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D.M. BĂTINEŢU-GIURGIU, MIHÁLY BENCZE, DANIEL SITARU, NECULAI STANCIU -

ROMANIA

Abstract. In this paper we present some IMO type inequalities with Fi-

bonacci and Lucas numbers.

Theorem 1.

nm−1 ·
n∑

k=1

F 2m
k ≥ Fm

n · Fm
n+1 for any positive integer n and m ≥ 1.

Proof.
The function f : (0,+∞)→ (0,+∞), f(x) = xm is convex on (0,+∞). Hence,

f(x1) + f(x2) + . . . + f(xn) ≥ n · f
(x1 + x2 + . . . + xn

n

)
(1) ⇔ nm−1 ·

n∑
k=1

f(xk) ≥

(
n∑

k=1

xk

)m

If we take xk = F 2
k , then by (1) we obtain:

nm−1 ·
n∑

k=1

F 2m
k ≥

(
n∑

k=1

F 2
k

)m

,

where we take into account that

n∑
k=1

F 2
k = FnFn+1 which yields

nm−1
n∑

k=1

F 2m
k ≥ Fm

n Fm
n+1,∀n ∈ N∗.

�

Theorem 2.
F1

(F 2
1 + F 2

2 )m+1
+

F2

(F 2
1 + F 2

2 + F 2
3 )m+1

+. . .+
Fn

(F 2
1 + F 2

2 + . . . + F 2
n+1)m+1

≥ 1

Fm
n+2

− 1

Fm+1
n+2

,

for any positive integer n and any positive real number m.

Proof.
Taking into account that

F 2
1 +F 2

2 = F2F3, F
2
1 +F 2

2 +F 2
3 = F3F4, . . . , F

2
1 +F 2

2 + . . .+F 2
n+1 = Fn+1Fn+2, then

LHS =
F1

(F2F3)m+1
+

F2

(F3F4)m+1
+ . . . +

Fn

(Fn+1Fn+2)m+1
=

=
( F1

F2F3
)m+1

Fm
1

+
( F2

F3F3
)m+1

Fm
2

+ . . . +
( Fn

Fn+1Fn+2
)m+1

Fm
n

.

1
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By J. Radon’s inequality and well known formulas we have

LHS =
( F1

F2F3
)m+1

Fm
1

+
( F2

F3F4
)m+1

Fm
2

+ . . . +
( Fn

Fn+1Fn+2
)m+1

Fm
n

Radon
≥

Radon
≥

(∑n
k=1

Fk

Fk+1Fk+2

)m+1

(∑n
k=1 Fk

)m =

(∑n
k=1

Fk+2−Fk+1

Fk+1Fk+2

)m+1

(Fn+2 − 1)m
=

=

(∑n
k=1

(
1

Fk+1
− 1

Fk+2

))m+1

(Fn+2 − 1)m
=

(1− 1
Fn+2

)m+1

(Fn+2 − 1)m
=

(Fn+2 − 1)m+1

(Fn+2 − 1)mFm+1
n+2

=

=
Fn+2 − 1

Fm+1
n+2

=
1

Fm
n+2

− 1

Fm+1
n+2

,

and we are done. �

Theorem 3.

L1

(L2
1 + L2

2 + 2)2
+

L2

(L2
1 + L2

2 + L2
3 + 2)2

+. . .
Ln

(L2
1 + L2

2 + . . . + L2
n+1 + 2)2

≥ (Ln+2 − 1)2

L2
n+2(Ln+2 − 3)

for any positive integer n.

Proof.
We have

LHS =
L1

(L2
1 + L2

2 + 2)2
+

L2

(L2
1 + L2

2 + L2
3 + 2)2

+. . .+
Ln

(L2
1 + L2

2 + . . . + L2
n+1 + 2)2

=

=

(
L1

L2
1+L2

2+2

)2

L1
+

(
L2

L2
1+L2

2+L3
3+2

)2

L2
+ . . . +

(
Ln

L2
1+L2

2+...+L2
n+1+2

)2

Ln
.

