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Taking g - Xx, it follows that:
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For x,y > 0, we have:
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log(x + iy) = > log(x“ + y*) + itan (x)
, 1 2 2 . -1 y
log(—x +iy) = Elog(x +y°)+i (11' — tan (;))

log(—x — iy) = %log(xz +y%) - i(” — tan™" (%))
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log(x —iy) = zlog(x + y*) —itan (x)
Therefore,
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og(sinx —icosx) = —log(sin“ x + cos“ x) — i tan
gist 2 gist sinx

= %log 1—itan™! (tan (g - x)) = —i (E - x)
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Hence,
4 2 cos 2(n+ 1)x 2 sin 2(n+ 1x
log(2 sinx) — i (T — x) = _ z _ z
og(2sinx) 1(2 x) 1 i 1
n=0 n=0
. = cos 2(n+ 1Dx . = cos(2nx)
log(2sinx) = —Z 1 = log(2sinx) = —ZT
n=0 n=1
4 i sin2(n+ 1)x i sin(2nx) w
——Xx= 5 ) ———— = ——
2 n+1 n 2
n=0 n=1

REFERENCE:
ROMANIAN MATHEMATICAL MAGAZINE-www.ssmrmh.ro

2 TWO AMAZING STANDARD SUMS




