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Abstract. In this paper is presented a simple proof for Borden’s inequality

and a few applications.

Theorem (BORDEN’S INEQUALITY)
If xi, yi > 0; i ∈ 1, n then:
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Proof of (1).
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By multiplying (4); (5) is obtained (1). �
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Proof of (2).

(x1 + x2 + x3)
x1

xx1
1

· (y1 + y2 + y3)
y1

yy11
=
(
1 +

x2 + x3

x1

)x1

·
(
1 +

y2 + y3
y1

)y1
≤

WEIGHTED AM-GM
≤

(x1(1 +
x2+x3

x1
) + y1(1 +

y2+y3
y1

)

x1 + y1

)x1+y1
=

(6) =
(x1 + x2 + x3 + y1 + y2 + y3)

x1+y1

(x1 + y1)x1+y1

(x1 + x2 + x3)
x2

xx2
2

· (y1 + y2 + y3)
y2

yy22
=
(
1 +

x1 + x3

x2

)x2

·
(
1 +

y1 + y3
y2

)y2
≤

WEIGHTED AM-GM
≤

(x2(1 +
x1+x3

x2
) + y2(1 +

y2+y3
y2

)

x2 + y2

)x2+y2
=

(7) =
(x1 + x2 + x3 + y1 + y2 + y3)

x1+x2+x3+y1+y2+y3

(x2 + y2)x2+y2

(x1 + x2 + x3)
x3

xx3
3

· (y1 + y2 + y3)
y3

yy33
=
(
1 +

x1 + x2

x3

)x3

·
(
1 +

y1 + y2
y3

)y3
≤

WEIGHTED AM-GM
≤

(x3(1 +
x1+x2

x3
) + y3(1 +

y1+y2
y3

)

x3 + y3

)x3+y3
=

(8) =
(x1 + x2 + x3 + y1 + y2 + y3)

x1+x2+x3+y1+y2+y3

(x3 + y3)x3+y3

By multiplying (6); (7); (8) is obtained (2) �

Proof for (3) is similar with proof of (1); (2).

Application 1.
Let be x1 = sin2 x; y1 = cos2 x;x2 = sin2 y; y2 = cos2 y;x, y ∈ (0, π2 ) in (1):
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Equality holds for x = y = π
4 .

Application 2.
If a, b, c, d, e, f > 0; a+ b+ c = d+ e+ f = 3 then by (2):
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Equality holds for a = b = c = d = e = f = 1.

Application 3
Let be x1 = x;x2 = 1; y1 = y; y2 = 1 in (1):
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Equality holds for x = y = 1.
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