

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

ABOUT RECURRENCE RELATIONSHIPS

FOR REAL NUMBER SEQUENCES-(II)

By Raluca Maria Caraion and Florică Anastase-Romania

Abstract: In this paper are presented few techniques for study the convergence of real numbers sequences.

1. Introduction.

Let $(x_n)_{n \in \mathbb{N}}$ be sequence of real numbers. We define the relationship homogeneity for second order of the type:

$$x_n = ax_{n-1} + bx_{n-2}, n > 2; \quad (1.1)$$

where $a, b \in \mathbb{R}$ and x_1, x_2 are the initial conditions.

If $a = q$ and $b = 0$ we deduce that $x_{n-1} = x_{n-2} + r$. So, we get $x_n = x_1 \cdot q^n, n \geq 1$; (1.2) and $x_n = 2x_{n-1} + x_{n-2}, n \geq 2$; (1.3) with $x_n = x_1 + (n-1)r, n \geq 1$.

Now, from (1.2) we admits that x_n has the form $x_n = c \cdot q^{n-1}, n \geq 1$, where $c \in \mathbb{R}$.

For $n > 3$, the relationship (1.1) can be written as:

$$cq^{n-1} = ac \cdot q^{n-2} + bc \cdot q^{n-3} \text{ or } cq^{n-3}(q^2 - aq - b) = 0$$

which means that (1.1) exist when q check the algebraic equation

$$q^2 - aq - b = 0; \quad (1.3)$$

which is named characteristic equation associate to the recurrence relationship.

If q_1, q_2 are the roots of the characteristic equation (1.3), namely $x'_n = cq_1^{n-1}, x''_n = cq_2^{n-1}$.

In these conditions, we find that

$$\begin{cases} q_1 = \frac{1}{2}(a - \sqrt{a^2 + 4b}) \\ q_2 = \frac{1}{2}(a + \sqrt{a^2 + 4b}) \end{cases}; \quad (1.4)$$

Theorem 1.1

If $a^2 + 4b > 0$ then $(x_n)_{n \geq 1}$ satisfy relationship (1.1) if and only if $\exists c, d \in \mathbb{R}$
such that

$$x_n = cq_1^{n-1} + dq_2^{n-1}, n \geq 1; \quad (1.5)$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Proof.

Admits that $(x_n)_{n \geq 1}$ is verified (1.1) and then, for $n = 1, n = 2$, we get $\begin{cases} c + d = x_1 \\ q_1 c + q_2 d = x_2 \end{cases}$.

Hence, $q_2 - q_1 = \sqrt{a^2 + 4b}$ and

$$c = \frac{q_2 x_1 - x_2}{q_2 - q_1}, d = \frac{x_2 - q_1 x_1}{q_2 - q_1}; \quad (1.6)$$

Suppose that (1.5) is verify for all $1, 2, \dots, n$ then for $n + 1$, we have:

$$\begin{aligned} x_{n+1} &= ax_n + bx_{n-1} = a(cq_1^{n-1} + dq_2^{n-1}) + b(cq_1^{n-2} + dq_2^{n-2}) = \\ &= cq_1^{n-2}(aq_1 + b) + dq_2^{n-2}(aq_2 + b) = \\ &= cq_1^{n-2}q_1^2 + dq_2^{n-2}q_2^2 = cq_1^n + dq_2^n. \end{aligned}$$

Reciprocal, admitting that exists $c, d \in \mathbb{R}$ such that (1.5) is verified, hence for $n > 2$,

$$\begin{aligned} ax_{n-1} + bx_{n-2} &= a(cq_1^{n-2} + dq_2^{n-2}) + b(cq_1^{n-3} + dq_2^{n-3}) = \\ &= cq_1^{n-3}(aq_1 + b) + dq_2^{n-3}(aq_2 + b) = cq_1^{n-1} + dq_2^{n-1} = x_n. \end{aligned}$$

Theorem 1.2

If $a^2 + 4b = 0$ and $a \neq 0$ then $(x_n)_{n \geq 1}$ check it out (1.1) if and only if

$\exists c, d \in \mathbb{R}$ such that

$$x_n = cq^{n-1} + d(n-1)q^{n-1}, n \geq 1; \quad (1.7)$$

Proof.

