
SSMA-MATH CHALLENGES-(I)

DANIEL SITARU - ROMANIA

5477. Compute:

L = lim
n→∞

(
lnn+ lim

x→0

1−
√

1 + x2 3
√

1 + x2 · . . . · n
√

1 + x2

x2

)
.

Proposed by Daniel Sitaru - Romania

Solution 1 by Ed Gray, Highland Beach, FL.
We rewrite the expression as:

1. lim
x→0

[1− (1 + x2)
1
2+

1
3+

1
n+...+ 1

n ]

x2

2. Let N =

k=n∑
k=2

1

k
, i.e., the harmonic series − 1

3. Now consider lim
x→0

[1− (1 + x2)n]

x2

We expand (1 + x2)N by the Binomial Theorem:

4. (1 + x2)N = 1 +Nx2 +
N(N − 1)

2!
x4 + . . .

Then

5. lim
x→0

[1− (1 +Nx2 + N(N−1)
2 x4 + . . .)]

x2
, or

6. lim
x→0

[−Nx2 + −N(N−1)
2 x4 + . . .]

x2
=
−Nx2

x2
= −N

The original becomes

7. lim
n→∞

(ln(n)−N) = lim
n→∞

(
ln(n)−

k=n∑
k=2

1

k

)
= lim
n→∞

(ln(n) + 1 - Harmonic series)

The Euler-Mascheroni Constant is defined as γ = limn→∞ The Harmonic series -
ln(n).
Therefore our expression in step 7 equals 1− γ. �

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain.
Since

lim
x→0

1− (1 + x2)
1
2+

1
3+...+

1
n

x2
= lim
x→0

1− (1 + x2)Hn−1

x2

[0

0
= Indet.

]
L’Hospital

=

lim
x→0

0− (Hn − 1)(1 + x)Hn−22x

2x
= (1−Hn) lim

x→0
(1 + x2)Hn−2 = 1−Hn,

L = lim
n→∞

(lnn+ 1−Hn) = 1− lim
n→∞

(HN − lnn) = 1− γ

where Hn is the n-th harmonic number and γ is the Euler Mascheroni constant. �
1
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Solution 3 by Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome, Italy.

√
1 + x2

3
√

1 + x2 . . .
n
√

1 + x2 = (1 + x2)
1
2+

1
3+

1
n = (1 + x2)Hn−1

We have

lim
n→∞

(
lnn+ lim

x→0

1− (1 + x2)Hn−1

x2

)
Now

lim
x→0

1− (1 + x2)Hn−1

x2
= −Hn + 1

thus

L = lim
n→∞

(ln− lnn− γ + o(1) + 1) = −γ + 1

�

Solution 4 by Julio Cesar Mohnsam and Mateus Gomes Lucas. both from IFSUL,
Campus Pelots-RS, Brazil, and Ricardo Capiberibe Nunes of E.E. Amlio de Car-
avalho Bas, Campo Grande-MS, Brazil

L = lim
n→∞

(
lnn+ lim

x→0

1− (1 + x2)Hn−1

x2

)
= lim
n→∞

(lnn+ lim
x→0

(1−Hn)(1 + x2)Hn−2)

because,

lim
x→0

[1− (1 + x2)Hn−1]

(x2)

0
0= lim
x→0

[1− (1 + x2)Hn−1]′

(x2)′
=

= lim
x→0

(−Hn + 1)(1 + x2)Hn−2 = −Hn + 1

Therefore:

L = lim
n→∞

(ln−Hn + 1) = lim
n→∞

(ln−Hn) + 1 = 1 + lim
n→∞

(lnn−Hn) = 1− γ

Note: γ is Euler-Mascheroni constant and Hn = 1 + 1
2 + . . .+ 1

n . �

5482. Prove that if n is a natural number then:

(tan 5◦)n

(tan 4◦)n + (tan 3◦)n
+

(tan 4◦)n

(tan 3◦)n + (tan 2◦)n
+

(tan 3◦)n

(tan 2◦)n + (tan 1◦)n
≥ 3

2

Proposed by Daniel Sitaru - Romania

Solution 1 by Henry Ricardo, Westchester Are Math Circle, NY.
Since, for a fixed natural number n, (tanx)n is an increasing positive function for
x ∈ [0, 90◦), we have

