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A “probabilistic” method for proving

inequalities
Daniel Sitaru and Claudia Nănuţi

In this paper we solve a class of inequalities using an identity familiar from prob-
ability theory and classical mechanics.

In the year 2000, Fuhua Wei and Shan - He Wu from the Department of Mathe-
matics and Computer Science, Longyan University, Longyan, Fujian 364012, P.R.
China published the article: “Several proofs and generalisations of a fractional
inequality with constraints.” In this article, they give ten different proofs for the
2nd problem of the 36th IMO, held at Toronto (Canada) in 1995.

In proof 5, the authors used a method based on a key random variable to prove
that if a, b, c are positive real numbers with abc = 1 then:

1

a3(b+ c)
+

1

b3(c+ a)
+

1

c3(a+ b)
≥ 3

2

Proof. We make the substitutions x := bc, y := ca, z := ab, and s := x+ y + z.

Then:

1

a3(b+ c)
+

1

b3(a+ c)
+

1

c3(a+ b)
=

x2

y + z
+

y2

z + x
+

z2

x+ y
=

x2

s− x
+

y2

s− y
+

z2

s− z
.

We consider the random variable ξ defined as follows:

ξ =


x
s−x : (p = s−x

2s ),
y
s−y : (p = s−y

2s ),
z
s−z : (p = s−z

2s ).

It follows that

E(ξ) =
x

s− x
· s− x

2s
+

y

s− y
· s− y

2s
+

z

s− z
· s− z

2s
=
x+ y + z

2s
=

1

2

and also

E(ξ2) =
( x

s− x

)2
· s− x

2s
+
( y

s− y

)2
· s− y

2s
+
( z

s− z

)2
· s− z

2s

=
1

2s

( x2

s− x
+

y2

s− y
+

z2

s− z

)
.

Now, the variance of ξ is given by V (ξ) = E(ξ2) − (E(ξ))2. This is always non-
negative, and positive unless ξ can take only one value (in which case x = y = z
and a = b = c.) We thus have

1

2s

( x2

s− x
+

y2

s− y
+

z2

s− z

)
≥ 1

4
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and so

x2

s− x
+

y2

s− y
+

z2

s− z
≥ 1

2
s =

1

2
(x+ y + z)

AM−GM︷︸︸︷
≥ 3

2
3
√
xyz =

3

2
.

Hence
1

a3(b+ c)
+

1

b3(a+ c)
+

1

c3(a+ b)
≥ 3

2

and this is strict unless a = b = c. 2

The method of proof used here is based on the positivity of variance:

E(ξ2)− (E(ξ))2 = V (ξ) = E((ξ − E(ξ))2) ≥ 0 ,

whence
E(ξ2) ≥ (E(ξ))2 .

It can be applied to other problems as well. The technique is to construct a random
variable such that its variance is the quantity, or difference, that we wish to show
positive. (Readers familiar with classical mechanics may prefer to consider this in
terms of the parallel axis theorem for moments of inertia - a “mechanical” method
of proof?)

Example 1. Prove that if x, y, z > 0 then:…
x

y
+ 2

…
y

z
+ 3

…
z

x
≤
 

6
(x
y

+
2y

z
+

3z

x

)
Solution. Define a random variable

ξ =


»

x
y : (p = 1

6 ),»
y
z : (p = 2

6 ),√
z
x : (p = 3

6 ),

then ξ2 =


x
y : (p = 1

6 ),
y
z : (p = 2

6 ),
z
x : (p = 3

6 ).

It follows that

E(ξ) =
1

6

…
x

y
+

2

6

…
y

z
+

3

6

…
z

x
and E(ξ2) =

1

6

(x
y

+
2y

z
+

3z

x

)
.

As
E(ξ2) ≥ (E(ξ))2,

we have

1

6

(x
y

+
2y

z
+

3z

x

)
≥
[1

6

(…x

y
+ 2

…
y

z
+ 3

…
z

x

)]2
,

x

y
+

2y

z
+

3z

x
≥ 1

6

(…x

y
+ 2

…
y

z
+ 3

…
z

x

)2
,…

x

y
+ 2

…
y

z
+ 3

…
z

x
≤
 

6
(x
y

+
2y

z
+

3z

x

)
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and, again, equality holds only for x = y = z. 2

Example 2. Prove that if a, b, c > 0 then:…
a

b+ c
+ 2

 
b

c+ a
+ 4

…
c

a+ b
≤
 

7
( a

b+ c
+

2b

c+ a
+

4c

a+ b

)
Solution. Define a random variable

ξ =


»

a
b+c : (p = 1

7 ),»
b
c+a : (p = 2

7 ),»
c
a+b : (p = 4

7 ).

As before we get

E(ξ) =
1

7

(… a

b+ c
+2

 
b

c+ a
+4

…
c

a+ b

)
and E(ξ2) =

1

7

( a

b+ c
+

2b

c+ a
+

4c

a+ b

)
,

and the inequality

1

7

( a

b+ c
+

2b

c+ a
+

4c

a+ b

)
≥ 1

49

(… a

b+ c
+ 2

 
b

c+ a
+ 4

…
c

a+ b

)2
.

Therefore

1√
7
·
 

a

b+ c
+

2b

c+ a
+

4c

a+ b
≥ 1

7

(… a

b+ c
+ 2

 
b

c+ a
+ 4

…
c

a+ b

)
,

and …
a

b+ c
+ 2

 
b

c+ a
+ 4

…
c

a+ b
≤
 

7
( a

b+ c
+

2b

c+ a
+

4c

a+ b

)
,

with equality only for a = b = c. 2

Application 3. Prove that in any triangle ABC the following relationship holds
for the medians ma,mb,mc and altitudes ha, hb, hc:

3

 
ma

mb
+

2mb

mc
+

6mc

ma
≥
 
ha
mb

+ 2

 
hb
mc

+ 6

 
hc
ma

Solution. Let be the probability distribution sequence of random variable ξ below:
Define a random variable

ξ =


»

ma
mb

: (p = 1
9 )»

mb
mc

: (p = 2
9 )»

mc
ma

: (p = 6
9 ) .
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It follows that

E(ξ) =
1

9

(…ma

mb
+ 2

…
mb

mc
+ 6

…
mc

ma

)
and E(ξ2) =

1

9

(ma

mb
+

2mb

mc
+

6mc

ma

)
,

and, ma ≥ ha, mb ≥ hb, and mc ≥ hc, we have

1

9

(ma

mb
+

2mb

mc
+

6mc

ma

)
≥ 1

81

(…ma

mb
+ 2

…
mb

mc
+ 6

…
mc

ma

)2
≥ 1

81

(  ha
mb

+ 2

 
hb
mc

+ 6

 
hc
ma

)2
,

whence

9
(ma

mb
+

2mb

mc
+

6mc

ma

)
≥
(  ha

mb
+ 2

 
hb
mc

+ 6

 
hc
ma

)2
and

3

 
ma

mb
+

2mb

mc
+

6mc

ma
≥
 
ha
mb

+ 2

 
hb
mc

+ 6

 
hc
ma

,

which completes the solution. 2

Of course, applying this process in reverse is an intriguing way to invent new
inequalities!

References

[1] Shan - He Wu, Mihaly Bencze, Selected problems and theorems of analytic
inequalities. Studis Publishing House, Iaşi, Romania, 2012.
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