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DANIEL SITARU - ROMANIA

5477. Compute:

L= lim <lnn—|— lim

n—00 x—0

1—V1+a2V1l+a2-...- \"/1—1—902)
z? '

Proposed by Daniel Sitaru - Romania

Solution 1 by Ed Gray, Highland Beach, FL.

We rewrite the expression as:

1. lim

[1—(1+a2)2tatat+3]

x—0

22

k=n
1
2. Let N = —, i.e., the harmonic series — 1

3. Now consider lim

[1-(+a%)"]

2—0 2

We expand (1 + z2)" by the Binomial Theorem:

N(N -1
Then NV-1)
5 hm[l—(1+Nx2+Tx4+...)] or
’ x—0 ,’1}2 ’
o [-N2?+ Wﬁ—i—...] —Naz?
6. ilg}) 2 =—32 = —-N

The original becomes

k=n

n— oo

7. lim (In(n) — N) = nlggo(lnm) - Z %)

n—oo

k=2

= lim (In(n) + 1 - Harmonic series)

The Euler-Mascheroni Constant is defined as v = lim,,_,, The Harmonic series -

In(n).

Therefore our expression in step 7 equals 1 — ~.

Solution 2 by Bruno Salgueiro Fanego,

Since
1— (1 + x2)%+%+...+%
lim = lim
z—0 :E2 x—0
0—(H,—1)(1 Hn=29
0 (H, ) )t
z—0 2z

Viveiro, Spain.

1— (1 +a2)Hn—t [0

0 = Indet.} L Hospital

22

(1—H,) lim(1 +2?)#~2=1-H,,
z—0

L= 1lim (Inn+1—-—H,)=1- lim (Hy —Inn)=1—1v
n— o0 n—oo

where H,, is the n-th harmonic number and - is the Euler Mascheroni constant.

1
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Solution 3 by Paolo Perfetti, Department of Mathematics, Tor Vergata University, Rome, Italy.

ES

V1ta2y1+a22. .. {l/l+x2:(1+x2)%+%+n = (14 2%)H—1

‘We have —
1-—(1 n—
lim (lnn+lim ( +f ) )
n—oo x—0 X
Now N
1—-(1 n=
T e S A
x—0 x
thus

L=lim (In—-lnn—vy4+o01)+1)=—-y+1

n— oo

]

Solution 4 by Julio Cesar Mohnsam and Mateus Gomes Lucas. both from IFSUL,
Campus Pelots-RS, Brazil, and Ricardo Capiberibe Nunes of E.E. Amlio de Car-
avalho Bas, Campo Grande-MS, Brazil

1-(1+ $2)Hn—1)

L = lim (lnn—l— lim = lim (Inn + lim (1 — H,)(1 +x2)H"_2)

n—00 x—0 2 n—00 z—0
because,
_ 2\H,—1] o _ 2\NH,, —1V/
I T L 0 G A
z—0 (,’L‘2) x—0 ($2)I
= lim (—H, +1)(1 + )2 = —H, +1
r—r
Therefore:
L=1lm (Inh-H,+1)= lim In-H,)+1=14 lim (Inn—H,)=1—~
n—oo n—oo n—oo
Note: ~v is Euler-Mascheroni constant and H,, =1 + % +...+ % (I

5482. Prove that if n is a natural number then:
(tan5°)" (tan4°)™ (tan3°)"
(tan4°)” + (tan3°)” = (tan3°)™ + (tan2°)”  (tan2°)” + (tan1°)»

Proposed by Daniel Sitaru - Romania

3
> 2
-2

Solution 1 by Henry Ricardo, Westchester Are Math Circle, NY.
Since, for a fixed natural number n, (tanz)™ is an increasing positive function for
x € [0,90°), we have

(tan 5°)" S (tan 5°)" 1
(tan4°)™ + (tan3°)® — (tanb5°)” + (tan5°)” 2’
(tan4°)" S (tan4°)" 1
(tan3°)™ + (tan2°)"® — (tan4°)” + (tan4°)” 2’
(tan 3°)" S (tan 3°)™ 1
(tan2°)™ + (tan1°)" — (tan3°)™ + (tan3°)» 2’

so that adding these inequalities gives us the desired result. Equality holds if and
only if n = 0 (assuming that 0 is considered a natural number). O
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Solution 2 by Henry Ricardo, Westchester Are Math Circle, NY.
Since, for a fixed natural number n, (tanz)™ is an increasing positive function for
x € 10,90°), we have