(tan 5◦)n

(tan 4◦)n + (tan 3◦)n
≥ (tan 5◦)n

(tan 5◦)n + (tan 5◦)n
=

1

2
,

(tan 4◦)n

(tan 3◦)n + (tan 2◦)n
≥ (tan 4◦)n

(tan 4◦)n + (tan 4◦)n
=

1

2
,

(tan 3◦)n

(tan 2◦)n + (tan 1◦)n
≥ (tan 3◦)n

(tan 3◦)n + (tan 3◦)n
=

1

2
,

so that adding these inequalities gives us the desired result. Equality holds if and
only if n = 0 (assuming that 0 is considered a natural number). �
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Solution 2 by Henry Ricardo, Westchester Are Math Circle, NY.
Since, for a fixed natural number n, (tanx)n is an increasing positive function for
x ∈ [0, 90◦), we have

(tan 3◦)n

(tan 2◦)n + (tan 1◦)n
≥ (tan 3◦)n

(tan 4◦)n + (tan 5◦)n
,

(tan 4◦)n

(tan 3◦)n + (tan 2◦)n
≥ (tan 4◦)n

(tan 3◦)n + (tan 5◦)n
,

so that ∑
cyclic

(tan 3◦)n

(tan 2◦)n + (tan 1◦)n
≥

≥ (tan 5◦)n

(tan 4◦)n + (tan 3◦)n
+

(tan 4◦)n

(tan 3◦)n + (tan 5◦)n
+

(tan 3◦)n

(tan 4◦)n + (tan 5◦)n

Setting a = (tan 3◦)n, b = (tan 4◦)n, and c = (tan 5◦)n, we see that the right-hand
side of the last inequality has the form

a

b+ c
+

b

c+ a
+

c

a+ b
,

for a, b, c > 0, which is greater than or equal to 3
2 by Nesbitt’s inequality. Equality

holds if and only if n = 0 (assuming that 0 is considered a natural number). �

Solution 3 by Ed Gray, Highland Beach, FL.
First we retrieve the required values:
1. tan 1◦ = .017455065
2. tan 2◦ = .034920769
3. tan 3◦ = .052407779
4. tan 4◦ = .069926812
5. tan 5◦ = .087488664
We rewrite the problem’s equation as:

1
tan 4◦

tan 5◦ + tan 3◦

tan 5◦

+
1

tan 3◦

tan 4◦ + tan 2◦

tan 4◦

+
1

tan 2◦

tan 3◦ + tan 1◦

tan 3◦

≥ 3

2

Substituting the values from steps 1-5 and performing the indicated divisions we
define:

f(n) =
1

(.799267114)n + (.599023652)n
+

1

(.794551256)n + (.499433116)n
+

+
1

(.66632797)n + (.333062483)n

We note that f(n) is an increasing function of n since the denominator clearly
decrease as n increases.
Finally we note that

f(1) = .715158838 + 1.248899272 + 1.000609919 = 2.964668029 >
3

2

Then the equality holds for all n since f(n) is an increasing function. �
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Solution 4 by David Stone and John Hawkins, Georgia Southern University, Statesboro, GA.

Lemma: For fixed positive reals a, b, c with a < c, b < c let f(x) = cx

bx+ax for
x ≥ 0.
Then f(x) ≥ 1

2 , for x ≥ 0, with equality holding only for x = 0.
Proof. We calculate the derivative:

f ′(x) =
(bx + ax)cx ln c− cx(ax ln a+ bx ln b)

(bx + ax)2

= cx
(bx + ax) ln c− (ax ln a+ bx ln b)

(bx + ax)2

= cx
bx(ln c− ln b) + ax(ln c− ln a)

(bx + ax)2
.

The ln function is increasing, so ln c ≥ ln b and ln c > ln a; thus we see that the
derivative is positive. Hence the function f is increasing, so 1

2 = f(0) ≤ f(x) for
x ≥ 0. Because the derivative is strictly positive, the function f actually grows: so
f(x) > 1

2 for x > 0.
To verify the inequality of the problem, we note that the tangent function is in-
creasing, so in each summand the tangent term in the numerator is larger that
each tangent term in the denominator. Hence we can apply the lemma to each of
the three summands, forcing the sum ≥ 3

2 . Note that equality holds if and only if
n = 0.
Comment: We can apply the lemma to obtain some ugly inequalities which are
clearly true:

3n

1n + 2n
+

4n

2n + 3n
+

5n

3n + 4n
+ . . .+

(n+ 2)n

nn + (n+ 1)n
≥ n

2
, and

[(n+ 2)!]n

[n!]n + [(n+ 1)!]n
≥ 1

2
.