By Bergström inequality we have

(1) LHS
Bergström

≥

(
L1

L2
1+L2

2+2
+ L2

L2
1+L2

2+L2
3+2

+ . . . + Ln

L2
1+L2

2+...+L2
n+1+2

)2

∑n
k=1 Lk

Since,

n∑
k=1

Lk = Ln+2 − 3, and

k∑
i=1

L2
k + 2 = LkLk+1 by (1) we deduce that

LHS ≥

(
L3−L2

L2L3
+ L4−L3

L3L4
+ . . . + Ln+2−Ln+1

Ln+1Ln+2

)2

Ln+2 − 3
=

=

(
1
L2
− 1

L3
+ 1

L3
− 1

L4
+ . . . + 1

Ln+1
− 1

Ln+2

)2

Ln+2 − 3
=

(
1− 1

Ln+2

)2

Ln+2 − 3
=

(Ln+2 − 1)2

L2
n+2(Ln+2 − 3)

�

Theorem 4.
If m ≥ 0 and n ∈ N∗ then (

√
F2n+1 − Fn+1)m + (

√
F2n+1 + Fn+1)m ≥ 2Fm

n .
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Proof.
By AM-GM inequality we have

(
√
F2n+1−Fn+1)m+(

√
F2n+1+Fn+1)m ≥ 2(

√
(
√
F2n+1 − Fn+1)(

√
F2n+1 + Fn+1)m =

= 2
√

(F2n+1 − F 2
n+1)m = 2

√
F 2m
n = 2Fm

n ,

where we take into account F 2
n + F 2

n+1 = F2n+1.
The equality holds if and only if m = 0. �

Theorem 5. √
F 4

1 − F 2
1 F

2
2 + F 4

2 +
√
F 4

2 − F 2
2 F

2
3 + F 4

3 + . . .

. . . +
√
F 4
n−1 − F 2

n−1F
2
n + F 4

n +
√

F 4
n − F 2

n + 1 > FnFn+1,

for any n ∈ N∗.

Proof.

We have
√
x2 − xy + y2 ≥ 1

2 (x + y), for any x, y ∈ R+.

Indeed,
√
x2 − xy + y2 ≥ 1

2
(x + y)⇔ 4(x2 − xy + y2) ≥ x2 + 2xy + y2 ⇔

⇔ 3(x2 − 2xy + y2) ≥ 0⇔ (x− y)2 ≥ 0, true.

The equality occurs if and only if x = y. Yields that

n−1∑
k=1

√
F 4
k − F 2

kF
2
k+1 + F 4

k+1 +
√
F 4
n − F 2

nF
2
1 + F 2

1 ≥

≥ 1

2

n−1∑
k=1

(F 2
k + F 2

k+1) +
1

2
(F 2

n + F 2
1 ) =

=
1

2
· 2

n∑
k=1

F 2
k =

n∑
k=1

F 2
k = FnFn+1,

for any n ∈ N∗.
Because Fk 6= Fk+1,∀k ≥ 2 yields that the inequality from the statement is strictly.

�

Theorem 6.

3

√
Fn

5Fn+2
+ 3

√
Fn+1

5Fn+2 + 3Fn+1
+ 3

√
Fn+2

5Fn+2 + 3Fn
<

3
√

4, for any n ∈ N∗.

Proof.
For any a, b ∈ R we have the inequality

(1) 3
√
a +

3
√
b ≤ 3

√
4(a + b)

with equality if and only if a = b.
Indeed, we have 4(x3 + y3)− (x + y)3 = 4(x + y)(x2 − xy + y2)− (x + y)3 =

= (x + y)(4x2 − 4xy + 4y2 − x2 − y2 − 2xy) = (x + y)(3x2 + 3y2 − 6xy) =

= 3(x + y)(x− y)2 ≥ 0,∀x, y ∈ R
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with equality if and only if x = y. So we have 3
√

4(x3 + y3) ≥ x + y, where we put

x = 3
√
a, y = 3

√
b and we obtain (1). By (1) yields that

3

√
a

16(a + b) + 4c
= 3

√
a

4(4(a + b) + c)
=

3
√
a

3

√
4(( 3
√

4(a + b))3 + ( 3
√
c)3)