(tan3°)" S (tan3°)™
(tan2°)™ + (tan1°)® — (tan4°)" + (tan5°)"’

(tan4°)" S (tan4°)™
(tan 3°)™ + (tan2°)® — (tan3°)" + (tan5°)"’

so that

(tan 3°)"
yzl: (tan2°)™ + (tan1°)™ —
S (tan 5°)™ (tan4°)™ (tan 3°)™
~ (tan4°)” 4 (tan3°)” = (tan3°)” + (tanb5°)” = (tan4°)™ + (tan5°)"
Setting a = (tan3°)", b = (tan4°)™, and ¢ = (tan5°)", we see that the right-hand
side of the last inequality has the form

a b c
+ + ,
b+c c+a a+b

for a, b, ¢ > 0, which is greater than or equal to % by Nesbitt’s inequality. Equality
holds if and only if n = 0 (assuming that 0 is considered a natural number). (]

Solution 3 by Ed Gray, Highland Beach, FL.
First we retrieve the required values:

1. tan 1° = .017455065

2. tan 2° = .034920769

3. tan3° = .052407779

4. tan4° = .069926812

5. tan5° = .087488664

We rewrite the problem’s equation as:

1 1 1 3

tan 4° + tan 3° + tan 3° n tan 2° + tan 2° n tan 1° 2 5
tan 5° tan 5° tan 4° tan 4° tan 3° tan 3°

Substituting the values from steps 1-5 and performing the indicated divisions we
define:

f(n) = ! !

(799267114)" 1 (.599023652)" | (.794551256)" 1 (A99433116)"

1
.66632797)" + (.333062483)"
We note that f(n) is an increasing function of n since the denominator clearly

decrease as n increases.
Finally we note that

Bl

3
f(1) = 715158838 + 1.248899272 + 1.000609919 = 2.964668029 > 5

Then the equality holds for all n since f(n) is an increasing function. O
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Solution 4 by David Stone and John Hawkins, Georgia Southern University, Statesboro, GA.

Lemma: For fixed positive reals a,b,c with a < ¢,b < ¢ let f(z) = for
x > 0.

Then f(z) > %, for > 0, with equality holding only for = 0.

Proof. We calculate the derivative:

(0® + a®)c*Inc — c*(a®Ina + b* Inb)

o
b fta®

!
(" +a")Inc— (a®Ina+ b" Inb)
- (bw+aa:)2
B L0 (Ine—1nbd) +a*(Inc —1Ina)
- (bm+az)2 :

The In function is increasing, so Inc > Inb and Inc > Ina; thus we see that the
derivative is positive. Hence the function f is increasing, so % = f(0) < f(z) for
x > 0. Because the derivative is strictly positive, the function f actually grows: so
f(x) > § for x > 0.

To verify the inequality of the problem, we note that the tangent function is in-
creasing, so in each summand the tangent term in the numerator is larger that
each tangent term in the denominator. Hence we can apply the lemma to each of
the three summands, forcing the sum > % Note that equality holds if and only if
n =0.

Comment: We can apply the lemma to obtain some ugly inequalities which are
clearly true:

S R L— D" mod
1420 20430 Zngpqn T g (1) T 27
(n+2))" 1
[ + [(n+ D)l» = 27

5488. Let a, and b be complex numbers. Solve the following equation:
3 — 3az® + 3(a® — b*)x — a® + 3ab® — 2b® = 0.
Proposed by Daniel Sitaru - Romania

Solution 1 by Dionne Bailey, Elsie Campbell, Charles Diminnie. and Trey Smith,
Angelo State University, San Angelo, TX
To begin, we note that

23 — 3ax? + 3(a® — b*)x — a® + 3ab® — 23
can be re-written as
(2% — 3az? + 3a*x — a®) — 3b%x + 3ab® — 203
or
(x —a)® — 3b*(z — a) — 2b°.
Hence, if we substitute y = x — a, the given equation becomes
(1) y® — 207y —2b° =0
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Next, the left side of equation (1) can be re-grouped to obtain
y’ = 3b%y —20° = (y° + b%) = 3b*(y + D)
= (y+b)y* — by +b*) - 3b%]
= (y +b)(y* — by — 20%)
= (y+b)*(y — 2b).
Therefore, the solutions of (1) are y = 2b and y = —b (double solution).

