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In [1]. Arkady M. Alt has proved the following inequality:
(a? + 2)(b* + 2)(c? + 2) > 9(ab + bc + ca); Va,b,c > 0; (1)
In AABC with F—area, holds:
(a% + 2)(b% + 2)(c? + 2) > 36V3 - F; (2)
Proof. If in (1) a, b, c—are the lengths sides of a triangle ABC, then:

Gordon
(@®+2)(1® +2)(®+2) > 9(ab+be+ca) > 9-4V3F=36V3-F

Theorem 1. If z,y,z > 0 then in AABC with F—area, the follow-
ing relationship holds:

Theorem 2. If z,y,z > 0 then in AABC with F—area, the follow-
ing relationship holds:
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To prove the above inequality, first, we prove the next Lemma:

Lemma: If u,v,w > 0, then holds:

(@ + D)+ D@ +1) >t o+ w) (3)
Proof. We have:
(@) : (WP 4+1D)0*+1) > (u+v)? o u*® +u? +0P+1 >0 + 2w+ <
u?v? = 2uv 41> 0 < (uv — 1)? > 0 true!
and
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(i) : (W?+1)(v?+1) > . ((u+v)? +1) & v +u 407 +1 > Z(u2+2m+z)2+1) &

AP0+ A +40% +4 > 3ul 4302 +6uv+3 < 4uv? —duv+1+u®—2uv+v? >0<
(2uv — 1) 4 (u — v)? > 0 true!
Hence, we have:
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Proof of Theorem 1.
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In Lemma, we take: u = Vi V= s W= 5oy We get:
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Proof of Theorem 2.
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If in Lemma, we take: u = v V= o W= oy We get:
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3 (wa® + yb® + zc?)? 3 (wa? + yb® + 2c?)*
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