Integrals involving ((2) and ((4).
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Solution. Observe that
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Now, let us evaluate for all @ > 0 the integral J, = / ( re dx. To do that, consider the integral
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Now, making change of the variable + — az, a > 0 in I, we get
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Differentiate wrt a, we obtain
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Thus
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Remark 0.1 We have
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Proof of Remark 0.1. Making the double Changes of variables u = e~ and v = e~ V2! in J, we get
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