Finally, since y = = — a, the solutions of the original equation are x = a + 2b and
x = a — b (double solution). O

Solution 2 by Michel Bataille, Rouen, France.
Let p(z) denote the polynomial on the left-hand side. Then, a short calculation
gives

p(X 4+a) = X 302X — 2b° = (X + b)*(X — 2b)
which has 2b as a simple root and —b as a double one. It immediately follows that
the solutoin of the given equation are a — b,a — b, a + 2b. O

Solution 3 by Paul M. Harms, North Newton, KS.

The equation can be written as (z — a)® — 3ab?(z — a) — 263 = 0. If b = 0, the
solution is = a. If b is not zero, let £ — a = yb. Then the equation become
b (y? — 3y —2) = 0.

We have 3® — 3y — 2 = (y — 2)(y +1)? = 0. The y solutions are 2, —1 and —1. The
solutions of the equation in the problem are z = a 4+ 2b and « = a — b as a double
root. (I

Solution 4 by G. C. Greubel, Newport News, VA.
0 = 2® — 3az® + 3(a® — b*)z — (a® — 3ab® + 20%)
= 2% — 3ax? + (a — b)(3a + 3b)x — ((a* — 2ab + b*)(a + b))
=23~ (2(a —b) + (a+2b))2? + (a — b)((a — b) + 2(a + 2b))x — (a — b)?(a + 2b)
= (2% = 2(a —b)x + (a — b)*)(z — (a + 2b))
— (@ — (a—b))2(x — (a+20)).
From this factorization the solutions of the cubic equation are
ze€{a—ba—b,a+2b}

Editor’s comment: David Stone and John Hawkins made an instructive comment
in their solution that merits being repeated. They wrote: “We confess — we did not
immediately recognize the factorization. We originally used Cardan’s Formula to
find the solutions. However, there is a line of heuristic reasoning which would lead
to the solution. If we consider a = b, the equation become 3 — 3az? = 0 which
has = 0 as a double root. Hence, the difference a — b could be significant. Trying
x = a — b (via synthetic division) then proves to be productive.” (I

5496. Let a,b, c be real numbers such that 0 < a < b < ¢. Prove that:

a— —a b Vab
Z(e bieb )22a—20+3+z<5) .

cyclic cyclic
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Proposed by Daniel Sitaru - Romania

Solution 1 by Henry Ricardo, Westchester Area Math Circle, NY.
For x > 0 we apply the known inequality e* > x+1toxz =a—b,b —cand a —c
to get
e P>a—b+1, e C>b—c+1, @ C>a—c+1,
respectively. Adding these inequalities yields
(1) el 4 et £ e > 20 — 2¢ + 3
For = > y, we see that
\ T\ VTY T T—y
‘”‘y>(—) Sr—y>./ 1(—)@\/ < —
e ” T—y Ty In ” Ty Fy—

which is the left-hand member of the logarithmic mean inequality. Thus we have,
since 0 < a < b <ec,

@) o5 ()7 e 5 () e 5 (£) 5 (4)

a b a c

Adding (1) and (2), we find that

a— —a b Vab
Z(e byeb )>2a—2c—|—3+z<g) .

cyclic cyclic

Solution 2 by Albert Stadler, Herrliberg, Switzerland.
We will prove the slightly stronger inequality

a— —a b Vab
d (et )2a—c+3+z<a> .

cyclic cyclic

We will use the inequalities

(1) e* > 14 x,x real
VY
(2) 1>(9) o<y <a
x
N
(3) eV Z(g) y>a
xr

(1) and (2) are clear, while (3) is equivalent to each of the following lines:

