+

1

AP

)
≤ 5

3
+

2

3

(AB
AC

+
AC

AB

)
.

Proof. WLOG we assume that AB < AC. In (3) we take m = AB,M = AC and
then AM,AN,AP ∈ [m,M ]. Let be x1 = AM,x2 = AN, x3 = AP . Then

(AM +AN +AP )
( 1

AM
+

1

AN
+

1

AP

)
≤ 5 + 2

(AB
AC

+
AC

AB

)
From AM-GM inequality, we obtain:

AM +AN +AP ≥ 3
3
√
AM ·AN ·AP.

It follows that

3
3
√
AM ·AN ·AP

( 1

AM
+

1

AN
+

1

AP

)
≤ 5 + 2

(AB
AC

+
AC

AB

)
,

3
√
AM ·AN ·AP

( 1

AM
+

1

AN
+

1

AP

)
≤ 5

3
+

2

3

(AB
AC

+
AC

AB

)
.

2

Problem. Prove that if 0 < a ≤ b then

(a+
√
ab+

a+ b

2
+ b)

(1

a
+

1√
ab

+
2

a+ b
+

1

b

)
≤ 8 + 4

(a
b

+
b

a

)
, (6)

( 2ab

a+ b
+
√
ab+

a+ b

2
+

…
a2 + b2

2

)(a+ b

2ab
+

1√
ab

+
2

a+ b
+

…
2

a2 + b2

)
≤ 8 + 4

(a
b

+
b

a

)
. (7)

Proof. For (6), in (4) take m = a,M = b, x1 = a, x2 =
√
ab, x3 = a+b

2 , x4 = b.

For (7), in (4) take m = a,M = b, x1 = 2ab
a+b , x2 =

√
ab, x3 = a+b

2 , x4 =
»

a2+b2

2 .
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