Admits that $(x_n)_{n \geq 1}$ verified (1.1) and for $n = 1, n = 2$ let $c = x_1, qc + qd = x_2$. Therefore,

$$c = x_1 \text{ and } d = \frac{1}{q}(x_2 - qx_1); \quad (1.8)$$

So, the numbers c and d verified the relationships (1.8) and suppose that these relationships are verified for all the integer numbers $1, 2, \dots, n$, then for $n + 1$, it follows

$$\begin{aligned} x_{n+1} &= cq^{n-2}(aq + b) + dq^{n-2}[a(n-1)q + b(n-2)] = \\ &= cq^{n-2}q^2 + dq^{n-2}[(n-1)(aq + b) - b] = \\ &= cq^n + dq^{n-2}[(n-1)q^2 + q^2] = cq^n + dnq^n. \end{aligned}$$

Reciprocal, admitting that exists $a, d \in \mathbb{R}$ such that (1.7) has verified, from (1.5) we get

$$ax_{n-1} + bx_{n-2} = cq^{n-3}(aq + b) + dq^{n-3}[a(n-2)q + b(n-3)] =$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$= cq^{n-1} + dq^{n-3}[(n-2)q^2 + q^2] = cq^{n-1} + d(n-1)q^{n-1} = x_n.$$

Theorem 1.3

If $a^2 + 4b < 0$ then the roots of the equation (1.1) has not real numbers and are as

$$\begin{cases} q_1 = r(\cos \theta - i \sin \theta) \\ q_2 = r(\cos \theta + i \sin \theta) \end{cases}, n \geq 1, \text{ where } r = \sqrt{-b} \text{ and } \cos \theta = \frac{a}{2\sqrt{-b}}, 0 < \theta < \pi.$$

Then the sequence $(x_n)_{n \geq 1}$ satisfy relationship (1.1) if and only if $\exists c, d \in \mathbb{R}$ such that

$$x_n = r^{n-1}[c \cdot \cos(n-1)\theta + d \cdot \sin(n-1)\theta], n \geq 1. \quad (1.9)$$

Proof. We establish the auxiliary relationships:

$$\begin{cases} ar \cdot \cos(n-1)\theta + b \cdot \cos(n-2)\theta = r^2 \cos(n\theta) \\ ar \cdot \sin(n-1)\theta + b \cdot \sin(n-2)\theta = r^2 \sin(n\theta) \end{cases}, n \geq 2; \quad (2.0)$$

For $n = 2$, we have $q_2^2 = aq_2 + b$ which written as:

$$r^2(\cos 2\theta + i \sin 2\theta) = ar(\cos \theta + i \sin \theta), \text{ therefore,}$$

$$\begin{cases} r^2 \cos(2\theta) = ar \cdot \cos \theta + b \\ r^2 \sin(2\theta) = ar \cdot \sin \theta \end{cases}$$

From (1.9) we have:

$$\begin{aligned} r^2 \cos(n+1)\theta &= r^2(\cos(n\theta) \cdot \cos \theta - \sin(n\theta) \cdot \sin \theta) = \\ &= \cos \theta [ar \cdot \cos(n-1)\theta + b \cdot \cos(n-2)\theta] - \sin \theta [ar \cdot \sin(n-1)\theta + b \cdot \sin(n-2)\theta] \\ &= ar[\cos(n-1)\theta \cdot \cos \theta - \sin(n-1)\theta \cdot \sin \theta] \\ &\quad + b[\cos(n-2)\theta \cdot \cos \theta - \sin(n-2)\theta \cdot \sin \theta] = \\ &= ar \cdot \cos(n\theta) + b \cdot \cos(n-1)\theta \end{aligned}$$

So, if $(x_n)_{n \geq 1}$ verified relationships (1.1), for $n = 1, 2$ in (2.0), we can find the system:

$$\begin{cases} c = x_1 \\ r(c \cdot \cos \theta + d \cdot \sin \theta) = x_2 \end{cases} \text{ which has unique solution}$$

$$\begin{cases} c = x_1 \\ d = \frac{1}{\sin \theta} \left(\frac{1}{r} x_2 - x_1 \cdot \cos \theta \right) \end{cases}$$

Suppose that these relationships are verified for $2, 3, \dots, n$, then we will prove that are true

for $n+1$.