1 z 1 1
x—;—logx:/ (1+t—2—;)dt20,x21Whichholdstrue.
1
Thus
b b by Vab by Voe
> (e +e*“)21+a—b(—> +1+b—c+(—> +14c—a+a*¢
a c

cyclic

an () ) ez () ) s
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+a—c.

b

SONONICN

5502. Prove that if a,b,c > 0 and a + b+ ¢ = e then:

e e e 2 2 2
edc _eba -€Cb >ee.abe Lpee . pae”

1\n
Here, e = lim (1 + f)
n

n—oo
Proposed by Daniel Sitaru - Romania

Solution by Paolo Perfetti. Department of Mathematics, Tor Vergata University,
Rome, Italy
The inequality is equivalent to

ac® 4+ ba® + cb® > e+ be?Ina + ce?Inb + ae’Inc
that is
a(c® —e*lne) +b(a® — e*Ina) + c(b® — e?Inb) > e
Let f(z) = 2° — e?Inx.
02
f(x) = ele —1)z*% + = 0
Thus by Jensen’s inequality

b e b
ezg(ce —é%lnc) > e[(u) fazlnw] =e

€
cyc

O

Solution 2 by Moti Levy, Rehovot, Israel.
The function Inz is monotone increasing, then by applying log function on both
sides of the inequality, we get

(1) ac® + ba® + cb® > e+ be? Ina + ce? Inb + ae? Inc
or
a, b, c. 5/b c a
(2) —c“+-a"+-0">1+ce¢ <7lna+flnb—|—flnc)
e e e e e e

The function In z is concave, hence

3) 1n(ab—l—bc—i—ca

) > éhrla—i— Elnb—l— glnc
e e e
Thus we get for the right hand side of inequality (2):

e

b
(4) 1—e*+e?In(ab+be+ca) > 1 —i—ez(;lna—i— glnb—i— Zlnc)
The function z¢ is convex, hence we get for the left hand side of inequality (2):

b b+b e
(5) See 4 Zat 4 S > (BT
e e e e
By (4) and (5), to finish the solution, we have to show that

ab + be + ca
(6) (e

)e> 1 —e? 4+ e%ln(ab + be + ca)
e
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Let us denote
(7) x = (ab+ bc + ca)

Since ab + be + ca < %, then

8) 0<x§(332)e

Setting (7) in (6), we need to show that

T 9 e2\e
—>1-ce +elnx7f0r0<m§(§) ,
66

or that
2. e
(9) flz) =z —e'Tnz +e(e? —1) >0, for0<x§(e—>

el+e
x

One can easily check that f/'(z) =1 —

<0for0 <2 S(%) . Hence, f(z)

2 e
is monotone decreasing function for 0 < z §<%) . Moreover, lim,_,q f(z) = +00

e e e
and f((g) ) :(3) - eHe(ln(%) ) te(e? —1) = 7.4789 > 0. These and the
e
monotonicity of f(z) imply that  —e!*¢Inz+e®(e?—1) > 0, for 0 < g(é) . O
Solution 3 by Kee — Wai Lau, Hong Kong, China.

For 0 < = < 1, let f(x) be the convex function 2¢ — e?Inz. By taking logarithms,
we see that the inequality of the problem is equivalent to

(1) af(c) +bf(a) + cf(b) > e.

Let 1 = ,75 = 2 and 3 = £. By Jensen’s inequality, the left side of (1) is greater
than or equal to ef(y1c+72a +73b) = ef (4HHE),

Since f'(z) = @ <0 and

2a+b+c) —(a—b2—(b—-c)?—(c—a)?® ¢

ab+bc+ ca = 5 §§780
b+ b
f(w> > f(g) 149, > 1.
e
Thus (1) holds and this completes the solution. O

Solution 4 by Michel Bataille, Rouen, France.
Taking logarithms and arranging, we see that the inequality is equivalent to

a b c b c a
-4+ —a®+ -0 >1+62(7~lna+7~1nb+7~1nc>.
e e e e e e
Since the functions x — z¢ and x — Inx are respectively convex and concave on
(0,00), Jensen’s inequality yields

a b c
-+ —a® -0 >

(ab+bc+ca)e
e e e

e

and
ab + be + ca)

9-1na+£~lnb+g~lncgln(
e e e e

Therefore, it is sufficient to prove that

(1) U —e?InlU —1>0
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where U = abtbetea

Since €2 = (a + b+ ¢)? = a® + b% + % + 2(ab + be + ca) > 3(ab + be + ca), we have
U < g, hence U € (0,1).

