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1601. For any complex number 𝒒 with 𝑹𝒆(𝒒) ≤ 𝟏, let 

𝑹(𝒒) = ∫
𝒆𝒙 − 𝟏

𝒙
𝐥𝐨𝐠𝟐 (

𝒒

𝒙
)𝒅𝒙

𝒒

𝟎

 

Then prove the following identity: 

∫ 𝒆−𝒒 (𝟏 +
𝟏

𝒒
)𝑹(𝒒)

∞

𝟎

𝒅𝒒 = 𝟐(𝜻(𝟑) + 𝜻(𝟒)) 

Proposed by Srinivasa Raghava-AIRMC-India 

Solution 1 by Rana Ranino-Setif-Algerie 

𝑹(𝒒) = ∫
𝒆𝒙 − 𝟏

𝒙
𝐥𝐨𝐠𝟐 (

𝒒

𝒙
)𝒅𝒙

𝒒

𝟎

=
𝒙=𝒒𝒕

∫
𝒆𝒒𝒕 − 𝟏

𝒕
𝐥𝐨𝐠𝟐 𝒕 𝒅𝒕

𝟏

𝟎

=
𝑰𝑩𝑷

 

= [
𝟏

𝟑
(𝒆𝒒𝒕 − 𝟏) 𝐥𝐨𝐠𝟑 𝒕]

𝟎

𝟏

−
𝟏

𝟑
∫ 𝒒𝒆𝒒𝒕 𝐥𝐨𝐠𝟑 𝒕 𝒅𝒕
𝟏

𝟎

= −
𝟏

𝟑
∫ 𝒒𝒆𝒒𝒕 𝐥𝐨𝐠𝟑 𝒕 𝒅𝒕
𝟏

𝟎

 

𝛀 = ∫ 𝒆−𝒒 (𝟏 +
𝟏

𝒒
)𝑹(𝒒)

∞

𝟎

𝒅𝒒 = −
𝟏

𝟑
∫ 𝐥𝐨𝐠𝟑 𝒕
𝟏

𝟎

∫ (𝟏 + 𝒒)𝒆−𝒒(𝟏−𝒕)𝒅𝒒𝒅𝒕
∞

𝟎

= 

= −
𝟏

𝟑
∫ (

𝟏

(𝟏 − 𝒕)𝟐
+

𝟏

𝟏 − 𝒕
) 𝐥𝐨𝐠𝟑 𝒕 𝒅𝒕

𝟏

𝟎

= −
𝟏

𝟑
∑(𝒏 + 𝟐)∫ 𝒕𝒏 𝐥𝐨𝐠𝟑 𝒕 𝒅𝒕

𝟏

𝟎

∞

𝒏=𝟎

 

∫ 𝒕𝒏 𝐥𝐨𝐠𝟑 𝒕 𝒅𝒕
𝟏

𝟎

=
𝒕=𝒆−𝒚

−∫ 𝒚𝟑𝒆−(𝒏+𝟏)𝒚𝒅𝒚
∞

𝟎

= −
𝚪(𝟒)

(𝒏 + 𝟏)𝟒
= −

𝟔

(𝟏 + 𝒏)𝟒
 

Hence, 

𝛀 = 𝟐∑
𝒏+ 𝟐

(𝒏 + 𝟏)𝟒

∞

𝒏=𝟎

= 𝟐∑(
𝟏

(𝒏+ 𝟏)𝟑
+

𝟏

(𝒏 + 𝟏)𝟒
)

∞

𝒏=𝟎

= 𝟐(𝜻(𝟑) + 𝜻(𝟒)) 

Solution 2 by Rana Ranino-Setif-Algerie 

𝑹(𝒒) = ∫
𝒆𝒙 − 𝟏

𝒙
𝐥𝐨𝐠𝟐 (

𝒒

𝒙
)𝒅𝒙

𝒒

𝟎

=
𝒙=𝒒𝒕

∫
𝒆𝒒𝒕 − 𝟏

𝒕
𝐥𝐨𝐠𝟐 𝒕 𝒅𝒕

𝟏

𝟎

= 

=∑
𝒒𝒌

𝒌!
∫ 𝒕𝒌−𝟏 𝐥𝐨𝐠𝟐 𝒕
𝟏

𝟎

𝒅𝒕

∞

𝒌=𝟏

= 𝟐∑
𝒒𝒌

𝒌𝟑𝒌!

∞

𝒌=𝟏

 

𝛀 = ∫ 𝒆−𝒒 (𝟏 +
𝟏

𝒒
)𝑹(𝒒)

∞

𝟎

𝒅𝒒 = 𝟐∑
𝟏

𝒌𝟑𝒌!
 ∫ (𝒒𝒌 + 𝒒𝒌−𝟏)𝒆−𝒒
∞

𝟎

𝒅𝒒

∞

𝒌=𝟏

= 



 
www.ssmrmh.ro 

4 RMM-CALCULUS MARATHON 1601-1700 

 

= 𝟐∑
𝟏

𝒌𝟑𝒌!
(𝒌! + (𝒌 − 𝟏)!)

∞

𝒌=𝟏

 

Therefore, 

∫ 𝒆−𝒒 (𝟏 +
𝟏

𝒒
)𝑹(𝒒)

∞

𝟎

𝒅𝒒 = 𝟐∑
𝟏

𝒌𝟑

∞

𝒌=𝟏

+ 𝟐∑
𝟏

𝒌𝟒

∞

𝒌=𝟏

= 𝟐(𝜻(𝟑) + 𝜻(𝟒)) 

1602. For 𝒙 > 𝟎 let 𝒖𝟏 = 𝟒𝒙
𝟐 + 𝟐(𝟒𝒌 + 𝟏)𝒙 + 𝟒𝒌𝟐 + 𝟐𝒌 

𝒖𝟐 = 𝒙
𝟒 + 𝟒𝒌𝒙𝟑 + (𝟔𝒌𝟐 + 𝟏)𝒙𝟐 + 𝟐𝒌(𝟐𝒌𝟐 + 𝟏)𝒙 + 𝒌𝟒 + 𝒌𝟐 

𝒖𝟑(𝒙) = 𝒙
𝟒 + 𝟒(𝒌 + 𝟏)𝒙𝟑 + (𝟔𝒌𝟐 + 𝟏𝟐𝒌 + 𝟕)𝒙𝟐 + 𝟐(𝟐𝒌𝟑 + 𝟔𝒌𝟐 + 𝟕𝒌 + 𝟑)𝒙 + 𝒌𝟒 + 𝟒𝒌𝟑

+ 𝟕𝒌𝟐 + 𝟔𝒌 + 𝟐 

𝒂𝒌(𝒙) = √𝒖𝟏 +√𝒖𝟏 +√𝒖𝟏 +⋯ ; 𝒃𝒌(𝒙) = √𝒖𝟐 + √𝒖𝟐 +√𝒖𝟐 +⋯ ; 

𝒄𝒌(𝒙) = √𝒖𝟑 + √𝒖𝟑 +√𝒖𝟑 +⋯ ;𝛀 = 𝐥𝐢𝐦
𝒏→∞

(∑∫
𝒂𝒌(𝒙)𝒅𝒙

𝒃𝒌(𝒙) ⋅ 𝒄𝒌(𝒙)

𝟑

𝟐

𝒏

𝒌=𝟏

) 

Prove that the roots of the equation 𝐬𝐢𝐧𝛀 =
𝟏

√𝟏𝟕𝟎
(𝟖𝒖𝟑 − 𝟔𝟎𝒖𝟐 + 𝟏𝟒𝟐𝒖 − 𝟏𝟎𝟒) are in 

arithmetic progression. 

Proposed by Costel Florea-Romania 
Solution by Adrian Popa-Romania 

𝒂𝒌(𝒙) = √𝒖𝟏 + √𝒖𝟏 +√𝒖𝟏 +⋯ ⇒ 𝒂𝒌
𝟐(𝒙) − 𝒂𝒌(𝒙) − 𝒖𝟏 = 𝟎 

𝒂𝒌(𝒙) =
𝟏 + √𝟏 + 𝟒𝒖𝟏

𝟐
 𝐚𝐧𝐝 𝟏 + 𝟒𝒖𝟏 = (𝟒𝒙 + (𝟒𝒌 + 𝟏))

𝟐
⇒ 

𝒂𝒌(𝒙) =
𝟏 + 𝟒𝒙 + 𝟒𝒌 + 𝟏

𝟐
= 𝟐𝒙 + 𝟐𝒌 + 𝟏 

𝒃𝒌(𝒙) = √𝒖𝟐 + √𝒖𝟐 +√𝒖𝟐 +⋯ ;𝒃𝒌(𝒙) = √𝒖𝟐 + 𝒃𝒌(𝟏) ⇒ 

⇒ 𝒃𝒌
𝟐 − 𝒃𝒌(𝒙) − 𝒖𝟐 = 𝟎 ⇒ 𝒃𝒌(𝒙) =

𝟏 + √𝟏 + 𝟒𝒖𝟐
𝟐

⇒ 𝒃𝒌(𝒙) = 𝒙
𝟐 + 𝟐𝒌𝒙 + 𝒌𝟐 + 𝟏 
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𝒄𝒌(𝒙) = √𝒖𝟑 +√𝒖𝟑 +√𝒖𝟑 +⋯ = √𝒖𝟑 + 𝒄𝒌(𝒙) ⇒ 𝒄𝒌
𝟐(𝒙) − 𝒄𝒌(𝒙) − 𝒖𝟑 = 𝟎 

𝒄𝒌(𝒙) = 𝒙
𝟐 + 𝟐(𝒌 + 𝟏)𝒙 + 𝒌𝟐 + 𝟐𝒌 + 𝟐 

𝒂𝒌(𝒙)

𝒃𝒌(𝒙) ⋅ 𝒄𝒌(𝒙)
=

𝟐𝒙 + 𝟐𝒌 + 𝟏

(𝒙𝟐 + 𝟐𝒌𝒙 + 𝒌𝟐 + 𝟏)(𝒙𝟐 + 𝟐(𝒌 + 𝟏)𝒙 + (𝒌 + 𝟏)𝟐 + 𝟏)
= 

=
𝟏

𝒙𝟐 + 𝟐𝒌𝒙 + 𝒌𝟐 + 𝟏
−

𝟏

𝒙𝟐 + 𝟐(𝒌 + 𝟏)𝒙 + (𝒌 + 𝟏)𝟐 + 𝟏
 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

∑∫ (
𝟏

𝒙𝟐 + 𝟐𝒌𝒙 + 𝒌𝟐 + 𝟏
−

𝟏

𝒙𝟐 + 𝟐(𝒌 + 𝟏)𝒙 + (𝒌 + 𝟏)𝟐 + 𝟏
)𝒅𝒙

𝟑

𝟐

𝒏

𝒌=𝟏

= 

= 𝐥𝐢𝐦
𝒏→∞

∫ ∑(
𝟏

𝒙𝟐 + 𝟐𝒌𝒙 + 𝒌𝟐 + 𝟏
−

𝟏

𝒙𝟐 + 𝟐(𝒌 + 𝟏)𝒙 + (𝒌 + 𝟏)𝟐 + 𝟏
)

𝒏

𝒌=𝟏

𝟑

𝟐

𝒅𝒙 = 

= 𝐥𝐢𝐦
𝒏→∞

∫ (
𝟏

𝒙𝟐 + 𝟐𝒙 + 𝟐
−

𝟏

𝒙𝟐 + 𝟐(𝒏 + 𝟏)𝒙 + (𝒏 + 𝟏)𝟐 + 𝟏⏟                    
→𝟎

)𝒅𝒙
𝟑

𝟐

= 

= ∫
𝟏

(𝒙 + 𝟏)𝟐 + 𝟏
𝒅𝒙

𝟑

𝟐

= [𝐭𝐚𝐧−𝟏(𝒙 + 𝟏)]𝟐
𝟑 = 𝐭𝐚𝐧−𝟏

𝟏

𝟏𝟑
⇒ 𝛀 = 𝐭𝐚𝐧−𝟏 (

𝟏

𝟏𝟑
) 

Now, we have: 𝐭𝐚𝐧 𝒙 =
𝐬𝐢𝐧𝒙

√𝟏−𝐬𝐢𝐧𝟐 𝒙
⇒ 𝐭𝐚𝐧𝟐 𝒙 =

𝐬𝐢𝐧𝟐 𝒙

𝟏−𝐬𝐢𝐧𝟐 𝒙
⇒ 𝐭𝐚𝐧𝟐 𝒙 − 𝐭𝐚𝐧𝟐 𝒙 ⋅ 𝐬𝐢𝐧𝟐 𝒙 = 𝐬𝐢𝐧𝟐 𝒙 

𝐬𝐢𝐧 𝒙 =
𝐭𝐚𝐧 𝒙

√𝟏 + 𝐭𝐚𝐧𝟐 𝒙
⇒ 𝐬𝐢𝐧(𝐭𝐚𝐧−𝟏 𝒙) =

𝐭𝐚𝐧(𝐭𝐚𝐧−𝟏 𝒙)

√𝟏 + 𝐭𝐚𝐧𝟐(𝐭𝐚𝐧−𝟏 𝒙)
⇒ 𝐬𝐢𝐧𝛀 =

𝟏

√𝟏𝟕𝟎
 

But: 𝐬𝐢𝐧𝛀 =
𝟏

√𝟏𝟕𝟎
(𝟖𝒖𝟑 − 𝟔𝟎𝒖𝟐 + 𝟏𝟒𝟐𝒖 − 𝟏𝟎𝟒), then 

𝟖𝒖𝟑 − 𝟔𝟎𝒖𝟐 + 𝟏𝟒𝟐𝒖 − 𝟏𝟎𝟓 = 𝟎 ⇔ (𝒖 −
𝟓

𝟐
) (𝟖𝒖𝟐 − 𝟒𝟎𝒖 + 𝟒𝟐) = 𝟎 

𝒖𝟏 =
𝟑

𝟐
, 𝒖𝟐 =

𝟓

𝟐
, 𝒖𝟑 =

𝟕

𝟐
. Then 𝒖𝟐 =

𝒖𝟏+𝒖𝟑

𝟐
 

1603. For 𝒌 ≥ 𝟐, prove the following identity: 

𝝏

𝝏𝒌
∫ 𝐬𝐢𝐧 𝒙 𝐥𝐨𝐠 (

𝐬𝐢𝐧𝟐 𝒙

𝒌 − √𝒌𝟐 − 𝐬𝐢𝐧𝟐 𝒙
)𝒅𝒙

𝝅
𝟐

𝟎

= 𝐜𝐨𝐭𝐡−𝟏 𝒌 

Proposed by Srinivasa Raghava-AIRMC-India 
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Solution by Asmat Qatea-Afghanistan 

∵ ∫
𝟏

√𝒂𝟐 + 𝒙𝟐
𝒅𝒙 = 𝐥𝐨𝐠 (𝒙 + √𝒂𝟐 + 𝒙𝟐) + 𝑪 

We have: 

𝝏

𝝏𝒌
∫ 𝐬𝐢𝐧𝒙 𝐥𝐨𝐠(

𝐬𝐢𝐧𝟐 𝒙

𝒌 − √𝒌𝟐 − 𝐬𝐢𝐧𝟐 𝒙
)𝒅𝒙

𝝅
𝟐

𝟎

= 

= ∫ 𝐬𝐢𝐧𝟑 𝒙 ⋅

𝟏 −
𝟐𝒌

𝟐√𝒌𝟐 − 𝐬𝐢𝐧𝟐 𝒙

(𝒌 − √𝒌𝟐 − 𝐬𝐢𝐧𝟐 𝒙)
𝟐

𝐬𝐢𝐧𝟐 𝒙

𝒌 − √𝒌𝟐 − 𝐬𝐢𝐧𝟐 𝒙

𝒅𝒙

𝝅
𝟐

𝟎

= ∫
𝐬𝐢𝐧𝒙

√𝒌𝟐 − 𝐬𝐢𝐧𝟐 𝒙
𝒅𝒙

𝝅
𝟐

𝟎

= 

= ∫
𝐬𝐢𝐧 𝒙

√𝒌𝟐 − 𝟏 + 𝐜𝐨𝐬𝟐 𝒙
𝒅𝒙

𝝅
𝟐

𝟎

=
𝐜𝐨𝐬 𝒙=𝒖

∫
𝒅𝒖

√𝒌𝟐 − 𝟏 + 𝒖𝟐

𝟏

𝟎

= 𝐥𝐨𝐠(𝒖 + √𝒖𝟐 + 𝒌𝟐 − 𝟏|
𝟎

𝟏

= 

= 𝐥𝐨𝐠(𝟏 + 𝒌) −
𝟏

𝟐
𝐥𝐨𝐠(𝒌𝟐 − 𝟏) = 

= 𝐥𝐨𝐠(𝒌 + 𝟏) −
𝟏

𝟐
𝐥𝐨𝐠(𝒌 + 𝟏) −

𝟏

𝟐
𝐥𝐨𝐠(𝒌 − 𝟏) =

𝟏

𝟐
𝐥𝐨𝐠 (

𝒌 + 𝟏

𝒌 − 𝟏
) = 𝐜𝐨𝐭𝐡−𝟏 𝒌 

1604. Find: 

𝛀 = ∫ 𝒙𝟒(√𝐭𝐚𝐧 𝒙 + √𝐜𝐨𝐭 𝒙)

𝝅
𝟐

𝟎

𝒅𝒙 

Proposed by Sujeethan Balendran-SriLanka 

Solution by Cornel Ioan Vălean-Romania 

Using well-known result: 

∑(−𝟏)𝒏
𝟏

𝟒𝒏
(
𝟐𝒏

𝒏
) 𝐜𝐨𝐬(𝟐𝒏𝒙)

∞

𝒏=𝟎

=
𝐜𝐨𝐬

𝒙
𝟐

√𝟐𝐜𝐨𝐬 𝒙
; |𝒙| <

𝝅

𝟐
 

which by simple rearrangements may be brought to the following useful form: 

𝟐√𝟐∑
𝟏

𝟒𝒏
(
𝟐𝒏

𝒏
) 𝐜𝐨𝐬(𝟒𝒏𝒙)

∞

𝒏=𝟎

= √𝐭𝐚𝐧 𝒙 + √𝐜𝐨𝐭 𝒙 

and this is exactly what we need in our proof. 
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So, we write and obtain that: 

𝛀 = ∫ 𝒙𝟒(√𝐭𝐚𝐧 𝒙 + √𝐜𝐨𝐭 𝒙)

𝝅
𝟐

𝟎

𝒅𝒙 = ∫ 𝒙𝟒 (𝟐√𝟐 + 𝟐√𝟐∑
𝟏

𝟒𝒏
(
𝟐𝒏

𝒏
) 𝐜𝐨𝐬(𝟒𝒏𝒙)

∞

𝒏=𝟏

)𝒅𝒙

𝝅
𝟐

𝟎

= 

=
𝝅𝟓

𝟒𝟎√𝟐
+
𝝅𝟑

𝟐
𝟕
𝟐

∑
𝟏

𝒏𝟐𝟒𝒏
(
𝟐𝒏

𝒏
)

∞

𝒏=𝟏

−
𝟑𝝅

𝟐
𝟗
𝟐

∑
𝟏

𝒏𝟒𝟒𝒏
(
𝟐𝒏

𝒏
)

∞

𝒏=𝟏

= 

=
𝟑 𝐥𝐨𝐠 𝟐

𝟒√𝟐
𝝅𝜻(𝟐) +

𝐥𝐨𝐠𝟒 𝟐

𝟖√𝟐
𝝅 +

𝟕𝟗

𝟏𝟗𝟐𝟎√𝟐
𝝅𝟓 −

𝟓 𝐥𝐨𝐠𝟐 𝟐

𝟏𝟔√𝟐
𝝅𝟑, 

where the binoharmonic series are both well-known in the mathematical literature, and 

straightforward (one reduces to trivial primitives, and the other one reduces to Beta 

function limits). So, we have that: 

∑
𝟏

𝒏𝟐𝟒𝒏
(
𝟐𝒏

𝒏
)

∞

𝒏=𝟏

=
𝝅𝟐

𝟔
− 𝟐 𝐥𝐨𝐠𝟐(𝟐) 

and for the other one we get 

∑
𝟏

𝒏𝟒𝟒𝒏
(
𝟐𝒏

𝒏
)

∞

𝒏=𝟏

=
𝝅𝟒

𝟒𝟎
− 𝟒 𝐥𝐨𝐠(𝟐) 𝜻(𝟑) +

𝟏

𝟑
𝐥𝐨𝐠𝟐(𝟐)𝝅𝟐 −

𝟐

𝟑
𝐥𝐨𝐠𝟒(𝟐) 

1605. Prove that: 

∫ (
𝐜𝐨𝐬𝟐(𝝅𝒙) 𝚪 (

𝟏
𝟐 + 𝒙)

(𝟏 + 𝒙𝟐)𝚪(𝟏 + 𝒙)
+

𝐬𝐢𝐧(𝟐𝝅𝒙)𝚪(𝒙)

𝟐(𝟏 + 𝒙𝟐)𝚪 (
𝟏
𝟐 + 𝒙)

)
∞

𝟎

𝒅𝒙 = 𝑹𝒆(
𝝅(𝟏 + 𝒆−𝟐𝝅)𝚪 (

𝟏
𝟐 − 𝒊)

𝟐𝚪(𝟏 − 𝒊)
) 

Proposed by Sujeethan Balendran-SriLanka 

Solution by Felix Marin-Venezuela 

𝑱 = ∫ (
𝐜𝐨𝐬𝟐(𝝅𝒙) 𝚪 (

𝟏
𝟐 + 𝒙)

(𝟏 + 𝒙𝟐)𝚪(𝟏 + 𝒙)
+

𝐬𝐢𝐧(𝟐𝝅𝒙) 𝚪(𝒙)

𝟐(𝟏 + 𝒙𝟐)𝚪 (
𝟏
𝟐 + 𝒙)

)
∞

𝟎

𝒅𝒙 = 

= √𝝅𝑹𝒆(∫ 𝒆𝒊𝝅𝒙 (
−
𝟏
𝟐
𝒙
)

𝒅𝒙

𝟏 + 𝒙𝟐

∞

−∞

) = 
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= √𝝅𝑹𝒆(∫ 𝒆𝒊𝝅𝒙 (∫
(𝟏 + 𝒆𝒊𝝓)

−
𝟏
𝟐

𝒆𝒊𝒙𝝓
𝒅𝝓

𝟐𝝅

𝝅

−𝝅

)
∞

−∞

)
𝒅𝒙

𝟏 + 𝒙𝟐
= 

=
𝟏

𝟐√𝝅
𝒆−𝝅𝑰𝒎(∮ 𝒛−𝟏−𝒊(𝟏 + 𝒛)−

𝟏
𝟐𝒅𝒛

|𝒛|=𝟏

) ~
𝝐→𝟎+

 

~𝑰𝒎 [−∫
(−𝒙)−𝟏−𝒊𝒆𝒊𝝅(−𝟏−𝒊)

√𝟏 + 𝒙
𝒅𝒙

−𝝐

−𝟏

−∫ 𝝐−𝟏−𝒊𝒆𝒊(−𝟏−𝒊)𝝐𝒆𝒊𝜽𝒊
−𝝅

𝝅

𝒅𝜽] 

−𝑰𝒎(∫
(−𝒙)−𝟏−𝒊𝒆−𝒊𝝅(−𝟏−𝒊)

√𝟏 + 𝒙
𝒅𝒙

−𝟏

−𝝐

) = 

=
√𝝅

𝟐
𝒆−𝝅 ⋅ 𝑰𝒎(𝒆𝝅∫ 𝒙−𝟏−𝒊(𝟏 − 𝒙)−

𝟏
𝟐𝒅𝒙

𝟏

𝝐

+ 𝟐𝒊 𝐬𝐢𝐧𝐡(𝝅) 𝝐−𝒊 − 𝒆−𝝅∫ 𝒙−𝟏−𝒊(𝟏 − 𝒙)−
𝟏
𝟐𝒅𝒙

𝟏

𝝐

)

= 

=
√𝝅

𝟐
𝒆−𝝅 ⋅ 𝑰𝒎(𝟐 𝐬𝐢𝐧𝐡(𝝅)∫ 𝒙−𝟏−𝒊(𝟏 − 𝒙)−

𝟏
𝟐𝒅𝒙

𝟏

𝝐

+ 𝟐𝒊 𝐬𝐢𝐧𝐡(𝝅) 𝝐−𝒊) = 

=
𝝅(𝟏 − 𝒆−𝟐𝝅)

𝟐
𝑰𝒎(

𝚪(−𝒊)

𝚪 (
𝟏
𝟐 − 𝒊)

) ≅ 𝟏. 𝟐𝟒𝟕𝟑 

1606. Find: 

𝛀 = ∫ 𝐬𝐢𝐧𝐡−𝟏(𝐜𝐬𝐜𝐡 𝒙) 𝒅𝒙
∞

𝟎

 

Proposed by Abdul Mukhtar-Nigeria 
Solution 1 by Asmat Qatea-Afghanistan 
 

∵ 𝐬𝐢𝐧𝐡−𝟏 𝒙 = 𝐥𝐨𝐠(𝒙 + √𝟏 + 𝒙𝟐) and 𝐜𝐬𝐜𝐡 𝒙 =
𝟐

𝒆𝒙−𝒆−𝒙
, we get: 

𝛀 = ∫ 𝐥𝐨𝐠(
𝟐

𝒆𝒙 − 𝒆−𝒙
+√𝟏 + (

𝟐

𝒆𝒙 − 𝒆−𝒙
)
𝟐

)
∞

𝟎

𝒅𝒙 = ∫ 𝐥𝐨𝐠 (
𝟐 + 𝒆𝒙 + 𝒆−𝒙

𝒆𝒙 − 𝒆−𝒙
)𝒅𝒙

∞

𝟎

= 

= ∫ 𝐥𝐨𝐠(
𝟐𝒆−𝒙 + 𝒆−𝟐𝒙 + 𝟏

𝟏 − 𝒆−𝟐𝒙
)𝒅𝒙

∞

𝟎

=
𝒆−𝒙=𝒖

∫
𝟏

𝒖
𝐥𝐨𝐠 (

𝒖𝟐 + 𝟐𝒖 + 𝟏

𝟏− 𝒖𝟐
)

𝟏

𝟎

𝒅𝒖 = 

= ∫
𝟏

𝒖
𝐥𝐨𝐠 (

𝟏 + 𝒖

𝟏− 𝒖
)𝒅𝒖

𝟏

𝟎

= ∫
𝟏

𝒖
𝐥𝐨𝐠(𝟏 + 𝒖)𝒅𝒖

𝟏

𝟎

−∫
𝟏

𝒖
𝐥𝐨𝐠(𝟏 − 𝒖) 𝒅𝒖

𝟏

𝟎

= 



 
www.ssmrmh.ro 

9 RMM-CALCULUS MARATHON 1601-1700 

 

= −∫
𝟏

𝒖
∑
(−𝟏)𝒌𝒖𝒌

𝒌
𝒅𝒖

∞

𝒌=𝟏

𝟏

𝟎

−∫
𝟏

𝒖
∑
−𝒖𝒌

𝒌
𝒅𝒖

∞

𝒌=𝟏

𝟏

𝟎

= 

= −∑
(−𝟏)𝒌

𝒌
∫ 𝒖𝒌−𝟏𝒅𝒖
𝟏

𝟎

∞

𝒌=𝟏

+∑
𝟏

𝒌
∫ 𝒖𝒌−𝟏𝒅𝒖
𝟏

𝟎

∞

𝒌=𝟏

= −∑
(−𝟏)𝒌

𝒌𝟐

∞

𝒌=𝟏

+∑
𝟏

𝒌𝟐

∞

𝒌=𝟏

=
𝝅𝟐

𝟏𝟐
+
𝝅𝟐

𝟔
 

Therefore, 

𝛀 = ∫ 𝐬𝐢𝐧𝐡−𝟏(𝐜𝐬𝐜𝐡𝒙)𝒅𝒙
∞

𝟎

=
𝝅𝟐

𝟒
 

 Solution 2 by Ose Favour-Nigeria 

∵ 𝐜𝐬𝐜𝐡𝒙 =
𝟐

𝒆𝒙−𝒆−𝒙
 and 𝐜𝐨𝐭𝐡 𝒙 =

𝒆𝒙+𝒆−𝒙

𝒆𝒙−𝒆−𝒙
 

𝛀 = ∫ 𝐥𝐨𝐠(𝒔𝒄𝒔𝒉 𝒙 + 𝐜𝐨𝐭𝐡 𝒙)
∞

𝟎

𝒅𝒙 = ∫ 𝐥𝐨𝐠(𝒆𝒙 + 𝒆−𝒙 + 𝟐)𝒅𝒙
∞

𝟎

−∫ 𝐥𝐨𝐠(𝒆𝒙 − 𝒆−𝒙) 𝒅𝒙
∞

𝟎

= 𝚽−𝚿 

𝚽 =
𝒖=𝒆−𝒙

∫
𝟏

𝒖
𝐥𝐨𝐠 (

𝟏

𝒖
+ 𝒖 + 𝟐)𝒅𝒖

𝟏

𝟎

= ∫
𝟏

𝒖
𝐥𝐨𝐠(

(𝒖 + 𝟏)𝟐

𝒖
)𝒅𝒖

𝟏

𝟎

= 

= 𝟐∫
𝐥𝐨𝐠(𝟏 + 𝒖)

𝒖
𝒅𝒖

𝟏

𝟎

−∫
𝐥𝐨𝐠𝒖

𝒖
𝒅𝒖

𝟏

𝟎

=
𝝅𝟐

𝟔
− 𝒍𝒊(𝟏) 

𝚿 = ∫ 𝐥𝐨𝐠(𝒆𝒙(𝟏 − 𝒆−𝟐𝒙))𝒅𝒙
∞

𝟎

=
𝒖=𝒆−𝒙

= ∫
𝟏

𝒖
𝐥𝐨𝐠 (

𝟏 − 𝒖𝟐

𝒖
)𝒅𝒖

𝟏

𝟎

= 

= ∫
𝐥𝐨𝐠(𝟏 − 𝒖𝟐)

𝒖
𝒅𝒖

𝟏

𝟎

−∫
𝐥𝐨𝐠 𝒖

𝒖
𝒅𝒖

𝟏

𝟎

= −∑
𝟏

𝒏
∫ 𝒖𝟐𝒏−𝟏𝒅𝒖
𝟏

𝟎

∞

𝒏=𝟏

− 𝒍𝒊(𝟏) = 

= −
𝟏

𝟐
∑

𝟏

𝒏𝟐

∞

𝒏=𝟏

− 𝒍𝒊(𝟏) = −
𝟏

𝟐
𝜻(𝟐) − 𝒍𝒊(𝟏) = −

𝝅𝟐

𝟏𝟐
− 𝒍𝒊(𝟏) 

Therefore, 

𝛀 = ∫ 𝐬𝐢𝐧𝐡−𝟏(𝐜𝐬𝐜𝐡𝒙)𝒅𝒙
∞

𝟎

=
𝝅𝟐

𝟒
 

Solution 3 by proposer 

𝛀 = ∫ 𝐬𝐢𝐧𝐡−𝟏(𝐜𝐬𝐜𝐡𝒙)𝒅𝒙
∞

𝟎

= (𝒙 ⋅ 𝐬𝐢𝐧𝐡−𝟏 𝒙 ⋅ 𝐜𝐬𝐜𝐡𝒙)𝟎
∞ +∫

𝒙 ⋅ 𝐜𝐨𝐬𝐡𝒙

𝐬𝐢𝐧𝐡𝟐 𝒙
⋅

𝒅𝒙

√𝟏 + 𝐜𝐬𝐜𝐡𝟐 𝒙

∞

𝟎

= 
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= ∫
𝒙

√𝐜𝐨𝐬𝐡𝟐 𝒙
⋅
𝐜𝐨𝐬𝐡 𝒙

𝐬𝐢𝐧𝐡 𝒙
𝒅𝒙

∞

𝟎

= ∫
𝒙

𝐬𝐢𝐧𝐡 𝒙
𝒅𝒙

∞

𝟎

= ∫
𝟐𝒙𝒅𝒙

𝒆𝒙 − 𝒆−𝒙

∞

𝟎

= ∫
𝟐𝒙𝒅𝒙

𝒆𝒙(𝟏 − 𝒆−𝟐𝒙)

∞

𝟎

= 

= ∫
𝟐𝒙 ⋅ 𝒆−𝟐𝒙

𝟏 − 𝒆−𝟐𝒙
𝒅𝒙

∞

𝟎

= ∫ 𝟐𝒙 ⋅ 𝒆−𝒙 ⋅ ∑(𝒆−𝟐𝒙)𝒏
∞

𝒏=𝟎

∞

𝟎

= ∑∫ 𝟐𝒙 ⋅ 𝒆−(𝟐𝒏+𝟏)𝒙𝒅𝒙
∞

𝟎

∞

𝒏=𝟎

=
𝒕=(𝟐𝒏+𝟏)𝒙 

 

= 𝟐∑
𝟏

(𝟐𝒏 + 𝟏)𝟐
∫ 𝒆−𝒕
∞

𝟎

𝒅𝒕

∞

𝒏=𝟎

= 𝟐∑𝚪(𝟐)

∞

𝒏=𝟎

= 𝟐∑
𝟏

(𝟐𝒏 + 𝟏)𝟐

∞

𝒏=𝟎

= 

= 𝟐 {∑
𝟏

𝒏𝟐
−∑

𝟏

(𝟐𝒏)𝟐

∞

𝒏=𝟏

∞

𝒏=𝟎

} =
𝝅𝟐

𝟒
 

1607. Prove that: 

∫
𝒙𝒆𝝅𝒙

(𝟏 + 𝟒𝒙𝟐)𝟐(𝒆𝟐𝝅𝒙 − 𝟏)

∞

𝟎

𝒅𝒙 =
𝟏

𝟏𝟔
(𝟐𝑮 − 𝟏) 

Where 𝑮 = ∑
(−𝟏)𝒏−𝟏

(𝟐𝒏−𝟏)𝟐
∞
𝒏=𝟏 −Catalan’s constant. 

Proposed by Ngulmun George Baite-India 

Solution 1 by Felix Marin-Venezuela 

∫
𝒙𝒆𝝅𝒙

(𝟏 + 𝟒𝒙𝟐)𝟐(𝒆𝟐𝝅𝒙 − 𝟏)

∞

𝟎

𝒅𝒙 = ∫
𝒙

(𝟏 + 𝟒𝒙𝟐)(𝟐 𝐬𝐢𝐧𝐡(𝝅𝒙))
𝒅𝒙

∞

𝟎

= 

=
𝟏

𝟖
{𝒊∫

[𝟏 + 𝟐(𝒊𝒙)]−𝟐 − [𝟏 + 𝟐(−𝒊𝒙)]𝟐

𝟐 𝐬𝐢𝐧𝐡(𝝅𝒙)

∞

𝟎

} 

Where {∗}′s enclosed expression can be evaluated with the Abel-Plana Formula. 