�

5488. Let a, and b be complex numbers. Solve the following equation:

x3 − 3ax2 + 3(a2 − b2)x− a3 + 3ab2 − 2b3 = 0.

Proposed by Daniel Sitaru - Romania

Solution 1 by Dionne Bailey, Elsie Campbell, Charles Diminnie. and Trey Smith,
Angelo State University, San Angelo, TX
To begin, we note that

x3 − 3ax2 + 3(a2 − b2)x− a3 + 3ab2 − 2b3

can be re-written as

(x3 − 3ax2 + 3a2x− a3)− 3b2x+ 3ab2 − 2b3

or
(x− a)3 − 3b2(x− a)− 2b3.

Hence, if we substitute y = x− a, the given equation becomes

(1) y3 − 2b2y − 2b3 = 0



SSMA-MATH CHALLENGES-(I) 5

Next, the left side of equation (1) can be re-grouped to obtain

y3 − 3b2y − 2b3 = (y3 + b3)− 3b2(y + b)

= (y + b)[(y2 − by + b2)− 3b2]

= (y + b)(y2 − by − 2b2)

= (y + b)2(y − 2b).

Therefore, the solutions of (1) are y = 2b and y = −b (double solution).
Finally, since y = x − a, the solutions of the original equation are x = a + 2b and
x = a− b (double solution). �

Solution 2 by Michel Bataille, Rouen, France.
Let p(x) denote the polynomial on the left-hand side. Then, a short calculation
gives

p(X + a) = X3 − 3b2X − 2b3 = (X + b)2(X − 2b)

which has 2b as a simple root and −b as a double one. It immediately follows that
the solutoin of the given equation are a− b, a− b, a+ 2b. �

Solution 3 by Paul M. Harms, North Newton, KS.
The equation can be written as (x − a)3 − 3ab2(x − a) − 2b3 = 0. If b = 0, the
solution is x = a. If b is not zero, let x − a = yb. Then the equation become
b3(y3 − 3y − 2) = 0.
We have y3 − 3y− 2 = (y− 2)(y+ 1)2 = 0. The y solutions are 2,−1 and −1. The
solutions of the equation in the problem are x = a+ 2b and x = a− b as a double
root. �

Solution 4 by G. C. Greubel, Newport News, VA.

0 = x3 − 3ax2 + 3(a2 − b2)x− (a3 − 3ab2 + 2b3)

= x3 − 3ax2 + (a− b)(3a+ 3b)x− ((a2 − 2ab+ b2)(a+ b))

= x3 − (2(a− b) + (a+ 2b))x2 + (a− b)((a− b) + 2(a+ 2b))x− (a− b)2(a+ 2b)

= (x2 − 2(a− b)x+ (a− b)2)(x− (a+ 2b))

= (x− (a− b))2(x− (a+ 2b)).

From this factorization the solutions of the cubic equation are

x ∈ {a− b, a− b, a+ 2b}
Editor’s comment: David Stone and John Hawkins made an instructive comment
in their solution that merits being repeated. They wrote: “We confess – we did not
immediately recognize the factorization. We originally used Cardan’s Formula to
find the solutions. However, there is a line of heuristic reasoning which would lead
to the solution. If we consider a = b, the equation become x3 − 3ax2 = 0 which
has x = 0 as a double root. Hence, the difference a− b could be significant. Trying
x = a− b (via synthetic division) then proves to be productive.” �

5496. Let a, b, c be real numbers such that 0 < a < b < c. Prove that:∑
cyclic

(ea−b + eb−a) ≥ 2a− 2c+ 3 +
∑
cyclic

( b
a

)√ab
.
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Proposed by Daniel Sitaru - Romania