≤

(2) ≤
3
√
a

3
√
a + 3
√
b + 3
√
c

Hence,

(3)
∑
cyclic

3

√
a

16(a + b) + 4c
≤
∑
cyclic

3
√
a

3
√
a + 3
√
b + 3
√
c

= 1

The inequality from the statement is equivalent with

3

√
Fn

20Fn+2
+ 3

√
Fn+1

20Fn+2 + 12Fn+1
+ 3

√
Fn+2

20Fn+2 + 12Fn
< 1

(4)

⇔ 3

√
Fn

16(Fn + Fn+1) + 4Fn+2
+ 3

√
Fn+1

16(Fn+1 + Fn+2) + 4Fn
+ 3

√
Fn+2

16(Fn+2 + Fn) + 4Fn+1
< 1

If we take a = Fn, b = Fn+1, c = Fn+2, then by (3) we obtain (4) and we are
done. �

Theorem 7.
If (xn)n≥1, xn ∈ R,

2 ·

(
n∑

k=1

Fk · sinxk

)
·

(
n∑

k=1

Fk · cosxk

)
≤ n · Fn · Fn+1,∀n ∈ N∗.

Proof.
By Cauchy-Buniakowski-Schwarz’ inequality, we have:

(1)

∣∣∣∣∣
n∑

k=1

Fk sinxk

∣∣∣∣∣
2

≤

(
n∑

k=1

F 2
k

)(
n∑

k=1

sin2 xk

)
= FnFn+1 ·

n∑
k=1

sin2 xk,

and

(2)

∣∣∣∣∣
n∑

k=1

Fk cosxk

∣∣∣∣∣
2

≤

(
n∑

k=1

F 2
k

)(
n∑

k=1

cos2 xk

)
= FnFn+1 ·

n∑
k=1

cos2 xk,

By (1), (2) and AM-GM inequality we deduce that∣∣∣∣∣
n∑

k=1

Fk sinxk

∣∣∣∣∣·
∣∣∣∣∣

n∑
k=1

Fk cosxk

∣∣∣∣∣≤ FnFn+1 ·

√√√√( n∑
k=1

sin2 xk

)(
n∑

k=1

cos2 xk

)
AM-GM
≤

AM-GM
≤ FnFn+1

2
·

n∑
k=1

(sin2 xk + cos2 xk) =
n · Fn · Fn+1

2
,∀n ∈ N∗,
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hence(
n∑

k=1

Fk sinxk

)(
n∑

k=1

Fk cosxk

)
≤

∣∣∣∣∣
n∑

k=1

Fk sinxk

∣∣∣∣∣·
∣∣∣∣∣

n∑
k=1

Fk cosxk

∣∣∣∣∣≤ n · Fn · Fn+1

2
,∀n ∈ N∗.

and we are done. �

Theorem 8.
F1

(F 2
1 + F 2

2 )2
+

F2

(F 2
1 + F 2

2 + F 2
3 )2

+ . . .

. . . +
Fn

(F 2
1 + F 2

2 + . . . + F 2
n+1)2

≥ 1

Fn+2
− 1

F 2
n+2

for any positive integer n.