$$\begin{aligned} x_{n+1} &= ar^{n-1}[c \cdot \cos(n-1)\theta + d \cdot \sin(n-1)\theta] \\ &\quad + br^{n-2}[c \cdot \cos(n-2)\theta + d \cdot \sin(n-2)\theta] = \end{aligned}$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$\begin{aligned}
 &= cr^{n-2}[ar \cdot \cos(n-1)\theta + b \cdot \cos(n-2)\theta] + dr^{n-2}[ar \cdot \sin(n-1)\theta + b \cdot \sin(n-2)\theta] \\
 &= cr^{n-2}r^2 \cdot \cos(n\theta) + dr^{n-2}r^2 \cdot \sin(n\theta) = r^n(c \cdot \cos(n\theta) + d \cdot \sin(n\theta))
 \end{aligned}$$

Reciprocal, admits that $\exists c, d \in \mathbb{R}$ such that (1.9) are verified, from (2.0) and (1.1), we

have:

$$\begin{aligned}
 &ax_{n-1} + bx_{n-2} = \\
 &= ar^{n-2}[c \cdot \cos(n-2)\theta + d \cdot \sin(n-2)\theta] + br^{n-3}[c \cdot \cos(n-3)\theta + d \cdot \sin(n-3)\theta] \\
 &= cr^{n-3}[ar \cdot \cos(n-2)\theta + b \cdot \cos(n-3)\theta] \\
 &\quad + dr^{n-3}[ar \cdot \sin(n-2)\theta + b \cdot \sin(n-3)\theta] \\
 &= cr^{n-3}r^2 \cdot \cos(n-1)\theta + dr^{n-3}r^2 \cdot \sin(n-1)\theta \\
 &= r^{n-1}[c \cdot \cos(n-1)\theta + d \cdot \sin(n-1)\theta] = x_n.
 \end{aligned}$$

2. Applications.

Ap. 2.1)

Let $(x_n)_{n \geq 0}$ be sequence of real numbers defined by $x_0 = x_1 = 1$ and

$$x_{n+2} = x_{n+1} + x_n. \text{ Find } x_n.$$

Solution. The characteristic equation associate for the sequence $(x_n)_{n \geq 1}$ is $r^2 = r + 1$ which has the roots

$$r_1 = \frac{1 - \sqrt{5}}{2}, r_2 = \frac{1 + \sqrt{5}}{2}$$

Using Theorem 1.1, we get, $x_n = c \left(\frac{1-\sqrt{5}}{2} \right)^n + d \left(\frac{1+\sqrt{5}}{2} \right)^n$ and from the initial conditions

$x_0 = x_1 = 1$, it follows that

$$\begin{cases} c = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5} - 1}{2} \\ d = \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5} + 1}{2} \end{cases}$$

Therefore,

$$x_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} + \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right] \text{ (Binet's formula)}$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Observation 2.1 The sequence $(x_n)_{n \geq 0}$ is known as *Fibonacci's* sequence and is noticed $(F_n)_{n \geq 0}$
Ap. 2.2)

Let $(x_n)_{n \geq 0}$ be sequence of real numbers defined by $x_0 = 2, x_1 = 1$ and

$$x_{n+2} = x_{n+1} + x_n. \text{ Find } x_n.$$

Solution. Using application 2.1, we get

$$x_n = \left(\frac{1 - \sqrt{5}}{2} \right)^n + \left(\frac{1 + \sqrt{5}}{2} \right)^n$$

Observation 2.2 The sequence $(x_n)_{n \geq 0}$ is known as *Lucas'* sequence and is noticed $(L_n)_{n \geq 1}$.
Ap. 2.3)

Let $(x_n)_{n \geq 0}$ be sequence of real numbers defined by $x_0 = 0, x_1 = 1$ and

$$x_{n+2} = \sqrt{2}x_{n+1} - x_n$$

Prove that $x_{n+4k} = x_n, k \in \mathbb{N}$.

Solution. The characteristic equation associate for the sequence $(x_n)_{n \geq 1}$ is $r^2 = \sqrt{2}r - 1$

$$\Delta = -2 \text{ and } r_{1,2} = \frac{1}{\sqrt{2}}(1 \pm i) = \cos \frac{\pi}{4} \pm i \sin \frac{\pi}{4}$$

Using Theorem 1.3, we get $x_n = c \cdot \cos \frac{n\pi}{4} + d \cdot \sin \frac{n\pi}{4}$

From $x_0 = 1$ and $x_1 = 1$, it follows that $c = 0, d = \sqrt{2}$ and $x_n = \sqrt{2} \sin \frac{n\pi}{4}$.

$$\text{Therefore, } x_{n+8} = \sqrt{2} \sin \frac{(n+4k)\pi}{4} = \sqrt{2} \sin \left(\frac{n\pi}{4} + 2k\pi \right) = x_n.$$

Observation 2.3

If $(x_n)_{n \geq 1}$ are defined by (*): $x_{n+k} = a_1x_{n+k-1} + a_2x_{n+k-2} + \dots + a_kx_n, (a_i)_{i=1,n} \in \mathbb{R}$ and $x_0 = p_0, x_1 = p_1, \dots, x_{k-1} = p_{k-1}$ we can determine existence of the general terms.