Solution 1 by Henry Ricardo, Westchester Area Math Circle, NY.
For x > 0 we apply the known inequality ex > x + 1 to x = a − b, b − c and a − c
to get

ea−b > a− b+ 1, eb−c > b− c+ 1, ea−c > a− c+ 1,

respectively. Adding these inequalities yields

(1) ea−b + eb−c + ea−c > 2a− 2c+ 3

For x > y, we see that

ex−y >
(x
y

)√xy
⇔ x− y > √xy ln

(x
y

)
⇔ √xy < x− y

lnx− ln y

which is the left-hand member of the logarithmic mean inequality. Thus we have,
since 0 < a < b < c,

(2) eb−a >
( b
a

)√ab
, ec−b >

(c
b

)√bc
, ec−a >

( c
a

)√ac
>
(a
c

)√ac
Adding (1) and (2), we find that∑

cyclic

(ea−b + eb−a) > 2a− 2c+ 3 +
∑
cyclic

( b
a

)√ab
.

�

Solution 2 by Albert Stadler, Herrliberg, Switzerland.
We will prove the slightly stronger inequality∑

cyclic

(ea−b + eb−a) ≥ a− c+ 3 +
∑
cyclic

( b
a

)√ab
.

We will use the inequalities

(1) ex ≥ 1 + x, x real

(2) 1 ≥
(y
x

)√xy
, 0 ≤ y ≤ x

(3) ey−x ≥
(y
x

)√xy
, y ≥ x

(1) and (2) are clear, while (3) is equivalent to each of the following lines:

y − x ≥ √xy log
(y
x

)
,

√
y

x
−
√
x

y
≥ log

(y
x

)
,

x− 1

x
− log x =

∫ x

1

(
1 +

1

t2
− 1

t

)
dt ≥ 0, x ≥ 1 which holds true.

Thus∑
cyclic

(ea−b + eb−a) ≥ 1 + a− b
( b
a

)√ab
+ 1 + b− c+

(b
c

)√bc
+ 1 + c− a+ aa−c

= 3+
( b
a

)√ab
+
(c
b

)√bc
+ ea−c ≥ 3+

( b
a

)√ab
+
(c
b

)√bc
+ 1 + a− c



SSMA-MATH CHALLENGES-(I) 7

≥ 3+
( b
a

)√ab
+
(c
b

)√bc
+
(a
c

)√bc
+ a− c.

�

5502. Prove that if a, b, c > 0 and a+ b+ c = e then:

eac
e

· eba
e

· ecb
e

> ee · abe
2

· bce
2

· cae
2

.

Here, e = lim
n→∞

(
1 +

1

n

)n
Proposed by Daniel Sitaru - Romania

Solution by Paolo Perfetti. Department of Mathematics, Tor Vergata University,
Rome, Italy
The inequality is equivalent to

ace + bae + cbe > e+ be2 ln a+ ce2 ln b+ ae2 ln c

that is
a(ce − e2 ln c) + b(ae − e2 ln a) + c(be − e2 ln b) > e

Let f(x) = xe − e2 lnx.

f ′′(x) = e(e− 1)xe−2 +
e2

x2
> 0

Thus by Jensen’s inequality

e
∑
cyc

a

e
(ce − e2 ln c) ≥ e

[(a+ b+ c

e

)e
− a2 ln

a+ b+ c

e

]
= e

�

Solution 2 by Moti Levy, Rehovot, Israel.
The function lnx is monotone increasing, then by applying log function on both
sides of the inequality, we get

(1) ace + bae + cbe > e+ be2 ln a+ ce2 ln b+ ae2 ln c

or

(2)
a

e
ce +

b

e
ae +

c

e
be > 1 + e2

( b
e

ln a+
c

e
ln b+

a

e
ln c
)

The function lnx is concave, hence

(3) ln
(ab+ bc+ ca

e

)
≥ b

e
ln a+

c

e
ln b+

a

e
ln c

Thus we get for the right hand side of inequality (2):

(4) 1− e2 + e2 ln(ab+ bc+ ca) ≥ 1 + e2
( b
e

ln a+
c

e
ln b+

a

e
ln c
)

The function xe is convex, hence we get for the left hand side of inequality (2):

(5)
a

e
ce +

b

e
ae +

c

e
be ≥

(ab+ bc+ ca

e

)e
By (4) and (5), to finish the solution, we have to show that

(6)
(ab+ bc+ ca

e

)e
> 1− e2 + e2 ln(ab+ bc+ ca)
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Let us denote

