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Prove that
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Solutions proposed by: Surjeet Singhania, Himachal Pradesh, India

Denote α = cos

(
2π

13

)
cos

(
3π

13

)
, β = − cos

(
4π

13

)
cos

(
6π

13

)
and

γ = − cos
( π

13

)
cos

(
5π

13

)
Now we will use
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Now cos(A) cos(B) =
cos(A−B) + cos(A+B)
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applying this formula forα, β and γ
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Similarly αβ+αγ+γβ = −1

4
Now we can find a cubic polynomial with real roots α, β and γ

polynomial we have x3−x
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= 0 this is well known polynomial RCP

RCP or Ramanujan cubic polynomials defined by Vladimir Shevelev in his article

The cubic equation x3+px2+qx+r = 0 is RCP if it has real roots and satisfy the equation
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we have p = q = −1

4
and r = − 1

64
this satisfying equation of RCP hence we can apply result
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https://www.facebook.com/surjeetsinghania1729/
 https://arxiv.org/pdf/0711.3420.pdf
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