Namely, 

∫
𝒙𝒆𝝅𝒙

(𝟏 + 𝟒𝒙𝟐)𝟐(𝒆𝟐𝝅𝒙 − 𝟏)

∞

𝟎

𝒅𝒙 =
𝟏

𝟖
{∑(−𝟏)𝒏(𝟏 + 𝟐𝒏)−𝟐
∞

𝒏=𝟎

− [
𝟏

𝟐
(𝟏 + 𝟐𝒙)−𝟐]

𝒙=𝟎
} = 

=
𝟏

𝟖
{∑

(−𝟏)𝒏

(𝟐𝒏 + 𝟏)𝟐
−
𝟏

𝟐

∞

𝒏=𝟎

} =
𝟏

𝟏𝟔
(𝟐𝑮 − 𝟏) ≅ 𝟎. 𝟎𝟓𝟐𝟎 

 Solution 2 by Ajetunmobi Abdulqoyyum-Nigeria  

∵ 𝐬𝐢𝐧𝐡(𝒙) =
𝒆𝒙 − 𝒆−𝒙

𝟐
⇒

𝟏

𝐬𝐢𝐧𝐡(𝒙)
=

𝟐

𝒆𝒙 − 𝒆−𝒙
⇒ 𝐜𝐬𝐜𝐡(𝒙) =

𝟐𝒆𝒙

𝒆𝟐𝒙 − 𝟏
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⇒ 𝐜𝐬𝐜𝐡(𝝅𝒙) =
𝟐𝒆𝝅𝒙

𝒆𝟐𝝅𝒙 − 𝟏
⇒

𝒆𝝅𝒙

𝒆𝟐𝝅𝒙 − 𝟏
=
𝟏

𝟐
𝐜𝐬𝐜𝐡(𝝅𝒙) 

Thus, 

𝛀 = ∫
𝒙𝒆𝝅𝒙

(𝟏 + 𝟒𝒙𝟐)𝟐(𝒆𝟐𝝅𝒙 − 𝟏)

∞

𝟎

𝒅𝒙 =
𝟏

𝟐
∫

𝒙 ⋅ 𝐜𝐬𝐜𝐡(𝝅𝒙)

(𝟏 + 𝟒𝒙𝟐)𝟐

∞

𝟎

𝒅𝒙 =
(∗)

 

(∵ 𝐜𝐬𝐜𝐡(𝒙) =
𝟏

𝒙
+ 𝟐𝒙∑

(−𝟏)𝒏

𝒏𝟐𝝅𝟐 + 𝒙𝟐
𝒏≥𝟏

⇒ 𝐜𝐬𝐜𝐡(𝝅𝒙) =
𝟏

𝝅𝒙
+
𝟐𝒙

𝝅
∑

(−𝟏)𝒏

𝒏𝟐 + 𝒙𝟐
𝒏≥𝟏

) 

=
(∗) 𝟏

𝟐
(∫

𝒙

(𝟏 + 𝟒𝒙𝟐)𝟐
(
𝟏

𝝅𝒙
+
𝟐𝒙

𝝅
∑

(−𝟏)𝒏

𝒏𝟐 + 𝒙𝟐
𝒏≥𝟏

)
∞

𝟎

)𝒅𝒙 =  

=
𝟏

𝟐
(
𝟏

𝝅
∫

𝒅𝒙

(𝟏 + 𝟒𝒙𝟐)𝟐

∞

𝟎

+
𝟐

𝝅
∑(−𝟏)𝒏∫

𝒙𝟐

(𝒏𝟐 + 𝒙𝟐)(𝟏 + 𝟒𝒙𝟐)𝟐
𝒅𝒙

∞

𝟎𝒏≥𝟏

) 

𝑨 = ∫
𝒅𝒙

(𝟏 + 𝟒𝒙𝟐)𝟐

∞

𝟎

=
𝟏

𝟐
∫

𝒅𝒙

(𝟏 + 𝒙𝟐)𝟐

∞

𝟎

=
𝟏

𝟐
⋅
𝝅

𝟒
=
𝝅

𝟖
 

𝑩 = ∫
𝒙𝟐

(𝒏𝟐 + 𝒙𝟐)(𝟏 + 𝟒𝒙𝟐)𝟐
𝒅𝒙

∞

𝟎

= 

= ∫ (
𝟒𝒏𝟐

(𝟒𝒏𝟐 − 𝟏)𝟐(𝟒𝒙𝟐 + 𝟏)
−

𝟏

(𝟒𝒙𝟐 + 𝟏)𝟐(𝟒𝒏𝟐 − 𝟏)
−

𝒏𝟐

(𝟒𝒏𝟐 − 𝟏)𝟐(𝒏𝟐 + 𝒙𝟐)
)𝒅𝒙

∞

𝟎

= 

=
𝟒𝒏𝟐

𝟒𝒏𝟐 − 𝟏
∫

𝒅𝒙

𝟒𝒙𝟐 + 𝟏

∞

𝟎

−
𝟏

𝟒𝒏𝟐 − 𝟏
∫

𝒅𝒙

(𝟏 + 𝟒𝒙𝟐)𝟐

∞

𝟎

−
𝒏𝟐

(𝟒𝒏𝟐 − 𝟏)𝟐
∫

𝒅𝒙

𝒏𝟐 + 𝒙𝟐

∞

𝟎

= 

=
𝒏𝟐𝝅

(𝟒𝒏𝟐 − 𝟏)𝟐
−

𝝅

𝟖(𝟒𝒏𝟐 − 𝟏)
−

𝒏𝝅

𝟐(𝟒𝒏𝟐 − 𝟏)𝟐
 

𝛀 =
𝟏

𝟐
(
𝟏

𝟖
+ 𝟐(∑

𝒏𝟐(−𝟏)𝒏

(𝟒𝒏𝟐 − 𝟏)𝟐
𝒏≥𝟏

−
𝟏

𝟖
∑

(−𝟏)𝒏

𝟒𝒏𝟐 − 𝟏
𝒏≥𝟏

−
𝟏

𝟐
∑

(−𝟏)𝒏𝒏

(𝟒𝒏𝟐 − 𝟏)𝟐
𝒏≥𝟏

)) 

𝑪 =∑
𝒏𝟐(−𝟏)𝒏

(𝟒𝒏𝟐 − 𝟏)𝟐
𝒏≥𝟏

=
𝟏

𝟒
(∑

(−𝟏)𝒏

𝟒𝒏𝟐 − 𝟏
𝒏≥𝟏

+∑
(−𝟏)𝒏

(𝟒𝒏𝟐 − 𝟏)𝟐
𝒏≥𝟏

) = 

=
𝟏

𝟒
(
𝟏

𝟐
∑(−𝟏)𝒏 (

𝟏

𝟐𝒏 − 𝟏
−

𝟏

𝟐𝒏 + 𝟏
)

𝒏≥𝟏

+∑
(−𝟏)𝒏

(𝟐𝒏 − 𝟏)𝟐(𝟐𝒏 + 𝟏)𝟐
𝒏≥𝟏

) = 
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=
𝟏

𝟒
(
𝟏

𝟐
(−
𝝅

𝟒
− (
𝝅

𝟒
− 𝟏)) +∑

(−𝟏)𝒏

𝟒
(

𝟏

𝟐𝒏 + 𝟏
−

𝟏

𝟐𝒏 − 𝟏
+

𝟏

(𝟐𝒏 + 𝟏)𝟐
+

𝟏

(𝟐𝒏 − 𝟏)𝟐
)

𝒏≥𝟏

= −
𝝅

𝟑𝟐
 

𝑫 =∑
(−𝟏)𝒏

𝟒𝒏𝟐 − 𝟏
𝒏≥𝟏

=∑
(−𝟏)𝒏

(𝟐𝒏 − 𝟏)(𝟐𝒏 + 𝟏)
𝒏≥𝟏

=
𝟏

𝟐
−
𝝅

𝟒
 

𝑬 =∑
(−𝟏)𝒏𝒏

(𝟒𝒏𝟐 − 𝟏)𝟐
𝒏≥𝟏

=∑(−𝟏)𝒏 (
𝒏

(𝟐𝒏 − 𝟏)𝟐(𝟐𝒏 + 𝟏)𝟐
)

𝒏≥𝟏

= 

=
𝟏

𝟖
∑(−𝟏)𝒏 (

𝟏

(𝟐𝒏 − 𝟏)𝟐
−

𝟏

(𝟐𝒏 + 𝟏)𝟐
)

𝒏≥𝟏

=
𝟏

𝟖
−
𝑮

𝟒
 

Hence, 

𝛀 =
𝟏

𝟐
(
𝟏

𝟖
+ 𝟐(−

𝝅

𝟑𝟐
−
𝟏

𝟖
(
𝟏

𝟐
−
𝝅

𝟒
) −

𝟏

𝟏𝟔
+
𝑮

𝟖
)) =

𝟏

𝟏𝟔
(𝟐𝑮 − 𝟏) 

Therefore, 

∫
𝒙𝒆𝝅𝒙

(𝟏 + 𝟒𝒙𝟐)𝟐(𝒆𝟐𝝅𝒙 − 𝟏)

∞

𝟎

𝒅𝒙 =
𝟏

𝟏𝟔
(𝟐𝑮 − 𝟏) 

1608. Prove that: 

𝛀 = ∫ 𝐥𝐨𝐠(𝟏 + 𝐭𝐚𝐧𝟒 𝒙) 𝐜𝐨𝐬𝟐 𝒙𝒅𝒙

𝝅
𝟐

𝟎

=
𝝅 𝐥𝐨𝐠(𝟔 + 𝟒√𝟐)

𝟒
−
𝝅

𝟐
 

Proposed by Ajetunmobi Abdulqoyyum-Nigeria 

Solution 1 by Kartick Chandra Betal-India 

𝛀 = ∫ 𝐥𝐨𝐠(𝟏 + 𝐭𝐚𝐧𝟒 𝒙) 𝐜𝐨𝐬𝟐 𝒙𝒅𝒙

𝝅
𝟐

𝟎

= ∫
𝐥𝐨𝐠(𝟏 + 𝒙𝟒)

(𝟏 + 𝒙𝟐)𝟐
𝒅𝒙

∞

𝟎

= 

= ∫
𝒙𝟐{𝐥𝐨𝐠(𝟏 + 𝒙𝟒) − 𝟒 𝐥𝐨𝐠 𝒙}

(𝟏 + 𝒙𝟐)𝟐
𝒅𝒙

∞

𝟎

 

𝟐𝛀 = ∫
𝐥𝐨𝐠(𝟏 + 𝒙𝟒)

𝟏 + 𝒙𝟐
𝒅𝒙

∞

𝟎

− 𝟒∫
𝒙𝟐 𝐥𝐨𝐠 𝒙

(𝟏 + 𝒙𝟐)𝟐
𝒅𝒙

∞

𝟎

 

𝛀 =
𝟏

𝟐
∫ 𝐥𝐨𝐠(𝟏 + 𝐭𝐚𝐧𝟒 𝒙)𝒅𝒙

𝝅
𝟐

𝟎

+ 𝟐∫
𝐥𝐨𝐠𝒙

(𝟏 + 𝒙𝟐)𝟐
𝒅𝒙

∞

𝟎

= 
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=
𝟏

𝟐
∫ 𝐥𝐨𝐠(𝟏 − 𝟐𝐬𝐢𝐧𝟐 𝒙 𝐜𝐨𝐬𝟐 𝒙)𝒅𝒙

𝝅
𝟐

𝟎

− 𝟐∫ 𝐥𝐨𝐠(𝐜𝐨𝐬 𝒙)𝒅𝒙

𝝅
𝟐

𝟎

+∫
𝟏 − 𝒙𝟐

(𝒙𝟐 + 𝟏)𝟐
𝐥𝐨𝐠 𝒙𝒅𝒙

∞

𝟎

= 

=
𝟏

𝟐
∫ 𝐥𝐨𝐠 (𝟏 −

𝐬𝐢𝐧𝟐 𝟐𝒙

𝟐
)𝒅𝒙

𝝅
𝟐

𝟎

+ 𝝅 𝐥𝐨𝐠𝟐 − ∫
𝟏 −

𝟏
𝒙𝟐

(𝒙 +
𝟏
𝒙)
𝟐 𝐥𝐨𝐠 𝒙

∞

𝟎

𝒅𝒙 = 

=
𝟏

𝟒
∫ 𝐥𝐨𝐠(𝟏 −

𝐬𝐢𝐧𝟐 𝒙

𝟐
)𝒅𝒙

𝝅

𝟎

+ 𝝅𝐥𝐨𝐠 𝟐 −
𝐥𝐨𝐠 𝒙

𝒙 +
𝟏
𝒙

|

𝟎

∞

−∫
𝒅𝒙

𝒙(𝒙 +
𝟏
𝒙)

∞

𝟎

= 

=
𝟏

𝟐
∫ 𝐥𝐨𝐠 {(

𝟏

√𝟐
)
𝟐

𝐬𝐢𝐧𝟐 𝒙 + 𝐜𝐨𝐬𝟐 𝒙}𝒅𝒙

𝝅
𝟐

𝟎

+ 𝝅𝐥𝐨𝐠 𝟐 −∫
𝒅𝒙

𝟏 + 𝒙𝟐

∞

𝟎

= 

=
𝝅

𝟐
𝐥𝐨𝐠(

𝟏

√𝟐
+ 𝟏

𝟐
) + 𝝅 𝐥𝐨𝐠 𝟐 −

𝝅

𝟐
=
𝝅

𝟒
𝐥𝐨𝐠 (

𝟑 + 𝟐√𝟐

𝟖
⋅ 𝟏𝟔) −

𝝅

𝟐
=
𝝅

𝟒
𝐥𝐨𝐠(𝟔 + 𝟒√𝟐) −

𝝅

𝟐
 

Solution 2 by Jack Desire-Nigeria 

𝛀 = ∫ 𝐥𝐨𝐠(𝟏 + 𝐭𝐚𝐧𝟒 𝒙) 𝐜𝐨𝐬𝟐 𝒙𝒅𝒙

𝝅
𝟐

𝟎

= 

= ∫ 𝐜𝐨𝐬𝟐 𝒙 𝐥𝐨𝐠(𝐜𝐨𝐬𝟒 𝒙 + 𝐬𝐢𝐧𝟒 𝒙)

𝝅
𝟐

𝟎

𝒅𝒙 − 𝟒∫ 𝐜𝐨𝐬𝟐 𝒙 𝐥𝐨𝐠(𝐜𝐨𝐬 𝒙)

𝝅
𝟐

𝟎

𝒅𝒙 = 

= ∫ 𝐜𝐨𝐬𝟐 𝒙 𝐥𝐨𝐠((𝐜𝐨𝐬𝟐 𝒙 + 𝐬𝐢𝐧𝟐 𝒙)𝟐 − 𝟐𝐬𝐢𝐧𝟐 𝒙 𝐜𝐨𝐬𝟐 𝒙)𝒅𝒙

𝝅
𝟐

𝟎

− 𝟒∫ 𝐜𝐨𝐬𝟐 𝒙 𝐥𝐨𝐠(𝐜𝐨𝐬 𝒙)

𝝅
𝟐

𝟎

𝒅𝒙 

= ∫ 𝐜𝐨𝐬𝟐 𝒙 𝐥𝐨𝐠(𝟏 − 𝟐𝐬𝐢𝐧𝟐 𝒙 𝐜𝐨𝐬𝟐 𝒙)𝒅𝒙

𝝅
𝟐

𝟎

− 𝟒∫ 𝐜𝐨𝐬𝟐 𝒙 𝐥𝐨𝐠(𝐜𝐨𝐬 𝒙)

𝝅
𝟐

𝟎

𝒅𝒙 

𝛀𝟏 = ∫ 𝐜𝐨𝐬𝟐 𝒙 𝐥𝐨𝐠(𝟏 − 𝟐 𝐬𝐢𝐧𝟐 𝒙 𝐜𝐨𝐬𝟐 𝒙)𝒅𝒙

𝝅
𝟐

𝟎

= −∫ 𝐜𝐨𝐬𝟐 𝒙∑
𝟐𝒌 𝐬𝐢𝐧𝟐𝒌 𝒙 𝐜𝐨𝐬𝟐𝒌 𝒙

𝒌
𝒅𝒙

∞

𝒌=𝟏

𝝅
𝟐

𝟎

= 

= −∑
𝟐𝒌

𝒌

∞

𝒌=𝟏

∫ 𝐬𝐢𝐧𝟐𝒌 𝒙 𝐜𝐨𝐬𝟐𝒌+𝟐 𝒙𝒅𝒙

𝝅
𝟐

𝟎

= ∑
𝟐𝒌

𝒌
(
𝚪(𝒌 +

𝟏
𝟐) 𝚪(𝒌 +

𝟑
𝟐)

𝟐𝚪(𝟐𝒌 + 𝟐)
)

∞

𝒌=𝟏

= 

= −∑
𝟐𝒌−𝟏

𝒌
(
(𝒌 +

𝟏
𝟐) 𝚪(𝒌 +

𝟏
𝟐) 𝚪(𝒌 +

𝟏
𝟐)

(𝟐𝒌 + 𝟏)𝚪(𝟐𝒌 + 𝟏)
)

∞

𝒌=𝟏

= −∑
𝟐𝒌−𝟐

𝒌
(
𝚪𝟐 (𝒌 +

𝟏
𝟐)

𝚪(𝟐𝒌 + 𝟏)
)

∞

𝒌=𝟏
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∵
𝚪(𝒌)𝚪 (𝒌 +

𝟏
𝟐)

𝚪(𝟐𝒌)
=
√𝝅

𝟐𝟐𝒌−𝟏
⇒
𝚪(𝒌 +

𝟏
𝟐)𝚪(𝒌 + 𝟏)

𝚪(𝟐𝒌 + 𝟏)
=
√𝝅

𝟐𝟐𝒌
;
𝚪 (𝒌 +

𝟏
𝟐)

𝚪(𝟐𝒌 + 𝟏)
= √𝝅/𝟐𝟐𝒌𝚪(𝒌 + 𝟏) 

𝛀𝟏 = −∑
𝟐𝒌−𝟐

𝒌
(
√𝝅𝚪 (𝒌 +

𝟏
𝟐)

𝟐𝟐𝒌𝚪(𝒌 + 𝟏)
)

∞

𝒌=𝟏

= −√𝝅∑
𝟐−𝒌−𝟐

𝒌
(
𝚪(𝒌 +

𝟏
𝟐)

𝚪(𝒌 + 𝟏)
)

∞

𝒌=𝟏

= 

= −𝝅∑
𝟐−𝒌−𝟐

𝒌
(
−
𝟏
𝟐
𝒌
) (−𝟏)𝒌

∞

𝒌=𝟏

= −
𝝅

𝟒
∑
𝟐−𝒌

𝒌
(
−
𝟏
𝟐
𝒌
)(−𝟏)𝒌

∞

𝒌=𝟏

= 

= −
𝝅

𝟒
∫ 𝒙−𝟏∑𝒙𝒌(−𝟏)𝒌 (

−
𝟏
𝟐
𝒌
)𝒅𝒙

∞

𝒌=𝟏

𝟏
𝟐

𝟎

= −
𝝅

𝟒
∫
𝟏

𝒙
(

𝟏

√𝟏 − 𝒙
− 𝟏)𝒅𝒙

𝟏
𝟐

𝟎

=
√𝟏−𝒙=𝒖

 

= −
𝝅

𝟐
∫

𝟏

𝟏 − 𝒖𝟐
(
𝟏

𝒖
− 𝟏)𝒖

𝟏

𝟏

√𝟐

𝒅𝒖 = −
𝝅

𝟐
∫

𝟏 − 𝒖

𝟏 − 𝒖𝟐
𝒅𝒖

𝟏

𝟏

√𝟐

= −
𝝅

𝟐
𝐥𝐨𝐠(𝟏 + 𝒖)|

𝟏

√𝟐

𝟏

= 

= −
𝝅

𝟐
𝐥𝐨𝐠(

𝟐√𝟐

𝟏 + √𝟐
) = −

𝝅

𝟐
𝐥𝐨𝐠(𝟒 − 𝟐√𝟐) 

Now, 

𝛀𝟐 = 𝟒∫ 𝐜𝐨𝐬𝟐 𝒙 𝐥𝐨𝐠(𝐜𝐨𝐬 𝒙)

𝝅
𝟐

𝟎

𝒅𝒙 = 𝟒
𝝏

𝝏𝒂
|
𝒂=𝟐

∫ 𝐜𝐨𝐬𝒂 𝒙

𝝅
𝟐

𝟎

𝒅𝒙 = 𝟒√𝝅
𝝏

𝝏𝒂
(
𝚪 (
𝒂
𝟐 +

𝟏
𝟐)

𝟐𝚪 (
𝒂
𝟐 + 𝟏)

) = 

= 𝟐√𝝅(

𝟏
𝟐𝝍(

𝒂
𝟐 +

𝟏
𝟐) 𝚪 (

𝒂
𝟐 +

𝟏
𝟐)

𝚪(
𝒂
𝟐 + 𝟏)

−

𝟏
𝟐𝚪 (

𝒂
𝟐 +

𝟏
𝟐)𝝍(

𝒂
𝟐 + 𝟏)

𝚪(
𝒂
𝟐 + 𝟏)

) = 

= √𝝅(
𝝍(
𝟑
𝟐
)𝚪(

𝟑
𝟐
)

𝚪(𝟐)
−
𝚪 (
𝟑
𝟐
)𝝍(𝟐)

𝚪(𝟐)
) =

𝝅

𝟐
(𝝍(

𝟑

𝟐
) − 𝝍(𝟐)) =

𝝅

𝟐
(𝟐 − 𝟐 𝐥𝐨𝐠 𝟐) 

Hence, 

𝛀 = 𝛀𝟏 − 𝛀𝟐 = −
𝝅

𝟐
𝐥𝐨𝐠(𝟒 − 𝟐√𝟐) −

𝝅

𝟐
(𝟏 − 𝟐 𝐥𝐨𝐠 𝟐) = −

𝝅

𝟐
+
𝝅

𝟐
𝐥𝐨𝐠(𝟐 + √𝟐) = 

= −
𝝅

𝟐
+
𝝅

𝟒
𝐥𝐨𝐠(𝟔 + 𝟒√𝟐) 

1609. If 𝒙 ∈ ℝ+ and 𝑭(𝒙) = ∫
𝒆𝒕−𝟏

𝒕
𝐥𝐨𝐠 (

𝒙

𝒕
)

𝒙

𝟎
𝒅𝒕 then prove: 

∫ 𝒆−𝒙𝑭(𝒙)
∞

𝟎

𝒅𝒙 = 𝜻(𝟐) 

Proposed by Angad Singh-India 
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Solution 1 by Togrul Ehmedov-Azerbaijan 

∫ 𝒆−𝒙
∞

𝟎

∫
𝒆𝒕 − 𝟏

𝒕
𝐥𝐨𝐠 (

𝒙

𝒕
)𝒅𝒕

𝒙

𝟎

𝒅𝒙 =

𝒙
𝒕
=𝒛

𝒕=
𝒙
𝒛

∫ 𝒆−𝒙
∞

𝟎

∫
𝒆
𝒙
𝒛 − 𝟏

𝒙
⋅ 𝐥𝐨𝐠 𝒛 ⋅

𝒙𝒅𝒛

𝒛𝟐
𝒅𝒙

∞

𝟏

= 

= ∫ 𝒆−𝒙
∞

𝟎

∫ (𝒆
𝒙
𝒛 − 𝟏) ⋅

𝐥𝐨𝐠 𝒛

𝒛

∞

𝟏

𝒅𝒛𝒅𝒙 = ∫ ∫ (𝒆−𝒙(𝟏−
𝟏
𝒛
) − 𝒆−𝒙) ⋅

𝐥𝐨𝐠 𝒛

𝒛
𝒅𝒙𝒅𝒛

∞

𝟎

∞

𝟏

= 

= ∫ ∫
𝐥𝐨𝐠 𝒛

𝒛

∞

𝟎

∫ (𝒆−
𝒙(𝒛−𝟏)
𝒛 − 𝒆−𝒙)

∞

𝟎

𝒅𝒙
∞

𝟏

𝒅𝒛 = 

= ∫
𝐥𝐨𝐠𝒛

𝒛
[
𝒛

𝟏 − 𝒛
𝒆−
𝒙(𝒛−𝟏)
𝒛 + 𝒆−𝒙]

𝟎

∞

𝒅𝒛
∞

𝟏

= ∫
𝐥𝐨𝐠 𝒛

𝒛
(
𝒛

𝒛 − 𝟏
− 𝟏)

∞

𝟏

𝒅𝒛 = 

= ∫
𝐥𝐨𝐠 𝒛

𝒛(𝒛 − 𝟏)

∞

𝟏

𝒅𝒛 = −∫
𝐥𝐨𝐠 𝒛

𝟏 − 𝒛

𝟏

𝟎

𝒅𝒛 = −∑𝒛𝒌−𝟏 𝐥𝐨𝐠 𝒛𝒅𝒛

∞

𝒌=𝟏

=∑
𝟏

𝒌𝟐

∞

𝒌=𝟏

= 𝜻(𝟐) 

Solution 2 by Ajenikoko Gbolahan-Nigeria 

𝑭(𝒙) = ∫
𝒆𝒕 − 𝟏

𝒕
𝐥𝐨𝐠 (

𝒙

𝒕
)𝒅𝒕

𝒙

𝟎

=
𝒖=
𝒙
𝒕
∫

𝒆
𝒙
𝒖 − 𝟏
𝒙
𝒖

𝐥𝐨𝐠 𝒖
𝒙𝒅𝒖

𝒖𝟐

∞

𝟏

= ∫
𝒆
𝒙
𝒖 − 𝟏

𝒖
𝐥𝐨𝐠 𝒖𝒅𝒖

∞

𝟏

  

Then, 

𝚿 = ∫ 𝒆−𝒙𝑭(𝒙)
∞

𝟎

𝒅𝒙 = ∫ 𝒆−𝒙
∞

𝟎

∫
𝒆
𝒙
𝒖 − 𝟏

𝒖
𝐥𝐨𝐠 𝒖𝒅𝒖

∞

𝟏

𝒅𝒙 = ∫ ∫
𝒆−𝒙+

𝒙
𝒖 − 𝒆−𝒙

𝒖
𝐥𝐨𝐠 𝒖

∞

𝟏

𝒅𝒖
∞

𝟎

𝒅𝒙 

Using Fubini’s theorem to switch order of integration. 

𝚿 = ∫
𝐥𝐨𝐠𝒖

𝒖

∞

𝟏

∫ (𝒆−𝒙+
𝒙
𝒖 − 𝒆−𝒙)

∞

𝟎

𝒅𝒙 𝒅𝒖 = ∫
𝐥𝐨𝐠 𝒖

𝒖
(
𝒖

𝒖 − 𝟏
− 𝟏)

∞

𝟏

𝒅𝒖 = 

= ∫ (
𝐥𝐨𝐠 𝒖

𝒖 − 𝟏
−
𝐥𝐨𝐠 𝒖

𝒖
−
𝐥𝐨𝐠𝒖

𝒖
)𝒅𝒖

∞

𝟏

 

∵ ∫
𝐥𝐨𝐠 𝒖

𝒖
𝒅𝒖

∞

𝟏
 does not converges 

𝚿 = ∫
𝐥𝐨𝐠𝒖

𝒖 − 𝟏
𝒅𝒖

∞

𝟏

= −∑
𝝏

𝝏𝒔
|
𝒔=𝟎

∞

𝒏=𝟎

∫ 𝒙𝒏+𝒔
∞

𝟏

𝒅𝒔 = −∑
𝟏

−(𝒏 + 𝟏)𝟐

∞

𝒏=𝟎

= ∑
𝟏

(𝒏 + 𝟏)𝟐

∞

𝒏=𝟎

= 𝜻(𝟐) 

Solution 3 by Rana Ranino-Setif-Algerie 

𝑭(𝒙) = ∫
𝒆𝒕 − 𝟏

𝒕
𝐥𝐨𝐠 (

𝒙

𝒕
)𝒅𝒕

𝒙

𝟎

=
𝒕=𝒙𝒚

∫
𝟏 − 𝒆𝒙𝒚

𝒚
𝐥𝐨𝐠 𝒚

𝟏

𝟎

𝒅𝒕 
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𝛀 = ∫ 𝑭(𝒙)𝒆−𝒙
∞

𝟎

𝒅𝒙 = ∫ ∫
𝟏 − 𝒆𝒙𝒚

𝒚
𝐥𝐨𝐠 𝒚𝒆−𝒙

𝟏

𝟎

𝒅𝒕
∞

𝟎

𝒅𝒙 = 

= ∫
𝐥𝐨𝐠 𝒚

𝒚

𝟏

𝟎

∫ (𝟏 − 𝒆𝒙𝒚)𝒆−𝒙
∞

𝟎

𝒅𝒙𝒅𝒚 = ∫
𝐥𝐨𝐠 𝒚

𝒚
(𝟏 −

𝟏

𝟏 − 𝒚
)

𝟏

𝟎

𝒅𝒚 = −∫
𝐥𝐨𝐠 𝒚

𝟏 − 𝒚

𝟏

𝟎

𝒅𝒚 = 

= −∫
𝐥𝐨𝐠(𝟏 − 𝒚)

𝒚

𝟏

𝟎

𝒅𝒚 = 𝑳𝒊𝟐(𝟏) = 𝜻(𝟐) 

Solution 4 by Kartick Chandra Betal-India 

𝑭(𝒙) = ∫
𝒆𝒕 − 𝟏

𝒕
𝐥𝐨𝐠 (

𝒙

𝒕
)𝒅𝒕

𝒙

𝟎

= −∫
𝒆𝒕𝒙 − 𝟏

𝒕
𝐥𝐨𝐠 𝒕

𝟏

𝟎

𝒅𝒕 = ∫ (𝐥𝐨𝐠 𝒕∫ 𝒆𝒕𝒚
𝒙

𝟎

𝒅𝒚)𝒅𝒕
𝟏

𝟎

 

∫ 𝒆−𝒙𝑭(𝒙)
∞

𝟎

𝒅𝒙 = −∫ 𝒆−𝒙
∞

𝟎

(∫ 𝐥𝐨𝐠 𝒕
𝟏

𝟎

∫ 𝒆𝒕𝒚
𝒙

𝟎

𝒅𝒚)𝒅𝒕 = 

= −∫ 𝐥𝐨𝐠 𝒕
𝟏

𝟎

∫ 𝒆𝒕𝒚
∞

𝟎

∫ 𝒆−𝒙
∞

𝒚

𝒅𝒙 𝒅𝒚 𝒅𝒛 = −∫ 𝐥𝐨𝐠 𝒕∫ 𝒆𝒕𝒚 ⋅ 𝒆−𝒚
∞

𝟎

𝒅𝒚
𝟏

𝟎

𝒅𝒕 = 

= −∫ 𝐥𝐨𝐠 𝒕
𝟏

𝟎

𝒅𝒕

𝟏 − 𝒕
= −∫

𝐥𝐨𝐠(𝟏 − 𝒕)

𝒕
𝒅𝒕

𝟏

𝟎

= 𝜻(𝟐) 

Solution 5 by Jack Desire-Nigeria 

𝑭(𝒙) = ∫
𝒆𝒕 − 𝟏

𝒕
𝐥𝐨𝐠 (

𝒙

𝒕
)𝒅𝒕

𝒙

𝟎

= ∫ ∑
𝒕𝒌−𝟏

𝒌!
𝐥𝐨𝐠 (

𝒙

𝒕
) 𝒅𝒙

∞

𝒌=𝟏

𝒙

𝟎

= 

= ∑
𝟏

𝒌!

∞

𝒌=𝟏

∫ 𝒕𝒌−𝟏{𝐥𝐨𝐠 𝒙 − 𝐥𝐨𝐠 𝒕}
𝒙

𝟎

𝒅𝒕 =∑
𝟏

𝒌!
{
𝒙𝒌 𝐥𝐨𝐠 𝒙

𝒌
− (
𝒙𝒌 𝐥𝐨𝐠𝒙

𝒌
−
𝒙𝒌

𝒌𝟐
)}

∞

𝒌=𝟏

= 

=∑
𝟏

𝒌!
(
𝒙𝒌

𝒌𝟐
)

∞

𝒌=𝟏

 

∫ 𝒆−𝒙𝑭(𝒙)
∞

𝟎

𝒅𝒙 =∑
𝟏

𝒌! 𝒌𝟐

∞

𝒌=𝟏

∫ 𝒆−𝒙𝒙𝒌
∞

𝟎

𝒅𝒙 = ∑
𝟏

𝒌𝟐𝒌!
⋅ 𝒌!

∞

𝒌=𝟏

= ∑
𝟏

𝒌𝟐

∞

𝒌=𝟏

= 𝜻(𝟐) 

Solution 6 by proposer 

𝑭(𝒙) = ∫
𝒆𝒕 − 𝟏

𝒕
𝐥𝐨𝐠 (

𝒙

𝒕
) 𝒅𝒕

𝒙

𝟎

= ∫ ∫
𝒆𝒕 − 𝟏

𝒕𝒚

𝒙

𝒕

𝒅𝒚
𝒙

𝟎

𝒅𝒕 = ∫ ∫
𝒆𝒕 − 𝟏

𝒕𝒚

𝒚

𝟎

𝒅𝒕
𝒙

𝟎

𝒅𝒚 = 

= ∫
𝟏

𝒚
∫ ∑

𝒕𝒌−𝟏

𝒌!

∞

𝒌=𝟏

𝒅𝒕
𝒚

𝟎

𝒅𝒚
𝒙

𝟎

= ∫
𝟏

𝒚
∑

𝒚𝒌

𝒌 ⋅ 𝒌!

∞

𝒌=𝟏

𝒅𝒚
𝒙

𝟎

=∑
𝒙𝒌

𝒌𝟐 ⋅ 𝒌!

∞

𝒌=𝟏
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Hence, 

∫ 𝒆−𝒙𝑭(𝒙)
∞

𝟎

𝒅𝒙 =∑
𝟏

𝒌𝟐 ⋅ 𝒌!

∞

𝒌=𝟏

∫ 𝒆−𝒙𝒙𝒌
∞

𝟎

𝒅𝒙 = ∑
𝟏

𝒌𝟐

∞

𝒌=𝟏

= 𝜻(𝟐) 

1610. For |𝒙| ≤ 𝟏, let 𝑻(𝒙) = ∑
((−𝟏)

𝟏
𝟐
𝒏(𝒏−𝟏)

+𝟏)𝒙𝒏

𝒏𝟐+𝒏

∞
𝒏=𝟏  then prove that: 

∫ (𝒙 +
𝟏

𝒙
) (𝑻(−𝒙) + 𝑻(𝒙))

𝟏

𝟎

𝒅𝒙 =
𝝅𝟐

𝟐𝟒
− 𝟏 + 𝐥𝐨𝐠𝟐 

Proposed by Srinivasa Raghava-AIRMC-India 

Solution by Rana Ranino-Setif-Algerie 

𝑻(𝒙) = ∑
((−𝟏)

𝟏
𝟐
𝒏(𝒏−𝟏) + 𝟏)𝒙𝒏

𝒏𝟐 + 𝒏

∞

𝒏=𝟏

;  𝑻(−𝒙) = ∑
((−𝟏)

𝟏
𝟐
𝒏(𝒏+𝟏) + (−𝟏)𝒏) 𝒙𝒏

𝒏𝟐 + 𝒏

∞

𝒏=𝟏

 

𝑻(𝒙) + 𝑻(−𝒙) = ∑(
𝟏

𝒏
−

𝟏

𝒏 + 𝟏
) ((−𝟏)

𝟏
𝟐
𝒏(𝒏−𝟏) + (−𝟏)

𝟏
𝟐
𝒏(𝒏+𝟏) + (−𝟏)𝒏 + 𝟏)𝒙𝒏

∞

𝒏=𝟏

 

(−𝟏)
𝟏
𝟐
𝒏(𝒏−𝟏) + (−𝟏)

𝟏
𝟐
𝒏(𝒏+𝟏) + (−𝟏)𝒏 + 𝟏 = {

𝟒, 𝒊𝒇 𝒏 = 𝟒𝒌
𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

𝑻(𝒙) + 𝑻(−𝒙) = 𝟒∑(
𝟏

𝟒𝒌
−

𝟏

𝟒𝒌 + 𝟏
)𝒙𝟒𝒌

∞

𝒌=𝟏

 

𝛀 = ∫ (𝒙 +
𝟏

𝒙
) (𝑻(−𝒙) + 𝑻(𝒙))

𝟏

𝟎

𝒅𝒙 = 𝟒∑(
𝟏

𝟒𝒌
−

𝟏

𝟒𝒌 + 𝟏
)

∞

𝒌=𝟏

∫ (𝒙𝟒𝒌+𝟏 + 𝒙𝟒𝒌−𝟏)
𝟏

𝟎

𝒅𝒙 = 

= 𝟒∑(
𝟏

𝟒𝒌
−

𝟏

𝟒𝒌 + 𝟏
) (
𝟏

𝟒𝒌
+

𝟏

𝟒𝒌 + 𝟏
)

∞

𝒌=𝟏

=∑(
𝟏

𝟒𝒌𝟐
−
𝟏

𝟐𝒌
+

𝟏

𝟐𝒌 + 𝟏
)

∞

𝒌=𝟏

=  

=
𝟏

𝟒
𝜻(𝟐) − 𝟏 + (𝟏 −

𝟏

𝟐
+
𝟏

𝟑
−
𝟏

𝟒
+ ⋯)

⏟              
(𝐥𝐨𝐠 𝟐)

 

Therefore, 

∫ (𝒙 +
𝟏

𝒙
) (𝑻(−𝒙) + 𝑻(𝒙))

𝟏

𝟎

𝒅𝒙 =
𝝅𝟐

𝟐𝟒
− 𝟏 + 𝐥𝐨𝐠 𝟐 

 



 
www.ssmrmh.ro 

18 RMM-CALCULUS MARATHON 1601-1700 

 

1611. Find: 

𝛀(𝒏) = ∫
𝒙𝟐𝒏−𝟏(𝟏 − 𝒙𝟐)

𝒆𝒏𝒙
𝟐 𝒅𝒙, 𝒏 ∈ ℕ, 𝒏 ≥ 𝟏 

Proposed by Daniel Sitaru-Romania 

Solution 1 by Rana Ranino-Setif-Algerie 

𝛀(𝒏) = ∫
𝒙𝟐𝒏−𝟏(𝟏 − 𝒙𝟐)

𝒆𝒏𝒙
𝟐 𝒅𝒙 =

𝒕=𝒙𝟐 𝟏

𝟐
∫ 𝒕𝒏−𝟏𝒆−𝒏𝒕 𝒅𝒕 −

𝟏

𝟐
∫𝒕𝒏𝒆−𝒏𝒕 𝒅𝒕 

𝟏

𝟐
∫ 𝒕𝒏−𝟏𝒆−𝒏𝒕 𝒅𝒕 =

𝑰𝑩𝑷 𝟏

𝟐𝒏
𝒕𝒏𝒆−𝒏𝒕 +

𝟏

𝟐
∫𝒕𝒏𝒆−𝒏𝒕 𝒅𝒕 

𝛀(𝒏) =
𝟏

𝟐𝒏
𝒕𝒏𝒆−𝒏𝒕 + 𝑪 =

𝒙𝟐𝒏

𝟐𝒏𝒆𝒏𝒙
𝟐 + 𝑪 

Solution 2 by Adrian Popa-Romania 

𝛀(𝒏) = ∫
𝒙𝟐𝒏−𝟏(𝟏 − 𝒙𝟐)

𝒆𝒏𝒙
𝟐 𝒅𝒙 = ∫𝒙𝟐𝒏−𝟏𝒆−𝒏𝒙

𝟐
𝒅𝒙 − ∫𝒙𝟐𝒏+𝟏𝒆−𝒏𝒙

𝟐
𝒅𝒙 = 𝑰𝟏 − 𝑰𝟐 

𝑰𝟏 = ∫𝒙
𝟐𝒏−𝟏𝒆−𝒏𝒙

𝟐
𝒅𝒙 =

𝒖=𝒙𝟐𝒏−𝟐𝒆−𝒏𝒙
𝟐

 

=
𝒙𝟐𝒏𝒆−𝒏𝒙

𝟐

𝟐
− (𝒏 − 𝟏)∫𝒙𝟐𝒏−𝟏𝒆−𝒏𝒙

𝟐
𝒅𝒙 + 𝒏∫𝒙𝟐𝒏+𝟏𝒆−𝒏𝒙

𝟐
𝒅𝒙 = 

=
𝒙𝟐𝒏𝒆−𝒏𝒙

𝟐

𝟐
− (𝒏 − 𝟏)𝑰𝟏 + 𝒏𝑰𝟐 

𝒏(𝑰𝟏 − 𝑰𝟐) =
𝒙𝟐𝒏𝒆−𝒏𝒙

𝟐

𝟐
⇒ 𝑰𝟏 − 𝑰𝟐 = 𝛀(𝒏) =

𝒙𝟐𝒏𝒆−𝒏𝒙
𝟐

𝟐
+ 𝑪 

Solution 3 by Ravi Prakash-New Delhi-India 

𝛀(𝒏) = ∫
𝒙𝟐𝒏−𝟏(𝟏 − 𝒙𝟐)

𝒆𝒏𝒙
𝟐 𝒅𝒙 = ∫

𝒙𝟐𝒏−𝟐(𝟏 − 𝒙𝟐)

𝒆𝒏𝒙
𝟐 𝒙𝒅𝒙 =

𝒙𝟐=𝒕
 

=
𝟏

𝟐
∫𝒆−𝒏𝒕𝒕𝒏−𝟏(𝟏 − 𝒕)𝒅𝒕 = 

=
𝟏

𝟐𝒏
𝒆−𝒏𝒕𝒕𝒏 −

𝟏

𝟐
∫  𝒆−𝒏𝒕𝒕𝒏−𝟏 𝒅𝒕 +

𝟏

𝟐
∫𝒆−𝒏𝒕𝒕𝒏−𝟏𝒅𝒕 = 

=
𝟏

𝟐𝒏
𝒆−𝒏𝒕𝒕𝒏 + 𝑪 =

𝟏

𝟐𝒏
𝒆−𝒏𝒙

𝟐
𝒙𝟐𝒏 + 𝑪 
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Solution 4 by Almas Babirov-Azerbaijan 