Now, let f(r) = 2¢ — e?Inx — 1. The function f satisfies f(1) =0 and

f(w) = =,

It follows that f is strictly decreasing on the interval (0,1] and so f(U) > f(1),
which is the desired inequality (1). O

5506. Find
100 100
1 5 25 =5
Q = det
G ) (G
Solution 1 by Michel Bataille, Rouen, France.

1 5 2% —5 0 0 10
LetA_(5 25>’B_<—5 1)’02_(0 o)’b—(o 1)'

It is readily checked that AB = BA = Oy and A+ B = 2615.
Since AB = BA, the binomial theorem gives

100 100
100 __ k Rl100—k
(1) (A+ B) _k§0:<k>AB

Now, if k € {1,2,...,50}, then
Ak B100—k _ gk gk p100-2k _ (4 g)k g100-2k _ ), . glO0-2k _ (),
(note that A¥B* = (AB)* since AB = BA) and similarly, if k € {51,52,...,99},
then
AkBl()O—k — A2k—100(AB)1OO—k — 02

As aresult, (1) gives (A + B)100 = A100 4 B100 that is, 261007, = A00 4 B100. We
can conclude:
Q = det(26'°°1,) = 2620,

Solution 2 by Jeremiah Bartz, University of North Dakota, Grand Forks, ND.
Observe

G o) =(fr ) = (0 afl) o a-a( 5)

and

ey B (S L R M | R M g

It follows that

_ 100
Q = det [2699 (é 255) + 269 (255 15)] — det [(260 26?00)] — 26200,

O

y
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Solution 3 by David A. Huckaby, Angelo State University, San Angelo, TX.

Let A = é 255) and B = 355 _15) Matrices A and B are each symmetric,
hence orthogonally diagonalizable.

Solving the equation det(A] — A) = 0 yields \; = 0 and Ay = 26 as the eigenvalues
of A.

Solving the equation (Al — A)? = ﬁ successively for A = 0 and A = 26 yields

__5_ 1
I = < @) and 7} = (@) as corresponding unit eigenvectors. So
V26 V26
5

Similarly,
1 _ 5 0 0 \/L %
_ 26 26 26 26
B<5 (> (0 26) <_5 )
V26 V26 V26 V26
Since for both A and B the matrix of eigenvectors is orthogonal, we have

5 1
0 0 —\(ﬁ N AR 2699 5(26%%)
0 26) { L 7 \5026%) 25(26%))

26

and

L _ .5 1 5 99 99
BLoo 26 \{% 0 0 26 V26 | — 26(26”°)  —5(26)

2 = J\0 26°)\ -~ L -5(26%)  26% -

V26 V26 V26 V26

100

SO Q = det[Aloo +B100] = det <260 26900) = 26200‘ D

Solution 4 by Ioannis D. Sfikas, National and Kapodistrian University of Athens, Greece.

A way to calculate A™ for 2 x 2 matrix is to use the Hamilton-Cayley Theorem:
A? —Tr(A)- A+det A- I = 0.

2
For example, if we have a 2 X 2 matrix A = <(11 ;2> (or A = <za 1a>) with

det A =0 and Tr(A) = a® + 1, then the Hamilton-Cayley theorem becomes
A% =Tr(A) = (a® +1)%A.
A% = (a®> +1)A% = (a® +1)%4,

A" = (a2 + 1)14"_1 = (a2 + 1)”_1A.