Let $r^k = a_1r^{k-1} + a_2r^{k-2} + \dots + a_{k-1}r + a_k$ be the characteristic equation of the sequence, then the general terms of $(x_n)_{n \geq 1}$ are $x_n = c_1\alpha_1^n + c_2\alpha_2^n + \dots + c_k\alpha_k^n$, where $(c_i)_{i=1,n}$ are determined from the initial conditions.

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

The characteristic equation has α_1 by the order q , $\alpha_1 \in \mathbb{R}$, thus the sequences with general terms $n \cdot \alpha_1^n, n^2 \cdot \alpha_1^n, \dots, n^{q-1} \cdot \alpha_1^n$ verified the relationships (*).

Ap. 2.4)

Let $(x_n)_{n \geq 1}$ be sequence of real numbers defined by $x_0 = 3, x_1 = 2, x_3 = 6$ and $x_{n+3} = 2x_{n+2} + x_{n+1} - 2x_n$. Find x_n .

Solution.

The equation characteristic associate of the sequence is $r^3 = 2r^2 + r - 2$ which has the

roots $\alpha_1 = 1, \alpha_2 = -1, \alpha_3 = 2$. Using the Observation 2.3, we get

$x_n = c_1 + c_2(-1)^n + c_3 \cdot 2^n$ and from the initial conditions, we obtain

$$x_n = 1 + (-1)^n + 2^n.$$

3. Non-homogeneous relationships of recurrence by two ordered

Let $(x_n)_{n \geq 1}$ be sequence of real numbers defined by

$$(3.0): \begin{cases} x_{n+2} = ax_{n+1} + bx_n + f(n) \\ x_0 = p_0, x_1 = p_1 \end{cases}; a, b, p_0, p_1 \in \mathbb{R}, b \neq 0 \text{ and } f: \mathbb{N} \rightarrow \mathbb{R}.$$

Theorem 3.1

If the characteristic equation $r^2 = ar + b$ has two distinct roots α, β and if the sequence $(z_n)_{n \geq 1}$ satisfy the relationships (3.0), thus the sequence $(x_n)_{n \geq 1}$ has the general terms $x_n = c\alpha^n + d\beta^n + z_n$.

Proof.

Because $\begin{cases} \alpha^2 = a\alpha + b \\ \beta^2 = a\beta + b \end{cases} \mid c\alpha^n$, it follows that

$$c\alpha^{n+2} + d\beta^{n+2} = a(c\alpha^{n+1} + d\beta^{n+1}) + b(c\alpha^n + d\beta^n) \text{ and how}$$

$$z_{n+2} = az_{n+1} + bz_n + f(n), \text{ by adding we get}$$

$$c\alpha^{n+2} + d\beta^{n+2} + z_{n+2} = a(c\alpha^{n+1} + d\beta^{n+1} + z_{n+1}) + b(c\alpha^n + d\beta^n + z_n) + f(n), n \in \mathbb{N}$$

Therefore, $x_n = c\alpha^n + d\beta^n + z_n$ and from $x_0 = p_0, x_1 = p_1$ we have

$$\begin{cases} c + d + z_0 = p_0 \\ c\alpha + d\beta + z_1 = p_1 \end{cases} \text{ the unique solution.}$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Theorem 3.2

If the characteristic equation $r^2 = ar + b$ has double roots and $(z_n)_{n \geq 1}$ satisfy the relationships (3.0), thus the sequence $(x_n)_{n \geq 1}$ has the general

$$\text{term } x_n = c\alpha^n + dn \cdot \alpha^n + z_n, \quad c, d \in \mathbb{R}$$

Proof. Using Theorem 3.1 for $c = p_0 - z_0$ and $d = \frac{1}{\alpha}(p_1 - z_1) - c$, thus we find that

exist P polynomial function with $\text{degree}(P) = p$ and an constant $\gamma \in \mathbb{R}$ such that

$$f(n) = \gamma^n \cdot P(n).$$

Ap. 2.5)

Let $(x_n)_{n \geq 1}$ be sequence of real numbers defined by

$$x_{n+2} = 2x_{n+1} - x_n + 17 \cdot 5^n + 7 \cos \frac{n\pi}{3}. \text{ Find } x_n.$$

Solution. Let $y_n = c + nd$ solution of the homogenous relationship and let $f_1(n) = 17 \cdot 5^n$.