𝛀(𝒏) = ∫
𝒙𝟐𝒏−𝟏(𝟏 − 𝒙𝟐)

𝒆𝒏𝒙
𝟐 𝒅𝒙 = ∫𝒙𝟐𝒏−𝟏𝒆−𝒏𝒙

𝟐
𝒅𝒙 − ∫𝒙𝟐𝒏+𝟏𝒆−𝒏𝒙

𝟐
𝒅𝒙 = 

=
𝟏

𝟐𝒏
∫𝒆−𝒏𝒙

𝟐
𝒅(𝒙𝟐) +

𝟏

𝟐𝒏
∫𝒙𝟐𝒏𝒅(𝒆−𝒏𝒙

𝟐
) = 

=
𝟏

𝟐𝒏
∫𝒆−𝒏𝒙𝒅(𝒙𝟐) +

𝟏

𝟐𝒏
𝒙𝟐𝒏𝒆−𝒏𝒙

𝟐
−∫𝒆−𝒏𝒙

𝟐
𝒅(𝒙𝟐) = 

=
𝟏

𝟐𝒏
𝒙𝟐𝒏𝒆−𝒏𝒙

𝟐
+ 𝑪 

Solution 5 by Gilmer Lopez-Cajamarca-Peru 

𝛀(𝒏) = ∫
𝒙𝟐𝒏−𝟏(𝟏 − 𝒙𝟐)

𝒆𝒏𝒙
𝟐 𝒅𝒙 = ∫𝒙𝟐𝒏−𝟏𝒆𝒏𝒙

𝟐
𝒅𝒙 −∫

𝒙𝟐𝒏 ⋅ 𝒙

𝒆𝒏𝒙
𝟐 𝒅𝒙 =

𝒖=𝒙𝟐𝒏

 

= ∫
𝒙𝟐𝒏−𝟏

𝒆𝒏𝒙
𝟐 𝒅𝒙 − (−

𝒙𝟐𝒏

𝟐𝒏𝒆𝒏𝒙
𝟐 + ∫

𝟐𝒏 ⋅ 𝒙𝟐𝒏−𝟏

𝟐𝒏𝒆𝒏𝒙
𝟐 𝒅𝒙) = 

= ∫
𝒙𝟐𝒏−𝟏

𝒆𝒏𝒙
𝟐 𝒅𝒙 +

𝒙𝟐𝒏

𝟐𝒏𝒆𝒏𝒙
𝟐 −∫

𝒙𝟐𝒏−𝟏

𝒆𝒏𝒙
𝟐 𝒅𝒙 =

𝒙𝟐𝒏

𝟐𝒏𝒆𝒏𝒙
𝟐 + 𝑪 

1612. Find: 

𝛀 = 𝐥𝐢𝐦
𝜺→𝟎+

∫
𝒙√𝒙 𝐥𝐨𝐠 𝒙

𝒙𝟒 + 𝒙𝟐 + 𝟏

𝟏

𝜺

𝒅𝒙 

Proposed by Vasile Mircea Popa-Romania 

Solution 1 by Rana Ranino-Setif-Algerie 

𝛀 = 𝐥𝐢𝐦
𝜺→𝟎+

∫
𝒙√𝒙 𝐥𝐨𝐠 𝒙

𝒙𝟒 + 𝒙𝟐 + 𝟏

𝟏

𝜺

𝒅𝒙 = ∫
𝒙√𝒙(𝟏 − 𝒙𝟐) 𝐥𝐨𝐠 𝒙

𝟏 − 𝒙𝟔
𝒅𝒙

𝟏

𝟎

= 

= ∫
(𝒙
𝟑
𝟐 − 𝒙

𝟕
𝟐) 𝐥𝐨𝐠 𝒙

𝟏 − 𝒙𝟔
𝒅𝒙

𝟏

𝟎

=
𝟏

𝟑𝟔
∫
(𝒙

𝟓
𝟏𝟐
−𝟏 − 𝒙

𝟑
𝟒
−𝟏) 𝐥𝐨𝐠 𝒙

𝟏 − 𝒙
𝒅𝒙

𝟏

𝟎

= 

=
𝟏

𝟑𝟔
{𝝍(𝟏) (

𝟑

𝟒
) − 𝝍(𝟏) (

𝟓

𝟏𝟐
)} =

𝟏

𝟑𝟔
{𝝅𝟐 − 𝟖𝑮 − 𝝍(𝟏) (

𝟓

𝟏𝟐
)} 

Therefore, 

𝛀 = 𝐥𝐢𝐦
𝜺→𝟎+

∫
𝒙√𝒙 𝐥𝐨𝐠 𝒙

𝒙𝟒 + 𝒙𝟐 + 𝟏

𝟏

𝜺

𝒅𝒙 =
𝟏

𝟑𝟔
{𝝅𝟐 − 𝟖𝑮 −𝝍(𝟏) (

𝟓

𝟏𝟐
)} 
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Solution 2 by Mohammad Rostami-Afghanistan 

𝛀 = 𝐥𝐢𝐦
𝜺→𝟎+

∫
𝒙√𝒙 𝐥𝐨𝐠 𝒙

𝒙𝟒 + 𝒙𝟐 + 𝟏

𝟏

𝜺

𝒅𝒙 = ∫
𝒙√𝒙(𝟏 − 𝒙𝟐) 𝐥𝐨𝐠 𝒙

𝟏 − 𝒙𝟔
𝒅𝒙

𝟏

𝟎

= 

= ∫
𝒙√𝒙(𝟏 − 𝒙𝟐) 𝐥𝐨𝐠 𝒙

(𝟏 − 𝒙𝟐)(𝟏 + 𝒙𝟐 + 𝒙𝟒)
𝒅𝒙

𝟏

𝟎

= ∫
𝒙√𝒙(𝟏 − 𝒙𝟐) 𝐥𝐨𝐠 𝒙

𝟏 − 𝒙𝟔
𝒅𝒙

𝟏

𝟎

= 

= ∫
𝒙√𝒙 𝐥𝐨𝐠 𝒙

𝟏 − 𝒙𝟔
𝒅𝒙

𝟏

𝟎

−∫
𝒙𝟑√𝒙 𝐥𝐨𝐠𝒙

𝟏 − 𝒙𝟔
𝒅𝒙

𝟏

𝟎

= 𝑰𝟏 − 𝑰𝟐 

𝑰𝟏 = ∫
𝒙√𝒙 𝐥𝐨𝐠 𝒙

𝟏 − 𝒙𝟔
𝒅𝒙

𝟏

𝟎

= ∫ 𝒙√𝒙∑𝒙𝟔𝒌
𝝏

𝝏𝒂
|
𝒂=𝟎
𝒙𝒂𝒅𝒙

∞

𝒌=𝟎

=
𝟏

𝟎

 

=∑
𝝏

𝝏𝒂
|
𝒂=𝟎

∫ 𝒙𝟔𝒌+𝒂+
𝟑
𝟐

𝟏

𝟎

𝒅𝒙

∞

𝒌=𝟎

=∑[
𝟏

𝟔𝒌 + 𝒂 +
𝟓
𝟐

]

𝒂=𝟎

′
∞

𝒌=𝟎

= 

=∑
−𝟏

(𝟔𝒌 +
𝟓
𝟐)
𝟐

∞

𝒌=𝟎

= −
𝟏

𝟑𝟔
∑

𝟏

(𝒌 +
𝟓
𝟏𝟐)

𝟐

∞

𝒌=𝟎

= −
𝟏

𝟑𝟔
𝝍(𝟏) (

𝟓

𝟏𝟐
) 

𝑰𝟐 = ∫
𝒙𝟑√𝒙 𝐥𝐨𝐠𝒙

𝟏 − 𝒙𝟔
𝒅𝒙

𝟏

𝟎

= ∫ 𝒙𝟑√𝒙∑𝒙𝟔𝒏
𝝏

𝝏𝒃
|
𝒃=𝟎
𝒙𝒃𝒅𝒙

∞

𝒏=𝟎

𝟏

𝟎

= 

= ∑
𝝏

𝝏𝒃
|
𝒃=𝟎

∞

𝒏=𝟎

∫ 𝒙𝟔𝒏+𝒃+
𝟕
𝟐

𝟏

𝟎

𝒅𝒙 = ∑ [
𝟏

𝟔𝒏 + 𝒃 +
𝟗
𝟐

]

𝒃=𝟎

′
∞

𝒏=𝟎

=∑
−𝟏

(𝟔𝒏 +
𝟗
𝟐
)
𝟐

∞

𝒌=𝟎

= 

= −
𝟏

𝟑𝟔
∑

𝟏

(𝒏 +
𝟗
𝟏𝟐)

𝟐

∞

𝒏=𝟎

= −
𝟏

𝟑𝟔
𝝍(𝟏) (

𝟗

𝟏𝟐
) 

Therefore, 

𝛀 = 𝑰𝟏 − 𝑰𝟐 =
𝟏

𝟑𝟔
[𝝍(𝟏) (

𝟑

𝟒
) − 𝝍(𝟏) (

𝟓

𝟏𝟐
)] 

Solution 3 by Abdul Mukhtar-Nigeria 

∵ 𝒙𝟒 + 𝒙𝟐 + 𝟏 =
𝟏 − 𝒙𝟔

𝟏 − 𝒙𝟐
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𝛀 = ∫
𝒙
𝟑
𝟐 𝐥𝐨𝐠𝒙 − 𝒙

𝟕
𝟐 𝐥𝐨𝐠 𝒙

𝟏 − 𝒙𝟔

𝟏

𝟎

𝒅𝒙 = ∫ (𝒙
𝟑
𝟐 𝐥𝐨𝐠 𝒙 − 𝒙

𝟕
𝟐 𝐥𝐨𝐠 𝒙)∑𝒙𝟔𝒌

∞

𝒌=𝟎

𝒅𝒙
𝟏

𝟎

= 

=∑(∫ 𝒙𝟔𝒌+
𝟑
𝟐 𝐥𝐨𝐠 𝒙𝒅𝒙

𝟏

𝟎

−∫ 𝒙𝟔𝒌+
𝟕
𝟐 𝐥𝐨𝐠 𝒙𝒅𝒙

𝟏

𝟎

)

∞

𝒌=𝟎

 

𝑯𝟏 = ∫ 𝒙𝟔𝒌+
𝟑
𝟐 𝐥𝐨𝐠 𝒙𝒅𝒙

𝟏

𝟎

;𝑯𝟐 = ∫ 𝒙𝟔𝒌+
𝟕
𝟐 𝐥𝐨𝐠 𝒙𝒅𝒙

𝟏

𝟎

⇒ 𝛀 =∑(𝑯𝟏 −𝑯𝟐)

∞

𝒌=𝟎

 

𝑰𝒂 = ∫ 𝒙𝒂 𝐥𝐨𝐠𝒙 𝒅𝒙
𝟏

𝟎

=
𝑰𝑩𝑷
∫
𝐥𝐨𝐠𝒙

𝒂 + 𝟏

𝟏

𝟎

𝒅(𝒙𝒂+𝟏) =
𝐥𝐨𝐠𝒙

𝒂 + 𝟏
𝒙𝒂+𝟏|

𝟎

𝟏

−
𝟏

𝒂 + 𝟏
∫ 𝒙𝒂
𝟏

𝟎

𝒅𝒙 = 

= −
𝟏

𝒂 + 𝟏
∫ 𝒙𝒂
𝟏

𝟎

𝒅𝒙 = −
𝟏

(𝒂 + 𝟏)𝟐
; 𝒂 > −𝟏 

𝑯𝟏 = −
𝟏

(𝟔𝒌 +
𝟓
𝟐)
𝟐 = −

𝟏

𝟑𝟔
⋅

𝟏

(𝒌 +
𝟓
𝟐)
𝟐

 

 

𝑯𝟐 = −
𝟏

𝟑𝟔
⋅

𝟏

(𝒌 +
𝟗
𝟐
)
𝟐 = −

𝟏

𝟑𝟔
⋅

𝟏

(𝒌 +
𝟑
𝟒
)
𝟐 

Therefore, 

𝛀 =∑(𝑯𝟏 − 𝑯𝟐)

∞

𝒌=𝟎

=
𝟏

𝟑𝟔
[𝝍(𝟏) (

𝟑

𝟒
) − 𝝍(𝟏) (

𝟓

𝟏𝟐
)] 

1613. If 𝟎 < 𝒂 ≤ 𝒃 then: 

𝟑∫ √𝒙𝟒 + 𝒙𝟐 + 𝟏
𝒃

𝒂

𝒅𝒙 ≥ (𝒃 − 𝒂)√(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐)𝟐 + 𝟑(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐) + 𝟗 

Proposed by Daniel Sitaru-Romania 

Solution by Kamel Gandoulli Rezgui-Tunisia 

Let 𝒇(𝒕) = √𝒕𝟒 + 𝒕𝟐 + 𝟏 > 𝟎; 𝒂, 𝒃 > 𝟎 and let 𝒄 =
√𝒂𝟐+𝒂𝒃+𝒃𝟐

√𝟑
≤
√𝟑

√𝟑
𝒃. From M.V.T., we get: 

∃𝜶 ∈ [𝒂, 𝒃]: 𝒇(𝜶) =
𝟏

𝒃 − 𝒂
∫ 𝒇(𝒕)
𝒃

𝒂

𝒅𝒕 
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𝒇 ↗⇒ 𝜶 ≥
𝒂 + 𝒃

𝟐
;
𝜶

𝒂 + 𝒃
𝟐

≠ 𝟎 

If 𝒂 → 𝟎, 𝒄 →
𝒃

√𝟑
 and 

𝒂+𝒃

𝟐
→
𝒃

𝟐
 then, 

𝜶
𝒂+𝒃

𝟐

=
𝟐

√𝟑
= 𝒄 impossible! 

𝒄 < 𝜶 ⇒ 𝒇(𝜶) ≥ 𝒇(𝒄) ⇒ 

𝟏

𝒃 − 𝒂
∫ 𝒇(𝒕)
𝒃

𝒂

𝒅𝒕 ≥ 𝒇(
√𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐

√𝟑
) =

√(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐)𝟐 + 𝟑(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐) + 𝟗

𝟑
 

Therefore, 

𝟑∫ √𝒙𝟒 + 𝒙𝟐 + 𝟏
𝒃

𝒂

𝒅𝒙 ≥ (𝒃 − 𝒂)√(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐)𝟐 + 𝟑(𝒂𝟐 + 𝒂𝒃 + 𝒃𝟐) + 𝟗 

1614. If 𝟎 < 𝑎 ≤ 𝑏 then: 

∫ 𝐬𝐢𝐧𝐡 𝒙 (𝒆𝐬𝐢𝐧𝐡
𝟐𝒙 + 𝒆𝐜𝐨𝐬𝐡

𝟐 𝒙)
𝒃

𝒂

𝒅𝒙 ≥
𝟐𝟖𝟗

𝟏𝟎𝟓
( √𝐜𝐨𝐬𝐡𝟏𝟖 𝒃
𝟏𝟕

− √𝐜𝐨𝐬𝐡𝟏𝟖 𝒂
𝟏𝟕

) 

Proposed by Daniel Sitaru-Romania 
Solution by Kamel Gandouli Rezgui-Tunisia 

Let 𝒚 = 𝐜𝐨𝐬𝐡𝒙 ⇒ 𝒙 = 𝐜𝐨𝐬𝐡−𝟏 𝒚 , 𝒅𝒙 =
𝟏

√𝒚𝟐−𝟏
𝒅𝒚 

𝐬𝐢𝐧𝐡(𝐜𝐨𝐬𝐡−𝟏 𝒚) = √𝒚𝟐 − 𝟏 

𝛀 = ∫ 𝐬𝐢𝐧𝐡𝒙 (𝒆𝐬𝐢𝐧𝐡
𝟐 𝒙 + 𝒆𝐜𝐨𝐬𝐡

𝟐 𝒙)
𝒃

𝒂

𝒅𝒙 = 

= ∫ √𝒚𝟐 − 𝟏
𝐜𝐨𝐬𝐡 𝒃

𝐜𝐨𝐬𝐡 𝒂

(𝒆𝒚
𝟐
+ 𝒆𝒚

𝟐−𝟏)
𝒅𝒚

√𝒚𝟐 − 𝟏
= ∫ (𝒆𝒚

𝟐
+ 𝒆𝒚

𝟐−𝟏)
𝐜𝐨𝐬𝐡 𝒃

𝐜𝐨𝐬𝐡 𝒂

𝒅𝒚 

Let 𝒇(𝒚) = (𝒆𝒚
𝟐
+ 𝒆𝒚

𝟐−𝟏) −
𝟓𝟏

𝟑𝟓
𝒚
𝟏

𝟏𝟕 ⇒ 𝒇′(𝒚) = 𝟐𝒚(𝒆𝒚
𝟐
+ 𝒆𝒚

𝟐−𝟏) −
𝟑

𝟑𝟓
𝒚−

𝟑𝟑

𝟏𝟕 = 

= 𝒚(𝟐(𝒆𝒚
𝟐
+ 𝒆𝒚

𝟐−𝟏) −
𝟑

𝟑𝟓
𝒚−
𝟑𝟑
𝟏𝟕) = 𝟎 ⇒ 𝟐(𝟏 +

𝟏

𝒆
) =

𝟑

𝟑𝟓
𝒚−
𝟑𝟑
𝟏𝟕𝒆−𝒚

𝟐
 

𝐥𝐨𝐠 𝟐 + 𝐥𝐨𝐠(𝟏 + 𝒆) − 𝟏 = 𝐥𝐨𝐠 (
𝟑

𝟑𝟓
) −

𝟑𝟑

𝟏𝟕
𝐥𝐨𝐠 𝒚 − 𝒚𝟐: 𝑬 

⇒ 𝒚 = 𝜶𝟎 ≅ 𝟎. 𝟏𝟓. Let 𝐦𝐢𝐧 𝒇(𝜶) ≅ 𝟎. 𝟐 ⇒ 𝒆𝒚
𝟐
+ 𝒆𝒚

𝟐−𝟏 −
𝟓𝟏

𝟑𝟓
𝒚
𝟏

𝟏𝟕 ≥ 𝟎;∀𝒚 ≥ 𝟎 

∫ (𝒆𝒚
𝟐
+ 𝒆𝒚

𝟐−𝟏)
𝐜𝐨𝐬𝐡 𝒃

𝐜𝐨𝐬𝐡 𝒂

𝒅𝒚 ≥ ∫
𝟓𝟏

𝟑𝟓
𝒚
𝟏
𝟏𝟕

𝐜𝐨𝐬𝐡 𝒃

𝐜𝐨𝐬𝐡 𝒂

𝒅𝒚 
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⇒ ∫ 𝐬𝐢𝐧𝐡 𝒙 (𝒆𝐜𝐨𝐬𝐡
𝟐 𝒙 + 𝒆𝐬𝐢𝐧𝐡

𝟐 𝒙)
𝒃

𝒂

𝒅𝒙 ≥
𝟓𝟏

𝟑𝟓

𝒚
𝟏𝟖
𝟏𝟕

𝟏
𝟏𝟕 + 𝟏

|

𝐜𝐨𝐬𝐡 𝒂

𝐜𝐨𝐬𝐡 𝒃

= 

=
𝟓𝟏

𝟑𝟓
⋅
𝟏𝟕

𝟏𝟖
( √𝐜𝐨𝐬𝐡𝟏𝟖 𝒃
𝟏𝟕

− √𝐜𝐨𝐬𝐡𝟏𝟖 𝒂
𝟏𝟕

) =
𝟐𝟖𝟗

𝟏𝟎𝟓
( √𝐜𝐨𝐬𝐡𝟏𝟖 𝒃
𝟏𝟕

− √𝐜𝐨𝐬𝐡𝟏𝟖 𝒂
𝟏𝟕

) 

Equality holds for 𝒂 = 𝒃. 

1615. 

𝛀(𝒏) = ∑∫
𝐬𝐢𝐧𝟐𝒌+𝟏 𝒙 𝐜𝐨𝐬𝒌 𝒙 + 𝐬𝐢𝐧𝒌 𝒙 𝐜𝐨𝐬𝟐𝒌+𝟏 𝒙

𝐬𝐢𝐧𝟑𝒌+𝟑 𝒙 + 𝐜𝐨𝐬𝟑𝒌+𝟑 𝒙

𝝅
𝟒

𝟎

𝒅𝒙

𝒏−𝟏

𝒌=𝟐

 

Find: 

𝝎 = 𝐥𝐢𝐦
𝒏→∞

𝛀(𝒏)

𝒏
 

Proposed by Costel Florea-Romania 

Solution by Adrian Popa-Romania 

𝑰 = ∫
𝐬𝐢𝐧𝟐𝒌+𝟏 𝒙 𝐜𝐨𝐬𝒌 𝒙 + 𝐬𝐢𝐧𝒌 𝒙 𝐜𝐨𝐬𝟐𝒌+𝟏 𝒙

𝐬𝐢𝐧𝟑𝒌+𝟑 𝒙 + 𝐜𝐨𝐬𝟑𝒌+𝟑 𝒙

𝝅
𝟒

𝟎

𝒅𝒙 = 

= ∫
𝐬𝐢𝐧𝒌 𝒙 𝐜𝐨𝐬𝒌 𝒙 (𝐬𝐢𝐧𝒌+𝟏 𝒙 + 𝐜𝐨𝐬𝒌+𝟏 𝒙)

(𝐬𝐢𝐧𝒌+𝟏 𝒙 + 𝐜𝐨𝐬𝒌+𝟏 𝒙)(𝐬𝐢𝐧𝟐𝒌+𝟐 𝒙 − 𝐬𝐢𝐧𝒌+𝟏 𝒙 𝐜𝐨𝐬𝒌+𝟏 𝒙 + 𝐜𝐨𝐬𝟐𝒌+𝟐 𝒙)
𝒅𝒙

𝝅
𝟒

𝟎

= 

= ∫
𝐬𝐢𝐧𝒌 𝒙 𝐜𝐨𝐬𝒌 𝒙

𝐜𝐨𝐬𝟐𝒌+𝟐 𝒙 (𝐭𝐚𝐧𝟐𝒌+𝟐 𝒙 − 𝐭𝐚𝐧𝒌+𝟏 𝒙 + 𝟏)
𝒅𝒙

𝝅
𝟒

𝟎

= 

= ∫
𝐭𝐚𝐧𝒌 𝒙

𝐜𝐨𝐬𝟐 𝒙 (𝐭𝐚𝐧𝟐𝒌+𝟐 𝒙 − 𝐭𝐚𝐧𝒌+𝟏 𝒙 + 𝟏)
𝒅𝒙

𝝅
𝟒

𝟎

=
𝐭𝐚𝐧𝒌+𝟏 𝒙=𝒕

 

=
𝟏

𝒌 + 𝟏
∫

𝒅𝒕

𝒕𝟐 − 𝒕 + 𝟏

𝟏

𝟎

=
𝟏

𝒌 + 𝟏
∫

𝒅𝒕

(𝒕 −
𝟏
𝟐)
𝟐

+
𝟑
𝟒

𝟏

𝟎

=
𝟏

𝒌+ 𝟏
⋅
𝟐

√𝟑
𝐭𝐚𝐧−𝟏 (

𝒕 −
𝟏
𝟐

√𝟑
𝟐

)|

𝟎

𝟏

= 

=
𝟐𝝅

𝟑√𝟑(𝒌 + 𝟏)
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𝛀(𝒏) = ∑
𝟐𝝅

𝟑√𝟑(𝒌 + 𝟏)

𝒏

𝒌=𝟏

=
𝝅

𝟑√𝟑
(
𝟏

𝟑
+
𝟏

𝟒
+ ⋯+

𝟏

𝒏 − 𝟏
) 

𝝎 = 𝐥𝐢𝐦
𝒏→∞

𝛀(𝒏)

𝒏
= 𝐥𝐢𝐦
𝒏→∞

𝝅

𝟑√𝟑
(
𝟏
𝟑 +

𝟏
𝟒 +⋯+

𝟏
𝒏 − 𝟏)

𝒏
=
𝑪−𝑺 𝟐𝝅

𝟑√𝟑
𝐥𝐢𝐦
𝒏→∞

𝟏
𝒏

𝒏 + 𝟏 − 𝒏
= 𝟎 

1616. Find a closed form: 

𝛀 =∑
(−𝟏)𝒏𝒏

(𝟒𝒏 + 𝟑)𝟐

∞

𝒏=𝟎

 

Proposed by Ajetunmobi Abdulqoyyum-Nigeria 

Solution 1 by Kartick Chandra Betal-India 

𝛀 = ∑
(−𝟏)𝒏𝒏

(𝟒𝒏 + 𝟑)𝟐

∞

𝒏=𝟎

=
𝟏

𝟒
∑

(−𝟏)𝒏

𝟒𝒏 + 𝟑

∞

𝒏−𝟎

−
𝟑

𝟒
∑

(−𝟏)𝒏

(𝟒𝒏 + 𝟑)𝟐

∞

𝒏=𝟎

= 

=
𝟏

𝟒
∫ ∑(−𝒙𝟒)𝒏𝒙𝟐𝒅𝒙

∞

𝒏=𝟎

𝟏

𝟎

−
𝟑

𝟒
∫ ∑(−𝒙𝟒)𝒏𝒙𝟐 𝐥𝐨𝐠 𝒙

∞

𝒏=𝟎

𝒅𝒙
𝟏

𝟎

= 

=
𝟏

𝟒
∫

𝒙𝟐

𝟏 + 𝒙𝟒
𝒅𝒙

𝟏

𝟎

−
𝟑

𝟒
∫
𝒙𝟐 𝐥𝐨𝐠 𝒙

𝟏 + 𝒙𝟒
𝒅𝒙

𝟏

𝟎

=
𝟏

𝟒
∫

𝒅𝒙

𝟏 + 𝒙𝟒

∞

𝟏

−
𝟑

𝟔𝟒
∫
𝒙
𝟑
𝟒
−𝟏 𝐥𝐨𝐠 𝒙

𝟏 + 𝒙
𝒅𝒙

𝟏

𝟎

= 

=
𝟏

𝟖
∫

𝒅𝒙

𝟏 + 𝒙𝟒

∞

𝟎

−
𝟑

𝟔𝟒
⋅
𝟏

𝟐
[
𝝏

𝝏𝒔
{𝝍(

𝒔 + 𝟏

𝟐
) − 𝝍(

𝒔

𝟐
)}]

𝒔=
𝟑
𝟒

= 

=
𝟏

𝟑𝟐
∫

𝒙
𝟏
𝟒
−𝟏

𝟏 + 𝒙
𝒅𝒙

∞

𝟏

−
𝟑

𝟐𝟓𝟔
[𝝍′ (

𝟕

𝟖
) − 𝝍′ (

𝟑

𝟖
)] = 

=
𝝅√𝟐

𝟑𝟐
−
𝟑

𝟐𝟓𝟔
{𝝍′ (

𝟕

𝟖
) − 𝝍′ (

𝟑

𝟖
)} 

Solution 2 by Syed Sahahabudeen-India 

𝛀 = ∑
(−𝟏)𝒏𝒏

(𝟒𝒏 + 𝟑)𝟐

∞

𝒏=𝟎

=
𝟏

𝟒
∑

(−𝟏)𝒏

𝟒𝒏 + 𝟑

∞

𝒏−𝟎

−
𝟑

𝟒
∑

(−𝟏)𝒏

(𝟒𝒏 + 𝟑)𝟐

∞

𝒏=𝟎

= 

=
𝟏

𝟒
∑(

𝟏

𝟖𝒏 + 𝟑
−

𝟏

𝟖𝒏 + 𝟕
−

𝟑

(𝟖𝒏 + 𝟑)𝟐
+

𝟑

(𝟖𝒏 + 𝟕)𝟐
)

∞

𝒏=𝟎
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We have: 

∑(
𝟏

𝟖𝒏 + 𝟑
−

𝟏

𝟖𝒏 + 𝟕
)

∞

𝒏=𝟎

=
𝟏

𝟖
(𝝍(

𝟕

𝟖
) −𝝍(

𝟑

𝟖
)) 

∑(
𝟏

(𝟖𝒏 + 𝟕)𝟐
−

𝟏

(𝟖𝒏 + 𝟑)𝟐
)

∞

𝒏=𝟎

=
𝟏

𝟔𝟒
(𝝍(𝟏) (

𝟕

𝟖
) − 𝝍(𝟏) (

𝟑

𝟖
)) 

Therefore, 

𝛀 =
𝟏

𝟑𝟐
(𝝍(

𝟕

𝟖
) − 𝝍(

𝟑

𝟖
)) +

𝟑

𝟐𝟓𝟔
(𝝍(𝟏) (

𝟕

𝟖
) − 𝝍(𝟏) (

𝟑

𝟖
)) 

Solution 3 by Jack Desire-Nigeria 

𝛀 = ∑
(−𝟏)𝒏𝒏

(𝟒𝒏 + 𝟑)𝟐

∞

𝒏=𝟎

=
𝟏

𝟏𝟔
∑

(−𝟏)𝒏𝒏

(𝒏 +
𝟑
𝟒)
𝟐

∞

𝒏=𝟎

=
𝟏

𝟏𝟔
∑(−𝟏)𝒏𝒏∫ 𝒙𝒏−

𝟏
𝟒(− 𝐥𝐨𝐠 𝒙)

𝟏

𝟎

𝒅𝒙

∞

𝒏=𝟎

= 

= −
𝟏

𝟏𝟔
∫ 𝒙−

𝟏
𝟒 𝐥𝐨𝐠 𝒙𝒅𝒙

𝟏

𝟎

∑(−𝒙)𝒏𝒏

∞

𝒏=𝟎

; (∑(−𝒙)𝒏
∞

𝒏=𝟎

= −
𝒙

(𝟏 + 𝒙)𝟐
) 

𝛀 = −
𝟏

𝟏𝟔
∫ 𝒙−

𝟏
𝟒 𝐥𝐨𝐠𝒙 (−

𝒙

(𝟏 + 𝒙)𝟐
)𝒅𝒙

𝟏

𝟎

=
𝟏

𝟏𝟔
∫
𝒙
𝟑
𝟒 𝐥𝐨𝐠 𝒙

(𝟏 + 𝒙)𝟐

𝟏

𝟎

𝒅𝒙 

Applying IBP, we have: 

𝛀 =
𝟏

𝟏𝟔
⋅
−𝒙

𝟑
𝟒 𝐥𝐨𝐠 𝒙

𝟏 + 𝒙
|

𝟎

𝟏

+∫ (
𝒙−
𝟏
𝟒

𝟏 + 𝒙
+

𝟑
𝟒𝒙

−
𝟏
𝟒 𝐥𝐨𝐠𝒙

𝟏 + 𝒙
)

𝟏

𝟎

𝒅𝒙 

We know that: 

∫
𝒙𝜶

𝟏 + 𝒙
𝒅𝒙

𝟏

𝟎

=
𝟏

𝟐
(𝝍(

𝜶

𝟐
+ 𝟏) −𝝍 (

𝜶

𝟐
+
𝟏

𝟐
)) 

∫
𝒙𝒂 𝐥𝐨𝐠 𝒙

𝟏 + 𝒙

𝟏

𝟎

𝒅𝒙 =
𝟏

𝟒
[𝝍′ (

𝒂

𝟐
+ 𝟏) − 𝝍′ (

𝒂

𝟐
+
𝟏

𝟐
)] 

∫
𝒙−
𝟏
𝟒

𝟏 + 𝒙
𝒅𝒙

𝟏

𝟎

=
𝟏

𝟐
[𝝍 (

𝟕

𝟖
) − 𝝍(

𝟑

𝟖
)] ;
𝟑

𝟒
∫
𝒙−
𝟏
𝟒 𝐥𝐨𝐠 𝒙

𝟏 + 𝒙
𝒅𝒙

𝟏

𝟎

=
𝟑

𝟏𝟔
[𝝍′ (

𝟕

𝟖
) − 𝝍′ (

𝟑

𝟖
)] 

𝛀 =
𝟏

𝟏𝟔
{
𝟏

𝟐
[𝝍 (

𝟕

𝟖
) − 𝝍(

𝟑

𝟖
)] +

𝟑

𝟏𝟔
[𝝍′ (

𝟕

𝟖
) − 𝝍′ (

𝟑

𝟖
)]} 
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𝝍(
𝟕

𝟖
) − 𝝍(

𝟑

𝟖
) = ∫

𝒙−
𝟓
𝟖 − 𝒙−

𝟏
𝟖

𝟏 − 𝒙
𝒅𝒙

𝟏

𝟎

=
𝒙=𝒖𝟖

∫
𝒖−𝟓 − 𝒖−𝟏

𝟏 − 𝒖𝟖
𝟖𝒖𝟕𝒅𝒖

𝟏

𝟎

= 

= 𝟖∫
𝒖𝟐 − 𝒖𝟔

𝟏 − 𝒖𝟖
𝒅𝒖

𝟏

𝟎

= 𝟖∫
𝒖𝟐

𝟏 + 𝒖𝟒
𝒅𝒖

𝟏

𝟎

= 𝟖∫
𝟏

𝟏
𝒖𝟐
+ 𝒖𝟐

𝒅𝒖
𝟏

𝟎

= 

= 𝟒(∫
𝟏 −

𝟏
𝒖𝟐

(𝒖 +
𝟏
𝒖)

𝟐

− 𝟐

𝒅𝒖
𝟏

𝟎

+∫
𝟏 +

𝟏
𝒖𝟐

(𝒖 −
𝟏
𝒖)

𝟐

+ 𝟐

𝒅𝒖
𝟏

𝟎

) = 

= 𝟒(
𝟏

𝟐√𝟐
𝐥𝐨𝐠 (

𝒖 +
𝟏
𝒖 − √𝟐

𝒖 +
𝟏
𝒖 + √𝟐

)|

𝟎

𝟏

+
𝟏

√𝟐
𝐭𝐚𝐧−𝟏 (

𝒖𝟐 − 𝟏

𝒖√𝟐
)|
𝟎

𝟏

) = 

= √𝟐 𝐥𝐨𝐠 (
𝟐 − √𝟐

𝟐+ √𝟐
) + 𝝅√𝟐 = 𝝅√𝟐 + √𝟐 𝐥𝐨𝐠(𝟑 − 𝟐√𝟐) 

Therefore, 

𝛀 =
𝟏

𝟑𝟐
(𝝅√𝟐 + √𝟐 𝐥𝐨𝐠(𝟑 − 𝟐√𝟐)) +

𝟑

𝟐𝟓𝟔
[𝝍′ (

𝟕

𝟖
) − 𝝍′ (

𝟑

𝟖
)] 

 Solution 4 by Ajenikoko Gbolahan-Nigeria 

𝛀 = ∑
(−𝟏)𝒏𝒏

(𝟒𝒏 + 𝟑)𝟐

∞

𝒏=𝟎

=
𝟏

𝟒
∑[

(−𝟏)𝒏

𝟒𝒏 + 𝟑
−
𝟑(−𝟏)𝒏

𝟒𝒏 + 𝟑
]

∞

𝒏=𝟎

 

Using that: 

∑
(−𝟏)𝒏

𝒏 + 𝒌

∞

𝒏=𝟎

= ∑
𝟏

𝟐𝒏+ 𝒌

∞

𝒏=𝟎

−
𝟏

𝟐𝒏 + 𝟑 + 𝒌
 

𝛀 =
𝟏

𝟒
∑[

𝟏

𝟖𝒏 + 𝟑
−

𝟏

𝟖𝒏 + 𝟕
]

∞

𝒏=𝟎

−
𝟑

𝟒
∑[

𝟏

(𝟖𝒏 + 𝟑)𝟐
−

𝟏

(𝟖𝒏 + 𝟕)𝟐
]

∞

𝒏=𝟎

= 

=
𝟏

𝟑𝟐
[𝚽(𝟏, 𝟏,

𝟑

𝟖
) −𝚽(𝟏, 𝟏,

𝟕

𝟖
)] −

𝟑

𝟑𝟐
[𝚽(𝟏, 𝟐,

𝟑

𝟖
) − 𝚽(𝟏, 𝟐,

𝟕

𝟖
)] 

where 𝚽(𝒂, 𝒃, 𝒄) −Lerch transcendent function. 