100
1 5 k2 99 (1 5\ _ 5000 (1 O
(5 25> =6+ (5 25)26 (5 25)’
100
25 —5\'" 025 =B\ . g9 (25 -5
(—5 1) =6+ (—5 1)_26 5 1)

1 5 1°°+ 25 -5 10072699 L 5Y, (25 =5)) _yeu0 (1 0
5 25 5 1 - 5 25 5 1))7 0 1)’

So we have:
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and finally we have:

100 100 100
1 5 25 —5 1 5 1 0 100
Q =det = det 100 =2 .
(G m) +(3 7))l ) (o 9) -
O

Solution 5 by Paolo Perfetti. Departament of Mathematics, Tor Vergata Univer-
sity, Rome, Italy
Let ¢ = v/26. We know that

1 5 5 1N /9 o) /=2 1 B
()= (1) ) (¥ g)-ana
1 -5\ /0 0 1 5 B
)0 m) (1) mmes

Q _ A/\100 A—l +BA /\100 B—l

100 -1 2699 5 N 2699
ANT AT = (5-2699 25 - 26

25269 5. 26%
100 p—1 __

BB _(5~2699 2699>
Thus

269 - 26 0 200
Q—det< 0 2699~26>_26 .

5525. Find real values for x and y such that:
4sin®(z 4+ y) =1 +4cos’x +4cos’y
Proposed by Daniel Sitaru - Romania

Solution 1 by Albert Stadler, Herrliberg, Switzerland.
Put u = 2" v = e?¥. Then the given equation reads as

0= (€2im+21'y 4 e—2ix—2iy _ 2) N (621'1 4 e—2ir + 2) 4 (82iy + €—2iy + 2) —

1 1 1 w+u+1)(uww+v+1
:u—+u+7+v+*+3=( X )

U u v U
So either v = % —1lor % = —u — 1. If  and y run through the real numbers v and
% represent circles in the complex plane with radius 1 and center 0, while —u — 1

and % — 1 represent circles with radius 1 and center —1. Therefore

(u,v) € {(e*5,e’F), (e "5, e~ *5")} which translates to z = y = +Z( mod 7).

O

Solution 2 by Michael C. Faleski, University Center, MI.

Let’s rewrite the statement of the problem using several trigonometric indentities.
This leads to

4(sinz cosy + sinz cosy)? = 1 4 4cos’ z 4+ 4cos’ y

4(sin2 x cos® y + sin® y cos? z + 2sin x sin y cos  cos y)=1+4 cos®x +4cos’y

4((1—cos? ) cos? y+cos? z(1—cos® y)+2sin z siny cos x cos y) = 144 cos® 44 cos? y
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—8cos? xcos?y + 8sinxsinycosxcosy = 1

1 1 1 1
78(5 + 3 cos(2$)) (5 + 5 cos(?y)) + 2sin2zsin2y =1

—2(1 4 cos 2z + cos 2y + cos 2z cos 2y) + 2sin 2z sin 2y = 1
—2 —2cos2x — 2cos2y — 2cos2x cos 2y + 2sin 2z sin 2y = 1

—2c0s2x — 2 cos 2y — 2(cos 2z cos 2y — sin 2z sin 2y) = 3

cos 2x + cos 2y + cos(2z + 2y) = —;
And now we use cosa = cosb = 2cos(3(a + b)) cos(3(a — b)) to produce
2cos(z +y) cos(z — y) + (2cos?(z + y) — 1) = —2, so we have
2cos?(x + y) + 2cos(z — y) cos(z +y) + 3 =0, or
cos?(z + y) + cos(z — y) cos(z +y) + 1 = 0.
We will now use the quadratic formula to solve for cos(z + y).

—cos(x —y) £ y/cos?(x —y) — 1
5 .
As we are required to have real solutions, this means that
cos?(x —y) — 1 >0 — cos?(z — y) > 1. This condition is only true for
cos?(z —y) =1 cos(x —y) = 1.
Letting y = x — a, we find cosa =1 — a = 2nm,Vn € Z.

cos(z +y) =

— 1
cos(z +y) = _cos(z—y) 1

2 2
Since y = +2nm, then for 0 < x < 27,z = y. Hence, cos 2z = —%7 which leads to
2 4 1 2 1 1 2 2
2¢ = 3™ 37 = :(gﬁ, gﬂ) So for 0 < z,y < 27, (x,y) :(gﬂ, gﬂ), (gﬂ, ng)

O

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain.

