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Abstract: In this paper are presented new inequalities in triangles.

Let n ∈ N∗, n ≥ 2 and triangles Tk = AkBkCk with areas Fk, semiperime-
ter sk, lengths sides ak, bk, ck and circumradii Rk, k = 1, n.

Theorem 1. If x, y, z > 0 then:
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Proof. Let be u, v, w > 0, then:

(2) (u2 + t)(v2 + t) ≥ 3

4
t((u+ v)2 + t) and

(3) (v2 + t)(w2 + t) ≥ t(v + w)2

We have:

(u2 + t)(v2 + t) ≥ 3

4
t((u+ v)2 + t)⇔

4u2v2 + 4t(u2 + v2) + 4t2 ≥ 3t(u2 + v2) + 6tuv + 3t2 ⇔
4u2v2 − 4tuv + t2 + t(u2 + v2 − 2uv) ≥ 0⇔

(2uv − t)2 + t(u− v)2 ≥ 0

Equality holds for 2uv = t and u = v, and hence:

(v2 + t)(w2 + t) ≥ t(v + w)2 ⇔
v2w2 + t(v2 + w2) + t2 ≥ t(v2 + w2)⇔
v2w2 − 2tvw + t2 ≥ 0⇔ (vw − t)2 ≥ 0

Equality holds for 2uv = t and u = v. Therefore,
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In [1]. has proved:
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From (5) and (6), it follows:∏
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Theorem 2. If m,x, y, z ∈ [1,∞) and x + y + z = 3m, then:
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Proof. If in (4) we take:
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we get:
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