(7) x := (ab+ bc+ ca)e

Since ab+ bc+ ca ≤ e2

3 , then

(8) 0 < x ≤
(e2

3

)e
Setting (7) in (6), we need to show that

x

ee
> 1− e2 + e lnx, for 0 < x ≤

(e2
3

)e
,

or that

(9) f(x) := x− e1+e lnx+ ee(e2 − 1) > 0, for 0 < x ≤
(e2

3

)e
One can easily check that f ′(x) = 1 − e1+e

x < 0 for 0 < x ≤
(
e2

3

)e
. Hence, f(x)

is monotone decreasing function for 0 < x ≤
(
e2

3

)e
. Moreover, limx→0 f(x) = +∞

and f
((

e2

3

)e)
=
(
e2

3

)e
− e1+e

(
ln
(
e2

3

)e)
+ e(e2 − 1) ∼= 7.4789 > 0. These and the

monotonicity of f(x) imply that x−e1+e lnx+ee(e2−1) > 0, for 0 < x ≤
(
e2

3

)e
. �

Solution 3 by Kee – Wai Lau, Hong Kong, China.
For 0 < x < 1, let f(x) be the convex function xe − e2 lnx. By taking logarithms,
we see that the inequality of the problem is equivalent to

(1) af(c) + bf(a) + cf(b) > e.

Let γ1 = a
e , γ2 = b

e and γ3 = c
e . By Jensen’s inequality, the left side of (1) is greater

than or equal to ef(γ1c+ γ2a+ γ3b) = ef(ab+bc+cae ).

Since f ′(x) = e(xe−e)
x < 0 and

ab+ bc+ ca =
2(a+ b+ c)2 − (a− b)2 − (b− c)2 − (c− a)2

6
≤ e3

3
, so

f
(ab+ bc+ ca

e

)
≥ f

(e
3

)
= 1.49 . . . > 1.

Thus (1) holds and this completes the solution. �

Solution 4 by Michel Bataille, Rouen, France.
Taking logarithms and arranging, we see that the inequality is equivalent to

a

e
· ce +

b

e
· ae +

c

e
· be > 1 + e2

( b
e
· ln a+

c

e
· ln b+

a

e
· ln c

)
.

Since the functions x → xe and x → lnx are respectively convex and concave on
(0,∞), Jensen’s inequality yields

a

e
· ce +

b

e
· ae +

c

e
· be ≥

(ab+ bc+ ca

e

)e
and

b

e
· ln a+

c

e
· ln b+

a

e
· ln c ≤ ln

(ab+ bc+ ca

e

)
Therefore, it is sufficient to prove that

(1) Ue − e2 lnU − 1 > 0
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where U = ab+bc+ca
e .

Since e2 = (a+ b+ c)2 = a2 + b2 + c2 + 2(ab+ bc+ ca) ≥ 3(ab+ bc+ ca), we have
U ≤ e

3 , hence U ∈ (0, 1).

Now, let f(x) = xe − e2 lnx− 1. The function f satisfies f(1) = 0 and

f ′(x) = e(xe−e)
x .

It follows that f is strictly decreasing on the interval (0, 1] and so f(U) > f(1),
which is the desired inequality (1). �

5506. Find

Ω = det

[(
1 5
5 25

)100

+

(
25 −5
−5 1

)100]
Solution 1 by Michel Bataille, Rouen, France.

Let A =

(
1 5
5 25

)
, B =

(
25 −5
−5 1

)
, O2 =

(
0 0
0 0

)
, I2 =

(
1 0
0 1

)
.

It is readily checked that AB = BA = O2 and A+B = 26I2.
Since AB = BA, the binomial theorem gives

(1) (A+B)100 =

100∑
k=0

(
100
k

)
AkB100−k

Now, if k ∈ {1, 2, . . . , 50}, then

AkB100−k = AkBkB100−2k = (AB)kB100−2k = O2 ·B100−2k = O2

(note that AkBk = (AB)k since AB = BA) and similarly, if k ∈ {51, 52, . . . , 99},
then

AkB100−k = A2k−100(AB)100−k = O2

As a result, (1) gives (A+B)100 = A100 +B100, that is, 26100I2 = A100 +B100. We
can conclude:

Ω = det(26100I2) = 26200.

