

IN THIS ISSUE / DANS CE NUMÉRO

279 Editorial *Kseniya Garaschuk*
 280 The Contest Corner: No. 57 *John McLoughlin*
 280 Problems: CC281–CC285
 282 Solutions: CC231–CC235
 285 The Olympiad Corner: No. 355 *Carmen Bruni*
 285 Problems: OC341–OC345
 287 Solutions: OC281–OC285
 291 Book Reviews *Robert Bilinski*
 293 Focus On . . .: No. 27 *Michel Bataille*
 298 A “probabilistic” method for proving inequalities
 Daniel Sitaru and Claudia Nănuță
 302 Problems: 4261–4270
 307 Solutions: 4161–4170
 323 Solvers and proposers index

Crux Mathematicorum

Founding Editors / Rédacteurs-fondateurs: Léopold Sauvé & Frederick G.B. Maskell
 Former Editors / Anciens Rédacteurs: G.W. Sands, R.E. Woodrow, Bruce L.R. Shawyer,
 Shawn Godin

Crux Mathematicorum with Mathematical Mayhem

Former Editors / Anciens Rédacteurs: Bruce L.R. Shawyer, James E. Totten, Václav Linek,
 Shawn Godin

A “probabilistic” method for proving inequalities

Daniel Sitaru and Claudia Nănuță

In this paper we solve a class of inequalities using an identity familiar from probability theory and classical mechanics.

In the year 2000, Fuhua Wei and Shan - He Wu from the Department of Mathematics and Computer Science, Longyan University, Longyan, Fujian 364012, P.R. China published the article: “Several proofs and generalisations of a fractional inequality with constraints.” In this article, they give ten different proofs for the 2nd problem of the 36th IMO, held at Toronto (Canada) in 1995.

In proof 5, the authors used a method based on a key random variable to prove that if a, b, c are positive real numbers with $abc = 1$ then:

$$\frac{1}{a^3(b+c)} + \frac{1}{b^3(c+a)} + \frac{1}{c^3(a+b)} \geq \frac{3}{2}$$

Proof. We make the substitutions $x := bc$, $y := ca$, $z := ab$, and $s := x + y + z$.

Then:

$$\frac{1}{a^3(b+c)} + \frac{1}{b^3(c+a)} + \frac{1}{c^3(a+b)} = \frac{x^2}{y+z} + \frac{y^2}{z+x} + \frac{z^2}{x+y} = \frac{x^2}{s-x} + \frac{y^2}{s-y} + \frac{z^2}{s-z}.$$

We consider the random variable ξ defined as follows:

$$\xi = \begin{cases} \frac{x}{s-x} : & (p = \frac{s-x}{2s}), \\ \frac{y}{s-y} : & (p = \frac{s-y}{2s}), \\ \frac{z}{s-z} : & (p = \frac{s-z}{2s}). \end{cases}$$

It follows that

$$E(\xi) = \frac{x}{s-x} \cdot \frac{s-x}{2s} + \frac{y}{s-y} \cdot \frac{s-y}{2s} + \frac{z}{s-z} \cdot \frac{s-z}{2s} = \frac{x+y+z}{2s} = \frac{1}{2}$$

and also

$$\begin{aligned} E(\xi^2) &= \left(\frac{x}{s-x}\right)^2 \cdot \frac{s-x}{2s} + \left(\frac{y}{s-y}\right)^2 \cdot \frac{s-y}{2s} + \left(\frac{z}{s-z}\right)^2 \cdot \frac{s-z}{2s} \\ &= \frac{1}{2s} \left(\frac{x^2}{s-x} + \frac{y^2}{s-y} + \frac{z^2}{s-z} \right). \end{aligned}$$

Now, the variance of ξ is given by $V(\xi) = E(\xi^2) - (E(\xi))^2$. This is always non-negative, and positive unless ξ can take only one value (in which case $x = y = z$ and $a = b = c$.) We thus have

$$\frac{1}{2s} \left(\frac{x^2}{s-x} + \frac{y^2}{s-y} + \frac{z^2}{s-z} \right) \geq \frac{1}{4}$$

and so

$$\frac{x^2}{s-x} + \frac{y^2}{s-y} + \frac{z^2}{s-z} \geq \frac{1}{2}s = \frac{1}{2}(x+y+z) \stackrel{AM-GM}{\geq} \frac{3}{2}\sqrt[3]{xyz} = \frac{3}{2}.$$