We find an particular solution $\bar{z}_n = \bar{c} \cdot 5^n$, where $\bar{c} = 1$.

Let $f_2(n) = 7 \cos \frac{n\pi}{3}$ and we will to find $\lambda, \mu \in \mathbb{R}$ such that

$$z_n = \lambda \cos \frac{n\pi}{3} + \mu \sin \frac{n\pi}{3} \text{ which verify the relationships}$$

$$z_{n+2} = 2z_{n+1} - z_n + 7 \cos \frac{n\pi}{3}$$

From the initial conditions, we get $\begin{cases} \lambda = -\frac{7}{2} = -7 \cos \frac{\pi}{3} \\ \mu = -\frac{7\sqrt{3}}{2} = -7 \sin \frac{\pi}{3} \end{cases}$ and then

$$z_n = -7 \cos \frac{(n-1)\pi}{3}. \text{ Therefore,}$$

$$x_n = c + dn + 5^n - 7 \cos \frac{(n-1)\pi}{3}$$

Ap. 2.6)

For $a, b, x_1, x_2 \in \mathbb{R}$ and $(b_n)_{n \geq 1}$ sequence of real numbers, find the general

term of the sequence $(x_n)_{n \geq 1}$ defined by

$$x_{n+2} - (a+b)x_{n+1} + abx_n = b_n, \quad n \geq 1.$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Solution. Let $y_n = x_{n+1} - ax_n, n \geq 1$ then we get

$$y_{n+1} - by_n = b_n, n \geq 1 \text{ or } y_{n+1} = by_{n-1} + b_{n-1}, n \geq 1.$$

Therefore, $(y_n)_{n \geq 1}$ verify the relationship

$$y_2 = by_1 + b_1$$

$$y_3 = by_2 + b_2 = b^2y_1 + bb_1 + b_2$$

$$y_4 = by_3 + b_3 = b^3y_1 + b^2b_1 + bb_2 + b_3$$

... (by induction)

$$y_n = b^{n-1}y_1 + \sum_{k=1}^{n-2} b^{n-k-1}b_k + b_{n-1}, n > 1$$

Now, from $x_n = ax_{n-1} + y_{n-1}, n > 1$, we obtain

$$x_n = a^{n-1}x_1 + \sum_{k=1}^{n-2} a^{n-k-1}y_k + y_{n-1}, n > 1$$

Therefore, from $y_1 = x_2 - ax_1$ we get

$$\begin{aligned} x_n &= a^{n-1}x_1 + \sum_{k=1}^{n-2} a^{n-k-1} \left[b^{k-1}(x_2 - ax_1) + \sum_{i=1}^{k-2} b^{k-i-1}b_i + b_{k-1} \right] + b^{n-2}(x_2 - ax_1) + \\ &\quad + \sum_{j=1}^{n-3} b^{n-j-2}b_j + b_{n-2}, n > 2 \end{aligned}$$

Theorem 3.3

If $(a_i)_{i=1,2} \in \mathbb{R}$, $a_k \neq 0$ and $(x_n)_{n \geq 0}$ is an sequence positive of real numbers such that $a_0 + a_1x_n + a_2x_nx_{n+1} + \dots + a_kx_nx_{n+1} \dots x_{n+k-1} = x_nx_{n+1} \dots x_{n+k}$, $\forall n \in \mathbb{N}$; then exist an $(u_n)_{n \geq 0}$ sequence of real numbers such that $x_n = \frac{u_{n+1}}{u_n}$, $\forall n \in \mathbb{N}$ and

$$\sum_{i=0}^k a_i u_{n+i} = u_{n+k+i}, \forall n \in \mathbb{N}$$

Proof. Because $x_n \neq 0, \forall n \in \mathbb{N}$ then $\exists (u_n)_{n \geq 1}$ such that $x_n = \frac{u_{n+1}}{u_n}$. Let $u_0 = 1, u_1 = x_0$

and

$u_n = x_0x_1 \dots x_n, \forall n \geq 2$, hence, replacing $x_n = \frac{u_{n+1}}{u_n}$ in