Solution 5 by Rana Ranino-Setif-Algerie 

𝛀 = ∑
(−𝟏)𝒏𝒏

(𝟒𝒏 + 𝟑)𝟐

∞

𝒏=𝟎

=
𝟏

𝟒
∑
(−𝟏)𝒏(𝟒𝒏 + 𝟑 − 𝟑)

(𝟒𝒏 + 𝟑)𝟐

∞

𝒏=𝟎

=
𝟏

𝟒
∑

(−𝟏)𝒏

𝟒𝒏 + 𝟑

∞

𝒏=𝟎⏟        
𝑨

−
𝟑

𝟒
∑

(−𝟏)𝒏

(𝟒𝒏 + 𝟑)𝟐

∞

𝒏=𝟎⏟          
𝑩
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𝑨 = ∑(−𝟏)𝒏
∞

𝒏=𝟎

∫ 𝒙𝟒𝒏+𝟐
𝟏

𝟎

𝒅𝒙 = ∫
𝒙𝟐

𝟏 + 𝒙𝟒

𝟏

𝟎

𝒅𝒙

=
𝟏

𝟒√𝟐
∫ (

𝟐𝒙

𝒙𝟐 − 𝒙√𝟐 + 𝟏
−

𝟐𝒙

𝒙𝟐 + 𝒙√𝟐 + 𝟏
)

𝟏

𝟎

𝒅𝒙 

=
𝟏

𝟒√𝟐
∫ (

𝟐𝒙 − √𝟐

𝒙𝟐 − 𝒙√𝟐 + 𝟏
−

𝟐𝒙+ √𝟐

𝒙𝟐 + 𝒙√𝟐 + 𝟏
)

𝟏

𝟎

𝒅𝒙 +
𝟏

𝟒
∫

𝒅𝒙

(𝒙 +
𝟏

√𝟐
)
𝟐

+
𝟏
𝟐

𝟏

𝟎

+ 

+
𝟏

𝟒
∫

𝒅𝒙

(𝒙 −
𝟏

√𝟐
)
𝟐

+
𝟏
𝟐

𝟏

𝟎

= 

=
𝟏

𝟒√𝟐
𝐥𝐨𝐠(

𝟐 − √𝟐

𝟐 + √𝟐
) +

𝟏

𝟐√𝟐
𝐭𝐚𝐧−𝟏(√𝟐 − 𝟏) +

𝟏

𝟐√𝟐
𝐭𝐚𝐧−𝟏(√𝟐 + 𝟏) = 

=
𝟏

𝟐√𝟐
𝐥𝐨𝐠(√𝟐 − 𝟏) +

𝝅

𝟒√𝟐
 

𝑩 =
𝟏

𝟔𝟒
∑

𝟏

(𝒏 +
𝟑
𝟖)
𝟐

∞

𝒏=𝟎

−
𝟏

(𝒏 +
𝟕
𝟖)
𝟐 =

𝟏

𝟔𝟒
{𝝍(𝟏) (

𝟑

𝟖
) − 𝝍(𝟏) (

𝟕

𝟖
)} 

Therefore, 

𝛀 = ∑
(−𝟏)𝒏𝒏

(𝟒𝒏 + 𝟑)𝟐

∞

𝒏=𝟎

=
𝟏

𝟖√𝟐
𝐥𝐨𝐠(√𝟐 − 𝟏) +

𝝅

𝟏𝟔√𝟐
+
𝟑

𝟐𝟓𝟔
{𝝍(𝟏) (

𝟕

𝟖
) − 𝝍(𝟏) (

𝟑

𝟖
)} 

1617. Let be the function  𝒇: [𝟎,∞) → [𝟎,∞) continuous such that: 

(𝒇(𝒇(𝒙)) = (𝟐𝒙+𝟏 + 𝒙 − 𝟏)𝒇(𝒙), ∀𝒙 ≥ 𝟎. Prove that: 𝒇 invertible and find 

𝛀 =  𝐥𝐢𝐦
𝒙→𝟎

𝒇−𝟏(𝒙)

𝒙
 

Proposed by Florică Anastase-Romania 

Solution 1 by Kamel Gandouli Rezgui-Tunisia 

If 𝒙, 𝒙′ ≥ 𝟎 such that 𝒇(𝒙) = 𝒇′(𝒙) ⇒ 𝒇(𝒇(𝒙)) = 𝒇(𝒇(𝒙′)) 

{
𝒇(𝒇(𝒙)) = (𝟐𝒙+𝟏 + 𝒙 − 𝟏)𝒇(𝒙)

𝒇(𝒇(𝒙′)) = (𝟐𝒙
′+𝟏 + 𝒙′ − 𝟏)𝒇(𝒙′)
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𝒉(𝒙) = 𝟐𝒙+𝟏 + 𝒙 − 𝟏 = 𝒆(𝒙+𝟏) 𝐥𝐨𝐠 𝟐 + 𝒙− 𝟏 injective because 𝒉 ↗ and continuous, then 

𝒙 = 𝒙′ ⇒ 𝒇−injective. 

If 𝒚 ∈ ℝ+ ⇒ ∃𝒕 ∈ ℝ+ such that (𝟐𝒕+𝟏 + 𝒕 − 𝟏)𝒇(𝒕) = 𝒚 

Because 𝜶(𝟐𝒕+𝟏 + 𝒕 − 𝟏) − bijective ∀𝜶 ≥ 𝟎 ⇒ 𝒇 −surjective. So, 𝒇 −invertible. 

𝒇 (𝒇 (𝒇−𝟏(𝒙))) = (𝟐𝒙+𝟏 + 𝒙 − 𝟏)𝒙 ⇒ 𝒇(𝒙) = (𝟐𝒙+𝟏 + 𝒙 − 𝟏)𝒙 

𝐥𝐢𝐦
𝒙→𝟎

𝒇(𝒙)

𝒙
= 𝟏 ⇒ 𝒇(𝟎) = 𝟎 ⇒ 𝒇−𝟏(𝟎) = 𝟎 

𝐥𝐢𝐦
𝒙→𝟎

𝒇(𝒙)

𝒙
= 𝐥𝐢𝐦

𝒕→𝟎

𝒇(𝒇−𝟏(𝒕))

𝒇−𝟏(𝒕)
= 𝐥𝐢𝐦

𝒕→𝟎

𝒕

𝒇−𝟏(𝒕)
= 𝟏 

Therefore, 

𝛀 =  𝐥𝐢𝐦
𝒙→𝟎

𝒇−𝟏(𝒙)

𝒙
= 𝟏 

Solution 2 by Surjeet Singhania-India 

First of all we will show 𝒇 is bijective function. Here we go. 

Put 𝒙 = 𝟎 in functional equation we will get (𝒇 ∘ 𝒇)(𝟎) = 𝒇(𝟎) 

Claim 𝒇(𝟎) = 𝟎, if not then 𝒇(𝟎) = 𝒎 ∈ ℝ+ implies 𝒇(𝒎) = 𝒎. 

Put 𝒙 = 𝒎 in equation 𝒇(𝒎) = (𝟐𝒎+𝟏 + 𝒙− 𝟏)𝒇(𝒎) ⇒ 

𝟐𝒎+𝟏 +𝒎− 𝟏 = 𝟏 only 𝒎 = 𝟎 satisfy equation. Hence, 𝒇(𝒎) is only solution for 𝒎 = 𝟎. 

Now, ∀𝒙 ∈ ℝ+,
(𝒇∘𝒇)(𝒙)

𝒇(𝒙)
= 𝟐𝒙+𝟏 + 𝒙 − 𝟏 = 𝒈(𝒙), where 𝒈  is continuous and increasing 

function, so 𝒈 −bijective. 

Suppose 𝒇 is not injective then for some 𝒙𝟏 ≠ 𝒙𝟐 ⇒ 𝒇(𝒙𝟏) = 𝒇(𝒙𝟐) ⇒ 

(𝒇∘𝒇)(𝒙𝟏)

𝒇(𝒙𝟏)
=
(𝒇∘𝒇)(𝒙𝟐)

𝒇(𝒙𝟐)
⇒ 𝒈(𝒙𝟏) = 𝒈(𝒙𝟐). Contradiction, then 𝒈 −injective, hence 𝒇 −injective 

function. 

If 𝒇 −is not surjective, then ∃𝒚 ∈ ℝ+ such that no ∃𝒙 ∈ ℝ+, 𝒇(𝒙) = 𝒚 since we prove 𝒇 − is 

injective function (𝒇 ∘ 𝒇)(𝒙) ≠ 𝒇(𝒚) ⇒ 𝒈(𝒚) ≠
𝒇(𝒚)

𝒇(𝒙)
. Contradiction, then 𝒈 −is surjective, 

hence 𝒇 −is surjective, then 𝒇 −bijective. So, 𝒇 −invertible. 
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Since 𝒇(𝟎) = 𝟎 ⇒ 𝐥𝐢𝐦
𝒙→𝟎+

𝒇(𝒙) = 𝟎 ⇒ 𝐥𝐢𝐦
𝒙→𝟎+

𝒇−𝟏(𝒙) = 𝟎 

𝛀 =  𝐥𝐢𝐦
𝒙→𝟎

𝒇−𝟏(𝒙)

𝒙
= 𝐥𝐢𝐦
𝒙→𝟎

𝒇(𝒙)

(𝒇 ∘ 𝒇)(𝒙)
= 𝐥𝐢𝐦
𝒙→𝟎

𝟏

𝟐𝒙+𝟏 + 𝒙 − 𝟏
= 𝟏 

Solution 3 by proposer 

a) Let  𝒇(𝟎) = 𝒂, 𝒂 ∈ [𝟎,∞) 

For  𝒙 = 𝟎 ⇒ (𝒇(𝒇(𝟎)) = 𝒇(𝟎) ⇒ 𝒇(𝒂) = 𝒂 ⇒ 𝒂 fix point of 𝒇. 

For 𝒙 = 𝒂 ⇒ (𝒇(𝒇(𝒂)) = (𝟐𝒂+𝟏 + 𝒂 − 𝟏)𝒇(𝒂) ⇒ 𝒂 = (𝟐𝒂+𝟏 + 𝒂 − 𝟏)𝒂 ⇒ 

𝒂 = 𝟎  unique fix point of 𝒇. 

Let 𝒈: (𝟎,∞) → 𝑹,𝒈(𝒙) = 𝒇(𝒙) − 𝒙 which isn’t zero and have same sign on (𝟎,∞). 

Let 𝒃 ∈ (𝟎,∞) with 𝒇(𝒃) ≠ 𝟎 ⇒ 

𝒈(𝒇(𝒃)) = 𝒇(𝒇(𝒃)) − 𝒇(𝒃) = (𝟐𝒃+𝟏 + 𝒃 − 𝟐)𝒇(𝒃) > 𝟎 ⇒ 

𝒇(𝒙) > 𝟎, ∀𝒙 ∈ [𝟎,∞)  𝐚𝐧𝐝 𝐡𝐨𝐰  𝐥𝐢𝐦
𝒙→∞

𝒇(𝒙) = ∞ ⇒ 𝒇([𝟎,∞)) = [𝟎,∞) ⇒ 𝒇 surjective. 

Let 𝒙𝟏, 𝒙𝟐 ∈ [𝟎,∞) 𝐰𝐢𝐭𝐡 𝒇(𝒙𝟏) = 𝒇(𝒙𝟐) 

Then 𝒇(𝒙𝟏) = 𝒇(𝒙𝟐)  ⇔ 𝒇(𝒇(𝒙𝟏)) = 𝒇(𝒇(𝒙𝟐) ⇔ 

(𝟐𝟏+𝒙𝟏 + 𝒙𝟏 − 𝟏)𝒇(𝒙𝟏) = (𝟐
𝟏+𝒙𝟐 + 𝒙𝟐 − 𝟏)𝒇(𝒙𝟐) ⇔ 𝒙𝟏 = 𝒙𝟐 ⇔ 𝒇 injective. 

So,  f  bijective and exist 𝒇−𝟏: [𝟎,∞) → [𝟎,∞) inverse. 

𝛀 = 𝐥𝐢𝐦
𝒙→𝟎

𝒇−𝟏(𝒙)

𝒙
= 𝐥𝐢𝐦
𝒚→𝟎

𝒚

𝒇(𝒚)
= 

= 𝐥𝐢𝐦
𝒙→𝟎

𝒇(𝒙)

𝒇(𝒇(𝒙))
= 𝐥𝐢𝐦
𝒙→𝟎

𝒇(𝒙)

(𝟐𝒙+𝟏 + 𝒙− 𝟏)𝒇(𝒙)
= 𝐥𝐢𝐦
𝒙→𝟎

𝟏

𝟐𝒙+𝟏 + 𝒙 − 𝟏
= 𝟏          

 

1618. Find: 

𝛀 = 𝐥𝐢𝐦
𝒑→∞

[𝐥𝐢𝐦
𝒏→∞

(∏(𝟏 +
(𝒌 + 𝟏)𝒑

𝒏𝒑+𝟏
)

𝒏

𝒌=𝟏

)]

𝑯𝒑

, 

where 𝑯𝒑 −harmonic number. 

Proposed by Florică Anastase-Romania 
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Solution 1 by Daniela Ruxandra Tonilă-Romania 

𝛀 = 𝐥𝐢𝐦
𝒑→∞

[𝐥𝐢𝐦
𝒏→∞

(∏(𝟏 +
(𝒌 + 𝟏)𝒑

𝒏𝒑+𝟏
)

𝒏

𝒌=𝟏

)]

𝑯𝒑

 

𝐥𝐨𝐠𝛀 = 𝐥𝐢𝐦
𝒑→∞

𝑯𝒑 (𝐥𝐢𝐦
𝒏→∞

∏(𝟏+
(𝒌 + 𝟏)𝒑

𝒏𝒑+𝟏
)

𝒏

𝒌=𝟏

) = 𝐥𝐢𝐦
𝒑→∞

𝑯𝒑 (𝐥𝐢𝐦
𝒏→∞

∑𝐥𝐨𝐠 (𝟏 +
(𝒌 + 𝟏)𝒑

𝒏𝒑+𝟏
)

𝒏

𝒌=𝟏

) = 

= 𝐥𝐢𝐦
𝒑→∞

𝑯𝒑 (𝐥𝐢𝐦
𝒏→∞

∑
𝐥𝐨𝐠 (𝟏 +

(𝒌 + 𝟏)𝒑

𝒏𝒑+𝟏
)

(𝒌 + 𝟏)𝒑

𝒏𝒑+𝟏

𝒏

𝒌=𝟏

⋅
(𝒌 + 𝟏)𝒑

𝒏𝒑+𝟏
) = 

= 𝐥𝐢𝐦
𝒑→∞

𝑯𝒑 (𝐥𝐢𝐦
𝒏→∞

∑
(𝒌 + 𝟏)𝒑

𝒏𝒑+𝟏

𝒏

𝒌=𝟏

) = 𝐥𝐢𝐦
𝒑→∞

𝑯𝒑 (𝐥𝐢𝐦
𝒏→∞

𝟏

𝒏
∑(

𝒌+ 𝟏

𝒏
)
𝒑𝒏

𝒌=𝟏

) = 

= 𝐥𝐢𝐦
𝒑→∞

𝑯𝒑∫ 𝒙𝒑
𝟏

𝟎

𝒅𝒙 = 𝐥𝐢𝐦
𝒑→∞

𝑯𝒑

𝒑 + 𝟏
=
𝑪−𝑺

𝐥𝐢𝐦
𝒑→∞

𝑯𝒑+𝟏 −𝑯𝒑

𝒑 + 𝟏 − 𝒑
= 𝟎 

Therefore, 

𝛀 = 𝐥𝐢𝐦
𝒑→∞

[𝐥𝐢𝐦
𝒏→∞

(∏(𝟏 +
(𝒌 + 𝟏)𝒑

𝒏𝒑+𝟏
)

𝒏

𝒌=𝟏

)]

𝑯𝒑

= 𝟏 

Solution 2 by proposer 

From well-known inequality: 
𝒙

𝒙+𝟏
≤ 𝐥𝐧(𝟏 + 𝒙) ≤ 𝒙, ∀𝒙 ∈ (−𝟏,∞) we get: 

(𝒌 + 𝟏)𝒑

(𝒌 + 𝟏)𝒑 + 𝒏𝒑+𝟏
≤ 𝐥𝐧 (𝟏 +

(𝒌 + 𝟏)𝒑

𝒏𝒑+𝟏
) ≤

(𝒌 + 𝟏)𝒑

𝒏𝒑+𝟏
 

Thus, 

∑
(𝒌 + 𝟏)𝒑

(𝒏 + 𝟏)𝒑 + 𝒏𝒑+𝟏
≤∑

(𝒌+ 𝟏)𝒑

(𝒌 + 𝟏)𝒑 + 𝒏𝒑+𝟏
≤ 𝐥𝐧 [∏(𝟏 +

(𝒌 + 𝟏)𝒑

𝒏𝒑+𝟏
)

𝒏

𝒌=𝟏

] ≤ ∑
(𝒌 + 𝟏)𝒑

𝒏𝒑+𝟏

𝒏

𝒌=𝟏

𝒏

𝒌=𝟏

𝒏

𝒌=𝟏

 

We have: 

𝐥𝐢𝐦
𝒏→∞

∑
(𝒌 + 𝟏)𝒑

(𝒏 + 𝟏)𝒑 + 𝒏𝒑+𝟏

𝒏

𝒌=𝟏

=
𝑪−𝑺

𝐥𝐢𝐦
𝒏→∞

(𝒏 + 𝟐)𝒑

(𝒏 + 𝟐)𝒑 − (𝒏 + 𝟏)𝒑 + (𝒏 + 𝟏)𝒑+𝟏 − 𝒏𝒑+𝟏
 

= 𝐥𝐢𝐦
𝒏→∞

(𝒏 + 𝟐)𝒑

(𝒏 + 𝟐)𝒑 − (𝒏 + 𝟏)𝒑 + 𝑪𝒑+𝟏
𝟎 𝒏𝒑+𝟏 + 𝑪𝒑+𝟏

𝟏 𝒏𝒑 + 𝑪𝒑+𝟏
𝟐 𝒏𝒑−𝟏 +⋯+ 𝑪𝒑+𝟏

𝒑+𝟏
− 𝒏𝒑+𝟏

= 



 
www.ssmrmh.ro 

31 RMM-CALCULUS MARATHON 1601-1700 

 

=
𝟏

𝒑 + 𝟏
 

and 

𝐥𝐢𝐦
𝒏→∞

∑
(𝒌 + 𝟏)𝒑

𝒏𝒑+𝟏
= 𝐥𝐢𝐦
𝒏→∞

(𝒏 + 𝟐)𝒑

(𝒏 + 𝟏)𝒑+𝟏 − 𝒏𝒑+𝟏

𝒏

𝒌=𝟏

= 

= 𝐥𝐢𝐦
𝒏→∞

(𝒏 + 𝟐)𝒑

𝑪𝒑+𝟏
𝟎 𝒏𝒑+𝟏 + 𝑪𝒑+𝟏

𝟏 𝒏𝒑 + 𝑪𝒑+𝟏
𝟐 𝒏𝒑−𝟏 +⋯+ 𝑪𝒑+𝟏

𝒑+𝟏
− 𝒏𝒑+𝟏

=
𝟏

𝒑 + 𝟏
 

So, we get: 

𝐥𝐢𝐦
𝒏→∞

𝐥𝐧 [∏(𝟏 +
(𝒌 + 𝟏)𝒑

𝒏𝒑+𝟏
)

𝒏

𝒌=𝟏

] =
𝟏

𝒑 + 𝟏
⇒ 𝐥𝐢𝐦

𝒏→∞
(∏(𝟏 +

(𝒌 + 𝟏)𝒑

𝒏𝒑+𝟏
)

𝒏

𝒌=𝟏

) = 𝒆
𝟏
𝒑+𝟏 

Therefore, 

𝛀 = 𝐥𝐢𝐦
𝒑→∞

[ 𝐥𝐢𝐦
𝒏→→∞

(∏(𝟏 +
(𝒌 + 𝟏)𝒑

𝒏𝒑+𝟏
)

𝒏

𝒌=𝟏

)]

𝑯𝒑

= 𝐥𝐢𝐦
𝒑→∞

(𝒆
𝟏
𝒑+𝟏)

𝑯𝒑

= 𝒆
𝐥𝐢𝐦
𝒏→∞

𝑯𝒑
𝒑+𝟏 =

𝑳𝑪−𝑺
= 𝟏 

1619. Prove that: 

∑
(𝟐𝒏
𝒏
)

𝟒𝒏(𝟏 − 𝟒𝒏)

∞

𝒏=𝟎

=
√𝝅𝚪 (

𝟑
𝟒
)

𝚪 (
𝟏
𝟒
)

 

Proposed by Ajenikoko Gbolahan-Nigeria 
Solution 1 by Dawid Bialek-Poland 

Recall: 

−𝐬𝐢𝐧−𝟏 𝒙 = ∑
−(𝟐𝒏

𝒏
)

𝟒𝒏(𝟐𝒏 + 𝟏)
𝒙𝟐𝒏+𝟏

∞

𝒏=𝟎

; |𝒙| ≤ 𝟏 

and derivative both sides w.r.t. 𝒙 

−
𝟏

√𝟏 − 𝒙𝟐
= −∑

(𝟐𝒏
𝒏
)

𝟒𝒏
𝒙𝟐𝒏

∞

𝒏=𝟎

; (𝒙𝟐 → 𝒙𝟒) ⇒ −
𝟏

√𝟏− 𝒙𝟒
= −∑

(𝟐𝒏
𝒏
)

𝟒𝒏
𝒙𝟒𝒏

∞

𝒏=𝟎

; (𝟏) 

Multiply both sides (1) by 𝒙−𝟐, we get: 

−𝟏

𝒙𝟐√𝟏 − 𝒙𝟒
= −∑

(𝟐𝒏
𝒏
)

𝟒𝒏
𝒙𝟒𝒏−𝟐

∞

𝒏=𝟎
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and integrate them: 

−∫
𝟏

𝒙𝟐√𝟏 − 𝒙𝟒

𝟏

𝟎

𝒅𝒙 = −∑
(𝟐𝒏
𝒏
)

𝟒𝒏
∫ 𝒙𝟒𝒏−𝟐
𝟏

𝟎

∞

𝒏=𝟎

𝒅𝒙 

−∑
(𝟐𝒏
𝒏
)

𝟒𝒏(𝟏 − 𝟒𝒏)

∞

𝒏=𝟎

= −∫
𝟏

𝒙𝟐√𝟏 − 𝒙𝟒

𝟏

𝟎

𝒅𝒙; (𝒙𝟒 → 𝒕) ⇒ 

−
𝟏

𝟒
∫ 𝒕−

𝟓
𝟒 ⋅ (𝟏 − 𝒕)−

𝟏
𝟐

𝟏

𝟎

𝒅𝒕 =
(𝒃𝒆𝒕𝒂 𝒇−𝒏)

−
𝟏

𝟒
⋅ 𝑩(−

𝟏

𝟒
,
𝟏

𝟐
) = −

𝟏

𝟒
⋅
𝚪 (−

𝟏
𝟒) 𝚪(

𝟏
𝟐)

𝚪 (
𝟏
𝟒)

= −
√𝝅𝚪 (

𝟑
𝟒)

𝚪 (
𝟏
𝟒)

 

∵ 𝚪(𝒏 + 𝟏) = 𝒏𝚪(𝒏) ⇒ 𝚪 (−
𝟏

𝟒
+ 𝟏) = −

𝟏

𝟒
𝚪 (−

𝟏

𝟒
) 

Therefore, 

∑
(𝟐𝒏
𝒏
)

𝟒𝒏(𝟏 − 𝟒𝒏)

∞

𝒏=𝟎

=
√𝝅𝚪 (

𝟑
𝟒)

𝚪 (
𝟏
𝟒)

 

Solution 2 by Syed Shahabudeen-Kerala-India 

𝛀 = ∑
(𝟐𝒏
𝒏
)

𝟒𝒏(𝟏 − 𝟒𝒏)

∞

𝒏=𝟎

= −∫
𝟏

𝒙𝟐
∑
(
𝟏
𝟐)𝒏
𝒏!

𝒙𝟒𝒏𝒅𝒙

∞

𝒏=𝟎

𝟏

𝟎

=; (∵
(𝟐𝒏)!

𝟒𝒏𝒏!
= (
𝟏

𝟐
)
𝒏
) 

= −∫
𝟏

𝒙𝟐
𝑭𝟎𝟏 (

𝟏

𝟐
; ; 𝒙𝟒)𝒅𝒙

𝟏

𝟎

= −∫
𝟏

𝒙𝟐√𝟏 − 𝒙𝟒
𝒅𝒙

𝟏

𝟎

=; (∵ 𝑭(𝒂; ; 𝒛)𝟏 =
𝟏

(𝟏 − 𝒛)𝒂
) 

−
𝟏

𝟒
∫

𝟏

𝒕
𝟓
𝟒√𝟏 − 𝒕

𝒅𝒕
𝟏

𝟎

=
√𝝅𝚪 (

𝟑
𝟒)

𝚪 (
𝟏
𝟒)

 

1620. Prove that: 

∑(
𝑯𝟔𝒏−𝟏
𝟔𝒏

−
𝑯𝟔𝒏−𝟑
𝟔𝒏 − 𝟐

−
𝑯𝟔𝒏−𝟒
𝟔𝒏 − 𝟑

+
𝑯𝟔𝒏−𝟔
𝟔𝒏 − 𝟓

)

∞

𝒏=𝟏

= −
𝝅𝟐

𝟏𝟖
 

Proposed by Asmat Qatea-Afghanistan 
Solution by Kartick Chandra Betal-India 

∑(
𝑯𝟔𝒏−𝟏
𝟔𝒏

−
𝑯𝟔𝒏−𝟑
𝟔𝒏 − 𝟐

−
𝑯𝟔𝒏−𝟒
𝟔𝒏 − 𝟑

+
𝑯𝟔𝒏−𝟔
𝟔𝒏 − 𝟓

)

∞

𝒏=𝟏

= ∑(
𝑯𝟔𝒏
𝟔𝒏

−
𝑯𝟔𝒏−𝟐
𝟔𝒏 − 𝟐

−
𝑯𝟔𝒏−𝟑
𝟔𝒏 − 𝟑

+
𝑯𝟔𝒏−𝟓
𝟔𝒏 − 𝟓

)

∞

𝒏=𝟏

− 
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−∑(
𝟏

(𝟔𝒏)𝟐
−

𝟏

(𝟔𝒏 − 𝟐)𝟐
−

𝟏

(𝟔𝒏 − 𝟑)𝟐
+

𝟏

(𝟔𝒏 − 𝟓)𝟐
)

∞

𝒏=𝟏

= 

= −∫ (𝟏 − 𝒙𝟐 − 𝒙𝟑 + 𝒙𝟓) 𝐥𝐨𝐠(𝟏 − 𝒙)∑(𝒙𝟔)𝒏−𝟏𝒅𝒙

∞

𝒏=𝟏

+
𝟏

𝟎

 

+∫ (𝟏 − 𝒙𝟐 − 𝒙𝟑 + 𝒙𝟓) 𝐥𝐨𝐠(𝒙)∑(𝒙𝟔)𝒏−𝟏𝒅𝒙

∞

𝒏=𝟏

=
𝟏

𝟎

 

= ∫
(𝟏 − 𝒙𝟐)(𝟏 − 𝒙𝟑)

𝟏 − 𝒙𝟔
{𝐥𝐨𝐠 𝒙 − 𝐥𝐨𝐠(𝟏 − 𝒙)}

𝟏

𝟎

𝒅𝒙 = 

= ∫
𝟏 − 𝒙𝟐

𝟏 + 𝒙𝟑
{𝐥𝐨𝐠 𝒙 − 𝐥𝐨𝐠(𝟏 − 𝒙)}

𝟏

𝟎

= ∫
[𝟏 − (𝟏 − 𝒙)𝟐][𝐥𝐨𝐠(𝟏 − 𝒙) − 𝐥𝐨𝐠 𝒙]

[𝟏 + (𝟏 − 𝒙)][𝟏 − (𝟏 − 𝒙) + (𝟏 − 𝒙)𝟐]
𝒅𝒙

𝟏

𝟎

= 

= ∫
(𝟐 − 𝒙)𝒙[𝐥𝐨𝐠(𝟏 − 𝒙) − 𝐥𝐨𝐠𝒙]

(𝟐 − 𝒙)(𝟏 − 𝒙 + 𝒙𝟐)

𝟏

𝟎

𝒅𝒙 = ∫
𝒙

𝟏 − 𝒙 + 𝒙𝟐
[𝐥𝐨𝐠(𝟏 − 𝒙) − 𝐥𝐨𝐠 𝒙]

𝟏

𝟎

𝒅𝒙 = 

= ∫
𝒙 𝐥𝐨𝐠 (

𝟏
𝒙 − 𝟏)

𝟏 − 𝒙 + 𝒙𝟐

𝟏

𝟎

𝒅𝒙 = ∫
𝐥𝐨𝐠(𝒙 − 𝟏)

𝒙(𝟏 − 𝒙 + 𝒙𝟐)
𝒅𝒙

∞

𝟏

= ∫
𝐥𝐨𝐠 𝒙

(𝒙 + 𝟏)(𝟏 + 𝒙 + 𝒙𝟐)
𝒅𝒙

∞

𝟎

= 

= ∫ (
𝟐

𝟏 + 𝒙
−

𝟐𝒙+ 𝟏

𝟏 + 𝒙 + 𝒙𝟐
)

𝟏

𝟎

𝐥𝐨𝐠𝒙 𝒅𝒙 = 

= 𝟐∫
𝐥𝐨𝐠 𝒙

𝟏 + 𝒙
𝒅𝒙

𝟏

𝟎

− 𝐥𝐨𝐠𝒙 𝐥𝐨𝐠(𝟏 + 𝒙 + 𝒙𝟐)|
𝟎

𝟏
+∫

𝐥𝐨𝐠(𝟏 − 𝒙𝟑) − 𝐥𝐨𝐠(𝟏 − 𝒙)

𝒙
𝒅𝒙

𝟏

𝟎

= 

= −𝟐 ⋅ 𝜼(𝟐) +
𝟏

𝟑
∫
𝐥𝐨𝐠(𝟏 − 𝒙)

𝒙

𝟏

𝟎

𝒅𝒙 − ∫
𝐥𝐨𝐠(𝟏 − 𝒙)

𝒙

𝟏

𝟎

𝒅𝒙 = 

= −𝜻(𝟐) +
𝟐

𝟑
𝜻(𝟐) = −

𝜻(𝟐)

𝟑
= −

𝝅𝟐

𝟏𝟖
 

Therefore, 

∑(
𝑯𝟔𝒏−𝟏
𝟔𝒏

−
𝑯𝟔𝒏−𝟑
𝟔𝒏 − 𝟐

−
𝑯𝟔𝒏−𝟒
𝟔𝒏 − 𝟑

+
𝑯𝟔𝒏−𝟔
𝟔𝒏 − 𝟓

)

∞

𝒏=𝟏

= −
𝝅𝟐

𝟏𝟖
 

1621. Find: 

𝛀 = 𝐥𝐢𝐦
𝒙→𝟎

(𝒙 − 𝟑 𝐭𝐚𝐧 (
𝝅

𝒙 + 𝟒
) + 𝟑) (𝒆𝐜𝐨𝐬𝒙 − 𝒆)

𝑻𝟓(𝒙) − 𝟓𝒙
 

 𝑻𝟓 −Cebyshev’s polynome first kind. 

Proposed by Mohammad Hamed Nasery-Afghanistan 
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Solution by Kamel Gandouli Rezgui-Tunisia 

𝛀 = 𝐥𝐢𝐦
𝒙→𝟎

(𝒙 − 𝟑 𝐭𝐚𝐧 (
𝝅

𝒙 + 𝟒) + 𝟑)
(𝒆𝐜𝐨𝐬 𝒙 − 𝒆)

𝑻𝟓(𝒙) − 𝟓𝒙
= 

= 𝐥𝐢𝐦
𝒙→𝟎

𝒙 − 𝟑 𝐭𝐚𝐧 (
𝝅

𝒙 + 𝟒) −
(−𝟑)

𝒙 ⋅
𝒆𝐜𝐨𝐬 𝒙 − 𝒆
𝒙𝟐

𝑻𝟓(𝒙) − 𝟓
𝒙𝟑

 

(𝒙 − 𝟑 𝐭𝐚𝐧 (
𝝅

𝒙 + 𝟒
))
′

(𝟎) = 𝟏 − 𝟑(𝟏 + 𝐭𝐚𝐧𝟐 (
𝝅

𝒙 + 𝟒
))(−

𝝅

(𝒙 + 𝟒)𝟐
) (𝟎) = 

= 𝟏 +
𝟑𝝅

𝟖
 

𝒆𝐜𝐨𝐬 𝒙 − 𝒆

𝒙𝟐
≅ −

𝒆

𝟐
+ 𝒐(𝒙𝟑) → −

𝒆

𝟐
 

𝑻𝟓(𝒙)

𝒙𝟑
→ −𝟐𝟎 

Hence, 

𝛀 = 𝐥𝐢𝐦
𝒙→𝟎

𝒙 − 𝟑 𝐭𝐚𝐧 (
𝝅

𝒙 + 𝟒) −
(−𝟑)

𝒙 ⋅
𝒆𝐜𝐨𝐬 𝒙 − 𝒆
𝒙𝟐

𝑻𝟓(𝒙) − 𝟓
𝒙𝟑

=
(𝟖 + 𝟑𝝅)𝒆

𝟑𝟐𝟎
 

1622. 

𝒙𝟏 = 𝟏, 𝒙𝟐 = 𝟐, (𝒏 − 𝟏)𝒙𝒏 + 𝒏𝒙𝒏−𝟏 = 𝒏(𝒏 − 𝟏) 𝐥𝐨𝐠 (
𝒙𝒏−𝟏
𝟐 + (𝒏 − 𝟏)𝟐

𝒙𝒏−𝟐
𝟐 + (𝒏 − 𝟐)𝟐

), 

𝒏 ≥ 𝟑. Find: 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

𝒙𝒏(√𝜸
𝒏 − 𝟏)𝟐

𝒏
 

Proposed by Ruxandra Daniela Tonilă-Romania 
Solution by Kamel Gandouli Rezgui-Tunisia 

(𝒏 − 𝟏)𝒙𝒏 + 𝒏𝒙𝒏−𝟏 = 𝒏(𝒏 − 𝟏) 𝐥𝐨𝐠 (
𝒙𝒏−𝟏
𝟐 + (𝒏 − 𝟏)𝟐

𝒙𝒏−𝟐
𝟐 + (𝒏 − 𝟐)𝟐

) , 𝒏 ≥ 𝟑 

𝒘𝒏 =
𝒙𝒏
𝒏
, 𝒙𝟏 = 𝟏, 𝒙𝟐 = 𝟐 ⇒ 𝒘𝟏 = 𝒘𝟐 = 𝟏 
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⇒ 𝒘𝒏 + 𝒘𝒏−𝟏 = 𝐥𝐨𝐠 (
(𝒏 − 𝟏)𝟐

(𝒏 − 𝟐)𝟐
⋅
𝒘𝒏−𝟏
𝟐 + 𝟏

𝒘𝒏−𝟐
𝟐 + 𝟏

) = 𝐥𝐨𝐠 (
𝒏 − 𝟏

𝒏 − 𝟐
)
𝟐

+ 𝐥𝐨𝐠 (
𝒘𝒏−𝟏
𝟐 + 𝟏

𝒘𝒏−𝟐
𝟐 + 𝟏

) = 

= 𝟐 𝐥𝐨𝐠 (
𝒏 − 𝟏

𝒏 − 𝟐
) + 𝐥𝐨𝐠 (

𝒘𝒏−𝟏
𝟐 + 𝟏

𝒘𝒏−𝟐
𝟐 + 𝟏

) 

𝐥𝐨𝐠 (
𝒏 − 𝟏

𝒏 − 𝟐
)
𝒏→∞
→   𝟎; 𝐥𝐨𝐠(

𝒘𝒏−𝟏
𝟐 + 𝟏

𝒘𝒏−𝟐
𝟐 + 𝟏

) ≤ 𝐥𝐨𝐠(
𝒘𝒏−𝟏
𝟐 + 𝟏

𝟏
) ≤ 𝟐𝒘𝒏−𝟏 → ∞ 

𝒘𝒏 ≤ 𝒘𝒏−𝟏 ⇒ 𝐥𝐨𝐠(
𝒘𝒏−𝟏
𝟐 + 𝟏

𝒘𝒏−𝟐
𝟐 + 𝟏

) ≤ 𝟎 ⇒ 𝒘𝒏 ≤ 𝟐 𝐥𝐨𝐠 (
𝒏 − 𝟏

𝒏 − 𝟐
) → 𝟎 ⇒ 𝒘𝒏 → 𝟎 

𝒙𝒏
𝒏
→ 𝟎 ⇒ 𝛀 = 𝐥𝐢𝐦

𝒏→∞

𝒙𝒏(√𝜸
𝒏 − 𝟏)𝟐

𝒏
= 𝟎 

1623. For 𝒏 ≥ 𝟏,𝝋 −Golden ration and let  

∫
𝒆−𝝅𝒙 𝐜𝐨𝐬 (

𝝅𝒙
𝒏
− 𝒏𝝅𝒙)

√𝒙

∞

𝟎

𝒅𝒙 = 𝒇(𝒏)∫
𝒆−𝝅𝒙 𝐜𝐨𝐬 (

𝝅𝒙
𝒏
+ 𝒏𝝅𝒙)

√𝒙

∞

𝟎

𝒅𝒙 

then prove the following identity: 

𝒇(√𝝋)

𝒇(𝝋)
=

√
(√√𝟓 + 𝟏 + 𝟐)(√𝟓 + 𝟐√𝟑(√𝟓 + 𝟑) + 𝟏)

𝟐√𝟐 + √𝟓 + 𝟏

√𝟑 ⋅ √√𝟓 + 𝟏
𝟒

 

Proposed by Srinivasa Raghava-AIRMC-India 
Solution by Rana Ranino-Setif-Algerie 

𝑰(𝒂) = ∫
𝒆−𝝅𝒙 𝐜𝐨𝐬(𝒂𝝅𝒙)

√𝒙

∞

𝟎

𝒅𝒙 = 𝑹𝒆(∫ 𝒙
𝟏
𝟐
−𝟏𝒆−𝝅𝒙(𝟏−𝒊𝒂)

∞

𝟎

𝒅𝒙) = 𝑹𝒆 (
𝟏

√𝟏− 𝒊𝒂
) = 

=
𝐜𝐨𝐬 (

𝟏
𝟐 𝐭𝐚𝐧

−𝟏 𝒂)

√𝟏 + 𝒂𝟐
𝟒  

∵ 𝐜𝐨𝐬 (
𝟏

𝟐
𝐭𝐚𝐧−𝟏 𝒂) = √

𝟏 + 𝐜𝐨𝐬(𝐭𝐚𝐧−𝟏 𝒂)

𝟐
= √

𝟏 + √𝟏 + 𝒂𝟐

𝟐√𝟏+ 𝒂𝟐
⇒ 𝑰(𝒂) = √

𝟏 + √𝟏 + 𝒂𝟐

𝟐(𝟏 + 𝒂𝟐)
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𝒇(𝝋) =
𝑰 (𝝋 −

𝟏
𝝋)

𝑰 (𝝋 +
𝟏
𝝋)
=
𝑰(𝟏)

𝑰(√𝟓)
= √𝟏 + √𝟐 ⋅ √

𝟑

𝟏 + √𝟔
= √

𝟑(𝟏 + √𝟐)

𝟏 + √𝟔
 

𝒇(√𝝋) =

𝑰(√𝝋 −
𝟏

√𝝋
)

𝑰(√𝝋 +
𝟏

√𝝋
)

=
𝑰 (√√𝟓 − 𝟐)

𝑰 (√√𝟓 + 𝟐)
= √

(𝟏 + √√𝟓 − 𝟏) (√𝟓 + 𝟑)

(√𝟓 − 𝟏) (𝟏 + √√𝟓 + 𝟑)
 

⇒
𝒇(√𝝋)

𝒇(𝝋)
= √

(𝟏 + √√𝟓 − 𝟏) (√𝟓 + 𝟑)(𝟏 + √𝟔)

𝟑(√𝟓 − 𝟏) (𝟏 + √√𝟓 + 𝟑)(𝟏 + √𝟐)
= 

= √
(𝟏 +√√𝟓 − 𝟏)(√𝟓 + 𝟑)(𝟏 + √𝟔)(√𝟐 − 𝟏)(√𝟓 + 𝟏)(√√𝟓 + 𝟑 − 𝟏) (√𝟓 − 𝟐)

𝟏𝟐
= 

= √
(𝟐 +√√𝟓 + 𝟏)(𝟏 + √𝟔)(√𝟐 − 𝟏) (√√𝟓 + 𝟑 − 𝟏)

𝟑√√𝟓 + 𝟏
= 

=
√(𝟐+ √√𝟓 + 𝟏) (𝟏 + √𝟔)(√𝟐 − 𝟏) (√√𝟓+ 𝟑 − 𝟏)

√𝟑 ⋅ √√𝟓 + 𝟏
𝟒

= 

=
√(𝟐 + √√𝟓 + 𝟏) (𝟏 + √𝟔)(√𝟐 − 𝟏) (√√𝟓+ 𝟑 − 𝟏) (𝟏 + 𝟐√𝟐 + √𝟓)

√𝟑 ⋅ √√𝟓 + 𝟏
𝟒

⋅ (√𝟏 + 𝟐√𝟐 + √𝟓)
= 

=

√
(𝟐 +√√𝟓 + 𝟏)(𝟏 + √𝟔)(𝟏 + √𝟓)

𝟏 + 𝟐√𝟐+ √𝟓

√𝟑 ⋅ √√𝟓 + 𝟏
𝟒

=

√
(𝟐 + √√𝟓 + 𝟏)(𝟏 + √𝟓 + √(√𝟔 + √𝟑𝟎)

𝟐
)

𝟏 + 𝟐√𝟐 + √𝟓

√𝟑 ⋅ √√𝟓 + 𝟏
𝟒

 

=

√
(√√𝟓 + 𝟏 + 𝟐)(√𝟓 + 𝟐√𝟑(√𝟓 + 𝟑) + 𝟏)

𝟐√𝟐 + √𝟓 + 𝟏

√𝟑 ⋅ √√𝟓+ 𝟏
𝟒
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1624. Prove that:  

𝟏

𝟑
{𝟕 − 𝟖√𝟕 𝐜𝐨𝐬 [

𝟏

𝟑
(𝒂𝒓𝒄𝒔𝒊𝒏 (

𝟑√𝟐𝟏

𝟏𝟒
) + 𝟒𝝅)]} + 𝟖 𝐜𝐨𝐬 (

𝟒𝝅

𝟕
) = 𝟏  

 Proposed by Carlos Paiva-Fortaleza-Brazil 

Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶ 𝐜𝐨𝐬 (𝟒.
𝟒𝝅

𝟕
) = 𝐜𝐨𝐬 (

𝟏𝟔𝝅

𝟕
) = 𝐜𝐨𝐬 (

𝟐𝝅

𝟕
)  𝒂𝒏𝒅𝐜𝐨𝐬 (𝟑.

