

Harmonic Number Approximation

Introduction

In this article, we will find a simple expression for the n^{th} harmonic number (H_n) using a special integral, the applications of which can be seen in [1], [2] and [3].

Relation between $G(x)$ and H_n

We know from [3] the definition of $G(x)$, that is,

$$G(x) = \int_0^1 \ln(t) \ln(1 - t^x) dt$$

where, x is any non-zero positive real number.

From [2], it is known that,

$$G(x) = \sum_{k=1}^{\infty} \frac{1}{k(kx+1)^2} = \gamma + \psi(1 + 1/x) - \frac{\psi'(1 + 1/x)}{x}$$

and

$$\int_0^x G(1/t) dt = \gamma x + 2 \ln(x \Gamma(x)) - x \psi(1 + x)$$

where, x is any non-zero positive real number, γ is the Euler-Mascheroni constant, $\Gamma(x)$ is the gamma function and $\psi(x)$ is the digamma function.

Substituting $x = 1/2$ in the above integral, we obtain,

$$\int_0^{1/2} G(1/t) dt = \frac{\gamma}{2} + 2 \ln\left(\frac{\sqrt{\pi}}{2}\right) - \frac{\psi(3/2)}{2} \implies \int_0^{1/2} \sum_{k=1}^{\infty} \frac{t^2}{k(k+t)^2} dt = \gamma + \ln\left(\frac{\pi}{2}\right) - 1$$

simplifying the above expression further, we have,

$$\sum_{k=1}^{\infty} \left(\frac{1}{2k} + 2 \ln\left(\frac{k}{k+1/2}\right) + \frac{1}{2k+1} \right) = \gamma + \ln\left(\frac{\pi}{2}\right) - 1$$

writing the above sum as the limit of a sum, we obtain,

$$\lim_{n \rightarrow \infty} \sum_{k=1}^n \left(\frac{1}{2k} + 2 \ln\left(\frac{k}{k+1/2}\right) + \frac{1}{2k+1} \right) = \gamma + \ln\left(\frac{\pi}{2}\right) - 1$$

using the definition of harmonic numbers, we have,

$$\lim_{n \rightarrow \infty} \left(\frac{H_n}{2} + 2 \ln(n!) - 2 \ln \left(\frac{(2n+2)!}{2^{2n+1}(n+1)!} \right) + H_{2n+2} - \frac{H_{n+1}}{2} - 1 \right) = \gamma + \ln \left(\frac{\pi}{2} \right) - 1$$

observe that,

$$\frac{H_n}{2} + H_{2n+2} - \frac{H_{n+1}}{2} = H_{2n+1}$$

thus for large values of n , we obtain the following approximation,

$$H_{2n+1} \approx \gamma + \ln \left(\frac{\pi}{2} \right) + 2 \ln \left(\frac{(2n+2)!}{2^{2n+1}n!(n+1)!} \right)$$

Corollary

Substituting $x = 1$ in the integral of $G(1/t)$, we obtain a relatively simpler approximation,

$$H_n \approx \gamma + \ln(n+1) - \frac{1}{2n+2}$$

References

- [1] Angad Singh *Infinite Series* (Romanian Mathematical Magazine, 2020).
- [2] Angad Singh *An Outstanding Integral* (Romanian Mathematical Magazine, 2020).
- [3] Angad Singh *A note on Euler-Mascheroni constant* (Octagon Mathematical Magazine, 2020).

Romanian Mathematical Magazine

Web: <http://www.ssmrmh.ro>

The Author: This article is published with open access.

ANGAD SINGH

email-id: angadsingh1729@gmail.com