Proof.
By Bergström’s inequality we have

LHS =
F1

(F 2
1 + F 2

2 )2
+

F2

(F 2
1 + F 2

2 + F 2
3 )2

+ . . . +
Fn

(F 2
1 + F 2

2 + . . . + F 2
n+1)2

=

=

(
F1

F 2
1 +F 2

2

)2

F1
+

(
F2

F 2
1 +F 2

2 +F 2
3

)2

F2
+ . . . +

(
Fn

F 2
1 +F 2

2 +...+F 2
n+1

)2

Fn

Bergström

≥

(1)
Bergström

≥

(
F1

F 2
1 +F 2

2
+ F2

F 2
1 +F 2

2 +F 2
3

+ . . . + Fn

F 2
1 +F 2

2 +F 2
3 +...+F 2

n+1

)2

∑n
k=1 Fk

It is well-known that

(2) F 2
1 + F 2

2 + . . . + F 2
m+1 = Fm+1Fm+2, for any positive integer n

By (1) and (2) we obtain that

LHS ≥

(
F1

F2F3
+ F2

F3F4
+ . . . + Fn

Fn+1Fn+2

)2

Fn+2 − 1
=

(
F3−F2

F2F3
+ F4−F3

F3F4
+ . . . + Fn+2−Fn+1

Fn+1Fn+2

)2

Fn+2 − 1
=

=

(
1
F2
− 1

F3
+ 1

F3
− 1

F4
+ . . . + 1

Fn+1
− 1

Fn+2

)2

Fn+2 − 1
=

(
1
F2
− 1

Fn+2

)2

Fn+2 − 1
=

(
1− 1

Fn+2

)2

Fn+2 − 1
=

=
(Fn+2 − 1)2

F 2
n+2(Fn+2 − 1)

=
1

Fn+2
− 1

F 2
n+2

�

Theorem 9.

L1

(L2
1 + L2

2 + 2)m+1
+

L2

(L2
1 + L2

2 + L2
3 + 2)m+1

+ . . .

. . . +
Ln

(L2
1 + L2

2 + . . . + L2
n+1 + 2)m+1

≥ (Ln+2 − 1)m+1

Lm+1
n+2 (Ln+2 − 3)m

for any positive integer n and m.
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Proof.
It is well-known that

L2
1 +L2

2 = L2L3−2, L2
1 +L2

2 +L2
3 = L3L4−2, L2

1 +L2
2 + . . .+L2

n+1 = Ln+1Ln+2−2,

and that L1 + L2 + . . . + Ln = Ln+2 − 3.
Then by above and by Radon’s inequality we obtain that

LHS =
L1

(L2
1 + L2

2 + 2)m+1
+

L2

(L2
1 + L2

2 + L2
3 + 2)m+1

+. . .+
Ln

(L2
1 + L2

2 + . . . + L2
n+1 + 2)m+1

=

=
L1

(L2L3)m+1
+

L2

(L3L4)m+1
+ . . . +

Ln

(Ln+1Ln+2)m+1
=

=

(
L1

L2L3

)m+1

Lm
1

+

(
L2

L3L4

)m+1

Lm
2

+ . . . +

(
Ln

Ln+1Ln+2

)m+1

Lm
n

Radon
≥

Radon
≥

(
L1

L2L3
+ L2

L3L4
+ . . . + Ln

Ln+1Ln+2

)m+1

(L1 + L2 + . . . + Ln)m
=

(
L3−L2

L2L3
+ L4−L3

L3L4
+ . . . + Ln+2−Ln+1

Ln+1Ln+2

)m+1

(Ln+2 − 3)m
=

=

(
1
L2
− 1

L3
+ 1

L3
− 1

L4
+ . . . + 1

Ln+1
− 1

Ln+2

)m+1

(Ln+2 − 3)m
=

(
1− 1

Ln+2

)m+1

(Ln+2 − 3)m
=

(Ln+2 − 1)m+1

(Ln+2 − 3)mLm+1
n+2

�

Theorem 10.
If a, b > 0, then

n∑
k=1

F 4
k

aLk + bF 2
k

>
F 2
nF

2
n+1

a(Ln+2 − 3) + bFnFn+1

for any positive integer n.

Proof.
By Bergström’s inequality we have

n∑
k=1

F 4
k

aLk + bF 2
k

=

n∑
k=1

(F 2
k )2

aLk + bF 2
k

Bergström

≥

(∑n
k=1 F

2
k

)2

∑n
k=1(aLk + bF 2

k )
=

(1) =

(∑n
k=1 F

2
k

)2

a
∑n

k=1 Lk + b
∑n

k=1 F
2
k

It is well-known that

(2)

n∑
k=1

F 2
k = FnFn+1 and

n∑
k=1

Lk = Ln+2 − 3

By (1) and (2) yields the conclusion. �

Theorem 11.
If a, b > 0, then

n∑
k=1

F 4
k

aFn+2 + bFk − a
>

F 2
nF

2
n+1

(an + b)(Fn+2 − 1)
,

for any positive integer n.
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Proof.
By Bergström’s inequality we have

n∑
k=1

F 4
k

aFn+2 + bFk − a
=

n∑
k=1

(F 2
k )2

aFn+2 + bFk − a

Bergström

≥

(∑n
k=1 F

2
k

)2

∑n
k=1(aFn+2 + bFk − a)