4sin®(z+y) = 1+4cos? z+4 cos? y < 4(1—cos?(z+y)) = 142 cos(2z)+2+2 cos(2y)
2 2 2z — 2
@474cosz(x+y):5+4cos( x; y)cos( :v2 y)

& 0=4—4cos*(x +y) +4cos(x +y)cos(x —y) + 1

& 0= (2cos(x +y) + cos(z — y))? + sin?(x — y)
& 2cos(z+y)tceos(x—y)=0=sinfzr—y) s rz—y=kr,keZ

(-1
cos(x +y) +cos(km) =0z —y=kmcos(z+y) = TJfEZ
—1 k+1
@m—y:kﬂ;x—l—y:arccosT e
1 -1 k+1 1 -1 k+1
S = i(arccosTJrkﬁ),y: §<arccos+fk7r),kez
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Solution 4 by Kee-Wai Lau, Hong Kong, China.

Since sin(z + y) = sinx cosy + cosxsiny, so the given equation is equivalent to
1 — 8sinx coszsiny cosy + 8cos? xcos?y = 0. Clearly cosz # 0 and cosy # 0. So
dividing both sides of the last equation by cos? z cos? y, we obtain

sec’ rsec’ y —8tanxtany+8 = 0 or (1+tan®x)(1+tan?y) —Stanztany +8 = 0,

or
(tanx — tany)? + (tanxtany — 3)% = 0.

Thus tanz = tany and tanztany = 3, so that tanz = tany = /3 or
tanz = tany = —\/§
It follows that

(z )—(I—l—mw I—F’I’LW) (2—7T+m77 2—7T+n7r>
’y - 3 ?3 ) 3 ’3 )

where m and n are arbitrary integers. (]
Solution 5 by Ulrich Abel, Technische Hochshule Mittelhessen, Germany.
Using cos(2z) = 2cos?(z) — 1 = 1 — 2sin?(z) we see that the equation
4sin®(z +y) = 1 + 4cos?(z) + 4 cos®(y)
is equivalent to
0 =34 2cos(2x + 2y) + 2 cos(2x) + 2 cos(2y) =: f(z,y).
Using sin(2a) + sin(2b) = 2sin(a + b) cos(a — b) we obtain
gradf (z,y) = —4 - (sin(2z + 2y) + sin(2x), sin(2z + 2y) + sin(2y))
= —8- (sin(2x + y) cosy, sin(z + 2y) cos x).

Therefore, gradf (xz,y) = (0,0) happens if 2z = 7( mod 27) and 2y = 7( mod 2m).
The critical points (%’/T, 2”12+17r) with integers n, m satisfy
2n+1 2m+1

e
2 2
2z = 7( mod 27) and 2z +y = 0( mod 7). The critical points

(72";17@ mm — (2n + 1)7) with integers n, m satisfy

TI') =321+ 2(-1)" 421+ > .

2n+1
(73
2y = w( mod 27) and x + 2y = 0( mod ) is symmetrical to the preceding case.
2x +y = 0( mod 7) and x + 2y = 0( mod 7). This implies 3z + 3y = (n + m)7w
and x —y = (n—m)m with integers n, m. We infer that (z,y) = §(2n—m,2m —n)
are the remaining critical points of f.

f(Qn — mﬁ, 2m — n7r>

7r,m7r—(2n+1)7r> =3+2 (1) +2(-1)" +2-1>0.

3 3
2 an — 2 dm — 2
=34 2008 2T 4o s UR T 2MIT o o U =200
=3+2(2C082w—1> +4cos@cos(n—m)w

N N N2
=1+ 4 cos? Tﬂ- +4(=1)N COST7T :(1 +2(—1)" cos %) >0

with N := n + m. Consequently, the function value is equal to zero iff IV is not a
multiple of 3.
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In total, we have f(x,y) > 0 on R? and f(z,y) = 0 if and only if
(r,y) = (2n —m,2m — n) %, for all integers n,m satisfying n + m # 0( mod 3).
The solutions of the above trigonometric identity are exactly the zeros of f.
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