𝟒𝝅

𝟕
) = 𝐜𝐨𝐬 (

𝟏𝟐𝝅

𝟕
)

= 𝐜𝐨𝐬 (
𝟐𝝅

𝟕
)  →  𝐜𝐨𝐬 (𝟒.

𝟒𝝅

𝟕
) = 𝐜𝐨𝐬 (𝟑.

𝟒𝝅

𝟕
) 

𝑺𝒊𝒎𝒊𝒍𝒂𝒓𝒍𝒚,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶  𝐜𝐨𝐬 (𝟒.
𝟐𝝅

𝟕
) = 𝐜𝐨𝐬 (𝟑.

𝟐𝝅

𝟕
)  𝒂𝒏𝒅 𝐜𝐨𝐬 (𝟒.

𝟔𝝅

𝟕
) = 𝐜𝐨𝐬 (𝟑.

𝟔𝝅

𝟕
) 

→ 𝑺𝒊𝒏𝒄𝒆 𝐜𝐨𝐬(𝟒𝒙) = 𝟖 𝐜𝐨𝐬𝟒 𝒙 − 𝟖 𝐜𝐨𝐬𝟐 𝒙 + 𝟏 𝒂𝒏𝒅 𝐜𝐨𝐬(𝟑𝒙) = 𝟒 𝐜𝐨𝐬𝟑 𝒙 − 𝟑 𝐜𝐨𝐬 𝒙 

→ 𝒙𝟐 = 𝐜𝐨𝐬 (
𝟐𝝅

𝟕
) , 𝒙𝟒 = 𝐜𝐨𝐬 (

𝟒𝝅

𝟕
) , 𝒙𝟔

= 𝐜𝐨𝐬 (
𝟔𝝅

𝟕
)  𝒂𝒓𝒆 𝒕𝒉𝒆 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒔 𝒐𝒇 𝒕𝒉𝒆 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 ∶ 𝟖𝒙𝟒 − 𝟖𝒙𝟐 + 𝟏

= 𝟒𝒙𝟑 − 𝟑𝒙 

↔ (𝒙 − 𝟏)(𝟖𝒙𝟑 + 𝟒𝒙𝟐 − 𝟒𝒙 − 𝟏) = 𝟎 ↔  𝟖𝒙𝟑 + 𝟒𝒙𝟐 − 𝟒𝒙 − 𝟏 = 𝟎 (∴ 𝒙𝟐, 𝒙𝟒, 𝒙𝟔 ≠ 𝟏) 

𝑳𝒆𝒕 𝒙 = 𝒚 −
𝟏

𝟔
→ 𝟖 (𝒚𝟑 −

𝟏

𝟐
𝒚𝟐 +

𝟏

𝟏𝟐
𝒚 −

𝟏

𝟐𝟏𝟔
) + 𝟒(𝒚𝟐 −

𝟏

𝟑
𝒚 +

𝟏

𝟑𝟔
) − 𝟒𝒚 +

𝟐

𝟑
− 𝟏 = 𝟎 

↔  𝟖𝒚𝟑 −
𝟏𝟒

𝟑
𝒚 =

𝟕

𝟐𝟕
 

𝑳𝒆𝒕 𝒚 =
√𝟕

𝟑
𝒛 → 𝟒𝒛𝟑 − 𝟑𝒛 =

𝟏

𝟐√𝟕
=
√𝟕

𝟏𝟒
,

𝒍𝒆𝒕 𝒛 = 𝒄𝒐𝒔𝜽 →  𝟒 𝐜𝐨𝐬𝟑 𝜽 − 𝟑 𝐜𝐨𝐬𝜽 = 𝐜𝐨𝐬 𝟑𝜽 =
√𝟕

𝟏𝟒
 

→  𝒛 = 𝒄𝒐𝒔𝜽 = 𝐜𝐨𝐬 [
𝟏

𝟑
(𝒂𝒓𝒄𝒄𝒐𝒔(

√𝟕

𝟏𝟒
) + 𝟐𝒌𝝅)] , 𝒌 = 𝟎, 𝟏 𝒐𝒓 𝟐. 
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→ 𝒚 =
√𝟕

𝟑
𝐜𝐨𝐬 [

𝟏

𝟑
(𝒂𝒓𝒄𝒄𝒐𝒔 (

√𝟕

𝟏𝟒
) + 𝟐𝒌𝝅)]  →  𝒙

=
√𝟕

𝟑
𝐜𝐨𝐬 [

𝟏

𝟑
(𝒂𝒓𝒄𝒄𝒐𝒔(

√𝟕

𝟏𝟒
) + 𝟐𝒌𝝅)] −

𝟏

𝟔
, 𝒌 = 𝟎, 𝟏 𝒐𝒓 𝟐. 

𝑰𝒕′𝒔 𝒄𝒍𝒆𝒂𝒓 𝒕𝒉𝒂𝒕 ∶ 𝒙𝟐 > 0 > 𝒙𝟒 > 𝒙𝟔 𝒂𝒏𝒅 𝟎 <
√𝟕

𝟏𝟒
<
𝟏

𝟐
 →  𝒂𝒓𝒄𝒄𝒐𝒔 (

√𝟕

𝟏𝟒
) ∈ (

𝝅

𝟑
,
𝝅

𝟐
)  

→  
𝟏

𝟑
𝒂𝒓𝒄𝒄𝒐𝒔(

√𝟕

𝟏𝟒
) ∈ (

𝝅

𝟗
,
𝝅

𝟔
) 

→ 𝒙𝟐 =
𝟏

𝟑
𝒂𝒓𝒄𝒄𝒐𝒔(

√𝟕

𝟏𝟒
)  𝒂𝒏𝒅 

𝟏

𝟑
(𝒂𝒓𝒄𝒄𝒐𝒔(

√𝟕

𝟏𝟒
) + 𝟐𝝅)

∈ (
𝟕𝝅

𝟗
,
𝟓𝝅

𝟔
)  𝒂𝒏𝒅 

𝟏

𝟑
(𝒂𝒓𝒄𝒄𝒐𝒔(

√𝟕

𝟏𝟒
) + 𝟒𝝅) ∈ (

𝟏𝟑𝝅

𝟗
,
𝟑𝝅

𝟐
) 

→ 𝐜𝐨𝐬 [
𝟏

𝟑
(𝒂𝒓𝒄𝒄𝒐𝒔 (

√𝟕

𝟏𝟒
) + 𝟒𝝅)] > 𝐜𝐨𝐬 [

𝟏

𝟑
(𝒂𝒓𝒄𝒄𝒐𝒔 (

√𝟕

𝟏𝟒
) + 𝟐𝝅)]  →  𝒙𝟒

=
√𝟕

𝟑
𝐜𝐨𝐬 [

𝟏

𝟑
(𝒂𝒓𝒄𝒄𝒐𝒔(

√𝟕

𝟏𝟒
) + 𝟒𝝅)] −

𝟏

𝟔
 

𝑺𝒊𝒏𝒄𝒆 𝐬𝐢𝐧𝟐 (𝒂𝒓𝒄𝒄𝒐𝒔 (
√𝟕

𝟏𝟒
)) = 𝟏 −

𝟕

𝟏𝟒𝟐
=
𝟏𝟖𝟗

𝟏𝟒𝟐
 →  𝐬𝐢𝐧(𝒂𝒓𝒄𝒄𝒐𝒔 (

√𝟕

𝟏𝟒
)) =

𝟑√𝟐𝟏

𝟏𝟒
 

→  𝒂𝒓𝒄𝒄𝒐𝒔(
√𝟕

𝟏𝟒
) = 𝒂𝒓𝒄𝒔𝒊𝒏(

𝟑√𝟐𝟏

𝟏𝟒
). 

→ 𝒙𝟒 = 𝐜𝐨𝐬 (
𝟒𝝅

𝟕
) =

√𝟕

𝟑
𝐜𝐨𝐬 [

𝟏

𝟑
(𝒂𝒓𝒄𝒔𝒊𝒏(

𝟑√𝟐𝟏

𝟏𝟒
) + 𝟒𝝅)] −

𝟏

𝟔
 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,  

 
𝟏

𝟑
{𝟕 − 𝟖√𝟕𝐜𝐨𝐬 [

𝟏

𝟑
(𝒂𝒓𝒄𝒔𝒊𝒏 (

𝟑√𝟐𝟏

𝟏𝟒
) + 𝟒𝝅)]} + 𝟖𝐜𝐨𝐬 (

𝟒𝝅

𝟕
)

=
𝟕

𝟑
− 𝟖(𝐜𝐨𝐬 (

𝟒𝝅

𝟕
) +

𝟏

𝟔
) + 𝟖 𝐜𝐨𝐬 (

𝟒𝝅

𝟕
) = 𝟏. 

 

1625. Prove that: 

 √𝐜𝐨𝐬
𝟐𝝅

𝟗
𝐜𝐨𝐬

𝟒𝝅

𝟗

𝟑

+ √𝐜𝐨𝐬
𝟒𝝅

𝟗
𝐜𝐨𝐬

𝟖𝝅

𝟗

𝟑

+ √𝐜𝐨𝐬
𝟖𝝅

𝟗
𝐜𝐨𝐬

𝟐𝝅

𝟗

𝟑

= −√
𝟑(√𝟗

𝟑
− 𝟏)

𝟒

𝟑

   

Proposed by Carlos Paiva-Brazil 
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Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑺𝒊𝒏𝒄𝒆 ∶  𝐜𝐨𝐬 (𝟑.
𝟐𝝅

𝟗
) = 𝐜𝐨𝐬 (𝟑.

𝟒𝝅

𝟗
) = 𝐜𝐨𝐬 (𝟑.

𝟖𝝅

𝟗
) = −

𝟏

𝟐
  𝒂𝒏𝒅 𝐜𝐨𝐬 𝟑𝒙

= 𝟒𝐜𝐨𝐬𝟑 𝒙 − 𝟑𝐜𝐨𝐬 𝒙 

→  𝒂 = 𝐜𝐨𝐬
𝟐𝝅

𝟗
, 𝒃 = 𝐜𝐨𝐬

𝟒𝝅

𝟗
, 𝒄 = 𝐜𝐨𝐬

𝟖𝝅

𝟗
 𝒂𝒓𝒆 𝒕𝒉𝒆 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒔 𝒐𝒇 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏 −

𝟏

𝟐

= 𝟒𝒙𝟑 − 𝟑𝒙 𝒐𝒓 𝟖𝒙𝟑 − 𝟔𝒙 + 𝟏 = 𝟎 

→ 𝑭𝒓𝒐𝒎 𝑽𝒊𝒆𝒕𝒂′𝒔 𝒇𝒐𝒓𝒎𝒖𝒍𝒂𝒔,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶  ∑ 𝒂

𝒂,𝒃,𝒄

= 𝟎,∑ 𝒂𝒃

𝒂,𝒃,𝒄

=
−𝟔

𝟖
= −

𝟑

𝟒
 𝒂𝒏𝒅  

𝒂𝒃𝒄 = −
𝟏

𝟖
. 

𝑳𝒆𝒕 𝒙 = √𝒂𝒃
𝟑

+ √𝒃𝒄
𝟑

+ √𝒄𝒂
𝟑   𝒂𝒏𝒅  𝒚 = √𝒂

𝟑 + √𝒃
𝟑
+ √𝒄

𝟑  

→ 𝒙𝟑 = (∑ √𝒂𝒃
𝟑

𝒂,𝒃,𝒄

)

𝟑

= ∑ 𝒂𝒃

𝒂,𝒃,𝒄

+ 𝟑√𝒂𝒃𝒄
𝟑

(∑ √𝒂𝒃
𝟑

𝒂,𝒃,𝒄

)(∑ √𝒂
𝟑

𝒂,𝒃,𝒄

) − 𝟑√(𝒂𝒃𝒄)𝟐
𝟑

= −
𝟑

𝟒
−
𝟑

𝟐
𝒙𝒚 −

𝟑

𝟒
= −

𝟑

𝟐
−
𝟑

𝟐
𝒙𝒚 (𝟏) 

𝒚𝟑 = (∑ √𝒂
𝟑

𝒂,𝒃,𝒄

)

𝟑

= ∑ 𝒂

𝒂,𝒃,𝒄

+ 𝟑(∑ √𝒂𝒃
𝟑

𝒂,𝒃,𝒄

)(∑ √𝒂
𝟑

𝒂,𝒃,𝒄

) − 𝟑√𝒂𝒃𝒄
𝟑

= 𝟑𝒙𝒚 +
𝟑

𝟐
 (𝟐) 

→ (𝟏) × (𝟐) → (𝒙𝒚)𝟑 = −
𝟑

𝟐
(𝒙𝒚 + 𝟏).

𝟑

𝟐
(𝟐𝒙𝒚 + 𝟏) ↔⏞

𝒛=𝒙𝒚

 𝟒𝒛𝟑 + 𝟗(𝟐𝒛 + 𝟏)(𝒛 + 𝟏) = 𝟎 

↔  𝟒𝒛𝟑 + 𝟏𝟖𝒛𝟐 + 𝟐𝟕𝒛 + 𝟗 = 𝟎 

↔⏞

𝒛=𝒕−
𝟑
𝟐

 𝟒 (𝒕𝟑 −
𝟗𝒕𝟐

𝟐
+
𝟐𝟕𝒕

𝟒
−
𝟐𝟕

𝟖
) + 𝟏𝟖(𝒕𝟐 − 𝟑𝒕 +

𝟗

𝟒
) + 𝟐𝟕𝒕 −

𝟖𝟏

𝟐
+ 𝟗 = 𝟎 ↔ 𝟒𝒕𝟑 =

𝟗

𝟐
 ↔  𝒕

=
√𝟗
𝟑

𝟐
→ 𝒛 =

√𝟗
𝟑
− 𝟑

𝟐
 

(𝟏) → 𝒙𝟑 = −
𝟑

𝟐
−
𝟑

𝟐
𝒛 = −

𝟑(√𝟗
𝟑
− 𝟏)

𝟒
  →  ∑ √𝒂𝒃

𝟑

𝒂,𝒃,𝒄

= −√
𝟑(√𝟗

𝟑
− 𝟏)

𝟒

𝟑

. 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   
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√𝐜𝐨𝐬
𝟐𝝅

𝟗
𝐜𝐨𝐬

𝟒𝝅

𝟗

𝟑

+ √𝐜𝐨𝐬
𝟒𝝅

𝟗
𝐜𝐨𝐬

𝟖𝝅

𝟗

𝟑

+ √𝐜𝐨𝐬
𝟖𝝅

𝟗
𝐜𝐨𝐬

𝟐𝝅

𝟗

𝟑

= −√
𝟑(√𝟗

𝟑
− 𝟏)

𝟒

𝟑

. 

Solution 2 by proposer 

We know that 𝐜𝐨𝐬 𝟑 ⋅ 𝟒𝟎∘ = 𝐜𝐨𝐬𝟏𝟐𝟎∘ = −
𝟏

𝟐
 

𝐜𝐨𝐬 𝟑 ⋅ 𝟖𝟎∘ = 𝐜𝐨𝐬 𝟐𝟒𝟎∘ = −
𝟏

𝟐
, 𝐜𝐨𝐬 𝟑 ⋅ 𝟏𝟔𝟎∘ = 𝐜𝐨𝐬 𝟒𝟖𝟎∘ = −

𝟏

𝟐
 

Then, 𝐜𝐨𝐬 𝟑𝒙 = −
𝟏

𝟐
, 𝟖 𝐜𝐨𝐬𝟑 𝒙 − 𝟔𝐜𝐨𝐬 𝒙 + 𝟏 = 𝟎 

Let 𝒂𝟑 = 𝐜𝐨𝐬 𝟒𝟎∘ , 𝒃𝟑 = 𝐜𝐨𝐬𝟖𝟎∘ , 𝒄𝟑 = 𝐜𝐨𝐬𝟏𝟔𝟎∘ and 𝒂𝟑, 𝒃𝟑, 𝒄𝟑 −the roots at the cubic  

𝟖𝐜𝐨𝐬𝟑 𝒙 − 𝟔𝐜𝐨𝐬 𝒙 + 𝟏 = 𝟎. By Vieta’s formulae 

{
 
 

 
 

𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑 = 𝟎

𝒂𝟑𝒃𝟑 + 𝒃𝟑𝒄𝟑 + 𝒄𝟑𝒂𝟑 = −
𝟑

𝟒

𝒂𝟑𝒃𝟑 𝒄𝟑 = −
𝟏

𝟖
; (∵ 𝒂𝒃𝒄 = −

𝟏

𝟐
)

 

We also know that:  

𝒂𝟑 + 𝒃𝟑 + 𝒄𝟑 − 𝟑𝒂𝒃𝒄 = (𝒂 + 𝒃 + 𝒄)(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐 − 𝒂𝒃 − 𝒃𝒄 − 𝒄𝒂) 

Let 𝒂 + 𝒃 + 𝒄 = 𝜽𝟏, 𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂 = 𝜽𝟐 ⇒ 𝜽𝟏(𝜽𝟏
𝟐 − 𝟑𝜽𝟐) =

𝟑

𝟐
 

𝒂𝟑𝒃𝟑 + 𝒃𝟑𝒄𝟑 + 𝒄𝟑𝒂𝟑 = [(𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)𝟐 − 𝟑𝒂𝒃𝒄(𝒂 + 𝒃 + 𝒄)](𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) 

−
𝟑

𝟒
− 𝟑 ⋅

𝟏

𝟒
= 𝜽𝟐 (𝜽𝟐

𝟐 +
𝟑𝜽𝟏
𝟐
)  

⇒ {
𝟐𝜽𝟏(𝜽𝟏

𝟐 − 𝟑𝜽𝟐) = 𝟑

𝜽𝟐(𝟐𝜽𝟐
𝟐 + 𝟑𝜽𝟏) = −𝟑

⇒ 𝜽𝟏 =
−𝟐𝜽𝟐

𝟑 − 𝟑

𝟑𝜽𝟐
 

𝟏𝟔𝜽𝟐
𝟗 − 𝟑𝟔𝜽𝟐

𝟔 + 𝟐𝟕𝜽𝟐
𝟐 + 𝟓𝟒 = 𝟎 ⇔ (𝟒𝜽𝟐

𝟑 − 𝟑)
𝟑
= −𝟑𝟒𝟑 = −𝟑𝟓 ⇔ 𝟒𝜽𝟐

𝟑 − 𝟑 − 𝟑√𝟗
𝟑

 

𝜽𝟐 = −√
𝟑(√𝟗

𝟑
− 𝟏)

𝟒

𝟑

 

Therefore, 

√𝐜𝐨𝐬
𝟐𝝅

𝟗
𝐜𝐨𝐬

𝟒𝝅

𝟗

𝟑

+ √𝐜𝐨𝐬
𝟒𝝅

𝟗
𝐜𝐨𝐬

𝟖𝝅

𝟗

𝟑

+ √𝐜𝐨𝐬
𝟖𝝅

𝟗
𝐜𝐨𝐬

𝟐𝝅

𝟗

𝟑

= −√
𝟑(√𝟗

𝟑
− 𝟏)

𝟒

𝟑
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Solution 3 by Samir Cabiyev-Azerbaijan 

√𝐜𝐨𝐬
𝟐𝝅

𝟗

𝟑

+ √𝐜𝐨𝐬
𝟒𝝅

𝟗

𝟑

+ √𝐜𝐨𝐬
𝟖𝝅

𝟗

𝟑

= 𝑨 

√𝐜𝐨𝐬
𝟐𝝅

𝟗
𝐜𝐨𝐬

𝟒𝝅

𝟗

𝟑

+ √𝐜𝐨𝐬
𝟒𝝅

𝟗
𝐜𝐨𝐬

𝟖𝝅

𝟗

𝟑

+ √𝐜𝐨𝐬
𝟖𝝅

𝟗
𝐜𝐨𝐬

𝟐𝝅

𝟗

𝟑

= 𝑩 

∵ (𝒙 + 𝒚 + 𝒛)𝟑 = 𝒙𝟑 + 𝒚𝟑 + 𝒛𝟑 + 𝟑(𝒙 + 𝒚 + 𝒛)(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙) − 𝟑𝒙𝒚𝒛 

⇒ 𝑨𝟑 = 𝐜𝐨𝐬
𝟐𝝅

𝟗
+ 𝐜𝐨𝐬

𝟒𝝅

𝟗
+ 𝐜𝐨𝐬

𝟖𝝅

𝟗
+ 𝟑𝑨𝑩 − 𝟑√𝐜𝐨𝐬

𝟐𝝅

𝟗
⋅ 𝐜𝐨𝐬

𝟒𝝅

𝟗
⋅ 𝐜𝐨𝐬

𝟖𝝅

𝟗

𝟑

− 𝟑√(𝐜𝐨𝐬
𝟐𝝅

𝟗
⋅ 𝐜𝐨𝐬

𝟒𝝅

𝟗
⋅ 𝐜𝐨𝐬

𝟖𝝅

𝟗
)
𝟐𝟑

 

𝒙𝟏 = 𝐜𝐨𝐬
𝟐𝝅

𝟗
, 𝒙𝟐 = 𝐜𝐨𝐬

𝟒𝝅

𝟗
, 𝒙𝟑 = 𝐜𝐨𝐬

𝟖𝝅

𝟗
 

𝟒 𝐜𝐨𝐬𝟑𝝋 − 𝟑 𝐜𝐨𝐬𝝋 +
𝟏

𝟐
= 𝟎 

{
 
 

 
 

𝒙𝟏 + 𝒙𝟐 + 𝒙𝟑 = 𝟎

𝒙𝟏𝒙𝟐 + 𝒙𝟐𝒙𝟑 + 𝒙𝟑𝒙𝟏 = −
𝟑

𝟒

𝒙𝟏𝒙𝟐𝒙𝟑 = −
𝟏

𝟖

⇒ {
𝑨𝟑 − 𝟑𝑨𝑩 =

𝟑

𝟐

𝑩𝟑 +
𝟑

𝟐
𝑨𝑩 = −

𝟑

𝟐

⇒ 𝑨𝟑 + 𝟐𝑩𝟑 = −
𝟑

𝟐
 

𝑨𝟑 = −𝟐𝑩𝟑 −
𝟑

𝟐
⇒ 𝑨 = −√𝟐𝑩𝟑 +

𝟑

𝟐

𝟑

⇒ −𝟐𝑩𝟑 −
𝟑

𝟐
+ 𝟑𝑩√𝟐𝑩𝟑 +

𝟑

𝟐

𝟑

=
𝟑

𝟐
 

−(𝟐𝑩𝟑 + 𝟑)𝟑 = −𝟐𝟕 ⋅ 𝑩𝟑 (𝟐𝑩𝟑 +
𝟑

𝟐
). 

Let 𝑩𝟑 = 𝒕 ⇒ (𝟐𝒕 + 𝟑)𝟑 + 𝟐𝟕(𝟐𝒕𝟐 +
𝟑

𝟐
𝒕) ⇒ (𝟐𝒕 −

𝟔

𝟒
)
𝟑

= −
𝟔𝟑⋅𝟗

𝟒𝟑
⇒ 

𝒕 =
𝟑 − 𝟑√𝟗

𝟑

𝟒
,𝑩𝟑 = 𝒕 ⇒ 𝑩 = −√

𝟑(√𝟗
𝟑
− 𝟏)

𝟒

𝟑

 

Therefore, 
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√𝐜𝐨𝐬
𝟐𝝅

𝟗
𝐜𝐨𝐬

𝟒𝝅

𝟗

𝟑

+ √𝐜𝐨𝐬
𝟒𝝅

𝟗
𝐜𝐨𝐬

𝟖𝝅

𝟗

𝟑

+ √𝐜𝐨𝐬
𝟖𝝅

𝟗
𝐜𝐨𝐬

𝟐𝝅

𝟗

𝟑

= −√
𝟑(√𝟗

𝟑
− 𝟏)

𝟒

𝟑

 

1626. Prove that: 

∑
(−𝟏)

𝒏(𝒏+𝟏)
𝟐 + (−𝟏)𝒏+𝟏𝑯𝒏
𝒏 + 𝟏

∞

𝒏=𝟏

=
𝟏

𝟒
(𝝅 + 𝟐 𝐥𝐨𝐠𝟐 𝟐 − 𝐥𝐨𝐠𝟒 − 𝟒) 

Proposed by Asmat Qatea-Afghanistan 

Solution 1 by Amrit Awasthi-India 

The sum can be written as, 

𝑺 = ∑
(−𝟏)

𝒏(𝒏+𝟏)
𝟐

𝒏 + 𝟏

∞

𝒏=𝟏

+∑
(−𝟏)𝒏+𝟏𝑯𝒏
𝒏 + 𝟏

∞

𝒏=𝟏

= 𝚿+𝛀,𝐰𝐡𝐞𝐫𝐞 

𝛀 = ∑
(−𝟏)

𝒏(𝒏+𝟏)
𝟐

𝒏 + 𝟏

∞

𝒏=𝟏

= ∑
𝑯𝒏
𝒏 + 𝟏

𝐜𝐨𝐬(𝒙(𝒙 + 𝟏))

∞

𝒏=𝟏

, 𝐚𝐭 𝒙 = 𝝅 

∑𝑯𝒏𝒚
𝒏−𝟏

∞

𝒏=𝟏

=
𝟏

𝒚
(∑

𝒚𝒏

𝒏

∞

𝒏=𝟏

)(∑𝒚𝒏
∞

𝒏=𝟎

) = −
𝐥𝐨𝐠(𝟏 − 𝒚)

𝒚(𝟏 − 𝒚)
; |𝒚| < 1 

Multiply with 𝒛 and integrate between 𝟎 to 𝒛, it follows that 

∑
𝑯𝒏𝒛

𝒏+𝟏

𝒏 + 𝟏

∞

𝒏=𝟏

=
𝟏

𝟐
𝐥𝐨𝐠𝟐(𝟏 − 𝒛) 

⇒∑
𝑯𝒏 𝐜𝐨𝐬(𝒏(𝒏 + 𝟏))

𝒏 + 𝟏

∞

𝒏=𝟏

= 𝑹𝒆(∑
𝑯𝒏𝒆

𝒊(𝒏+𝟏)𝒏

𝒏 + 𝟏

∞

𝒏=𝟏

) = 𝑹𝒆 (
𝟏

𝟐
𝐥𝐨𝐠𝟐(𝟏 − 𝒛)) = 

= 𝑹𝒆 [
𝟏

𝟐
(𝐥𝐨𝐠(𝟏 − 𝒆𝒊𝒙))𝟐] = 𝑹𝒆 [

𝟏

𝟐
(𝐥𝐨𝐠((𝟏 − 𝐜𝐨𝐬 𝒙) − 𝒊 𝐬𝐢𝐧𝒙))

𝟐
] = 

= 𝑹𝒆 (
𝟏

𝟐
(𝐥𝐨𝐠(𝟏 − 𝐜𝐨𝐬 𝒙 − 𝒊 𝐬𝐢𝐧𝒙))𝟐) = 𝑹𝒆(

𝟏

𝟐
(𝐥𝐨𝐠 (𝟐 𝐬𝐢𝐧

𝒙

𝟐
+ 𝒊 𝐚𝐫𝐠(𝟏 − 𝒆𝒊𝒙))

𝟐

)) = 

=
𝟏

𝟐
(𝐥𝐨𝐠𝟐 (𝟐 𝐬𝐢𝐧

𝒙

𝟐
) − (𝐭𝐚𝐧−𝟏 (−

𝐬𝐢𝐧𝒙

𝟏 − 𝐜𝐨𝐬 𝒙
))
𝟐

) = 
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=
𝟏

𝟐
(𝐥𝐨𝐠𝟐 (𝟐 𝐬𝐢𝐧

𝒙

𝟐
) − (

𝝅

𝟐
− 𝐜𝐨𝐭−𝟏 (𝐜𝐨𝐭

𝒙

𝟐
)
𝟐

)) ⇒ 𝛀 =
𝟏

𝟐
(𝐥𝐨𝐠𝟐 (𝟐 𝐬𝐢𝐧

𝒙

𝟐
) − (

𝝅− 𝒙

𝟐
)
𝟐

) 

𝐅𝐨𝐫 𝒙 = 𝝅 ⇒ 𝛀∑
(−𝟏)𝒏+𝟏

𝒏 + 𝟏
𝑯𝒏

∞

𝒏=𝟏

=
𝟏

𝟐
𝐥𝐨𝐠𝟐 𝟐 =

𝟏

𝟒
(𝟐 𝐥𝐨𝐠𝟐 𝟐); (𝑰) 

𝚿 =∑
(−𝟏)

𝒏(𝒏+𝟏)
𝟐

𝒏 + 𝟏

∞

𝒏=𝟏

= −
𝟏

𝟐
−
𝟏

𝟑
+
𝟏

𝟒
+
𝟏

𝟓
−
𝟏

𝟔
−
𝟏

𝟕
+
𝟏

𝟖
+
𝟏

𝟗
+ ⋯ = 

= (−
𝟏

𝟑
+
𝟏

𝟓
−
𝟏

𝟕
+ ⋯) −

𝟏

𝟐
(𝟏 −

𝟏

𝟐
+
𝟏

𝟑
−
𝟏

𝟒
+⋯) = 

= (
𝝅

𝟒
− 𝟏) −

𝟏

𝟐
𝐥𝐨𝐠 𝟐 =

𝟏

𝟒
(𝝅 − 𝐥𝐨𝐠 𝟒 − 𝟒); (𝑰𝑰) 

From(𝑰), (𝑰𝑰) we get, 

𝑺 =
𝟏

𝟒
(𝝅 + 𝟐 𝐥𝐨𝐠𝟐 𝟐 − 𝐥𝐨𝐠 𝟒 − 𝟒) 

Solution 2 by Jack Desire-Nigeria 

𝐋𝐞𝐭: 𝛀 = ∑
(−𝟏)

𝒏(𝒏+𝟏)
𝟐 + (−𝟏)𝒏+𝟏𝑯𝒏
𝒏 + 𝟏

∞

𝒏=𝟏

 

(−𝟏)
𝒏(𝒏+𝟏)
𝟐 𝒊𝒔 + 𝒗𝒆 𝐟𝐨𝐫 𝒏 = 𝟑, 𝟕, 𝟏𝟏, … , (𝟒𝒏 − 𝟏) 

(−𝟏)
𝒏(𝒏+𝟏)
𝟐  𝒊𝒔 + 𝒗𝒆 𝐟𝐨𝐫 𝒏 = 𝟒, 𝟖, 𝟏𝟐,… , (𝟒𝒏) 

(−𝟏)
𝒏(𝒏+𝟏)
𝟐  𝒊𝒔 − 𝒗𝒆 𝐟𝐨𝐫 𝒏 = 𝟏, 𝟓, 𝟗,… , (𝟒𝒏 − 𝟑) 

(−𝟏)
𝒏(𝒏+𝟏)
𝟐 𝒊𝒔 − 𝒗𝒆 𝐟𝐨𝐫 𝒏 = 𝟐, 𝟔, 𝟏𝟎, … , (𝟒𝒏 − 𝟐) 

𝐋𝐞𝐭:𝛀𝟏 = ∑
(−𝟏)

𝒏(𝒏+𝟏)
𝟐

𝒏 + 𝟏

∞

𝒏=𝟏

, 𝛀𝟐 = ∑
(−𝟏)

𝒏(𝒏+𝟏)
𝟐 𝑯𝒏

𝒏 + 𝟏

∞

𝒏=𝟏

 

We have: 

𝛀𝟏 = ∑
(−𝟏)

𝒏(𝒏+𝟏)
𝟐

𝒏 + 𝟏

∞

𝒏=𝟏

= ∑(
𝟏

𝟒𝒏
+

𝟏

𝟒𝒏 + 𝟏
−

𝟏

𝟒𝒏 − 𝟐
−

𝟏

𝟒𝒏 − 𝟏
)

∞

𝒏=𝟏

= 

=
𝟏

𝟒
[𝝍(𝒏) + 𝝍(𝒏 +

𝟏

𝟒
) −𝝍(𝒏 −

𝟏

𝟐
) −𝝍(𝒏 −

𝟏

𝟒
)]
𝟏

∞

= 
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=
𝟏

𝟒
(−𝝍(𝟏) − 𝝍(

𝟓

𝟒
) +𝝍(

𝟏

𝟐
) +𝝍(

𝟑

𝟒
)) =

𝟏

𝟒
(𝝍 (

𝟏

𝟐
) −𝝍(𝟏) + 𝝍(

𝟑

𝟒
) −𝝍(

𝟓

𝟒
)) 

𝐖𝐞 𝐤𝐧𝐨𝐰: ∫
𝟏

𝟏 + 𝒙
𝒅𝒙

𝟏

𝟎

= 𝐥𝐨𝐠 𝟐 =
𝟏

𝟐
(𝝍(𝟏) − 𝝍(

𝟏

𝟐
)) 

∵
𝟏

𝟒
(𝝍(

𝟏

𝟐
) −𝝍(𝟏)) = −

𝟏

𝟐
𝐥𝐨𝐠 𝟐 ,𝐰𝐡𝐞𝐧 𝜶 =

𝟏

𝟐
 

∫
√𝒙

𝟏 + 𝒙
𝒅𝒙

𝟏

𝟎

= ∫
𝟐𝒖𝟐

𝟏 + 𝒖𝟐
𝒅𝒖

𝟏

𝟎

= 𝟐∫ (𝟏 −
𝟏

𝒖𝟐 + 𝟏
)𝒅𝒖

𝟏

𝟎

= 𝟐(𝟏 −
𝝅

𝟒
)

=
𝟏

𝟐
(𝝍(

𝟓

𝟒
) − 𝝍(

𝟑

𝟒
)) 

𝟏

𝟒
(𝝍 (

𝟑

𝟒
) − 𝝍(

𝟓

𝟒
)) = −

𝟏

𝟐
(𝟐 −

𝝅

𝟐
) =

𝝅

𝟒
− 𝟏 

𝛀𝟏 =
𝟏

𝟒
(𝝍 (

𝟏

𝟐
) −𝝍(𝟏) + 𝝍(

𝟑

𝟒
) −𝝍 (

𝟓

𝟒
)) = −

𝟏

𝟐
𝐥𝐨𝐠 𝟐 +

𝝅

𝟒
− 𝟏 

𝛀𝟐 = ∑
(−𝟏)𝒏+𝟏𝑯𝒏
𝒏 + 𝟏

∞

𝒏=𝟏

 

𝐖𝐞 𝐤𝐧𝐨𝐰: ∑(−𝟏)𝒏+𝟏𝒙𝒏𝑯𝒏

∞

𝒏=𝟏

=
𝐥𝐨𝐠(𝟏 + 𝒙)

𝟏 + 𝒙
 

Integrating both sides w.r.t. 𝒙 from 𝟎 to 𝟏, we get 

𝛀𝟐 = ∑
(−𝟏)𝒏+𝟏𝑯𝒏
𝒏 + 𝟏

∞

𝒏=𝟏

= ∫
𝐥𝐨𝐠(𝟏 + 𝒙)

𝟏 + 𝒙
𝒅𝒙

𝟏

𝟎

=
𝟏

𝟐
𝐥𝐨𝐠𝟐 𝟐 

𝛀 = 𝛀𝟏 + 𝛀𝟐 =
𝟏

𝟒
(𝝅 + 𝟐 𝐥𝐨𝐠𝟐 𝟐 − 𝐥𝐨𝐠𝟒 − 𝟒) 

Solution 3 by Ajenikoko Gbolahan-Nigeria 

𝛀 = ∑
(−𝟏)

𝒏(𝒏+𝟏)
𝟐 + (−𝟏)𝒏+𝟏𝑯𝒏
𝒏 + 𝟏

∞

𝒏=𝟏

= ∑
(−𝟏)