=

=
F 2
nF

2
n+1

an(Fn+2 − 1) + b
∑n

k=1 Fk
=

F 2
nF

2
n+1

(an + b)(Fn+2 − 1)

We use well-known identities

n∑
k=1

F 2
k = FnFn+1 respectively

n∑
k=1

Fk = Fn+2 − 1.

�

Theorem 12.

n+1∑
k=1

(
n

k − 1

)m+1

F 2m
k

>
2n(m+1)

Fm
n+1F

m
n+2

for any m ≥ 0 and any positive integer n > 1.

Proof.
By Radon’s inequality we have

n+1∑
k=1

(
n

k − 1

)m+1

F 2m
k

=

n+1∑
k=1

(
n

k − 1

)m+1

(F 2
k )m

Radon
≥

(∑n+1
k=1

(
n

k − 1

))m+1

(∑n+1
k=1 F

2
k

)m =

=

(∑n
k=1

(
n
k

))m+1

(FnFn+1 + F 2
n+1)m

=
2n(m+1)

Fm
n+1F

m
n+2

We use the well-known identities

n∑
k=1

F 2
k = FnFn+1 respectively

n∑
k=1

(
n
k

)
= 2n.

The inequality from above is strictly because the conditions from equality in Radon’s
inequality are not satisfied. �

Theorem 13.
n+1∑
k=1

Fm+1
k(
n

k − 1

)m >
(Fn+3 − 1)m+1

2mn

for any m ≥ 0 and any positive integer n > 1.

Proof.
By Radon’s inequality we have

n+1∑
k=1

Fm+1
k(
n

k − 1

)
)m

Radon
≥

(∑n+1
k=1 Fk

)m+1

(∑n+1
k=1

(
n

k − 1

))m =

(∑n
k=1 Fk + Fn+1

)m+1

(∑n
k=1

(
n
k

))m =

=
(Fn+2 − 1 + Fn+1)m+1

(2n)m
=

(Fn+3 − 1)m+1

2mn
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We use the well-known identites

n∑
k=1

Fk = Fn+2 − 1 respectively

n∑
k=1

(
n
k

)
= 2n

The inequality from above is strictly because the conditions from equality in Radon’s
inequality are not satisfied. �

Theorem 14.

F 4
n + F 4

1

F 2
n + F 2

1

+

n−1∑
k=1

F 4
k + F 4

k+1

F2k+1
> FnFn+1

for any positive integer n > 1.

Proof.
We have that

(1) F 2
k + F 2

k+1 = F2k+1,∀k ∈ N,

and

(2)

n∑
k=1

F 2
k = FnFn+1,∀n ∈ N∗

We have

(3)
x4 + y4

x2 + y2
≥ 1

2
(x2 + y2),∀x, y ∈ R∗

+

Indeed, x4+y4

x2+y2 ≥ 1
2 (x2 + y2)⇔ (x2 − y2)2 ≥ 0,∀x, y ∈ R∗

+, with equality iff x = y.

From (1), (2) and (3) we obtain

F 4
n + F 4

1

F 2
n + F 2

1

+

n−1∑
k=1

F 4
k + F 4

k+1

F2k+1

(1)
=

=
F 4
n + F 4

1

F 2
n + F 2

1

+

n−1∑
k=1

F 4
k + F 4

k+1

F 2
k + F 2

k+1

(3)
>

1

2
(F 2

n + F 2
1 ) +

1

2

n−1∑
k=1

(F 2
k + F 2

k+1) =

=
1

2
· 2 ·

n∑
k=1

F 2
k

(2)
= FnFn+1

and we are done! �

Theorem 15.

√
2 ·
√

1 + F 4
n +

n−1∑
k=1

√
(F 4

k + 1)(F 4
k+1 + 1) > 2FnFn+1,

for any positive integer n > 1.