Hence

$$\frac{1}{a^3(b+c)} + \frac{1}{b^3(a+c)} + \frac{1}{c^3(a+b)} \geq \frac{3}{2}$$

and this is strict unless $a = b = c$. \square

The method of proof used here is based on the positivity of variance:

$$E(\xi^2) - (E(\xi))^2 = V(\xi) = E((\xi - E(\xi))^2) \geq 0,$$

whence

$$E(\xi^2) \geq (E(\xi))^2.$$

It can be applied to other problems as well. The technique is to construct a random variable such that its variance is the quantity, or difference, that we wish to show positive. (Readers familiar with classical mechanics may prefer to consider this in terms of the parallel axis theorem for moments of inertia - a “mechanical” method of proof?)

Example 1. Prove that if $x, y, z > 0$ then:

$$\sqrt{\frac{x}{y}} + 2\sqrt{\frac{y}{z}} + 3\sqrt{\frac{z}{x}} \leq \sqrt{6\left(\frac{x}{y} + \frac{2y}{z} + \frac{3z}{x}\right)}$$

Solution. Define a random variable

$$\xi = \begin{cases} \sqrt{\frac{x}{y}} : (p = \frac{1}{6}), \\ \sqrt{\frac{y}{z}} : (p = \frac{2}{6}), \\ \sqrt{\frac{z}{x}} : (p = \frac{3}{6}), \end{cases} \quad \text{then} \quad \xi^2 = \begin{cases} \frac{x}{y} : (p = \frac{1}{6}), \\ \frac{y}{z} : (p = \frac{2}{6}), \\ \frac{z}{x} : (p = \frac{3}{6}). \end{cases}$$

It follows that

$$E(\xi) = \frac{1}{6}\sqrt{\frac{x}{y}} + \frac{2}{6}\sqrt{\frac{y}{z}} + \frac{3}{6}\sqrt{\frac{z}{x}} \quad \text{and} \quad E(\xi^2) = \frac{1}{6}\left(\frac{x}{y} + \frac{2y}{z} + \frac{3z}{x}\right).$$

As

$$E(\xi^2) \geq (E(\xi))^2,$$

we have

$$\begin{aligned} \frac{1}{6}\left(\frac{x}{y} + \frac{2y}{z} + \frac{3z}{x}\right) &\geq \left[\frac{1}{6}\left(\sqrt{\frac{x}{y}} + 2\sqrt{\frac{y}{z}} + 3\sqrt{\frac{z}{x}}\right)\right]^2, \\ \frac{x}{y} + \frac{2y}{z} + \frac{3z}{x} &\geq \frac{1}{6}\left(\sqrt{\frac{x}{y}} + 2\sqrt{\frac{y}{z}} + 3\sqrt{\frac{z}{x}}\right)^2, \\ \sqrt{\frac{x}{y}} + 2\sqrt{\frac{y}{z}} + 3\sqrt{\frac{z}{x}} &\leq \sqrt{6\left(\frac{x}{y} + \frac{2y}{z} + \frac{3z}{x}\right)} \end{aligned}$$

and, again, equality holds only for $x = y = z$. \square

Example 2. Prove that if $a, b, c > 0$ then:

$$\sqrt{\frac{a}{b+c}} + 2\sqrt{\frac{b}{c+a}} + 4\sqrt{\frac{c}{a+b}} \leq \sqrt{7\left(\frac{a}{b+c} + \frac{2b}{c+a} + \frac{4c}{a+b}\right)}$$

Solution. Define a random variable

$$\xi = \begin{cases} \sqrt{\frac{a}{b+c}} : (p = \frac{1}{7}), \\ \sqrt{\frac{b}{c+a}} : (p = \frac{2}{7}), \\ \sqrt{\frac{c}{a+b}} : (p = \frac{4}{7}). \end{cases}$$

As before we get

$$E(\xi) = \frac{1}{7}\left(\sqrt{\frac{a}{b+c}} + 2\sqrt{\frac{b}{c+a}} + 4\sqrt{\frac{c}{a+b}}\right) \quad \text{and} \quad E(\xi^2) = \frac{1}{7}\left(\frac{a}{b+c} + \frac{2b}{c+a} + \frac{4c}{a+b}\right),$$

and the inequality

$$\frac{1}{7}\left(\frac{a}{b+c} + \frac{2b}{c+a} + \frac{4c}{a+b}\right) \geq \frac{1}{49}\left(\sqrt{\frac{a}{b+c}} + 2\sqrt{\frac{b}{c+a}} + 4\sqrt{\frac{c}{a+b}}\right)^2.$$