𝒏(𝒏+𝟏)
𝟐

𝒏 + 𝟏

∞

𝒏=𝟏

+∑
(−𝟏)𝒏+𝟏𝑯𝒏
𝒏 + 𝟏

∞

𝒏=𝟏

 

𝚽 =∑
(−𝟏)

𝒏(𝒏+𝟏)
𝟐

𝒏 + 𝟏

∞

𝒏=𝟏

= −
𝟏

𝟐
−
𝟏

𝟑
+
𝟏

𝟒
+
𝟏

𝟓
−
𝟏

𝟔
−
𝟏

𝟕
+
𝟏

𝟖
+⋯ = 
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= ∑[
𝟏

𝟒𝒏
+

𝟏

𝟒𝒏 + 𝟏
−

𝟏

𝟒𝒏 − 𝟏
−

𝟏

𝟒𝒏 − 𝟐
]

∞

𝒏=𝟏

= ∑∫ (𝒙𝟒𝒏−𝟏 + 𝒙𝟒𝒏 − 𝒙𝟒𝒏−𝟐 − 𝒙𝟒𝒏−𝟑)𝒅𝒙
𝟏

𝟎

=

∞

𝒏=𝟏

 

= ∫ ∑(
𝒙𝟒𝒏

𝒙
+ 𝒙𝟒𝒏 −

𝒙𝟒𝒏

𝒙𝟐
−
𝒙𝟒𝒏

𝒙𝟑
)

∞

𝒏=𝟏

𝒅𝒙
𝟏

𝟎

= 

= ∫ (
𝟏

𝒙
⋅
𝒙𝟒

𝟏 − 𝒙𝟒
+

𝒙𝟒

𝟏 − 𝒙𝟒
−
𝟏

𝒙𝟐
⋅
𝒙𝟒

𝟏 − 𝒙𝟒
−
𝟏

𝒙𝟑
⋅
𝒙𝟒

𝟏 − 𝒙𝟒
)

𝟏

𝟎

𝒅𝒙 = 

= ∫ (
𝒙𝟑

𝟏 − 𝒙𝟒
+

𝒙𝟒

𝟏 − 𝒙𝟒
−

𝒙𝟐

𝟏 − 𝒙𝟒
−

𝒙

𝟏 − 𝒙𝟒
)

𝟏

𝟎

𝒅𝒙 = ∫ (
𝟏

𝒙𝟐 + 𝟏
−

𝒙

𝒙𝟐 + 𝟏
− 𝟏)

𝟏

𝟎

𝒅𝒙 = 

=
𝝅

𝟒
−
𝐥𝐨𝐠 𝟐

𝟐
− 𝟏 

𝚿 =∑
(−𝟏)𝒏+𝟏𝑯𝒏
𝒏 + 𝟏

∞

𝒏=𝟏

 

𝐖𝐞 𝐤𝐧𝐨𝐰 𝐭𝐡𝐚𝐭: ∑𝑯𝒏𝒙
𝒏

∞

𝒏=𝟏

=
𝐥𝐨𝐠(𝟏 − 𝒙)

𝒙 − 𝟏
 

Subtitute 𝒙 → −𝒙 and integrate from 𝟎 to 𝟏 w.r.t. 𝒙 then, 

𝚿 =∑
(−𝟏)𝒏+𝟏𝑯𝒏
𝒏 + 𝟏

∞

𝒏=𝟏

= ∫
𝐥𝐨𝐠(𝟏 + 𝒙)

𝟏 + 𝒙
𝒅𝒙

𝟏

𝟎

= ∫
𝐥𝐨𝐠 𝒖

𝒖
𝒅𝒖

𝟐

𝟏

=
𝐥𝐨𝐠𝟐 𝟐

𝟐
 

Thus, 𝛀 = 𝚽+𝚿 =
𝝅

𝟒
−
𝐥𝐨𝐠 𝟐

𝟐
− 𝟏 +

𝐥𝐨𝐠𝟐 𝟐

𝟐
=
𝟏

𝟒
(𝝅 + 𝟐 𝐥𝐨𝐠𝟐 𝟐 − 𝐥𝐨𝐠 𝟒 − 𝟒) 

 Solution 4 by Syed Shahabudeen-India 

𝐋𝐞𝐭: 𝛀 = ∑
(−𝟏)

𝒏(𝒏+𝟏)
𝟐 + (−𝟏)𝒏+𝟏𝑯𝒏
𝒏 + 𝟏

∞

𝒏=𝟏

= ∑
(−𝟏)

𝒏(𝒏+𝟏)
𝟐

𝒏 + 𝟏

∞

𝒏=𝟏

+∑
(−𝟏)𝒏+𝟏𝑯𝒏
𝒏 + 𝟏

∞

𝒏=𝟏

= 𝑨 +𝑩 

𝑨 = ∑
(−𝟏)

𝒏(𝒏+𝟏)
𝟐

𝒏 + 𝟏

∞

𝒏=𝟏

; 𝑩 = ∑
(−𝟏)𝒏+𝟏𝑯𝒏
𝒏 + 𝟏

∞

𝒏=𝟏

 

𝑨 = ∑
(−𝟏)

𝒏(𝒏+𝟏)
𝟐

𝒏 + 𝟏

∞

𝒏=𝟏

= 𝑹𝒆(∑
𝒆𝒊
𝒏(𝒏+𝟏)𝝅

𝟐

𝒏 + 𝟏

∞

𝒏=𝟏

) = ∑
𝐜𝐨𝐬 (

𝒏(𝒏 + 𝟏)𝝅
𝟐 )

𝒏 + 𝟏

∞

𝒏=𝟏

= 
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= ∑
𝐜𝐨𝐬 (

𝝅𝒏𝟐

𝟐 ) 𝐜𝐨𝐬 (
𝝅𝒏
𝟐 ) − 𝐬𝐢𝐧 (

𝝅𝒏𝟐

𝟐 ) 𝐬𝐢𝐧 (
𝒏𝝅
𝒏 )

𝒏 + 𝟏

∞

𝒏=𝟏

= ∑
(−𝟏)𝒏

𝟐𝒏 + 𝟏

∞

𝒏=𝟏

+∑
(−𝟏)𝒏

𝟐𝒏

∞

𝒏=𝟏

=
𝝅

𝟒
− 𝟏 −

𝐥𝐨𝐠 𝟐

𝟐
 

𝑩 = ∑
(−𝟏)𝒏+𝟏𝑯𝒏
𝒏 + 𝟏

∞

𝒏=𝟏

= −∑
(−𝟏)𝒏 (𝑯𝒏+𝟏 −

𝟏
𝒏 + 𝟏)

𝒏 + 𝟏

∞

𝒏=𝟏

= 

= ∑
(−𝟏)𝒏

(𝒏 + 𝟏)𝟐

∞

𝒏=𝟏

+ ∑
(−𝟏)𝒎𝑯𝒎

𝒎

∞

𝒎=𝟐

; (𝐡𝐞𝐫𝐞: ∑
(−𝟏)𝒎𝑯𝒎

𝒎

∞

𝒎=𝟐

= 𝟏 −
𝛑𝟐

𝟏𝟐
+
𝐥𝐨𝐠𝟐 𝟐

𝟐
)  

= (
𝝅𝟐

𝟏𝟐
− 𝟏) + 𝟏 −

𝝅𝟐

𝟏𝟐
+
𝐥𝐨𝐠𝟐 𝟐

𝟐
=
𝐥𝐨𝐠𝟐 𝟐

𝟐
 

𝛀 =
𝝅

𝟒
− 𝟏 −

𝐥𝐨𝐠 𝟐

𝟐
+
𝐥𝐨𝐠𝟐 𝟐

𝟐
=
𝟏

𝟒
(𝝅 + 𝟐 𝐥𝐨𝐠𝟐 𝟐 − 𝐥𝐨𝐠 𝟒 − 𝟒) 

1627. Prove that: 

∫ ∫ ∫
𝒂𝟐 + 𝒃𝟐 𝐬𝐢𝐧𝟐 𝒙

𝒃𝟐 + 𝒂𝟐 𝐜𝐨𝐬𝟐 𝒙

𝟏

𝟎

𝟏

𝟎

𝝅
𝟒

𝟎

𝐭𝐚𝐧 𝒙 𝒅𝒂 𝒅𝒃 𝒅𝒙 = 

=
𝟏

𝟏𝟐
−
𝟓𝝅

𝟏𝟐
+
𝐥𝐨𝐠𝟑

𝟔
+

𝟓 𝐭𝐚𝐧−𝟏 (
𝟏

√𝟐
)

𝟔√𝟐
+
𝟏𝟕 𝐭𝐚𝐧−𝟏(√𝟐)

𝟏𝟐√𝟐
 

Proposed by Srinivasa Raghava-AIRMC-India 

Solution 1 by Almas Babirov-Azerbaijan 

𝛀 = ∫ ∫ ∫
𝒂𝟐 + 𝒃𝟐 𝐬𝐢𝐧𝟐 𝒙

𝒃𝟐 + 𝒂𝟐 𝐜𝐨𝐬𝟐 𝒙

𝟏

𝟎

𝟏

𝟎

𝝅
𝟒

𝟎

𝐭𝐚𝐧 𝒙𝒅𝒂 𝒅𝒃 𝒅𝒙 

𝐋𝐞𝐭 𝛀𝟏 = ∫
𝒂𝟐 + 𝒃𝟐 𝐬𝐢𝐧𝟐 𝒙

𝒃𝟐 + 𝒂𝟐 𝐜𝐨𝐬𝟐 𝒙
𝐭𝐚𝐧𝒙 𝒅𝒙

𝟏

𝟎

= 

= ∫
𝒂𝟐 𝐜𝐨𝐬𝟐 𝒙 + 𝒃𝟐 + (𝒃 𝐬𝐢𝐧𝒙 𝐜𝐨𝐬 𝒙)𝟐 − 𝒃𝟐

𝒃𝟐 + 𝒂𝟐 𝐜𝐨𝐬𝟐 𝒙
⋅
𝐭𝐚𝐧 𝒙

𝐜𝐨𝐬𝟐 𝒙

𝟏

𝟎

𝒅𝒂 = 
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= ∫
𝐭𝐚𝐧 𝒙

𝐜𝐨𝐬𝟐 𝒙
(𝟏 +

𝒃𝟐(𝐬𝐢𝐧𝟐 𝒙 𝐜𝐨𝐬𝟐 𝒙 − 𝟏)

𝒃𝟐 (𝟏 +
𝒂𝟐 𝐜𝐨𝐬𝟐 𝒙
𝒃𝟐

)
)

𝟏

𝟎

𝒅𝒂 = 

=
𝐭𝐚𝐧 𝒙

𝐜𝐨𝐬𝟐 𝒙
∫ 𝒅𝒂
𝟏

𝟎

+
𝐭𝐚𝐧 𝒙

𝐜𝐨𝐬𝟐 𝒙
∫
𝐬𝐢𝐧𝟐 𝒙 𝐜𝐨𝐬𝟐 𝒙 − 𝟏

𝟏 +
𝒂𝟐 𝐜𝐨𝐬𝟐 𝒙
𝒃𝟐

𝟏

𝟎

𝒅𝒂 = 

=
𝐭𝐚𝐧 𝒙

𝐜𝐨𝐬𝟐 𝒙
⋅ 𝒂|

𝟎

𝟏

+
𝐭𝐚𝐧 𝒙 (𝐬𝐢𝐧𝟐 𝒙 𝐜𝐨𝐬𝟐 𝒙 − 𝟏)

𝐜𝐨𝐬𝟑 𝒙⏟                
𝒇(𝒙)

∫
𝒃

𝟏 +
𝒂𝟐 𝐜𝐨𝐬𝟐 𝒙
𝒃𝟐

𝒅(
𝒂𝐜𝐨𝐬 𝒙

𝒃
)

𝟏

𝟎

= 

=
𝐬𝐢𝐧 𝒙

𝐜𝐨𝐬𝟑 𝒙⏟  
𝒈(𝒙)

+ 𝒇(𝒙) ⋅ 𝒃 (𝐭𝐚𝐧−𝟏 (
𝒂 𝐜𝐨𝐬 𝒙

𝒃
)|
𝟎

𝟏

= 𝒈(𝒙) + 𝒇(𝒙) ⋅ 𝒃 ⋅ 𝐭𝐚𝐧−𝟏 (
𝐜𝐨𝐬 𝒙

𝒃
) 

𝛀𝟐 = ∫ (𝒈(𝒙) + 𝒇(𝒙)𝒃 ⋅ 𝐭𝐚𝐧−𝟏 (
𝐜𝐨𝐬 𝒙

𝒃
))𝒅𝒃

𝟏

𝟎

= 

= ∫ 𝒈(𝒙)
𝟏

𝟎

𝒅𝒃 + 𝒇(𝒙)∫ 𝒃 ⋅ 𝐭𝐚𝐧−𝟏 (
𝐜𝐨𝐬 𝒙

𝒃
)

𝟏

𝟎

𝒅𝒃 = 

= 𝒈(𝒙)𝒃|𝟎
𝟏 +

𝒇(𝒙)

𝟐
∫ 𝐭𝐚𝐧−𝟏 (

𝐜𝐨𝐬 𝒙

𝒃
)𝒅𝒃𝟐

𝟏

𝟎

= 

= 𝒈(𝒙) +
𝒇(𝒙)

𝟐
(𝒃𝟐 𝐭𝐚𝐧−𝟏 (

𝐜𝐨𝐬 𝒙

𝒃
))|

𝟎

𝟏

−
𝒈(𝒙)

𝟐
∫ 𝒃𝟐𝒅(𝐭𝐚𝐧−𝟏 (

𝐜𝐨𝐬𝒙

𝒃
))

𝟏

𝟎

= 

= 𝒈(𝒙) +
𝒇(𝒙)

𝟐
𝒕𝒂𝒏−𝟏(𝐜𝐨𝐬 𝒙) +

𝒇(𝒙)

𝟐
𝐜𝐨𝐬 𝒙∫

𝒃𝟏 ⋅
𝐜𝐨𝐬 𝒙
𝒃𝟐

𝟏 +
𝐜𝐨𝐬𝟐 𝒙
𝒃𝟐

𝒅𝒃
𝟏

𝟎

= 

= 𝒈(𝒙) +
𝒇(𝒙)

𝟐
𝐭𝐚𝐧−𝟏(𝐜𝐨𝐬 𝒙) +

𝟏

𝟐
𝒇(𝒙) 𝐜𝐨𝐬 𝒙∫

𝟏

𝟏 +
𝐜𝐨𝐬𝟐 𝒙
𝒃𝟐

𝒅𝒃
𝟏

𝟎

= 

= 𝒈(𝒙) +
𝟏

𝟐
𝒇(𝒙) 𝐭𝐚𝐧−𝟏(𝐜𝐨𝐬 𝒙) +

𝟏

𝟐
𝒇(𝒙) 𝐜𝐨𝐬 𝒙 −

𝟏

𝟐
𝒇(𝒙) 𝐜𝐨𝐬𝟐 𝒙 𝐭𝐚𝐧−𝟏 (

𝟏

𝐜𝐨𝐬 𝒙
) 

𝛀 = ∫ (𝒈(𝒙) +
𝟏

𝟐
𝒇(𝒙) 𝐭𝐚𝐧−𝟏(𝐜𝐨𝐬 𝒙) +

𝟏

𝟐
𝒇(𝒙) 𝐜𝐨𝐬 𝒙 −

𝟏

𝟐
𝒇(𝒙) 𝐜𝐨𝐬𝟐 𝒙 𝐭𝐚𝐧−𝟏 (

𝟏

𝐜𝐨𝐬 𝒙
))

𝝅
𝟒

𝟎

𝒅𝒙 

= ∫
𝐭𝐚𝐧 𝒙

𝐜𝐨𝐬𝟐 𝒙

𝝅
𝟒

𝟎

𝒅𝒙 +
𝟏

𝟐
∫

𝐬𝐢𝐧𝒙

𝐜𝐨𝐬𝟒 𝒙
(𝐬𝐢𝐧𝟐 𝒙 𝐜𝐨𝐬𝟐 𝒙 − 𝟏) 𝐭𝐚𝐧−𝟏(𝐜𝐨𝐬 𝒙)𝒅𝒙

𝝅
𝟒

𝟎

+ 
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+
𝟏

𝟐
∫

𝐬𝐢𝐧𝒙

𝐜𝐨𝐬𝟑 𝒙
(𝐬𝐢𝐧𝟐 𝒙 𝐜𝐨𝐬𝟐 𝒙 − 𝟏)

𝝅
𝟒

𝟎

𝒅𝒙 −
𝟏

𝟐
∫

𝐬𝐢𝐧 𝒙

𝐜𝐨𝐬𝟐 𝒙
(𝐬𝐢𝐧𝟐 𝒙 𝐜𝐨𝐬𝟐 𝒙 𝐭𝐚𝐧−𝟏 (

𝟏

𝐜𝐨𝐬 𝒙
))𝒅𝒙

𝝅
𝟒

𝟎

= 

= 𝑨𝟏 +
𝟏

𝟐
(𝑨𝟐 + 𝑨𝟑 − 𝑨𝟒) 

𝑨𝟏 = ∫
𝐭𝐚𝐧 𝒙

𝐜𝐨𝐬𝟐 𝒙

𝝅
𝟒

𝟎

𝒅𝒙 =
𝟏

𝟐
𝐭𝐚𝐧𝟐 𝒙|

𝟎

𝝅
𝟒
=
𝟏

𝟐
 

𝑨𝟐 = ∫
𝐬𝐢𝐧𝒙

𝐜𝐨𝐬𝟒 𝒙
(𝐬𝐢𝐧𝟐 𝒙 𝐜𝐨𝐬𝟐 𝒙 − 𝟏) 𝐭𝐚𝐧−𝟏(𝐜𝐨𝐬 𝒙)𝒅𝒙

𝝅
𝟒

𝟎

= 

= ∫
𝐬𝐢𝐧 𝒙

𝐜𝐨𝐬𝟐 𝒙
𝐭𝐚𝐧−𝟏(𝐜𝐨𝐬 𝒙)𝒅𝒙

𝝅
𝟒

𝟎

−∫ 𝐬𝐢𝐧 𝒙 𝐭𝐚𝐧−𝟏(𝐜𝐨𝐬 𝒙)𝒅𝒙

𝝅
𝟐

𝟎

−∫
𝐬𝐢𝐧 𝒙

𝐜𝐨𝐬𝟒 𝒙
𝐭𝐚𝐧−𝟏(𝐜𝐨𝐬 𝒙)

𝝅
𝟒

𝟎

𝒅𝒙 

= ∫ 𝐭𝐚𝐧−𝟏 𝒙𝒅 (
𝟏

𝐜𝐨𝐬 𝒙
)

𝝅
𝟒

𝟎

+ ∫ 𝐭𝐚𝐧−𝟏(𝐜𝐨𝐬 𝒙)

𝝅
𝟒

𝟎

𝒅(𝐜𝐨𝐬 𝒙) −
𝟏

𝟑
∫ 𝐭𝐚𝐧−𝟏(𝐜𝐨𝐬 𝒙)𝒅 (

𝟏

𝐜𝐨𝐬𝟑 𝒙
)

𝝅
𝟒

𝟎

= 

= (
𝐭𝐚𝐧−𝟏(𝐜𝐨𝐬 𝒙)

𝐜𝐨𝐬 𝒙
+ 𝐜𝐨𝐬 𝒙 𝐭𝐚𝐧−𝟏(𝐜𝐨𝐬 𝒙) −

𝟏

𝟑
⋅
𝐭𝐚𝐧−𝟏(𝐜𝐨𝐬 𝒙)

𝐜𝐨𝐬𝟑 𝒙
)|
𝟎

𝝅
𝟒

+ 

+∫
𝐬𝐢𝐧 𝒙𝒅𝒙

𝐜𝐨𝐬 𝒙 (𝟏 + 𝐜𝐨𝐬𝟐 𝒙)

𝝅
𝟒

𝟎

+∫
𝐬𝐢𝐧𝒙 𝐜𝐨𝐬 𝒙

𝟏 + 𝐜𝐨𝐬𝟐 𝒙
𝒅𝒙

𝝅
𝟒

𝟎

−
𝟏

𝟑
∫

𝐬𝐢𝐧 𝒙

𝐜𝐨𝐬𝟑 𝒙 (𝟏 + 𝐜𝐨𝐬𝟐 𝒙)
𝒅𝒙

𝝅
𝟒

𝟎

= 

= √𝟐 𝐭𝐚𝐧−𝟏 (
𝟏

√𝟐
) +

√𝟐

𝟐
𝐭𝐚𝐧−𝟏 (

𝟏

√𝟐
) −

𝟐√𝟐

𝟑
𝐭𝐚𝐧−𝟏 (

𝟏

√𝟐
) −

𝝅

𝟒
−
𝝅

𝟒
+
𝝅

𝟏𝟐
+ 

+∫
𝐬𝐢𝐧 𝒙

𝐜𝐨𝐬 𝒙
𝒅𝒙

𝝅
𝟒

𝟎

−∫
𝐬𝐢𝐧𝒙 𝐜𝐨𝐬 𝒙

𝟏 + 𝐜𝐨𝐬𝟐 𝒙
𝒅𝒙

𝝅
𝟒

𝟎

+∫
𝐬𝐢𝐧 𝒙 𝐜𝐨𝐬 𝒙

𝟏 + 𝐜𝐨𝐬𝟐 𝒙
𝒅𝒙

𝝅
𝟒

𝟎

−
𝟏

𝟑
∫

𝐬𝐢𝐧 𝒙

𝐜𝐨𝐬𝟑 𝒙
𝒅𝒙

𝝅
𝟒

𝟎

− 

−
𝟏

𝟑
∫
𝐬𝐢𝐧𝒙

𝐜𝐨𝐬 𝒙
𝒅𝒙

𝝅
𝟒

𝟎

= −
𝟓𝝅

𝟏𝟐
+
𝟓√𝟐

𝟔
𝐭𝐚𝐧−𝟏 (

𝟏

√𝟐
) −

𝟒

𝟑
𝐥𝐨𝐠 (

𝟏

√𝟐
) −

𝟏

𝟔

𝟏

𝐜𝐨𝐬𝟐 𝒙
|
𝟎

𝝅
𝟒
+ 

+
𝟏

𝟔
𝐥𝐨𝐠(𝟏 + 𝐜𝐨𝐬𝟐 𝒙)|

𝟎

𝝅
𝟒
= −

𝟏

𝟔
−
𝟓𝝅

𝟏𝟐
+
𝟓√𝟐

𝟔
𝐭𝐚𝐧−𝟏 (

𝟏

√𝟐
) +

𝟏

𝟔
𝐥𝐨𝐠 𝟑 +

𝟏

𝟑
𝐥𝐨𝐠𝟐 

𝑨𝟑 = ∫
𝐬𝐢𝐧𝒙

𝐜𝐨𝐬𝟑 𝒙
(𝐬𝐢𝐧𝟐 𝒙 𝐜𝐨𝐬𝟐 𝒙 − 𝟏)

𝝅
𝟒

𝟎

𝒅𝒙 = 

= ∫
𝐬𝐢𝐧𝒙

𝐜𝐨𝐬 𝒙
𝒅𝒙

𝝅
𝟒

𝟎

−∫ 𝐬𝐢𝐧𝒙 𝐜𝐨𝐬 𝒙𝒅𝒙

𝝅
𝟒

𝟎

−∫
𝐬𝐢𝐧 𝒙

𝐜𝐨𝐬 𝒙
𝒅𝒙

𝝅
𝟒

𝟎

= 
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= (− 𝐥𝐨𝐠(𝐜𝐨𝐬 𝒙) +
𝟏

𝟒
𝐜𝐨𝐬 𝟐𝒙 −

𝟏

𝟐𝐜𝐨𝐬𝟐 𝒙
)|
𝟎

𝝅
𝟒
=
𝟏

𝟐
𝐥𝐨𝐠𝟐 −

𝟑

𝟒
 

𝑨𝟒 = ∫
𝐬𝐢𝐧𝒙

𝐜𝐨𝐬𝟐 𝒙
(𝐬𝐢𝐧𝟐 𝒙 𝐜𝐨𝐬𝟐 𝒙 𝐭𝐚𝐧−𝟏 (

𝟏

𝐜𝐨𝐬 𝒙
))𝒅𝒙

𝝅
𝟒

𝟎

= 

= ∫ 𝐬𝐢𝐧𝒙 𝐭𝐚𝐧−𝟏 (
𝟏

𝐜𝐨𝐬 𝒙
)𝒅𝒙

𝝅
𝟒

𝟎

−∫ 𝐬𝐢𝐧𝒙 𝐜𝐨𝐬𝟐 𝒙 𝐭𝐚𝐧−𝟏 (
𝟏

𝐜𝐨𝐬 𝒙
)𝒅𝒙

𝝅
𝟒

𝟎

− 

−∫
𝐬𝐢𝐧𝒙

𝐜𝐨𝐬𝟐 𝒙
𝐭𝐚𝐧−𝟏 (

𝟏

𝐜𝐨𝐬 𝒙
)𝒅𝒙

𝝅
𝟒

𝟎

= 

= −∫ 𝐭𝐚𝐧−𝟏 (
𝟏

𝐜𝐨𝐬 𝒙
)𝒅(𝐜𝐨𝐬 𝒙)

𝝅
𝟒

𝟎

+
𝟏

𝟑
∫ 𝐭𝐚𝐧−𝟏 (

𝟏

𝐜𝐨𝐬 𝒙
)𝒅(𝐜𝐨𝐬𝟑 𝒙)

𝝅
𝟒

𝟎

− 

−∫ 𝐭𝐚𝐧−𝟏 (
𝟏

𝐜𝐨𝐬 𝒙
)𝒅 (

𝟏

𝐜𝐨𝐬 𝒙
)

𝝅
𝟒

𝟎

= 

= (−𝐜𝐨𝐬 𝒙 𝐭𝐚𝐧−𝟏 (
𝟏

𝐜𝐨𝐬 𝒙
) +

𝟏

𝟑
𝐜𝐨𝐬𝟑 𝒙 𝐭𝐚𝐧−𝟏 (

𝟏

𝐜𝐨𝐬 𝒙
) −

𝟏

𝐜𝐨𝐬 𝒙
𝐭𝐚𝐧−𝟏 (

𝟏

𝐜𝐨𝐬 𝒙
))|

𝟎

𝝅
𝟒
+ 

+∫
𝐜𝐨𝐬𝒙 ⋅

𝐬𝐢𝐧 𝒙
𝐜𝐨𝐬𝟐 𝒙

𝟏 +
𝟏

𝐜𝐨𝐬𝟐 𝒙

𝒅𝒙

𝝅
𝟒

𝟎

−
𝟏

𝟑
∫
𝐜𝐨𝐬𝟑 𝒙 ⋅

𝐬𝐢𝐧 𝒙
𝐜𝐨𝐬𝟐 𝒙

𝟏 +
𝟏

𝐜𝐨𝐬𝟐 𝒙

𝒅𝒙

𝝅
𝟒

𝟎

+∫
𝟏

𝐜𝐨𝐬 𝒙
⋅

𝐬𝐢𝐧 𝒙
𝐜𝐨𝐬𝟐 𝒙

⋅ 𝐜𝐨𝐬𝟐 𝒙

𝟏 + 𝐜𝐨𝐬𝟐 𝒙
𝒅𝒙

𝝅
𝟒

𝟎

= 

=
𝟓𝝅

𝟏𝟐
−
𝟏𝟕√𝟐

𝟏𝟐
𝐭𝐚𝐧−𝟏(√𝟐) + ∫

𝐬𝐢𝐧𝒙 𝐜𝐨𝐬 𝒙

𝟏 + 𝐜𝐨𝐬𝟐 𝒙
𝒅𝒙

𝝅
𝟒

𝟎

+
𝟏

𝟔
∫
𝐜𝐨𝐬𝟐 𝒙𝒅(𝐜𝐨𝐬𝟐 𝒙)

𝟏 + 𝐜𝐨𝐬𝟐 𝒙

𝝅
𝟒

𝟎

+∫
𝐬𝐢𝐧 𝒙

𝐜𝐨𝐬 𝒙
𝒅𝒙

𝝅
𝟒

𝟎

− 

−∫
𝐬𝐢𝐧𝒙 𝐜𝐨𝐬 𝒙

𝟏 + 𝐜𝐨𝐬𝟐 𝒙
𝒅𝒙

𝝅
𝟒

𝟎

= 

=
𝟓𝝅

𝟏𝟐
−
𝟏𝟕√𝟐

𝟏𝟐
𝐭𝐚𝐧−𝟏(√𝟐) +

𝟏

𝟔
𝐜𝐨𝐬𝟐 𝒙|

𝟎

𝝅
𝟒
−
𝟏

𝟔
𝐥𝐨𝐠(𝟏 + 𝐜𝐨𝐬𝟐 𝒙)|

𝟎

𝝅
𝟒
− 𝐥𝐨𝐠 (

𝟏

√𝟐
) = 

= −
𝟏

𝟏𝟐
+
𝟓𝝅

𝟏𝟐
−
𝟏𝟕√𝟐

𝟏𝟐
𝐭𝐚𝐧−𝟏(√𝟐) −

𝟏

𝟔
𝐥𝐨𝐠 𝟑 +

𝟓

𝟔
𝐥𝐨𝐠𝟐 

Hence, 

𝛀 =
𝟏

𝟐
(𝟐𝑨𝟐 + 𝑨𝟐 + 𝑨𝟑 + 𝑨𝟒) = 
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=
𝟏

𝟏𝟐
−
𝟓𝝅

𝟏𝟐
+
𝐥𝐨𝐠𝟑

𝟔
+

𝟓 𝐭𝐚𝐧−𝟏 (
𝟏

√𝟐
)

𝟔√𝟐
+
𝟏𝟕 𝐭𝐚𝐧−𝟏(√𝟐)

𝟏𝟐√𝟐
 

 Solution 2 by Rana Ranino-Setif-Algerie  

𝛀 = ∫ ∫ ∫
𝒂𝟐 + 𝒃𝟐 𝐬𝐢𝐧𝟐 𝒙

𝒃𝟐 + 𝒂𝟐 𝐜𝐨𝐬𝟐 𝒙

𝟏

𝟎

𝟏

𝟎

𝝅
𝟒

𝟎

𝐭𝐚𝐧 𝒙𝒅𝒂 𝒅𝒃 𝒅𝒙 

𝐋𝐞𝐭 𝛀𝟏 = ∫
𝒂𝟐 + 𝒃𝟐 𝐬𝐢𝐧𝟐 𝒙

𝒃𝟐 + 𝒂𝟐 𝐜𝐨𝐬𝟐 𝒙
𝐭𝐚𝐧𝒙 𝒅𝒙

𝟏

𝟎

=
𝒕=𝐭𝐚𝐧 𝒙

∫
𝒂𝟐 + (𝒂𝟐 + 𝒃𝟐)𝒕𝟐

𝒃𝟐 + 𝒂𝟐 + 𝒃𝟐𝒕𝟐
(

𝒕

𝟏 + 𝒕𝟐
)𝒅𝒕

𝟏

𝟎

= 

=
𝟏

𝟐
∫

𝒂𝟐 + (𝒂𝟐 + 𝒃𝟐)𝒕

(𝒂𝟐 + 𝒃𝟐 + 𝒃𝟐𝒕)(𝟏 + 𝒕)
𝒅𝒕

𝟏

𝟎

= 

=
𝒂𝟒 + 𝒃𝟒 + 𝒂𝟐𝒃𝟐

𝟐𝒂𝟐𝒃𝟐
∫

𝒃𝟐

𝒂𝟐 + 𝒃𝟐 + 𝒃𝟐𝒕

𝟏

𝟎

𝒅𝒕 −
𝒃𝟐

𝟐𝒂𝟐
∫

𝟏

𝟏 + 𝒕

𝟏

𝟎

𝒅𝒕 = 

=
𝟏

𝟐
((
𝒃

𝒂
)
𝟐

+ (
𝒂

𝒃
)
𝟐

+ 𝟏) 𝐥𝐨𝐠(𝟏 +
(
𝒃
𝒂)
𝟐

𝟏 + (
𝒃
𝒂)
𝟐)−

𝐥𝐨𝐠𝟐

𝟐
(
𝒃

𝒂
)
𝟐

 

𝛀 =
𝒕=
𝒃
𝒂 𝟏

𝟐
∫ 𝒂
𝟏

𝟎

(∫ (
𝟏

𝒕𝟐
+ 𝒕𝟐 + 𝟏)

𝟏
𝒂

𝟎

𝐥𝐨𝐠 (𝟏 +
𝒕𝟐

𝟏 + 𝒕𝟐
) − 𝐥𝐨𝐠 𝟐 𝒕𝟐)𝒅𝒕 𝒅𝒂 = 

= ∫ (
𝟏

𝒕𝟐
+ 𝒕𝟐 + 𝟏) 𝐥𝐨𝐠(𝟏 +

𝒕𝟐

𝟏 + 𝒕𝟐
)𝒅𝒕

𝟏
𝒂

𝟎

=
𝑰𝑩𝑷

(𝒕 −
𝟏

𝒕
+
𝒕𝟑

𝟑
) 𝐥𝐨𝐠 (𝟏 +

𝒕𝟐

𝟏 + 𝒕𝟐
)|
𝟎

𝟏
𝒂

− 

−∫ (𝒕 −
𝟏

𝒕
+
𝒕𝟑

𝟑
) (

𝟒𝒕

𝟏 + 𝟐𝒕𝟐
−

𝟐𝒕

𝟏 + 𝒕𝟐
)

𝟏
𝒂

𝟎

𝒅𝒕 

𝚿 = (
𝟏

𝒂
− 𝒂 +

𝟏

𝟑𝒂𝟑
) 𝐥𝐨𝐠 (𝟏 +

𝟏

𝟏 + 𝒂𝟐
) −∫ (

𝟏

𝟑
+

𝟏𝟎

𝟑(𝟏 + 𝒕𝟐)
−

𝟏𝟕

𝟑(𝟏 + 𝟐𝒕𝟐)
) 𝒅𝒕

𝟏
𝒂

𝟎

= 

= (
𝟏

𝒂
− 𝒂 +

𝟏

𝟑𝒂𝟑
) 𝐥𝐨𝐠 (𝟏 +

𝟏

𝟏 + 𝒂𝟐
) −

𝟐𝒕 + 𝟐𝟎 𝐭𝐚𝐧−𝟏 𝒕 − 𝟏𝟕√𝟐 𝐭𝐚𝐧−𝟏(√𝟐𝒕)

𝟔
|
𝟎

𝟏
𝒂

= 

= (
𝟏

𝒂
− 𝒂 +

𝟏

𝟑𝒂𝟑
) 𝐥𝐨𝐠 (𝟏 +

𝟏

𝟏 + 𝒂𝟐
) −

𝟏

𝟑𝒂
−
𝟏𝟎

𝟑
𝐭𝐚𝐧−𝟏 (

𝟏

𝒂
) +

𝟏𝟕√𝟐

𝟔
𝐭𝐚𝐧−𝟏 (

√𝟐

𝒂
) 
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𝛀 =
𝟏

𝟔
∫ ((𝟑 − 𝟑𝒂𝟐 +

𝟏

𝒂𝟐
) 𝐥𝐨𝐠 (𝟏 +

𝟏

𝟏 + 𝒂𝟐
) −

𝐥𝐨𝐠 𝟐

𝒂𝟐
)𝒅𝒂

𝟏

𝟎

− 

−
𝟏

𝟔
∫ (𝟏+ 𝟏𝟎𝒂 𝐭𝐚𝐧−𝟏 (

𝟏

𝒂
) −

𝟏𝟕

√𝟐
𝒂 𝐭𝐚𝐧−𝟏 (

√𝟐

𝒂
)𝒅𝒂)

𝟏

𝟎

=
𝟏

𝟔
(𝑨 − 𝑩) 

𝑨 =
𝑰𝑩𝑷

((𝟑𝒂 − 𝒂𝟑 −
𝟏

𝒂
) 𝐥𝐨𝐠 (𝟏 +

𝟏

𝟏 + 𝒂𝟐
) +

𝐥𝐨𝐠 𝟐

𝒂
)|

𝟎

𝟏

− 

−∫ (𝟑𝒂 − 𝒂𝟑 −
𝟏

𝒂
) (

𝟐𝒂

𝟐 + 𝒂𝟐
−

𝟐𝒂

𝟏 + 𝒂𝟐
)𝒅𝒂

𝟏

𝟎

= 

= 𝐥𝐨𝐠 𝟑 +∫ (
𝟐𝟐

𝟐 + 𝒂𝟐
−

𝟏𝟎

𝟏 + 𝒂𝟐
− 𝟐)𝒅𝒂

𝟏

𝟎

= 𝐥𝐨𝐠𝟑 − 𝟐 −
𝟓𝝅

𝟐
+
𝟐𝟐

√𝟐
𝐭𝐚𝐧−𝟏 (

𝟏

√𝟐
) 

∫ 𝒂𝐭𝐚𝐧−𝟏 (
𝟏

𝒂
)𝒅𝒂

𝟏

𝟎

=
𝒂𝟐

𝟐
𝐭𝐚𝐧−𝟏 (

𝟏

𝒂
)|
𝟎

𝟏

+
𝟏

𝟐
∫

𝒙𝟐

𝟏 + 𝒙𝟐
𝒅𝒙

𝟏

𝟎

= 

= (
𝒂𝟐

𝟐
𝐭𝐚𝐧−𝟏 (

𝟏

𝒂
) +

𝒂

𝟐
−
𝟏

𝟐
𝐭𝐚𝐧−𝟏 𝒂)|

𝟎

𝟏

=
𝟏

𝟐
 

∫ 𝒂 𝐭𝐚𝐧−𝟏 (
√𝟐

𝒂
)𝒅𝒂

𝟏

𝟎

= (
𝒂𝟐

𝟐
𝐭𝐚𝐧−𝟏 (

√𝟐

𝒂
) +

𝒂

√𝟐
− 𝟐 𝐭𝐚𝐧−𝟏 (

𝒂

√𝟐
))|

𝟎

𝟏

= 

=
𝟏

𝟐
𝐭𝐚𝐧−𝟏(√𝟐) +

𝟏

√𝟐
− 𝐭𝐚𝐧−𝟏 (

𝟏

√𝟐
) 

𝑩 = −
𝟓

𝟐
−
𝟏𝟕

𝟐√𝟐
𝐭𝐚𝐧−𝟏(√𝟐) +

𝟏𝟕

√𝟐
𝐭𝐚𝐧−𝟏 (

𝟏

√𝟐
) 