�

Solution 2 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND.
Observe(

1 5
5 25

)100

=

([
1
5

] [
1 5

])100

=

[
1
5

]([
1 5

] [1
5

])99 [
1 5

]
= 2699

(
1 5
5 25

)
and[

25 −5
−5 1

]100
=

([
5
−1

] [
5 −1

])100

=

[
5
−1

]([
5 −1

] [ 5
−1

])99 [
5 −1

]
= 299

(
25 −5
−5 1

)
It follows that

Ω = det

[
2699

(
1 5
5 25

)
+ 2699

(
25 −5
−5 1

)]
= det

[(
26100 0

0 26100

)]
= 26200.

�
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Solution 3 by David A. Huckaby, Angelo State University, San Angelo, TX.

Let A =

(
1 5
5 25

)
and B =

(
25 −5
−5 1

)
. Matrices A and B are each symmetric,

hence orthogonally diagonalizable.
Solving the equation det(λI −A) = 0 yields λ1 = 0 and λ2 = 26 as the eigenvalues
of A.
Solving the equation (λI −A)−→x =

−→
0 successively for λ = 0 and λ = 26 yields

−→x1 =

(
− 5√

26
1√
26

)
and −→x2 =

(
1√
26
5√
26

)
as corresponding unit eigenvectors. So

A =

(
− 5√

26
1√
26

1√
26

5√
26

)(
0 0
0 26

)(− 5√
26

1√
26

1√
26

5√
26

)
Similarly,

B =

(
1√
26
− 5√

26
5√
26

1√
26

)(
0 0
0 26

)( 1√
26

5√
26

− 5√
26

1√
26

)
.

Since for both A and B the matrix of eigenvectors is orthogonal, we have

A100 =

(
− 5√

26
1√
26

1√
26

5√
26

)(
0 0
0 26100

)(− 5√
26

1√
26

1√
26

5√
26

)
=

(
2699 5(2699)

5(2699) 25(2699)

)
,

and

B100 =

(
1√
26
− 5√

26
5√
26

1√
26

)(
0 0
0 26100

)( 1√
26

5√
26

− 5√
26

1√
26

)
=

(
26(2699) −5(2699)
−5(2699) 2699

)
.

So Ω = det[A100 +B100] = det

(
26100 0

0 26100

)
= 26200. �

Solution 4 by Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece.

A way to calculate An for 2× 2 matrix is to use the Hamilton-Cayley Theorem:

A2 − Tr(A) ·A+ detA · I2 = 0.

For example, if we have a 2 × 2 matrix A =

(
1 a
a a2

)
(or A =

(
a2 −a
−a 1

)
) with

detA = 0 and Tr(A) = a2 + 1, then the Hamilton-Cayley theorem becomes

A2 = Tr(A) = (a2 + 1)2A.

A3 = (a2 + 1)A2 = (a2 + 1)2A,

· · ·
An = (a2 + 1)An−1 = (a2 + 1)n−1A.

So we have: (
1 5
5 25

)100

= (52 + 1)99
(

1 5
5 25

)
= 2699

(
1 5
5 25

)
,(

25 −5
−5 1

)100

= (52 + 1)99
(

25 −5
−5 1

)
= 2699

(
25 −5
−5 1

)
,(

1 5
5 25

)100

+

(
25 −5
5 1

)100

= 2699
((

1 5
5 25

)
+

(
25 −5
5 1

))
= 26100

(
1 0
0 1

)
,
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and finally we have:

Ω = det

((
1 5
5 25

)100

+

(
25 −5
5 1

)100)
= det

(
26100

(
1 5
5 25

)100

+

(
1 0
0 1

))
= 26100.

�

Solution 5 by Paolo Perfetti. Departament of Mathematics, Tor Vergata Univer-
sity, Rome, Italy
Let c =

√
26. We know that(

1 5
5 25

)
=

(
− 5
c

1
c

1
c

5
c

)(
0 0
0 26

)(
− 5
c

1
c

1
c

5
c

)
= A ∧A−1(

25 −5
−5 1

)
=

(
1
c − 5

c
5
c

1
c

)(
0 0
0 26

)(
1
c

5
c

− 5
c

1
c

)
= B ∧B−1

Ω = A ∧100 A−1 +BA ∧100 B−1

A ∧100 A−1 =

(
2699 5 · 2699

5 · 2699 25 · 2699

)
B ∧100 B−1 =

(
25 · 2699 −5 · 2699

−5 · 2699 2699

)
Thus

Ω = det

(
2699 · 26 0

0 2699 · 26

)
= 26200.