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$a_0 + a_1 x_n + a_2 x_n x_{n+1} + \cdots + a_k x_n x_{n+1} \cdots x_{n+k-1} = x_n x_{n+1} \cdots x_{n+k}, \forall n \in \mathbb{N}$$

It follows that:

$$\begin{aligned} a_0 + a_1 \cdot \frac{u_{n+1}}{u_n} + a_2 \cdot \frac{u_{n+2}}{u_{n+1}} \cdot \frac{u_{n+1}}{u_n} + \cdots + a_k \cdot \frac{u_{n+k}}{u_{n+k-1}} \cdot \frac{u_{n+k-1}}{u_{n+k-2}} \cdot \cdots \cdot \frac{u_{n+2}}{u_{n+1}} \cdot \frac{u_{n+1}}{u_n} = \\ = \frac{u_{n+k+1}}{u_{n+k}} \cdot \frac{u_{n+k}}{u_{n+k-1}} \cdot \frac{u_{n+k-1}}{u_{n+k-2}} \cdot \cdots \cdot \frac{u_{n+2}}{u_{n+1}} \cdot \frac{u_{n+1}}{u_n} \end{aligned}$$

Therefore,

$$\sum_{i=0}^k a_i u_{n+i} = u_{n+k+i}, \forall n \in \mathbb{N}$$

Ap. 2.7)

Let $(x_n)_{n \geq 0}$ sequence of real numbers defined by $x_0 \neq \frac{1}{2}$, $x_{n+1} = \frac{3x_n}{1-2x_n}$,

$\forall n \in \mathbb{N}$. Prove that $(x_n)_{n \in \mathbb{N}}$ is convergent.

Solution. If $x_0 = 0$ then $x_n = 0$.

Let $x_0 \in \mathbb{R} - \left\{0, \frac{1}{2}\right\}$, thus $x_n \in \mathbb{R} - \left\{0, \frac{1}{2}\right\}$ and denoting $y_n = 1 - 2x_n$, $\forall n \in \mathbb{N}$ we get

$$y_n \in \mathbb{R}^* \text{ and } y_{n+1}y_n - 4y_n + 3 = 0, \forall n \in \mathbb{N}.$$

Using Theorem 3.3, let us denote $y_n = \frac{u_{n+1}}{u_n}$, $n \in \mathbb{N}$, and hence

$$u_{n+2} - 4u_{n+1} + 3u_n = 0, \forall n \in \mathbb{N}$$

The characteristic equation $r^2 - 4r + 3 = 0$ has the roots $r_1 = 1$ and $r_2 = 3$.

So, $u_n = c + d \cdot 3^n$, $\forall n \in \mathbb{N}$. Therefore,

$$y_n = \frac{c + d \cdot 3^{n+1}}{c + d \cdot 3^n}, \forall n \in \mathbb{N}$$

How $(y_n)_{n \geq 0}$ is convergent, hence $(x_n)_{n \geq 0}$ is convergent.

Ap. 2.8)

Let $(x_n)_{n \geq 0}$ be sequence of real numbers strictly positive defined by $x_1 = 1$, $x_{n+1} = \frac{x_n}{2+x_n}$

Prove that $(y_n)_{n \geq 1}$, $y_n = \sum_{k=1}^n x_k$ **is convergent.**

Solution. For $x_n > 0$, $\forall n \in \mathbb{N}$ let us denote $u_n = \frac{1}{x_n}$, $n \in \mathbb{N}^*$ with $u_1 = 1$, $u_2 = 3$. Hence,

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$u_{n+2} - 3u_{n+1} + 2u_n = 0, \forall n \in \mathbb{N}^*$ with general solution $u_n = c + d \cdot 2^n, \forall n \in \mathbb{N}^*$.

From $u_1 = 1, u_2 = 3$, we get $u_n = 2^n - 1$. So, $x_n = \frac{1}{2^n - 1}, \forall n \in \mathbb{N}^*$.

$y_{n+1} - y_n = x_{n+1} = \frac{1}{2^{n+1} - 1} \geq 0$, then $(y_n)_{n \geq 0}$ increasing.

$y_n < \sum_{k=1}^n \frac{1}{2^k} = 1 - \frac{1}{2^n} < 1 \Rightarrow (y_n)_{n \geq 1}$ – bounded.

Therefore, $(y_n)_{n \geq 1}$ is convergent.