𝛀 =
𝟏

𝟔
(𝑨 − 𝑩) =

𝟏

𝟔
(𝐥𝐨𝐠𝟑 +

𝟏

𝟐
−
𝟓𝝅

𝟏𝟐
+
𝟓

√𝟐
𝐭𝐚𝐧−𝟏 (

𝟏

√𝟐
) +

𝟏𝟕

𝟐√𝟐
𝐭𝐚𝐧−𝟏(√𝟐)) = 

=
𝟏

𝟏𝟐
−
𝟓𝝅

𝟏𝟐
+
𝐥𝐨𝐠𝟑

𝟔
+

𝟓 𝐭𝐚𝐧−𝟏 (
𝟏

√𝟐
)

𝟔√𝟐
+
𝟏𝟕 𝐭𝐚𝐧−𝟏(√𝟐)

𝟏𝟐√𝟐
 

Therefore, 

∫ ∫ ∫
𝒂𝟐 + 𝒃𝟐 𝐬𝐢𝐧𝟐 𝒙

𝒃𝟐 + 𝒂𝟐 𝐜𝐨𝐬𝟐 𝒙

𝟏

𝟎

𝟏

𝟎

𝝅
𝟒

𝟎

𝐭𝐚𝐧 𝒙𝒅𝒂 𝒅𝒃 𝒅𝒙 = 

=
𝟏

𝟏𝟐
−
𝟓𝝅

𝟏𝟐
+
𝐥𝐨𝐠𝟑

𝟔
+

𝟓 𝐭𝐚𝐧−𝟏 (
𝟏

√𝟐
)

𝟔√𝟐
+
𝟏𝟕 𝐭𝐚𝐧−𝟏(√𝟐)

𝟏𝟐√𝟐
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1628. Prove that: 

∫ (√𝐜𝐨𝐭𝒙
𝟑

+
𝟏

√𝐜𝐨𝐭 𝒙
𝟑 )

𝟐𝝅
𝟐

𝟎

𝐬𝐢𝐧𝟑 𝒙𝒅𝒙 =
𝟒

𝟑
+
𝟐
𝟖
𝟑√𝟑𝚪 (

𝟒
𝟑
)
𝟑

𝝅
−

𝟐
𝟒
𝟑𝝅𝟐

𝚪 (−
𝟐
𝟑
)
𝟑 

Proposed by Srinivasa Raghava-AIRMC-India 

Solution by Rana Ranino-Setif-Algerie 

𝛀 = ∫ (√𝐜𝐨𝐭 𝒙
𝟑 +

𝟏

√𝐜𝐨𝐭 𝒙
𝟑 )

𝟐
𝝅
𝟐

𝟎

𝐬𝐢𝐧𝟑 𝒙𝒅𝒙 = 

= ∫ (𝟐𝐬𝐢𝐧𝟑 𝒙 + (𝐬𝐢𝐧𝒙)
𝟏𝟏
𝟑 (𝐜𝐨𝐬 𝒙)−

𝟐
𝟑 + (𝐬𝐢𝐧𝒙)

𝟕
𝟑(𝐜𝐨𝐬 𝒙)

𝟐
𝟑)𝒅𝒙

𝝅
𝟐

𝟎

= 

= 𝑩(𝟐,
𝟏

𝟐
) +

𝟏

𝟐
𝑩 (
𝟕

𝟑
,
𝟏

𝟔
) +

𝟏

𝟐
𝑩(
𝟓

𝟑
,
𝟓

𝟔
) =

𝚪(𝟐)𝚪 (
𝟏
𝟐)

𝚪 (
𝟓
𝟐)

+
𝚪 (
𝟕
𝟑)𝚪(

𝟏
𝟔)

𝟐𝚪 (
𝟓
𝟐)

+
𝚪 (
𝟓
𝟑)𝚪 (

𝟓
𝟔)

𝟐𝚪 (
𝟓
𝟐)

 

∵ 𝚪(𝒛 + 𝟏) = 𝒛𝚪(𝒛) ⇒ 𝚪(
𝟓

𝟐
) =

𝟑

𝟐
𝚪 (
𝟑

𝟐
) =

𝟑

𝟒
𝚪 (
𝟏

𝟐
) =

𝟑√𝝅

𝟒
 

𝛀 =
𝟒

𝟑
+
𝟐𝚪 (

𝟕
𝟑)𝚪 (

𝟏
𝟔)

𝟑√𝝅
+
𝟐𝚪 (

𝟓
𝟑)𝚪 (

𝟓
𝟔)

𝟑√𝝅
= 

=
𝟒

𝟑
+
𝟖𝚪 (

𝟒
𝟑
)𝚪 (

𝟏
𝟔
)

𝟗√𝝅
+
𝟒𝚪 (

𝟐
𝟑
)𝚪 (

𝟓
𝟔
) 

𝟗√𝝅
=
𝟒

𝟑
+ 𝑨 + 𝑩,𝐰𝐡𝐞𝐫𝐞 

∵ 𝚪 (
𝟏

𝟔
) =

𝟐
𝟐
𝟑√𝝅𝚪(

𝟏
𝟑)

𝚪 (
𝟐
𝟑)

=
𝟐
𝟐
𝟑√𝝅𝚪𝟐 (

𝟏
𝟑)

𝚪 (
𝟐
𝟑)𝚪 (

𝟏
𝟑)
=
𝟐−
𝟏
𝟑√𝟑𝚪𝟐 (

𝟏
𝟑)

√𝝅
=
𝟐−
𝟏
𝟑𝟗√𝝅𝚪𝟐 (

𝟒
𝟑)

√𝝅
 

∵ 𝚪(𝒛)𝚪(𝟏 − 𝒛) = 𝝅 𝐜𝐬𝐜(𝝅𝒛) 

𝑨 =
𝟖𝚪 (

𝟒
𝟑)𝟐

−
𝟏
𝟑𝟗√𝟑𝚪𝟐 (

𝟒
𝟑)

𝟗√𝝅 ⋅ √𝝅
=
𝟐
𝟖
𝟑√𝟑𝚪𝟑 (

𝟒
𝟑)

𝝅
 

𝚪 (
𝟏

𝟑
) =

𝟐
𝟏
𝟑√𝝅𝚪 (

𝟐
𝟑)

𝚪 (
𝟓
𝟔)
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𝑩 =
𝟐
𝟕
𝟑𝚪𝟐 (

𝟐
𝟑)

𝟗𝚪 (
𝟏
𝟑)

=
𝟐
𝟕
𝟑𝚪𝟐 (

𝟐
𝟑)𝚪

𝟐 (
𝟏
𝟑)

𝟗𝚪𝟑 (
𝟏
𝟑)

=
𝟐
𝟏𝟑
𝟐 𝝅𝟐

𝟐𝟕𝚪𝟑 (
𝟏
𝟑)
= −

𝟐
𝟒
𝟑𝝅𝟐

𝚪𝟑 (−
𝟐
𝟑)

 

Therefore, 

∫ (√𝐜𝐨𝐭 𝒙
𝟑 +

𝟏

√𝐜𝐨𝐭 𝒙
𝟑 )

𝟐
𝝅
𝟐

𝟎

𝐬𝐢𝐧𝟑 𝒙𝒅𝒙 =
𝟒

𝟑
+
𝟐
𝟖
𝟑√𝟑𝚪(

𝟒
𝟑)
𝟑

𝝅
−

𝟐
𝟒
𝟑𝝅𝟐

𝚪 (−
𝟐
𝟑)
𝟑 

1629. Let 𝒇 ∶  𝑹+ → 𝑹 satisfies the functional equation 

 (∗) ∶ 𝒇(𝒂𝒃) = 𝒆𝒂𝒃−𝒂−𝒃[𝒆𝒃. 𝒇(𝒂) + 𝒆𝒂. 𝒇(𝒃)], ∀𝒂, 𝒃 > 0 

𝑰𝒇 𝒇(𝟏) = 𝟎 and 𝒇′(𝟏) = 𝒆.Prove that∶ 𝒇(𝒂) = 𝒆𝒂. 𝒍𝒏(𝒂), ∀𝒂 > 0.  

Proposed by Hikmat Hammadov-Azerbaijan 

Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

(∗) ∶ 𝒇(𝒂𝒃) = 𝒆𝒂𝒃−𝒂−𝒃[𝒆𝒃. 𝒇(𝒂) + 𝒆𝒂 . 𝒇(𝒃)], ∀𝒂, 𝒃 > 0 

(∗) ↔  
𝒇(𝒂𝒃)

𝒆𝒂𝒃
=
𝒇(𝒂)

𝒆𝒂
+
𝒇(𝒃)

𝒆𝒃
 ↔ 𝒈(𝒂𝒃) = 𝒈(𝒂) + 𝒈(𝒃), (∀𝒂, 𝒃 > 0), 

 𝒘𝒉𝒆𝒓𝒆 𝒈(𝒂) =
𝒇(𝒂)

𝒆𝒂
, ∀𝒂 > 0. 

𝑺𝒊𝒏𝒄𝒆 𝒇(𝟏) = 𝟎 𝒂𝒏𝒅 𝒇′(𝟏) = 𝒆 → 𝒈(𝟏) = 𝟎 𝒂𝒏𝒅 𝐥𝐢𝐦
𝒂→𝟏

𝒈(𝒂) − 𝒈(𝟏)

𝒂 − 𝟏
= 𝐥𝐢𝐦
𝒂→𝟏

𝒇(𝒂)

(𝒂 − 𝟏)𝒆𝒂

=
𝒇′(𝟏)

𝒆
= 𝟏 →  𝒈′(𝟏) = 𝟏. 

𝑨𝒍𝒔𝒐,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶  𝐥𝐢𝐦
𝒂→𝒂𝟎

𝒈(𝒂) − 𝒈(𝒂𝟎)

𝒂 − 𝒂𝟎
 =⏞

𝒃 → 
𝒂
𝒂𝟎

𝐥𝐢𝐦
𝒃→𝟏

𝒈(𝒃. 𝒂𝟎) − 𝒈(𝒂𝟎)

𝒃. 𝒂𝟎 − 𝒂𝟎
= 𝐥𝐢𝐦
𝒃→𝟏

𝒈(𝒃)

𝒂𝟎(𝒃 − 𝟏)

=
𝒈′(𝟏)

𝒂𝟎
=
𝟏

𝒂𝟎
, ∀𝒂𝟎 > 0 

→  𝒈 𝒊𝒔 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒕𝒊𝒂𝒃𝒍𝒆 𝒐𝒏 𝑹+ 𝒘𝒊𝒕𝒉 𝒈′(𝒂) =
𝟏

𝒂
,∀𝒂 ∈ 𝑹+  →  𝒈(𝒂) = 𝒍𝒏(𝒂), ∀𝒂 ∈ 𝑹+

→  𝒇(𝒂) = 𝒆𝒂. 𝒍𝒏(𝒂), ∀𝒂 ∈ 𝑹+. 
𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, 𝒇(𝒂) = 𝒆𝒂 . 𝒍𝒏(𝒂), ∀𝒂 ∈ 𝑹+. 

1630. If 𝟎 ≤ 𝒂 ≤
𝝅

𝟏𝟐
 then: 

 ∫ 𝐬𝐢𝐧 𝒙 . 𝐜𝐨𝐬(𝟔𝒙) . 𝐜𝐨𝐬𝟔(𝟒𝒙) . 𝐜𝐨𝐬𝟏𝟓(𝟐𝒙) 𝒅𝒙

𝒂

𝟎

≤
𝟏

𝟏𝟗𝟑
(𝟏 − 𝐜𝐨𝐬𝟏𝟗𝟑 𝒂) 

Proposed by Daniel Sitaru-Romania 
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Solution by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑳𝒆𝒕 𝒙 ∈ [𝟎, 𝒂], 𝒔𝒊𝒏𝒄𝒆 𝒂 ≤
𝝅

𝟏𝟐
 →  𝐜𝐨𝐬 𝒙 , 𝐜𝐨𝐬(𝟐𝒙) , 𝐜𝐨𝐬(𝟒𝒙) , 𝐜𝐨𝐬(𝟔𝒙) , 𝐬𝐢𝐧 𝒙 ≥ 𝟎 

𝑾𝒆 𝒉𝒂𝒗𝒆 ∶  𝐜𝐨𝐬(𝟐𝒙) = 𝟐𝐜𝐨𝐬𝟐 𝒙 − 𝟏 ≤⏞
𝑨𝑴−𝑮𝑴

(𝐜𝐨𝐬𝟒 𝒙 + 𝟏) − 𝟏 = 𝐜𝐨𝐬𝟒 𝒙  →  𝐜𝐨𝐬(𝟐𝒙)

≤ 𝐜𝐨𝐬𝟒 𝒙 (𝟏) 

→ 𝐜𝐨𝐬(𝟒𝒙) ≤⏞
(𝟏)

 𝐜𝐨𝐬𝟒(𝟐𝒙) ≤⏞
(𝟏)

(𝐜𝐨𝐬𝟒 𝒙)𝟒 = 𝐜𝐨𝐬𝟏𝟔 𝒙  → 𝐜𝐨𝐬(𝟒𝒙) ≤ 𝐜𝐨𝐬𝟏𝟔 𝒙 (𝟐) 

𝐜𝐨𝐬(𝟑𝒙) = 𝐜𝐨𝐬 𝒙 . (𝟒 𝐜𝐨𝐬𝟐 𝒙 − 𝟑) ≤⏞
𝑨𝑴−𝑮𝑴

 𝐜𝐨𝐬 𝒙 . [(𝐜𝐨𝐬𝟖 𝒙 + 𝟏 + 𝟏 + 𝟏) − 𝟑] = 𝐜𝐨𝐬𝟗 𝒙  

→  𝐜𝐨𝐬(𝟑𝒙) ≤ 𝐜𝐨𝐬𝟗 𝒙 (𝒊) 

→ 𝐜𝐨𝐬(𝟔𝒙) ≤⏞
(𝟏)

 𝐜𝐨𝐬𝟒(𝟑𝒙) ≤⏞
(𝒊)

 (𝐜𝐨𝐬𝟗 𝒙)𝟒 = 𝐜𝐨𝐬𝟑𝟔 𝒙  → 𝐜𝐨𝐬(𝟔𝒙) ≤ 𝐜𝐨𝐬𝟑𝟔 𝒙 (𝟑) 

(𝟏), (𝟐), (𝟑) → 𝐜𝐨𝐬(𝟔𝒙) . 𝐜𝐨𝐬𝟔(𝟒𝒙) . 𝐜𝐨𝐬𝟏𝟓(𝟐𝒙) ≤ 𝐜𝐨𝐬𝟑𝟔 𝒙 . (𝐜𝐨𝐬𝟏𝟔 𝒙)𝟔. (𝐜𝐨𝐬𝟒 𝒙)𝟏𝟓

= 𝐜𝐨𝐬𝟏𝟗𝟐 𝒙 

→ ∫𝐬𝐢𝐧 𝒙 . 𝐜𝐨𝐬(𝟔𝒙) . 𝐜𝐨𝐬𝟔(𝟒𝒙) . 𝐜𝐨𝐬𝟏𝟓(𝟐𝒙)𝒅𝒙

𝒂

𝟎

≤ ∫𝐬𝐢𝐧 𝒙 . 𝐜𝐨𝐬𝟏𝟗𝟐 𝒙𝒅𝒙

𝒂

𝟎

= [
−𝟏

𝟏𝟗𝟑
𝐜𝐨𝐬𝟏𝟗𝟑 𝒙]

𝟎

𝒂

=
𝟏

𝟏𝟗𝟑
(𝟏 − 𝐜𝐨𝐬𝟏𝟗𝟑 𝒂). 

1631. Find: 

𝛀 = 𝐥𝐢𝐦
𝒙→𝟏+

(𝟐 𝐥𝐨𝐠|𝟏 − 𝒙| − 𝟒 𝐥𝐨𝐠 |𝟏 − √𝟏 + √𝟏 − 𝒙), 

where| ⋅ | − denotes absolute sign.  

Proposed by Naren Bhandari-Bajura-Nepal 

Solution 1 by Surjeet Singhania-India 

Choose 
𝟏

𝟏𝟎𝟏𝟎
> 𝛿 > 0 such that 𝟎 < |𝒛 − 𝟏| < 𝛿, we know that 

√𝟏 + 𝒙 = 𝟏 +
𝒙

𝟐
−
𝒙𝟐

𝟐
+
𝒙𝟑

𝟏𝟔
+ 𝑶(𝒙𝟓), ∀{𝒙 ∈ ℂ||𝒙| < 1} 

Hence, √𝟏 + √𝟏 − 𝒛 = 𝟏 + 𝟐−𝟏√𝟏 − 𝒛 − 𝟖−𝟏(√𝟏 − 𝒛)
𝟐
+ 𝟏𝟔−𝟏(√𝟏 − 𝒛)

𝟑
+

𝑶((√𝟏 − 𝒛)
𝟓
) 
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𝟒 𝐥𝐨𝐠 |𝟏 − √𝟏+ √𝟏− 𝒛| = 𝟒 𝐥𝐨𝐠 |𝟐−𝟏√𝟏 − 𝒛 − 𝟖−𝟏(√𝟏 − 𝒛)
𝟐
+⋯| 

𝟒 𝐥𝐨𝐠 |𝟏 − √𝟏+ √𝟏 − 𝒛| = 𝟐 𝐥𝐨𝐠|𝟏 − 𝒛| + 𝟒 𝐥𝐨𝐠 |
𝟏

𝟐
+
√𝟏 − 𝒛

𝟖
+⋯| 

Hence, 

𝛀 = 𝐥𝐢𝐦
𝒙→𝟏+

(𝟐 𝐥𝐨𝐠|𝟏 − 𝒙| − 𝟒 𝐥𝐨𝐠 |𝟏 − √𝟏+ √𝟏− 𝒙) = −𝟒 𝐥𝐨𝐠 (
𝟏

𝟐
) = 𝟒 𝐥𝐨𝐠 𝟐 

Solution 2 by Muhammad Afzal-Pakistan 

𝛀 = 𝐥𝐢𝐦
𝒙→𝟏+

(𝟐 𝐥𝐨𝐠|𝟏 − 𝒙| − 𝟒 𝐥𝐨𝐠 |𝟏 − √𝟏 + √𝟏 − 𝒙) =
𝒙→𝟏−𝒙

 

= 𝐥𝐢𝐦
𝒙→𝟎+

(𝟐 𝐥𝐨𝐠|𝒙| − 𝟒 𝐥𝐨𝐠 |𝟏 − √𝟏+ √𝒙|) =
√𝟏+√𝒙~𝟏+

𝟏
𝟐√
𝒙

 

= 𝐥𝐢𝐦
𝒙→𝟎+

(𝟐 𝐥𝐨𝐠|𝒙| − 𝟒 𝐥𝐨𝐠 |
√𝒙

𝟐
|) = 𝐥𝐢𝐦

𝒙→𝟎+
(𝟐 𝐥𝐨𝐠|𝒙| − 𝟐 𝐥𝐨𝐠|𝒙| + 𝟒 𝐥𝐨𝐠 𝟐) = 𝟒 𝐥𝐨𝐠 𝟐 

1632.  

𝐈𝐟 𝑺𝒏 = ∑∑
(−𝟏)𝒎+𝒌

𝒎!

𝒌

𝒎=𝟎

𝒏

𝒌=𝟎

  𝐭𝐡𝐞𝐧 𝐩𝐫𝐨𝐯𝐞: 

𝐥𝐢𝐦
𝒏→∞

(𝑺𝒏−𝟏 + 𝑺𝒏) = 𝒆 

Proposed by Angad Singh-India 
Solution by Amrit Awasthi-India 

𝑺𝒏 =∑∑
(−𝟏)𝒎+𝒌

𝒎!

𝒌

𝒎=𝟎

𝒏

𝒌=𝟎

=∑∑
(−𝟏)𝒎

𝒎!
⋅ (−𝟏)𝒌

𝒌

𝒎=𝟎

𝒏

𝒌=𝟎

 

Changing the order of summation we get as 𝟎 ≤ 𝒎 ≤ 𝒌 ≤ 𝒏, 

𝑺𝒏 = ∑
(−𝟏)𝒎

𝒎!

𝒏

𝒎=𝟎

∑(−𝟏)𝒌
𝒏

𝒌=𝒎

= ∑
(−𝟏)𝒎

𝒎!
⋅ 𝛀𝒏

𝒏

𝒎=𝟎

; 

Now, if 𝒏 is odd then 𝛀𝒏 = (−𝟏)
𝒎 and in that case 𝛀𝒏+𝟏 = 𝟎. Hence, 

𝐥𝐢𝐦
𝒏→∞

(𝑺𝒏−𝟏 + 𝑺𝒏) = 𝐥𝐢𝐦
𝒏→∞

∑
(−𝟏)𝒎

𝒎!
⋅ (−𝟏)𝒎

𝒏

𝒎=𝟎

= 𝐥𝐢𝐦
𝒏→∞

∑
𝟏

𝒎!

𝒏

𝒎=𝟎

= 𝒆 
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Similarly, if we assume that 𝒏 is even, then 𝑺𝒏 = 𝟎 and 𝑺𝒏+𝟏 contributes to the given 
limits. 

1633. 𝛀(𝒏) = (𝟏 + 𝟐𝟐)(𝟏 + 𝟐𝟒)(𝟏 + 𝟐𝟖) ⋅ … ⋅ (𝟏 + 𝟐𝟐
𝒏−𝟏
), 𝒏 ≥ 𝟏 

Find: 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

(𝟏 +
𝟏

𝟑𝛀(𝒏)
)
𝟐𝟐
𝒏

 

Proposed by Daniel Sitaru-Romania 

Solution 1 by Florentin Vișescu-Romania 

𝛀(𝒏) ⋅ (𝟏 − 𝟐𝟐) = (𝟏 − 𝟐𝟐)(𝟏 + 𝟐𝟐)(𝟏 + 𝟐𝟒)(𝟏 + 𝟐𝟖) ⋅ … ⋅ (𝟏 + 𝟐𝟐
𝒏−𝟏
) 

−𝟑 ⋅ 𝛀(𝒏) = (𝟏 − 𝟐𝟐
𝟑
)(𝟏 + 𝟐𝟐

𝟑
) ⋅ … ⋅ (𝟏 − 𝟐𝟐

𝒏
) 

−𝟑 ⋅ 𝛀(𝒏) = (𝟏 − 𝟐𝟐
𝒏
) 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

(𝟏 +
𝟏

𝟑𝛀(𝒏)
)
𝟐𝟐
𝒏

= 𝐥𝐢𝐦
𝒏→∞

(𝟏 +
𝟏

𝟐𝟐
𝒏
− 𝟏
)
(𝟐𝟐

𝒏
−𝟏)⋅

𝟐𝟐
𝒏

𝟐𝟐
𝒏
−𝟏
= 𝐞𝐱𝐩 {𝒍𝒊𝒎

𝒏→∞

𝟐𝟐
𝒏

𝟐𝟐
𝒏
− 𝟏
} = 𝒆 

Solution 2 by Ty Halpen-USA 

𝛀(𝒏) = (𝟏 + 𝟐𝟐)(𝟏 + 𝟐𝟒)(𝟏 + 𝟐𝟖) ⋅ … ⋅ (𝟏 + 𝟐𝟐
𝒏−𝟏
) = 

=
𝟏 − 𝟐𝟐

𝟏 − 𝟐𝟐
⋅ (𝟏 + 𝟐𝟐)(𝟏 + 𝟐𝟒)(𝟏 + 𝟐𝟖) ⋅ … ⋅ (𝟏 + 𝟐𝟐

𝒏−𝟏
) = 

= −
𝟏

𝟑
(𝟏 − 𝟐𝟒)(𝟏 + 𝟐𝟒)(𝟏 + 𝟐𝟖) ⋅ … ⋅ (𝟏 + 𝟐𝟐

𝒏−𝟏
) = −

𝟏

𝟑
(𝟏 − 𝟐𝟐

𝒏
) 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

(𝟏 +
𝟏

𝟑𝛀(𝒏)
)
𝟐𝟐
𝒏

= 𝐥𝐢𝐦
𝒏→∞

(𝟏 +
𝟏

𝟐𝟐
𝒏
− 𝟏
)
(𝟐𝟐

𝒏
−𝟏)⋅

𝟐𝟐
𝒏

𝟐𝟐
𝒏
−𝟏
= 𝐞𝐱𝐩 {𝒍𝒊𝒎

𝒏→∞

𝟐𝟐
𝒏

𝟐𝟐
𝒏
− 𝟏
} = 𝒆 

 Solution 3 by Ravi Prakash-New Delhi-India 

𝛀(𝒏) ⋅ (𝟏 − 𝟐𝟐) = (𝟏 − 𝟐𝟐)(𝟏 + 𝟐𝟐)(𝟏 + 𝟐𝟒)(𝟏 + 𝟐𝟖) ⋅ … ⋅ (𝟏 + 𝟐𝟐
𝒏−𝟏
) 

= (𝟏 − 𝟐𝟐
𝟑
)(𝟏 + 𝟐𝟐

𝟑
) ⋅ … ⋅ (𝟏 − 𝟐𝟐

𝒏
) = (𝟏 − 𝟐𝟐

𝒏
) ⇒ 𝟑𝛀(𝒏) = 𝟐𝟐

𝒏
− 𝟏 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

(𝟏 +
𝟏

𝟑𝛀(𝒏)
)
𝟐𝟐
𝒏

= 𝐥𝐢𝐦
𝒏→∞

(𝟏 +
𝟏

𝟐𝟐
𝒏
− 𝟏
)
(𝟐𝟐

𝒏
−𝟏)

(𝟏 +
𝟏

𝟐𝟐
𝒏
− 𝟏
) = 
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= 𝐞𝐱𝐩 {𝒍𝒊𝒎
𝒏→∞

𝟐𝟐
𝒏

𝟐𝟐
𝒏
− 𝟏
} = 𝒆 

1634. Find:  𝛀 = 

𝐥𝐢𝐦
𝒚→∞

(
𝟐

𝒚𝟐
(𝐥𝐢𝐦
𝒛→∞

𝟏

𝒛𝟒
(𝐥𝐢𝐦
𝒙→𝟎

[(𝒚𝟐 + 𝒚 + 𝟏)𝒙𝒑 + 𝟏]𝒛
𝟐+𝒛+𝟏 − [(𝒛𝟐 + 𝒛 + 𝟏)𝒙𝒑 + 𝟏]𝒚

𝟐+𝒚+𝟏

𝒙𝟐𝒑
 )))

𝝓𝒚

, 

where 𝒚, 𝒛 ∈ ℕ,𝒑 ∈ ℕ∗ and 𝝓 −Golden Ratio.  

Proposed by Costel Florea-Romania 
Solution by Kamel Gandouli Rezgui-Tunisia 

Let 𝒂 = 𝒚𝟐 + 𝒚 + 𝟏 ∈ ℕ, 𝒃 = 𝒛𝟐 + 𝒛 + 𝟏 ∈ ℕ 

𝛀 = 𝐥𝐢𝐦
𝒚→∞

(
𝟐

𝒚𝟐
(𝐥𝐢𝐦
𝒛→∞

𝟏

𝒛𝟒
(𝐥𝐢𝐦
𝒙→𝟎

(𝒂𝒙𝒑 + 𝟏)𝒃 − (𝒃𝒙𝒑 + 𝟏)𝒂

𝒙𝟐𝒑
)))

𝛟𝒚

 

𝐥𝐢𝐦
𝒙→𝟎

(𝒂𝒙𝒑 + 𝟏)𝒃 − (𝒃𝒙𝒑 + 𝟏)𝒂

𝒙𝟐𝒑
= 𝐥𝐢𝐦
𝒙→𝟎

𝟏

𝒙𝟐𝒑
(∑(

𝒃

𝒌
)(𝒂𝒙𝒑)𝒌

𝒃

𝒌=𝟏

−∑(
𝒂

𝒌
) (𝒂𝒙𝒑)𝒌

𝒂

𝒌=𝟏

) = 

= 𝐥𝐢𝐦
𝒙→𝟎

𝟏

𝒙𝟐𝒑
((
𝒃

𝟏
)𝒂𝒙𝒑 − (

𝒂

𝟏
)𝒃𝒙𝒑 + (

𝒃

𝟐
)𝒂𝟐𝒙𝟐𝒑 − (

𝒂

𝟐
)𝒃𝟐𝒙𝟐𝒑 +∑(

𝒃

𝒌
) (𝒂𝒙𝒑)𝒌

𝒃

𝒌=𝟑

−∑(
𝒂

𝒌
)(𝒂𝒙𝒑)𝒌

𝒂

𝒌=𝟏

) 

= (
𝒃

𝟏
)𝒂𝟐 − (

𝒂

𝟏
)𝒃𝟐 

(
𝒃

𝟐
) =

𝒃(𝒃 − 𝟏)

𝟐!
=
(𝒛𝟐 + 𝒛 + 𝟏)(𝒛𝟐 + 𝒛)

𝟐
 

𝒛 → ∞ ⇒
(𝒃
𝟐
)

𝒛𝟒
→
𝟏

𝟐
 𝐚𝐧𝐝 

𝒃𝟐

𝒛𝟒
→ 𝟏 

Hence, 

𝐥𝐢𝐦
𝒛→∞

𝟏

𝒛𝟒
(𝐥𝐢𝐦
𝒙→𝟎

[(𝒚𝟐 + 𝒚 + 𝟏)𝒙𝒑 + 𝟏]𝒛
𝟐+𝒛+𝟏 − [(𝒛𝟐 + 𝒛 + 𝟏)𝒙𝒑 + 𝟏]𝒚

𝟐+𝒚+𝟏

𝒙𝟐𝒑
 ) = 

= 𝐥𝐢𝐦
𝒛→∞

𝟏

𝒛𝟒
(𝐥𝐢𝐦
𝒙→𝟎

(𝒂𝒙𝒑 + 𝟏)𝒃 − (𝒃𝒙𝒑 + 𝟏)𝒂

𝒙𝟐𝒑
) =

𝒂𝟐

𝟐
− (
𝒂

𝟐
) =

𝒂

𝟐
=
𝒚𝟐 + 𝒚 + 𝟏

𝟐
 

Thus, 

𝛀 = 𝐥𝐢𝐦
𝒚→∞

(
𝟐

𝒚𝟐
(𝐥𝐢𝐦
𝒛→∞

𝟏

𝒛𝟒
(𝐥𝐢𝐦
𝒙→𝟎

(𝒂𝒙𝒑 + 𝟏)𝒃 − (𝒃𝒙𝒑 + 𝟏)𝒂

𝒙𝟐𝒑
)))

𝛟𝒚

= 
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= 𝐥𝐢𝐦
𝒚→∞

(
𝒚𝟐 + 𝒚 + 𝟏

𝒚𝟐
)

𝝓𝒚

= 𝐥𝐢𝐦
𝒚→∞

𝐞𝐱𝐩

(

 𝝓𝒚 ⋅
𝒚 𝐥𝐨𝐠 (

𝒚𝟐 + 𝒚 + 𝟏
𝒚𝟐

)

𝒚𝟐 + 𝒚 + 𝟏
𝒚𝟐

⋅
𝒚 + 𝟏

𝒚𝟐

)

 = 𝒆𝝓 

1635. Prove that: 

∑
(−𝟏)𝟎+𝟏+𝟐+⋯+𝒏

(𝟐𝒏 + 𝟏)𝟐

∞

𝒏=𝟎

=
√𝟐𝝅𝟐

𝟏𝟔
 

Proposed by Amrit Awasthi-India 

Solution 1 by Rana Ranino-Setif-Algerie 

𝛀 = ∑
(−𝟏)𝟎+𝟏+𝟐+⋯+𝒏

(𝟐𝒏 + 𝟏)𝟐

∞

𝒏=𝟎

= ∑
(−𝟏)

𝒏(𝒏+𝟏)
𝟐

(𝟐𝒏 + 𝟏)𝟐

∞

𝒏=𝟎

;  

(−𝟏)
𝒏(𝒏+𝟏)
𝟐 = {

𝟏 𝐢𝐟       𝒏 = 𝟒𝒌, 𝟒𝒌 + 𝟑
−𝟏 𝐢𝐟  𝒏 = 𝟒𝒌 + 𝟏, 𝟒𝒌 + 𝟐

 

𝛀 = ∑(
𝟏

(𝟖𝒏 + 𝟏)𝟐
+

𝟏

(𝟖𝒏 + 𝟕)𝟐
)

∞

𝒏=𝟎

−∑(
𝟏

(𝟖𝒏 + 𝟑)𝟐
+

𝟏

(𝟖𝒏 + 𝟓)𝟐
)

∞

𝒏=𝟎

= 

=
𝟏

𝟔𝟒
{𝝍(𝟏) (

𝟏

𝟖
) + 𝝍(𝟏) (

𝟕

𝟖
)} −

𝟏

𝟔𝟒
{𝝍(𝟏) (

𝟑

𝟖
) + 𝝍(𝟏) (

𝟓

𝟖
)} 

∵ 𝝍(𝟏)(𝒛) + 𝝍(𝟏)(𝟏 − 𝒛) =
𝝅𝟐

𝐬𝐢𝐧𝟐(𝝅𝒛)
 

𝛀 =
𝝅𝟐

𝟔𝟒
(

𝟏

𝐬𝐢𝐧𝟐 (
𝝅
𝟖)
−

𝟏

𝐬𝐢𝐧𝟐 (
𝟑𝝅
𝟖 )
) =

𝝅𝟐

𝟔𝟒
(

𝟏

𝐬𝐢𝐧𝟐 (
𝝅
𝟖)
−

𝟏

𝐜𝐨𝐬𝟐 (
𝝅
𝟖)
) =

𝝅𝟐

𝟔𝟒
⋅
𝟒 𝐜𝐨𝐬 (

𝝅
𝟒)

𝐬𝐢𝐧𝟐 (
𝝅
𝟒)

=
𝝅𝟐√𝟐

𝟏𝟔
 

Solution 2 by Syed Shahabudeen-Kerala-India 

𝛀 = ∑
(−𝟏)𝟎+𝟏+𝟐+⋯+𝒏

(𝟐𝒏 + 𝟏)𝟐

∞

𝒏=𝟎

= ∑
(−𝟏)

𝒏(𝒏+𝟏)
𝟐

(𝟐𝒏 + 𝟏)𝟐

∞

𝒏=𝟎

= 𝑹𝒆∑
𝒆𝒊⋅
𝒏(𝒏+𝟏)𝝅

𝟐

(𝟐𝒏 + 𝟏)𝟐

∞

𝒏=𝟎

= 

= ∑
𝐜𝐨𝐬

𝝅𝒏𝟐

𝟐 𝐜𝐨𝐬
𝒏𝝅
𝟐 − 𝐬𝐢𝐧

𝝅𝒏𝟐

𝟐 𝐬𝐢𝐧
𝝅𝒏
𝟐

(𝟐𝒏 + 𝟏)𝟐

∞

𝒏=𝟎

= ∑
(−𝟏)𝒏

(𝟒𝒏 + 𝟏)𝟐

∞

𝒏=𝟎

−∑
(−𝟏)𝒏

(𝟒𝒏 + 𝟑)𝟐

∞

𝒏=𝟎
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∑
(−𝟏)𝒏

(𝟒𝒏 + 𝟏)𝟐

∞

𝒏=𝟎

= ∑
𝟏

(𝟖𝒏 + 𝟏)𝟐

∞

𝒏=𝟎

−∑
𝟏

(𝟖𝒏 + 𝟓)𝟐

∞

𝒏=𝟎

=
𝟏

𝟔𝟒
(𝝍(𝟏) (

𝟏

𝟖
) − 𝝍(𝟏) (

𝟓

𝟖
)) 

∑
(−𝟏)𝒏

(𝟒𝒏 + 𝟑)𝟐

∞

𝒏=𝟎

= ∑
𝟏

(𝟖𝒏 + 𝟑)𝟐

∞

𝒏=𝟎

−∑
𝟏

(𝟖𝒏 + 𝟕)𝟐

∞

𝒏=𝟎

=
𝟏

𝟔𝟒
(𝝍(𝟏) (

𝟑

𝟖
) − 𝝍(𝟏) (

𝟕

𝟖
)) 

⇒ 𝛀 =
𝟏

𝟔𝟒
(𝝍(𝟏) (

𝟏

𝟖
) + 𝝍(𝟏) (

𝟕

𝟖
) − 𝝍(𝟏) (

𝟓

𝟖
) − 𝝍(𝟏) (

𝟓

𝟖
)) = 

=
𝟏

𝟔𝟒
(

𝝅𝟐

𝐬𝐢𝐧𝟐 (
𝝅
𝟖)
−

𝝅𝟐

𝐬𝐢𝐧𝟐 (
𝟑𝝅
𝟖 )
) =

𝝅𝟐

𝟔𝟒
⋅ 𝟒√𝟐 =

𝝅𝟐√𝟐

𝟏𝟔
 

∵
𝝅𝟐

𝐬𝐢𝐧𝟐 (
𝝅
𝟖
)
= 𝟒 + 𝟐√𝟐; 

𝝅𝟐

𝐬𝐢𝐧𝟐 (
𝟑𝝅
𝟖
)
= 𝟒 − 𝟐√𝟐 

1636. Find: 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

∑[∑𝒊(𝒊 + 𝟐)(𝒊 + 𝟒)

𝒌

𝒊=𝟏

]

−𝟏
𝒏

𝒌=𝟏

 

Proposed by Vasile Mircea Popa-Romania 

Solution by Ravi Prakash-New Delhi-India 

∑𝒊(𝒊 + 𝟐)(𝒊 + 𝟒)

𝒌

𝒊=𝟏

=∑(𝒊 − 𝟐)𝒊(𝒊 + 𝟐)

𝒌+𝟐

𝒊=𝟑

=∑(𝒊𝟑 − 𝟒𝒊)

𝒌+𝟐

𝒊=𝟑

=∑(𝒊𝟑 − 𝟒𝒊)

𝒌+𝟐

𝒊=𝟏

+ 𝟑 = 

= (
(𝒌 + 𝟐)(𝒌 + 𝟑)

𝟐
)

𝟐

−
𝟒

𝟐
(𝒌 + 𝟐)(𝒌 + 𝟑) + 𝟑 = 

=
𝟏

𝟒
[(𝒌𝟐 + 𝟓𝒌+ 𝟔)𝟐 − 𝟖(𝒌𝟐 + 𝟓𝒌 + 𝟔) + 𝟏𝟐] = 

=
𝟏

𝟒
(𝒌𝟒 + 𝟏𝟎𝒌𝟑 + 𝟐𝟗𝒌𝟐 + 𝟐𝟎𝒌) =

𝟏

𝟒
𝒌(𝒌 + 𝟏)(𝒌 + 𝟒)(𝒌 + 𝟓) 

⇒ [∑𝒊(𝒊 + 𝟐)(𝒊 + 𝟒)

𝒌

𝒊=𝟏

]

−𝟏

=
𝟒

𝒌(𝒌 + 𝟏)(𝒌 + 𝟒)(𝒌 + 𝟓)
= 
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=
𝟏

𝟓
⋅
𝟏

𝒌
−
𝟏

𝟑
⋅
𝟏

𝒌 + 𝟏
+
𝟏

𝟑
⋅
𝟏

𝒌 + 𝟒
−
𝟏

𝟓
⋅
𝟏

𝒌 + 𝟒
⇒ ∑[∑𝒊(𝒊 + 𝟐)(𝒊 + 𝟒)

𝒌

𝒊=𝟏

]

−𝟏
𝒏

𝒌=𝟏

= 

=
𝟏

𝟓
(𝟏 +

𝟏

𝟐
+
𝟏

𝟑
+
𝟏

𝟒
+
𝟏

𝟓
−

𝟏

𝒏 + 𝟏
−

𝟏

𝒏 + 𝟐
−

𝟏

𝒏 + 𝟑
−

𝟏

𝒏 + 𝟒
−

𝟏

𝒏 + 𝟓
) = 

−
𝟏

𝟑
(
𝟏

𝟐
+
𝟏

𝟑
+
𝟏

𝟒
−

𝟏

𝒏 + 𝟐
−

𝟏

𝒏 + 𝟑
−

𝟏

𝒏 + 𝟒
) 

Therefore, 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

∑[∑𝒊(𝒊 + 𝟐)(𝒊 + 𝟒)

𝒌

𝒊=𝟏

]

−𝟏
𝒏

𝒌=𝟏

= 

=
𝟏

𝟓
(𝟏 +

𝟏

𝟐
+
𝟏

𝟑
+
𝟏

𝟒
+
𝟏

𝟓
) −

𝟏

𝟑
(
𝟏

𝟐
+
𝟏

𝟑
+
𝟏

𝟒
) =

𝟒𝟑

𝟒𝟓𝟎
 

1637. Find a closed form: 

𝛀 =∑
𝒏(𝒏 + 𝟏)𝟐(𝟐𝒏 + 𝟏)

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟏

 

Proposed by Daniel Sitaru-Romania 

Solution 1 by Ravi Prakash-New Delhi-India 

𝐅𝐨𝐫 𝒏 ≥ 𝟏: 
𝒏(𝒏 + 𝟏)𝟐(𝟐𝒏 + 𝟏)

𝒏!
=
(𝒏 + 𝟏)𝟐(𝟐𝒏 + 𝟏)

(𝒏 − 𝟏)!
 