�

5525. Find real values for x and y such that:

4 sin2(x+ y) = 1 + 4 cos2 x+ 4 cos2 y

Proposed by Daniel Sitaru - Romania

Solution 1 by Albert Stadler, Herrliberg, Switzerland.
Put u = e2ix, v = e2iy. Then the given equation reads as

0 = (e2ix+2iy + e−2ix−2iy − 2) + 1 + (e2ix + e−2ix + 2) + (e2iy + e−2iy + 2) =

= u
1

uv
+ u+

1

u
+ v +

1

v
+ 3 =

(uv + u+ 1)(uv + v + 1)

uv
.

So either v = 1
u − 1 or 1

v = −u− 1. If x and y run through the real numbers v and
1
v represent circles in the complex plane with radius 1 and center 0, while −u − 1

and −1u − 1 represent circles with radius 1 and center −1. Therefore

(u, v) ∈ {(e 2πi
3 , e

2πi
3 ), (e−

2πi
3 , e−

2πi
3 )} which translates to x ≡ y ≡ ±π3 ( mod π).

�

Solution 2 by Michael C. Faleski, University Center, MI.
Let’s rewrite the statement of the problem using several trigonometric indentities.
This leads to

4(sinx cos y + sinx cos y)2 = 1 + 4 cos2 x+ 4 cos2 y

4(sin2 x cos2 y + sin2 y cos2 x+ 2 sinx sin y cosx cos y) = 1 + 4 cos2 x+ 4 cos2 y

4((1−cos2 x) cos2 y+cos2 x(1−cos2 y)+2 sinx sin y cosx cos y) = 1+4 cos2 x+4 cos2 y
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−8 cos2 x cos2 y + 8 sinx sin y cosx cos y = 1

−8
(1

2
+

1

2
cos(2x)

)(1

2
+

1

2
cos(2y)

)
+ 2 sin 2x sin 2y = 1

−2(1 + cos 2x+ cos 2y + cos 2x cos 2y) + 2 sin 2x sin 2y = 1

−2− 2 cos 2x− 2 cos 2y − 2 cos 2x cos 2y + 2 sin 2x sin 2y = 1

−2 cos 2x− 2 cos 2y − 2(cos 2x cos 2y − sin 2x sin 2y) = 3

cos 2x+ cos 2y + cos(2x+ 2y) = −3

2
.

And now we use cos a = cos b = 2 cos(1
2 (a+ b)) cos( 1

2 (a− b)) to produce

2 cos(x+ y) cos(x− y) + (2 cos2(x+ y)− 1) = − 3
2 , so we have

2 cos2(x+ y) + 2 cos(x− y) cos(x+ y) + 1
2 = 0, or

cos2(x+ y) + cos(x− y) cos(x+ y) + 1
4 = 0.

We will now use the quadratic formula to solve for cos(x+ y).

cos(x+ y) =
− cos(x− y)±

√
cos2(x− y)− 1

2
.

As we are required to have real solutions, this means that
cos2(x− y)− 1 ≥ 0→ cos2(x− y) ≥ 1. This condition is only true for
cos2(x− y) = 1→ cos(x− y) = 1.
Letting y = x− a, we find cos a = 1→ a = 2nπ,∀n ∈ Z.

cos(x+ y) = −cos(x− y)

2
= −1

2
.

Since y = ±2nπ, then for 0 ≤ x ≤ 2π, x = y. Hence, cos 2x = − 1
2 , which leads to

2x =
2

3
π,

4

3
π → x =

(1

3
π,

2

3
π
)

. So for 0 ≤ x, y ≤ 2π, (x, y) =
(1

3
π,

1

3
π
)
,
(2

3
π,

2

3
π
)
.

�

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain.