Therefore

$$\frac{1}{\sqrt{7}} \cdot \sqrt{\frac{a}{b+c} + \frac{2b}{c+a} + \frac{4c}{a+b}} \geq \frac{1}{7}\left(\sqrt{\frac{a}{b+c}} + 2\sqrt{\frac{b}{c+a}} + 4\sqrt{\frac{c}{a+b}}\right),$$

and

$$\sqrt{\frac{a}{b+c}} + 2\sqrt{\frac{b}{c+a}} + 4\sqrt{\frac{c}{a+b}} \leq \sqrt{7\left(\frac{a}{b+c} + \frac{2b}{c+a} + \frac{4c}{a+b}\right)},$$

with equality only for $a = b = c$. \square

Application 3. Prove that in any triangle ABC the following relationship holds for the medians m_a, m_b, m_c and altitudes h_a, h_b, h_c :

$$3\sqrt{\frac{m_a}{m_b} + \frac{2m_b}{m_c} + \frac{6m_c}{m_a}} \geq \sqrt{\frac{h_a}{m_b} + 2\sqrt{\frac{h_b}{m_c}} + 6\sqrt{\frac{h_c}{m_a}}}$$

Solution. Let be the probability distribution sequence of random variable ξ below:
Define a random variable

$$\xi = \begin{cases} \sqrt{\frac{m_a}{m_b}} : (p = \frac{1}{9}), \\ \sqrt{\frac{m_b}{m_c}} : (p = \frac{2}{9}), \\ \sqrt{\frac{m_c}{m_a}} : (p = \frac{6}{9}). \end{cases}$$

It follows that

$$E(\xi) = \frac{1}{9} \left(\sqrt{\frac{m_a}{m_b}} + 2\sqrt{\frac{m_b}{m_c}} + 6\sqrt{\frac{m_c}{m_a}} \right) \quad \text{and} \quad E(\xi^2) = \frac{1}{9} \left(\frac{m_a}{m_b} + \frac{2m_b}{m_c} + \frac{6m_c}{m_a} \right),$$

and, $m_a \geq h_a$, $m_b \geq h_b$, and $m_c \geq h_c$, we have

$$\begin{aligned} \frac{1}{9} \left(\frac{m_a}{m_b} + \frac{2m_b}{m_c} + \frac{6m_c}{m_a} \right) &\geq \frac{1}{81} \left(\sqrt{\frac{m_a}{m_b}} + 2\sqrt{\frac{m_b}{m_c}} + 6\sqrt{\frac{m_c}{m_a}} \right)^2 \\ &\geq \frac{1}{81} \left(\sqrt{\frac{h_a}{m_b}} + 2\sqrt{\frac{h_b}{m_c}} + 6\sqrt{\frac{h_c}{m_a}} \right)^2, \end{aligned}$$

whence

$$9 \left(\frac{m_a}{m_b} + \frac{2m_b}{m_c} + \frac{6m_c}{m_a} \right) \geq \left(\sqrt{\frac{h_a}{m_b}} + 2\sqrt{\frac{h_b}{m_c}} + 6\sqrt{\frac{h_c}{m_a}} \right)^2$$

and

$$3\sqrt{\frac{m_a}{m_b} + \frac{2m_b}{m_c} + \frac{6m_c}{m_a}} \geq \sqrt{\frac{h_a}{m_b}} + 2\sqrt{\frac{h_b}{m_c}} + 6\sqrt{\frac{h_c}{m_a}},$$

which completes the solution. \square

Of course, applying this process in reverse is an intriguing way to invent new inequalities!

References

- [1] Shan - He Wu, Mihaly Bencze, *Selected problems and theorems of analytic inequalities*. Studis Publishing House, Iași, Romania, 2012.
- [2] Daniel Sitaru, *Math Phenomenon*. Paralela 45 Publishing House, Pitești, Romania, 2016.

.....

Daniel Sitaru and Claudia Nănuță
 Mathematics Department
 “Theodor Costescu” National Economic College
 Drobeta Turnu - Severin, Mehedinți
 dansitaru63@yahoo.com

