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1. Introduction

Hugyens and Wilker’s type inequalities are very useful in analysis. For example,
we can say approximations of trigonometric functions with linear functions.
More precise approximations can be made using the inequalities in this article.

The Huygens’ inequality

2sinx , tanx . 3, 0<x<?. (1.1)
Or:
2sinx+tanx >3x, 0<x< g (1.2)

The Mitrinovic-Adamovic’s inequality

HLESN {cosx, 0<x< g (1.3)

X

And Wilker’s inequality

. 2
@”)+m”>2 0<x<§ (1.4)

X X
We can see the proof of these inequalities in [1-4].
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2. Preliminiaries and some useful lemmas:

Lemma 1 [5]. (AM-GM inequality) If a; > 0,i = 1,n then the following
inequality is satisfied

z:~r't:1a: TIn = *
Bt (IL,a)n,  neN 21)

Lemma 2 [6]. If a; > 0,i = 1, n then the following inequality is satisfied

Crhi(a; +b)?) = 4Tk (Vaiby)) ( ?:1( a?;b?)) (2.2)

Lemma3lif0 < x < gthen the following inequalities are satisfied

sinx < x < tanx (2.3)
Proof: Let f: Rt — R be a function defined by f(x) = x — sin x, then
f'(x)=1—cosx=>0forall0 <x < %.We obtain f(x) is an increasing

function on [0, g).Then we obtain f(x) = 0. This show that:

x — sinx = 0.Also we can show x < tan x in the same way.

Main result:
Theorem 1. If 0 < x < g then the following inequality is satisfied

. . 4 |1+cos?x . 2 sin x
2sinx + tanx > smx(l + 2( / o )) > smx(l +m) 237 —=2>3x (3.1)

sinx

Proof: i) From (1.3) we obtain that: 3 - >
COoS X

ii) Now we show: sin x (1 + vczﬂ) = 3—35,—22;-

When x = 0, right equals left (0 = 0).We assume that x # 0. Then we apply
Lemma 2,we obtain

1 1 sin x
=1+ +

2
1+ >3-
\Jcos x Jcosx  +/cosx 3/ cos x
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Now if we multiply the right and left of the inequality by sin x, ii) is proved.

_
iii) 2sinx + tanx > sinx (1 +2 <i/@>>
2Cc0S8°x

When x = 0, right equals left (0 = 0).We assume that x # 0. Then we
apply Lemma 1,we obtain

4
251nx+tanx=sinx+sinx+tanx25inx+2<\/ >

= sinx <1 + 2 <4/1+C05:x>>. iii) is proved.
2c08°x
ceeer . 4 [1+4cos2x . 2
iiii) sin x (1 + 2< / Py )) > sinx (1 + _Cosx)

We apply Lemma 1 we get: 1 + cos?x > 2 cos x.This show that iiii) is
true.The proof of Theorem is complete.

sin x tan x(sin®x + tan%))

. n n-1
Theorem 2. If 0 < x < gand Sp = (Smx) + (tanx) ,neNandn > 2

X X
then the following inequality is satisfied

1) vn,s, > 2

2) f>p,sg>s,

Proof: Let's prove the theorem by mathematical induction.lf n = 2 we obtain
(1.4) this show inequality is true for n = 2.Now we show forn = 3

If we apply Lemma 3, Lemma 1 and (1.4) respectively, we get

. 3 2 .3 2 ;3 ; 2 2sin3x
sinx tan x sin°x+x tan“x sin°x+sinx tan“x 2

x3 x3

x x x3

Suppose the inequality is true for n = k.Then we must show for n = k + 1.
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If we apply (2.3) we obtain

. n-—-1 . n .
sinx sinx tan x sinx
( ) > ( ) and " >

X X X

Also (1.1) show that

tanx sin x
+

—2>0
X X
Then we get:
(sm x) +1 N (tan x) (sin x)" (tan x)”‘l

S s = _ _ _
n+1 n X x x X

B (tanx)"‘1 tan x 1] (Sinx)" sin x]

o\ x X X

) -2

-

> 0.

> (ta;lx)n_l -tanx . 1] (
(2 -5

tanx\" "1 [tanx
() [+
X X

With this we proved both 1) and 2) . The proof of Theorem is complete.
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