4 sin2(x+y) = 1+4 cos2 x+4 cos2 y ⇔ 4(1−cos2(x+y)) = 1+2 cos(2x)+2+2 cos(2y)

⇔ 4− 4 cos2(x+ y) = 5 + 4 cos
(2x+ 2y

2

)
cos
(2x− 2y

2

)
⇔ 0 = 4− 4 cos2(x+ y) + 4 cos(x+ y) cos(x− y) + 1

⇔ 0 = (2 cos(x+ y) + cos(x− y))2 + sin2(x− y)

⇔ 2 cos(x+ y) + cos(x− y) = 0 = sin(x− y)⇔ x− y = kπ, k ∈ Z

cos(x+ y) + cos(kπ) = 0⇔ x− y = kπ; cos(x+ y) =
(−1)k+1

2
, k ∈ Z

⇔ x− y = kπ;x+ y = arccos
(−1)k+1

2
∈ Z

⇔ x =
1

2

(
arccos

(−1)k+1

2
+ kπ

)
, y =

1

2

(
arccos

(−1)k+1

2
− kπ

)
, k ∈ Z

�
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Solution 4 by Kee-Wai Lau, Hong Kong, China.
Since sin(x + y) = sinx cos y + cosx sin y, so the given equation is equivalent to
1− 8 sinx cosx sin y cos y + 8 cos2 x cos2 y = 0. Clearly cosx 6= 0 and cos y 6= 0. So
dividing both sides of the last equation by cos2 x cos2 y, we obtain

sec2 x sec2 y−8 tanx tan y+ 8 = 0 or (1 + tan2 x)(1 + tan2 y)−8 tanx tan y+ 8 = 0,

or
(tanx− tan y)2 + (tanx tan y − 3)2 = 0.

Thus tanx = tan y and tanx tan y = 3, so that tanx = tan y =
√

3 or
tanx = tan y = −

√
3

It follows that

(x, y) =
(π

3
+mπ,

π

3
+ nπ

)
,
(2π

3
+mπ,

2π

3
+ nπ

)
,

where m and n are arbitrary integers. �

Solution 5 by Ulrich Abel, Technische Hochshule Mittelhessen, Germany.
Using cos(2x) = 2 cos2(x)− 1 = 1− 2 sin2(x) we see that the equation

4 sin2(x+ y) = 1 + 4 cos2(x) + 4 cos2(y)

is equivalent to

0 = 3 + 2 cos(2x+ 2y) + 2 cos(2x) + 2 cos(2y) =: f(x, y).

Using sin(2a) + sin(2b) = 2 sin(a+ b) cos(a− b) we obtain

gradf(x, y) = −4 · (sin(2x+ 2y) + sin(2x), sin(2x+ 2y) + sin(2y))

= −8 · (sin(2x+ y) cos y, sin(x+ 2y) cosx).

Therefore, gradf(x, y) = (0, 0) happens if 2x = π( mod 2π) and 2y = π( mod 2π).
The critical points ( 2n+1

2 π, 2m+1
2 π) with integers n,m satisfy

f
(2n+ 1

2
π,

2m+ 1

2
π
)

= 3 + 2 · 1 + 2(−1)n+1 + 2(−1)m+1 > 0.

2x = π( mod 2π) and 2x+ y = 0( mod π). The critical points
( 2n+1

2 π,mπ − (2n+ 1)π) with integers n,m satisfy

f
(2n+ 1

2
π,mπ − (2n+ 1)π

)
= 3 + 2 · (−1) + 2(−1)n+1 + 2 · 1 > 0.

2y = π( mod 2π) and x+ 2y = 0( mod π) is symmetrical to the preceding case.
2x + y = 0( mod π) and x + 2y = 0( mod π). This implies 3x + 3y = (n + m)π
and x− y = (n−m)π with integers n,m. We infer that (x, y) = π

3 (2n−m, 2m−n)
are the remaining critical points of f .

f
(2n−m

3
π,

2m− n
3

π
)

= 3 + 2 cos
2(n+m)π

3
+ 2 cos

(4n− 2m)π

3
+ 2 cos

(4m− 2n)π

3

= 3 + 2
(

2 cos2
(n+m)π

3
− 1
)

+ 4 cos
(n+m)π

3
cos(n−m)π

= 1 + 4 cos2
Nπ

3
+ 4(−1)N cos

Nπ

3
=
(

1 + 2(−1)n cos
Nπ

3

)2
≥ 0

with N := n + m. Consequently, the function value is equal to zero iff N is not a
multiple of 3.
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In total, we have f(x, y) ≥ 0 on R2 and f(x, y) = 0 if and only if
(x, y) = (2n −m, 2m − n)π3 , for all integers n,m satisfying n + m 6= 0( mod 3).
The solutions of the above trigonometric identity are exactly the zeros of f .

�
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