Ap. 2.9)

For $a > 1$, let $(x_n)_{n \geq 0}$ be sequence of real numbers strictly positive defined

by $x_0 = 1, x_2 = a$ and $x_{n+1} = \frac{x_n^{a+1}}{x_{n-1}^a}$. Find $\lim_{n \rightarrow \infty} \frac{1}{x_n}$.

Solution. For $x_n > 0$ and $a > 1$, we have:

$$\begin{aligned} \log_a x_{n+1} &= (a+1) \log_a x_n - a \log_a x_{n-1} \Leftrightarrow \\ \log_a x_{n+1} - (a+1) \log_a x_n + a \log_a x_n &= 0 \end{aligned}$$

Let $y_n = \log_a x_n$ and from the initial conditions we get $y_0 = 0$ and $y_1 = 1$. Thus,

$$y_{n+1} - (a+1)y_n + ay_{n-1} = 0$$

The characteristic equation is:

$$r^2 - (a+1)r + a = 0 \Leftrightarrow r_1 = 1, r_2 = a. \text{ Hence, } y_n = c + d \cdot a^n$$

$$\begin{cases} c + d = y_0 = 0 \\ c + d \cdot a = y_1 = 1 \end{cases} \Rightarrow \begin{cases} c = -\frac{1}{a-1} \\ d = \frac{1}{a-1} \end{cases}$$

$$y_n = \frac{1}{a-1} (a^n - 1) = a^{n-1} + a^{n-2} + \dots + a + 1$$

$$x_n = a^{y_n} = a^{a^{n-1} + a^{n-2} + \dots + a + 1}. \text{ Therefore,}$$

$$\lim_{n \rightarrow \infty} \frac{1}{x_n} = 0.$$

Ap.10)

For $a, b, c \in \mathbb{R}, a > b > c > 0$ let $(x_n)_{n \geq 0}$ such that

$ax_{n+2} + bx_{n+1} + cx_n = 1, \forall n \in \mathbb{N}$. Find: $\lim_{n \rightarrow \infty} x_n$.

Solution. We have:

$$\begin{cases} ax_{n+3} + bx_{n+2} + cx_{n+1} = 1 \\ ax_{n+2} + bx_{n+1} + cx_n = 1 \end{cases} ; \forall n \in \mathbb{N}$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$ax_{n+3} + (b-a)x_{n+2} + (c-b)x_{n+1} + cx_n = 0, \forall n \in \mathbb{N}$$

The characteristic equation is $ar^3 + (b-a)r^2 + (c-b)r - a = 0$ with $r_1 = 1$ or

$$ar^2 + br + c = 0; (1)$$

We distinguish the following cases:

Case I) If $\Delta = b^2 - 4ac > 0$, then the equation (1) has two roots $r_2 \neq r_3$ and from Vieta's theorem, $r_2 + r_3 = -\frac{b}{a} \in (-1,0)$, $r_2 r_3 = \frac{c}{a} \in (0,1)$, then $r_2 \in (-1,0)$ and $r_3 \in (-1,0)$.

Therefore, $x_n = A \cdot r_1^n + B \cdot r_2^n + C \cdot r_3^n$ and from $r_2, r_3 \in (-1,0)$ it follows that

$$\lim_{n \rightarrow \infty} x_n = A.$$

Case II) If $\Delta = b^2 - 4ac = 0$, then $r_2 = r_3 = -\frac{b}{a} \in (-1,0)$. Therefore,

$x_n = A \cdot r_1^n + (B + nC)r_2^n$ and from $r_2 \in (-1,0)$ it follows that

$$\lim_{n \rightarrow \infty} x_n = A.$$

Case III) If $\Delta = b^2 - 4ac < 0$, then $r_2 = r(\cos \theta + i \sin \theta)$ and $r_3 = r(\cos \theta - i \sin \theta)$,

$\theta \in \mathbb{R} - \{k\pi | k \in \mathbb{Z}\}$. From $r_1 r_2 = r^2 = \frac{c}{a} < 1$, then $r \in (0,1)$.