Proof.
We have that

(1)
√

(x4 + 1)(y4 + 1) ≥ x2 + y2,∀x, y > 0
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Indeed
√

(x4 + 1)(y4 + 1) ≥ x2 + y2 is equivalent with (x2y2 − 1)2 > 0,∀x, y > 0,
which is true; equality occurs if and only if xy = 1.
The equality is written as√

(F 4
n + 1)(F 4

1 + 1) +

n−1∑
k=1

√
(F 4

k + 1)(F 4
k+1 + 1) > 2FnFn+1,

then by (1) we deduce that
(2)√

(F 4
n + 1)(F 4

1 + 1)+

n−1∑
k=1

√
(F 4

k + 1)(F 4
k+1 + 1) ≥ F 2

n+F 2
1 +

n−1∑
k=1

(F 2
k +F 2

k+1) = 2

n∑
k=1

F 2
k

By (2) and the well-known

(3)
n∑

k=1

F 2
k = FnFn+1,∀n ∈ N∗

we obtain

√
2 ·
√

1 + F 4
n +

n−1∑
k=1

√
(F 4

k + 1)(F 4
k+1 + 1) > 2FnFn+1

and we are done!
The inequality is strict because FkFk+1 6= 1,∀k ∈ N∗. �

Theorem 16.

F 4
n + F 2

n + 1

Fn
+

n−1∑
k=1

F 4
k + F 2

kF
2
k+1 + F 4

k+1

FkFk+1
> 3FnFn+1

for any positive integer n > 1.

Proof.
We have the inequality

x4 + x2y2 + y4

xy
≥ 2(x4 + x2y2 + y4)

x2 + y2
≥ 3

2
(x2 + y2),∀x, y > 0.

Indeed,
x4 + x2y2 + y4

xy
≥ 2(x4 + x2y2 + y4)

x2 + y2
⇔ (x− y)2 ≥ 0, true! and

2(x4 + x2y2 + y4)

x2 + y2
≥ 3

2
(x2 + y2)⇔ (x2 − y2)2 ≥ 0, true!

So,

(1)
x4 + x2y2 + y4

xy
≥ 3

2
(x2 + y2)

We have equalities from above iff x = y.
Therefore,

F 4
n + F 4

n + 1

Fn
+

n−1∑
k=1

F 4
k + F 2

kF
2
k+1 + F 4

k+1

FkFk+1
=

=
F 4
n + F 2

nF
2
1 + F 4

1

FnF1
+

n−1∑
k=1

F 4
k + F 2

kF
2
k+1 + F 4

k+1

FkFk+1
≥
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(2)
(1)

≥ 3

2
(F 2

n + F 2
1 ) +

3

2

n−1∑
k=1

(F 2
k + F 2

k+1) = 3

n∑
k=1

F 2
k

(3) It is well-known that

n∑
k=1

F 2
k = FnFn+1

From (2) and (3) we obtain the desired inequality!
The inequality is strict because Fk 6= Fk+1,∀k ∈ N∗ − {1}. �

Theorem 17.

F 4
n + 1

F 2
n − Fn + 1

+

n−1∑
k=1

F 4
k + F 4

k+1

F 2
k − FkFk+1 + F 2

k+1

> 2FnFn+1,

for any positive integer n > 1.

Proof.
We have the inequality

(1)
x4 + y4

x2 − xy + y2
≥ x2 + y2,∀x, y > 0

Indeed (1) is equivalent with xy(x− y)2 ≥ 0, which is true.
In (1) we have equality iff x = y.
(2)

So,
F 4
n + 1

F 2
n − Fn + 1

+

n−1∑
k=1

F 4
k + F 4

k+1

F 2
k − FkFk+1 + F 2

k+1

(1)

≥ F 2
n+F 2

1 +

n−1∑
k=1

(F 2
k +F 2

k+1) = 2

n∑
k=1

F 2
k

(3) It is well-known that

n∑
k=1

F 2
k = FnFn+1

From (2) and (3) we obtain the desired inequality!
The inequality is strict because Fk 6= Fk+1,∀k ∈ N∗ − {1}. �
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