But $x_n = A \cdot 1^n + (B \cos n\theta + C \sin n\theta)r^n$; $A, B, C \in \mathbb{R}$, where

$((B \cos n\theta + C \sin n\theta)r^n)_{n \in \mathbb{N}}$ is bounded. Hence,

$$\lim_{n \rightarrow \infty} x_n = A.$$

Now, using $\lim_{n \rightarrow \infty} x_n = A$ and $ax_{n+2} + bx_{n+1} + cx_n = 1, \forall n \in \mathbb{N}$, we get

$$A(a + b + c) = 1 \Rightarrow \lim_{n \rightarrow \infty} x_n = \frac{1}{a + b + c}.$$

Ap.11)

For $a, b \in \mathbb{R}^*$, $a \neq \pm b$, let $(x_n)_{n \geq 0}$ be sequence of positive real numbers

defined by $x_0 = 1, x_1 = \frac{1}{a+b}$ and $abx_{n+2}x_{n+1} + (a+b)x_{n+2}x_n + x_{n+1}x_n = 0$. Find: $\lim_{n \rightarrow \infty} \frac{x_n}{x_{n+1}}$.

Solution. For $x_0 = 1, x_1 = \frac{1}{a+b}$ and $x_n > 0, \forall n \in \mathbb{N}$ we have:

$$abx_{n+2}x_{n+1} + (a+b)x_{n+2}x_n + x_{n+1}x_n = 0 \Leftrightarrow$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$\frac{1}{x_{n+2}} + (a+b) \cdot \frac{1}{x_{n+1}} + ab \cdot \frac{1}{x_n} = 0$$

Let us denote $y_n = \frac{1}{x_n}$, then $y_0 = 1, y_1 = a+b$ and hence

$$y_{n+2} + (a+b)y_{n+1} + aby_n = 0$$

The characteristic equation $r^2 + (a+b)r + ab = 0$ has the roots $r_1 = -a, r_2 = -b$, thus $y_n = c \cdot (-a)^n + d \cdot (-b)^n$ and from the initial conditions $y_0 = 1, y_1 = a+b$, it follows

that $c = \frac{2b+a}{b-a}$ and $d = \frac{2a+b}{a-b}$. Therefore,

$$y_n = \frac{2b+a}{b-a} \cdot (-a)^n + \frac{2a+b}{a-b} \cdot (-b)^n \text{ and}$$

$$\begin{aligned} \lim_{n \rightarrow \infty} \frac{x_n}{x_{n+1}} &= \lim_{n \rightarrow \infty} \frac{y_{n+1}}{y_n} = \lim_{n \rightarrow \infty} \frac{\frac{2b+a}{b-a} \cdot (-a)^{n+1} + \frac{2a+b}{a-b} \cdot (-b)^{n+1}}{\frac{2b+a}{b-a} \cdot (-a)^n + \frac{2a+b}{a-b} \cdot (-b)^n} = \\ &= - \lim_{n \rightarrow \infty} \frac{\frac{2b+a}{b-a} \cdot a^{n+1} + \frac{2a+b}{a-b} \cdot b^{n+1}}{\frac{2b+a}{b-a} \cdot a^n + \frac{2a+b}{a-b} \cdot b^n} = \\ &= -a \cdot \lim_{n \rightarrow \infty} \frac{\frac{2b+a}{b-a} + \frac{2a+b}{a-b} \cdot \left(\frac{b}{a}\right)^{n+1}}{\frac{2b+a}{b-a} + \frac{2a+b}{a-b} \cdot \left(\frac{b}{a}\right)^n} = -a \end{aligned}$$

REFERENCES:

- [1] ROMANIAN MATHEMATICAL MAGAZINE CHALLENGES 1-500-D. Sitaru, M. Ursărescu-Studis 2021
- [2] ANALYTIC PHENOMENON-D. Sitaru-Cartea Romaneasca, 2018
- [3] OLYMPIC MATHEMATICAL ENERGY- M. Bencze, D. Sitaru-Studis, 2018
- [4] 699 OLYMPIC MATHEMATICAL CHALLENGES- M. Bencze, D. Sitaru-Studis, 2017
- [5] ȘIRURI-D.M. Bătinețu-Giurgiu, Albatros 1979
- [6] OLYMPIC MATHEMATICAL POWER-M. Bencze, D. Sitaru, M. Ursărescu-Studis, 2018
- [7] ANALIZĂ MATEMATICĂ –D.M.Bătinețu-Giurgiu & Co. –MatrixRom,2003
- [8] OLIMPIC MATHEMATICAL BEAUTIES-M. Bencze, D. Sitaru, M. Ursărescu-Studis, 2018
- [9] QUANTUM MATHEMATICAL POWER- M. Bencze, D. Sitaru-Studis, 2018
- [10] ROMANIAN MATHEMATICAL MAGAZINE-www.ssmrmh.ro