𝐖𝐫𝐢𝐭𝐞: (𝒏 + 𝟏)𝟐(𝟐𝒏 + 𝟏)

= 𝑨(𝒏 − 𝟏)(𝒏 − 𝟐)(𝒏 − 𝟑) + 𝑩(𝒏 − 𝟏)(𝒏 − 𝟐) + 𝑪(𝒏 − 𝟏) + 𝑫 

Equaling coefficient of 𝒏𝟑, we get: 𝑨 = 𝟐. Put 𝒏 = 𝟏 ⇒  𝑫 = 𝟏𝟐;  𝒏 = 𝟐 ⇒ 𝑪 = 𝟑𝟑,  

𝒏 = 𝟑 ⇒ 𝑩 = 𝟏𝟕. Thus, for 𝒏 ≥ 𝟒 we have: 

𝒏(𝒏 + 𝟏)𝟐(𝟐𝒏 + 𝟏)

𝒏!
=

𝟐

(𝒏 − 𝟒)!
+

𝟏𝟕

(𝒏 − 𝟑)!
+

𝟑𝟑

(𝒏 − 𝟐)!
+

𝟏𝟐

(𝒏 − 𝟏)!
 

𝐍𝐨𝐰,𝛀 = ∑
𝒏(𝒏 + 𝟏)𝟐(𝟐𝒏 + 𝟏)

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟏

=
𝟏

𝟒
∑
(𝒏 + 𝟏)𝟐(𝟐𝒏 + 𝟏)

𝟒𝒏−𝟏(𝒏 − 𝟏)!

∞

𝒏=𝟏

= 
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=
𝟏

𝟒
⋅
𝟏𝟐

𝟎!
+
𝟏

𝟒𝟐
⋅
𝟏𝟐

𝟏!
+
𝟏

𝟒𝟐
⋅
𝟑𝟑

𝟎!
+
𝟏

𝟒𝟑
⋅
𝟏𝟐

𝟐!
+
𝟏

𝟒𝟑
⋅
𝟑𝟑

𝟏!
+
𝟏

𝟒𝟑
⋅
𝟏𝟕

𝟎!
+
𝟏

𝟒𝟒
⋅
𝟏𝟐

𝟑!
+
𝟏

𝟒𝟒
⋅
𝟑𝟑

𝟐!
+
𝟏

𝟒𝟒
⋅
𝟏𝟕

𝟏!

+
𝟏

𝟒𝟒
⋅
𝟐

𝟎!
+ ⋯ 

Adding, we get: 

𝛀 = ∑
𝒏(𝒏 + 𝟏)𝟐(𝟐𝒏 + 𝟏)

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟏

=
𝟏𝟐

𝟒
𝒆
𝟏
𝟒 +

𝟑𝟑

𝟏𝟔
𝒆
𝟏
𝟒 +

𝟏𝟕

𝟔𝟒
𝒆
𝟏
𝟒 +

𝟏𝟐

𝟐𝟓𝟔
𝒆
𝟏
𝟒 =

𝟔𝟖𝟑√𝒆
𝟒

𝟏𝟐𝟖
 

Solution 2 by Serlea Kabay-Liberia 

𝐒𝐢𝐧𝐜𝐞 𝒆𝒙 = ∑
𝒙𝒏

𝒏!

∞

𝒏=𝟎

⇒ 𝒙𝟐𝒆𝒙 = ∑
𝒙𝒏+𝟏

(𝒏 − 𝟏)!

∞

𝒏=𝟏

 𝐚𝐧𝐝 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭𝐢𝐚𝐭𝐢𝐧𝐠, 

𝒆𝒙(𝒙𝟐 + 𝟐𝒙) = ∑
(𝒏 + 𝟏)𝒙𝒏

(𝒏 − 𝟏)!

∞

𝒏=𝟏

⇒ 𝒆𝒙(𝒙𝟑 + 𝟐𝒙𝟐)

= ∑
(𝒏 + 𝟏)𝒙𝒏+𝟏

(𝒏 − 𝟏)!

∞

𝒏=𝟏

, 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭𝐢𝐚𝐭𝐢𝐧𝐠 𝐚𝐠𝐚𝐢𝐧, 

𝒙𝒆𝒙(𝒙𝟐 + 𝟓𝒙 + 𝟒) = ∑
(𝒏 + 𝟏)𝟐𝒙𝒏

(𝒏 − 𝟏)!

∞

𝒏=𝟏

,  

⇒ 𝒙𝟑𝒆𝒙
𝟐
(𝒙𝟒 + 𝟓𝒙𝟐 + 𝟒) = ∑

(𝒏 + 𝟏)𝟐𝒙𝟐𝒏+𝟏

(𝒏 − 𝟏)!

∞

𝒏=𝟏

, 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭𝐢𝐚𝐭𝐢𝐧𝐠 𝐚𝐧𝐝 𝐥𝐞𝐭 𝒙 =
𝟏

𝟐
,𝐰𝐞 𝐠𝐞𝐭: 

𝟔𝟖𝟑√𝒆
𝟒

𝟏𝟐𝟖
= ∑

(𝒏+ 𝟏)𝟐(𝟐𝒏 + 𝟏)

𝟒𝒏 ⋅ (𝒏 − 𝟏)!

∞

𝒏=𝟏

 

Therefore, 

𝛀 = ∑
𝒏(𝒏 + 𝟏)𝟐(𝟐𝒏 + 𝟏)

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟏

=
𝟔𝟖𝟑√𝒆

𝟒

𝟏𝟐𝟖
 

Solution 3 by Hasan Bostanlik-Turkiye 

𝒇(𝒙) = 𝒆𝒙 = ∑
𝒙𝒏

𝒏!

∞

𝒏=𝟎

⇒ 𝒇′(𝒙) = 𝒆𝒙 = ∑
𝒏𝒙𝒏−𝟏

𝒏!

∞

𝒏=𝟎

,  

𝒇′′(𝒙) = 𝒆𝒙 = ∑
𝒏(𝒏 − 𝟏)𝒙𝒏−𝟐

𝒏!

∞

𝒏=𝟎

, 𝒇′′′(𝒙) = 𝒆𝒙 = ∑
𝒏(𝒏 − 𝟏)(𝒏 − 𝟐)𝒙𝒏−𝟑

𝒏!

∞

𝒏=𝟎
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𝒇(𝒊𝒗)(𝒙) = 𝒆𝒙 = ∑
𝒏(𝒏 − 𝟏)(𝒏 − 𝟐)(𝒏− 𝟑)𝒙𝒏−𝟒

𝒏!

∞

𝒏=𝟎

 

𝒙 = 𝟏 ⇒ 𝒆 = ∑
𝒏

𝒏!
 

∞

𝒏=𝟎

⇒∑
𝒏

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟎

=
√𝒆
𝟒

𝟒
 

𝒆 = ∑
𝒏𝟐 − 𝒏

𝒏!

∞

𝒏=𝟎

= ∑
𝒏𝟐

𝒏!

∞

𝒏=𝟎

− 𝒆 ⇒ 𝟐𝒆 = ∑
𝒏𝟐

𝒏!

∞

𝒏=𝟎

⇒∑
𝒏𝟐

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟎

=
𝟓

𝟏𝟔
⋅ √𝒆
𝟒  

𝒆 = ∑(
𝒏𝟑

𝒏!
−
𝟑𝒏

𝒏!
+
𝟐

𝒏!
)

∞

𝒏=𝟎

= ∑
𝒏𝟑

𝒏!

∞

𝒏=𝟎

− 𝟑 ⋅ 𝟐𝒆 + 𝟐𝒆 ⇒ 𝟓𝒆 = ∑
𝒏𝟑

𝒏!

∞

𝒏=𝟎

 

∑
𝒏𝟑

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟎

=
𝟐𝟗 ⋅ √𝒆

𝟒

𝟔𝟒
 

𝒆 = ∑
𝒏𝟒

𝒏!

∞

𝒏=𝟎

− 𝟔 ⋅ 𝟓𝒆 + 𝟏𝟔 ⋅ 𝟐𝒆 − 𝟔𝒆 ⇒ 𝟏𝟓𝒆 = ∑
𝒏𝟒

𝒏!

∞

𝒏=𝟎

⇒∑
𝒏𝟒

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟎

=
𝟐𝟎𝟏

𝟐𝟓𝟔
⋅ √𝒆
𝟒  

Therefore, 

𝛀 = ∑
𝒏(𝒏 + 𝟏)𝟐(𝟐𝒏 + 𝟏)

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟏

=
𝟔𝟖𝟑√𝒆

𝟒

𝟏𝟐𝟖
 

Solution 4 by George Moses-Benin-Nigeria 

𝛀 = ∑
𝒏(𝒏 + 𝟏)𝟐(𝟐𝒏 + 𝟏)

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟏

= ∑
(𝒏+ 𝟏)(𝒏+ 𝟐)𝟐(𝟐𝒏 + 𝟑)

𝟒𝒏+𝟏 ⋅ (𝒏 + 𝟏)!

∞

𝒏=𝟎

=
𝟏

𝟒
∑
(𝒏 + 𝟐)𝟐(𝟐𝒏 + 𝟑)

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟎

 

=
𝟏

𝟒
∑
𝟐𝒏𝟑 + 𝟏𝟏𝒏𝟐 + 𝟐𝟎𝒏 + 𝟏𝟐

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟎

=
𝟏

𝟒
∑
𝟐𝒏𝟑 + 𝟏𝟏𝒏𝟐 + 𝟐𝟎𝒏

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟎

+
𝟏𝟐

𝟒
∑

𝟏

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟎

 

=
𝟏

𝟒
∑
𝟐(𝒏 + 𝟏)𝟑 + 𝟏𝟏(𝒏 + 𝟏)𝟐 + 𝟐𝟎(𝒏 + 𝟏)

𝟒𝒏+𝟏 ⋅ (𝒏 + 𝟏)!

∞

𝒏=𝟎

+ 𝟑√𝒆
𝟒 = 

=
𝟏

𝟏𝟔
∑
𝟐(𝒏 + 𝟏)𝟐 + 𝟏𝟏(𝒏 + 𝟏) + 𝟐𝟎

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟎

+ 𝟑√𝒆
𝟒  

𝒇(𝒙) = 𝒙𝒆𝒙∑
𝒙𝒌+𝟏

𝒌!

∞

𝒌=𝟎

⇒ 𝒇′(𝒙) = (𝒙 + 𝟏)𝒆𝒙 =∑
(𝒌 + 𝟏)𝒙𝒌

𝒌!

∞

𝒌=𝟎

= (𝒙𝟐 + 𝒙)𝒆𝒙 = 
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=∑
(𝒌+ 𝟏)𝒙𝒌+𝟏

𝒌!

∞

𝒌=𝟎

 

𝒇′′(𝒙) = (𝒙𝟐 + 𝟑𝒙 + 𝟏)𝒆𝒙 =∑
(𝒌+ 𝟏)𝟐𝒙𝒌

𝒌!

∞

𝒌=𝟎

 

𝛀 =
𝟏

𝟖
∑
(𝒏 + 𝟏)𝟐

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟎

+
𝟏𝟏

𝟏𝟔
∑

𝒏+ 𝟏

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟎

+
𝟓

𝟒
∑

𝟏

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟎

+ 𝟑√𝒆
𝟒 = 

=
𝟏

𝟖
(((

𝟏

𝟒
)
𝟐

+ 𝟑 (
𝟏

𝟒
) + 𝟏))𝒆

𝟏
𝟒 +

𝟏𝟏

𝟏𝟔
((
𝟏

𝟒
+ 𝟏)𝒆

𝟏
𝟒) +

𝟓

𝟒
𝒆
𝟏
𝟒 + 𝟑𝒆

𝟏
𝟒 =

𝟔𝟖𝟑

𝟏𝟐𝟖
𝒆
𝟏
𝟒 

Solution 5 by Syed Shahabudeen-Kerala-India 

𝛀 = ∑
𝒏(𝒏 + 𝟏)𝟐(𝟐𝒏 + 𝟏)

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟏

= 𝟐∑
𝒏𝟒

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟏

+ 𝟓∑
𝒏𝟑

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟏

+ 𝟒∑
𝒏𝟐

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟏

+∑
𝒏

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟏

 

∵ 𝒆𝒙𝑩𝒌(𝒙) = ∑
𝒏𝒌𝒙𝒏

𝒏!

∞

𝒏=𝟏

, 𝐰𝐡𝐞𝐫𝐞 𝑩𝒌(𝒙) − 𝐁𝐞𝐥𝐥 𝐩𝐨𝐥𝐲𝐧𝐨𝐦𝐢𝐚𝐥𝐬. 

𝛀 = 𝟐𝒆𝒙𝑩𝟒 (
𝟏

𝟒
) + 𝟓𝒆𝒙𝑩𝟑 (

𝟏

𝟒
) + 𝟒𝒆𝒙𝑩𝟐 (

𝟏

𝟒
) + 𝒆𝒙𝑩𝟏 (

𝟏

𝟒
) 

𝑩𝟒(𝒙) = 𝒙
𝟒 + 𝟔𝒙𝟑 + 𝟕𝒙𝟐 + 𝒙,𝑩𝟒 (

𝟏

𝟒
) =

𝟐𝟎𝟏

𝟐𝟓𝟔
 

𝑩𝟑(𝒙) = 𝒙
𝟑 + 𝟑𝒙𝟐 + 𝒙,𝑩𝟑 (

𝟏

𝟒
) =

𝟐𝟗

𝟔𝟒
 

𝑩𝟐(𝒙) = 𝒙
𝟐 + 𝒙,𝑩𝟐 (

𝟏

𝟒
) =

𝟓

𝟏𝟔
 

𝑩𝟏(𝒙) = 𝒙,𝑩𝟏 (
𝟏

𝟒
) =

𝟏

𝟒
 

Therefore, 

𝛀 = ∑
𝒏(𝒏 + 𝟏)𝟐(𝟐𝒏 + 𝟏)

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟏

=
𝟐𝟎𝟏

𝟏𝟐𝟖
𝒆
𝟏
𝟒 +

𝟏𝟒𝟓

𝟔𝟒
𝒆
𝟏
𝟒 +

𝟐𝟎

𝟏𝟔
𝒆
𝟏
𝟒 +

𝟏

𝟒
𝒆
𝟏
𝟒 =

𝟔𝟖𝟑

𝟏𝟐𝟖
√𝒆
𝟒  

Solution 6 by Hikmat Mammadov-Azerbaijan 

∑
𝒙𝒏

𝒏!

∞

𝒏=𝟏

= 𝒆𝒙 − 𝟏 
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∑
𝒏𝒙𝒏−𝟏

𝒏!

∞

𝒏=𝟏

= 𝒆𝒙,∑
𝒏𝒙𝒏−𝟏

𝒏!

∞

𝒏=𝟏

= 𝒙𝟐𝒆𝒙 ⇒
𝒅

𝒅𝒙
∑
𝒏𝒙𝒏−𝟏

𝒏

∞

𝒏=𝟏

= (𝟐𝒙 + 𝒙𝟐)𝒆𝒙 ⇒ 

∑
𝒏(𝒏+ 𝟏)𝒙𝒏

𝒏!

∞

𝒏=𝟏

= (𝟐𝒙 + 𝒙𝟐)𝒆𝒙 

∑
𝒏(𝒏+ 𝟏)𝒙𝒏+𝟏

𝒏!

∞

𝒏=𝟏

= (𝟐𝒙𝟐 + 𝒙𝟑)𝒆𝒙 ⇒
𝒅

𝒅𝒙
∑
𝒏(𝒏 + 𝟏)𝒙𝒏+𝟏

𝒏!

∞

𝒏=𝟏

= (𝟒𝒙 + 𝟓𝒙𝟐 + 𝒙𝟑)𝒆𝒙 

∑
𝒏(𝒏+ 𝟏)𝟐𝒙𝒏

𝒏!

∞

𝒏=𝟏

= (𝟒𝒙 + 𝟓𝒙𝟐 + 𝒙𝟑)𝒆𝒙 𝐫𝐞𝐩𝐥𝐚𝐜𝐢𝐧𝐠 𝒙 = 𝒙𝟐 ⇒ 

∑
𝒏(𝒏+ 𝟏)𝒙𝟐𝒏

𝒏!

∞

𝒏=𝟏

= (𝟒𝒙𝟐 + 𝟓𝒙𝟒 + 𝒙𝟔)𝒆𝒙
𝟐
⇒∑

𝒏(𝒏 + 𝟏)𝟐𝒙𝟐𝒏+𝟏

𝒏!

∞

𝒏=𝟏

= (𝟒𝒙𝟑 + 𝟓𝒙𝟓 + 𝒙𝟕)𝒆𝒙
𝟐
 

∑
𝒏(𝒏+ 𝟏)𝟐(𝟐𝒏 + 𝟏)𝒙𝟐𝒏

𝒏!

∞

𝒏=𝟏

= (𝟏𝟐𝒙𝟐 + 𝟑𝟑𝒙𝟒 + 𝟏𝟕𝒙𝟔 + 𝟐𝒙𝟖)𝒆𝒙 𝐚𝐧𝐝 𝐩𝐮𝐭𝐭𝐢𝐧𝐠 𝒙 =
𝟏

𝟐
 

𝛀 = ∑
𝒏(𝒏 + 𝟏)𝟐(𝟐𝒏 + 𝟏)

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟏

=
𝟔𝟖𝟑

𝟏𝟐𝟖
√𝒆
𝟒  

Solution 7 by Yen Tung Chung-Taichung-Taiwan 

𝛀 = ∑
𝒏(𝒏 + 𝟏)𝟐(𝟐𝒏 + 𝟏)

𝟒𝒏 ⋅ 𝒏!

∞

𝒏=𝟏

= ∑
(𝒏+ 𝟏)𝟐(𝟐𝒏 + 𝟏)

𝟒𝒏 ⋅ (𝒏 − 𝟏)!

∞

𝒏=𝟏

=
𝒎=𝒏−𝟏

 

= ∑
(𝒎+ 𝟐)𝟐(𝟐𝒎+ 𝟑)

𝟒𝒎+𝟏 ⋅ 𝒎!

∞

𝒎=𝟎

= ∑
𝟐𝒎(𝒎− 𝟏)(𝒎− 𝟐) + 𝟏𝟕𝒎(𝒎− 𝟏) + 𝟑𝟑𝒎+ 𝟏𝟐

𝟒𝒎+𝟏 ⋅ 𝒎!

∞

𝒎=𝟎

= 

= ∑
𝟐

𝟒𝒎+𝟏(𝒎 − 𝟑)!

∞

𝒎=𝟑⏟            
𝒍𝒆𝒕 𝒌=𝒎−𝟑

+ ∑
𝟏𝟕

𝟒𝒎+𝟏(𝒎 − 𝟐)!

∞

𝒎=𝟐⏟            
𝒍𝒆𝒕 𝒌=𝒎−𝟐

+ ∑
𝟑𝟑

𝟒𝒎+𝟏(𝒎 − 𝟏)!

∞

𝒎=𝟏⏟            
𝒍𝒆𝒕 𝒌=𝒎−𝟏

+ ∑
𝟏𝟐

𝟒𝒎+𝟏𝒎!

∞

𝒎=𝟎⏟        
𝒍𝒆𝒕 𝒌=𝒎

= 

=∑
𝟐

𝟒𝒌+𝟒 ⋅ 𝒌!

∞

𝒌=𝟎

+∑
𝟏𝟕

𝟒𝒌+𝟑 ⋅ 𝒌!

∞

𝒌=𝟎

+∑
𝟑𝟑

𝟒𝒌+𝟐 ⋅ 𝒌!

∞

𝒌=𝟎

+∑
𝟏𝟐

𝟒𝒌+𝟏 ⋅ 𝒌!

∞

𝒌=𝟎

= 

=
𝟏

𝟏𝟐𝟖
∑
(
𝟏
𝟒)
𝒌

𝒌!

∞

𝒌=𝟎

+
𝟏𝟕

𝟔𝟒
∑
(
𝟏
𝟒)
𝒌

𝒌!

∞

𝒌=𝟎

+
𝟑𝟑

𝟏𝟔
∑
(
𝟏
𝟒)
𝒌

𝒌!

∞

𝒌=𝟎

+ 𝟑∑
(
𝟏
𝟒)
𝒌

𝒌!

∞

𝒌=𝟎

= 
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= (
𝟏

𝟏𝟐𝟖
+
𝟏𝟕

𝟔𝟒
+
𝟑𝟑

𝟏𝟔
+ 𝟑) 𝒆

𝟏
𝟒 =

𝟔𝟖𝟑

𝟏𝟐𝟖
𝒆
𝟏
𝟒 

1638. Find: 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

𝟏

𝒏𝟒
⋅ ∑ 𝐬𝐢𝐧𝟐

(𝒋 − 𝒊)𝝅

𝒏
𝟏≤𝒊<𝑗≤𝑛

⋅ ∑ 𝐜𝐨𝐬𝟐
(𝒋 − 𝒊)𝝅

𝒏
𝟏≤𝒊<𝑗≤𝑛

 

Proposed by Neculai Stanciu-Romania 

Solution 1 by Adrian Popa-Romania 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

𝟏

𝒏𝟒
⋅ ∑ 𝐬𝐢𝐧𝟐

(𝒋 − 𝒊)𝝅

𝒏
𝟏≤𝒊<𝑗≤𝑛

⋅ ∑ 𝐜𝐨𝐬𝟐
(𝒋 − 𝒊)𝝅

𝒏
𝟏≤𝒊<𝑗≤𝑛

= 

= 𝛀 = 𝐥𝐢𝐦
𝒏→∞

(
𝟏

𝒏𝟐
⋅ ∑ 𝐬𝐢𝐧𝟐

(𝒋 − 𝒊)𝝅

𝒏
𝟏≤𝒊<𝑗≤𝑛

) ⋅ (
𝟏

𝒏𝟐
⋅ ∑ 𝐜𝐨𝐬𝟐

(𝒋 − 𝒊)𝝅

𝒏
𝟏≤𝒊<𝑗≤𝑛

) = 𝛀𝟏 ⋅ 𝛀𝟏 

𝛀𝟏 = 𝐥𝐢𝐦
𝒏→∞

(
𝟏

𝒏𝟐
⋅ ∑ 𝐬𝐢𝐧𝟐

(𝒋 − 𝒊)𝝅

𝒏
𝟏≤𝒊<𝑗≤𝑛

) = 

= 𝐥𝐢𝐦
𝒏→∞

(
𝟏

𝟐𝒏𝟐
∑

𝟏

𝟐
𝟏≤𝒊<𝑗≤𝑛

−
𝟏

𝟐𝒏𝟐
∑ 𝐜𝐨𝐬 (

𝟐𝒋𝝅

𝒏
−
𝟐𝒊𝝅

𝒏
)

𝟏≤𝒊<𝑗≤𝑛

) = 

= 𝐥𝐢𝐦
𝒏→∞

(
𝒏(𝒏 + 𝟏)

𝟐𝒏𝟐 ⋅ 𝟐
−
𝟏

𝟐𝒏𝟐
∑ (𝐜𝐨𝐬

𝟐𝒊𝝅

𝒏
𝐜𝐨𝐬

𝟐𝒋𝝅

𝒏
+ 𝐬𝐢𝐧

𝟐𝒊𝝅

𝒏
𝐬𝐢𝐧
𝟐𝒋𝝅

𝒏
)

𝟏≤𝒊<𝑗≤𝑛

) 

(∑𝐜𝐨𝐬
𝟐𝒊𝝅

𝒏

𝒏

𝒊=𝟏

)

𝟐

=∑𝐜𝐨𝐬𝟐
𝟐𝒊𝝅

𝒏

𝒏

𝒊=𝟏

+ 𝟐 ∑ 𝐜𝐨𝐬
𝟐𝒊𝝅

𝒏
𝐜𝐨𝐬

𝟐𝒋𝝅

𝒏
𝟏≤𝒊<𝑗≤𝑛

⇒ 

∑ 𝐜𝐨𝐬
𝟐𝒊𝝅

𝒏
𝐜𝐨𝐬

𝟐𝒋𝝅

𝒏
𝟏≤𝒊<𝑗≤𝑛

=
𝟏

𝟐
(∑𝐜𝐨𝐬

𝟐𝒊𝝅

𝒏

𝒏

𝒊=𝟏

)

𝟐

−
𝟏

𝟐
∑𝐜𝐨𝐬𝟐

𝟐𝒊𝝅

𝒏

𝒏

𝒊=𝟏

; (∗) 

(∑𝐬𝐢𝐧
𝟐𝒊𝝅

𝒏

𝒏

𝒊=𝟏

)

𝟐

=∑𝐬𝐢𝐧𝟐
𝟐𝒊𝝅

𝒏

𝒏

𝒊=𝟏

+ 𝟐 ∑ 𝐬𝐢𝐧
𝟐𝒊𝝅

𝒏
𝐬𝐢𝐧
𝟐𝒋𝝅

𝒏
𝟏≤𝒊<𝑗≤𝑛

⇒ 

∑ 𝐬𝐢𝐧
𝟐𝒊𝝅

𝒏
𝐬𝐢𝐧
𝟐𝒋𝝅

𝒏
𝟏≤𝒊<𝑗≤𝑛

=
𝟏

𝟐
((∑𝐬𝐢𝐧

𝟐𝒊𝝅

𝒏

𝒏

𝒊=𝟏

)

𝟐

−∑𝐬𝐢𝐧𝟐
𝟐𝒊𝝅

𝒏

𝒏

𝒊=𝟏

) 
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Hence, 

𝛀𝟏 =
𝟏

𝟒
− 𝐥𝐢𝐦
𝒏→∞

𝟏

𝟒𝒏𝟐
((∑𝐜𝐨𝐬

𝟐𝒊𝝅

𝒏

𝒏

𝒊=𝟏

)

𝟐

+ (∑𝐬𝐢𝐧
𝟐𝒊𝝅

𝒏

𝒏

𝒊=𝟏

)

𝟐

−∑(𝐜𝐨𝐬𝟐
𝟐𝒊𝝅

𝒏
+ 𝐬𝐢𝐧𝟐

𝟐𝒊𝝅

𝒏
)

𝒏

𝒊=𝟏

) = 

=
𝟏

𝟒
−
𝟏

𝟒
𝐥𝐢𝐦
𝒏→∞

(
𝟏

𝒏
∑𝐜𝐨𝐬

𝟐𝒊𝝅

𝒏

𝒏

𝒊=𝟏

)

𝟐

−
𝟏

𝟒
𝐥𝐢𝐦
𝒏→∞

(
𝟏

𝒏
∑𝐬𝐢𝐧

𝟐𝒊𝝅

𝒏

𝒏

𝒊=𝟏

)

𝟐

+ 𝐥𝐢𝐦
𝒏→∞

𝟏

𝟒𝒏𝟐
∑𝟏

𝒏

𝒊=𝟏

= 

=
𝟏

𝟒
−
𝟏

𝟒
(∫ 𝐜𝐨𝐬𝟐𝝅𝒙

𝟏

𝟎

𝒅𝒙)

𝟐

−
𝟏

𝟒
(∫ 𝐬𝐢𝐧𝟐𝝅𝒙𝒅𝒙

𝟏

𝟎

)

𝟐

+ 𝐥𝐢𝐦
𝒏→∞

𝟏

𝟒𝒏
= 

=
𝟏

𝟒
−
𝟏

𝟒
(
𝟏

𝟐𝝅
𝐬𝐢𝐧𝟐𝝅𝒙|

𝟎

𝟏

)

𝟐

−
𝟏

𝟒
(−

𝟏

𝟐𝝅
𝐜𝐨𝐬 𝟐𝝅𝒙|

𝟎

𝟏

)

𝟐

=
𝟏

𝟒
 

𝛀𝟐 = 𝐥𝐢𝐦
𝒏→∞

𝟏

𝟐𝒏𝟐
∑ 𝟏

𝟏≤𝒊<𝑗≤𝑛

+ 𝐥𝐢𝐦
𝒏→∞

𝟏

𝟐𝒏𝟐
∑ (𝐜𝐨𝐬

𝟐𝝅𝒊

𝒏
𝐜𝐨𝐬

𝟐𝝅𝒋

𝒏
+ 𝐬𝐢𝐧

𝟐𝝅𝒊

𝒏
𝐬𝐢𝐧
𝟐𝝅𝒋

𝒏
)

𝟏≤𝒊<𝑗≤𝑛

= 

= 𝐥𝐢𝐦
𝒏→∞

𝟏

𝟐𝒏𝟐
⋅
𝒏(𝒏 − 𝟏)

𝟐
=
𝟏

𝟒
 

Therefore, 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

𝟏

𝒏𝟒
⋅ ∑ 𝐬𝐢𝐧𝟐

(𝒋 − 𝒊)𝝅

𝒏
𝟏≤𝒊<𝑗≤𝑛

⋅ ∑ 𝐜𝐨𝐬𝟐
(𝒋 − 𝒊)𝝅

𝒏
𝟏≤𝒊<𝑗≤𝑛

=
𝟏

𝟏𝟔
 

 Solution 2 by Ravi Prakash-New Delhi-India 

𝐋𝐞𝐭: 𝑺𝟏 = ∑ 𝐬𝐢𝐧𝟐 [(
𝒋 − 𝒊

𝒏
)𝝅]

𝟏≤𝒊,𝒋≤𝒏

= 

= 𝐬𝐢𝐧𝟐
𝝅

𝒏
+ (𝐬𝐢𝐧𝟐

𝝅

𝒏
+ 𝐬𝐢𝐧𝟐

𝟐𝝅

𝒏
) + (𝐬𝐢𝐧𝟐

𝝅

𝒏
+ 𝐬𝐢𝐧𝟐

𝟐𝝅

𝒏
+ 𝐬𝐢𝐧𝟐

𝟑𝝅

𝒏
) +⋯+ 

+(𝐬𝐢𝐧𝟐
𝝅

𝒏
+ 𝐬𝐢𝐧𝟐

𝟐𝝅

𝒏
+ ⋯+ 𝐬𝐢𝐧𝟐 (

(𝒏 − 𝟏)𝝅

𝒏
)) +⋯+ (𝒏 − 𝒌) 𝐬𝐢𝐧𝟐 (

𝒌𝝅

𝒏
) + ⋯ 

…+ 𝟏 ⋅ 𝐬𝐢𝐧𝟐 (
(𝒏 − 𝟏)𝝅

𝒏
) =∑(𝒏− 𝒌) 𝐬𝐢𝐧𝟐 (

𝒌𝝅

𝒏
) 

𝒏

𝒌=𝟏

⇒ 

𝐥𝐢𝐦
𝒏→∞

𝟏

𝒏𝟐
∑ 𝐬𝐢𝐧𝟐 [(

𝒋 − 𝒊

𝒏
)𝝅]

𝟏≤𝒊,𝒋≤𝒏

= 𝐥𝐢𝐦
𝒏→∞

𝟏

𝒏
∑(𝟏 −

𝒌

𝒏
) 𝐬𝐢𝐧𝟐 (

𝒌𝝅

𝒏
)

𝒏

𝒌=𝟏

= 
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=
𝟏

𝟐
𝐥𝐢𝐦
𝒏→∞

𝟏

𝒏
∑(𝟏 −

𝒌

𝒏
) (𝟏 − 𝐜𝐨𝐬 (

𝟐𝒌𝝅

𝒏
))

𝒏

𝒌=𝟏

=
𝟏

𝟐
∫ (𝟏 − 𝒙)(𝟏 − 𝐜𝐨𝐬(𝟐𝒌𝝅))
𝟏

𝟎

𝒅𝒙 = 

=
𝟏

𝟐
(𝟏 − 𝒙)(𝒙 −

𝟏

𝟐𝝅
𝐬𝐢𝐧(𝟐𝝅𝒙))|

𝟎

𝟏

+
𝟏

𝟐
∫ (𝒙 −

𝟏

𝟐𝝅
𝐬𝐢𝐧(𝟐𝝅𝒙))𝒅𝒙

𝟏

𝟎

= 

=
𝟏

𝟐
[
𝟏

𝟐
𝒙𝟐 +

𝟏

𝟒𝝅𝟐
𝐜𝐨𝐬(𝟐𝝅𝒙)]|

𝟎

𝟏

=
𝟏

𝟒
 

𝐋𝐞𝐭: 𝑺𝟐 = ∑ 𝐜𝐨𝐬𝟐 (
(𝒋 − 𝒊)𝝅

𝒏
)

𝟏≤𝒊<𝑗≤𝑛

=∑(𝒏− 𝒌) 𝐜𝐨𝐬𝟐 (
𝒌𝝅

𝒏
)

𝒏

𝒌=𝟏

𝒂𝒔 𝒊𝒏 𝑺𝟏
⇒      

𝐥𝐢𝐦
𝒏→∞

𝟏

𝒏𝟐
∑ 𝐜𝐨𝐬𝟐 (

(𝒋 − 𝒊)𝝅

𝒏
)

𝟏≤𝒊<𝑗≤𝑛

= 𝐥𝐢𝐦
𝒏→∞

𝟏

𝒏
∑(𝟏 −

𝒌

𝒏
) 𝐜𝐨𝐬𝟐 (

𝒌𝝅

𝒏
)

𝒏

𝒌=𝟏

= ∫ (𝟏 − 𝒙) 𝐜𝐨𝐬𝟐 𝒙
𝟏

𝟎

𝒅𝒙 = 

=
𝟏

𝟒
∫ (𝟏 − 𝒙)[𝟏 + 𝐜𝐨𝐬(𝟐𝝅𝒙)]
𝟏

𝟎

𝒅𝒙 = 

=
𝟏

𝟐
(𝟏 − 𝒙) [𝒙 +

𝟏

𝟐𝝅
𝐬𝐢𝐧(𝟐𝝅𝒙)]|

𝟎

𝟏

+
𝟏

𝟐
∫ (𝒙 +

𝟏

𝟐𝝅
𝐬𝐢𝐧(𝟐𝝅𝒙))

𝟏

𝟎

𝒅𝒙 =
𝟏

𝟒
 

Therefore, 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

𝟏

𝒏𝟒
⋅ ∑ 𝐬𝐢𝐧𝟐

(𝒋 − 𝒊)𝝅

𝒏
𝟏≤𝒊<𝑗≤𝑛

⋅ ∑ 𝐜𝐨𝐬𝟐
(𝒋 − 𝒊)𝝅

𝒏
𝟏≤𝒊<𝑗≤𝑛

=
𝟏

𝟏𝟔
 

1639. Prove that: 

∫
𝟏

√𝟏 + 𝐞𝐱𝐩 (
𝝅

√𝒙
)

𝒅𝒙

√𝒙𝟑

∞

𝟎

=
𝟐

𝝅
𝐥𝐨𝐠(𝟑 + 𝟐√𝟐) 

Proposed by Srinivasa Raghava-AIRMC-India 

Solution 1 by Asmat Qatea-Afghanistan 

∫
𝟏

√𝟏 + 𝐞𝐱𝐩 (
𝝅

√𝒙
)

𝒅𝒙

√𝒙𝟑

∞

𝟎

=
𝒙→𝒙𝟐

∫
𝟐

√𝟏 + 𝒆
𝝅
𝒙

𝒅𝒙

𝒙𝟐

∞

𝟎

=

𝝅
𝒙
→𝒙 𝟐

𝝅
∫

𝒅𝒙

√𝟏 + 𝒆𝒙

∞

𝟎

=
(∗)
;    (∗) {

𝟏 + 𝒆𝒙 = 𝒖𝟐

𝒅𝒙 =
𝟐𝒖𝒅𝒖

𝒖𝟐 − 𝟏

 

=
𝟐

𝝅
∫

𝟐𝒅𝒖

𝒖𝟐 − 𝟏

∞

√𝟐

=
𝟐

𝝅
∫ (

𝟏

𝒖 − 𝟏
−

𝟏

𝒖 + 𝟏
)

∞

√𝟐

𝒅𝒖 =
𝟐

𝝅
𝐥𝐨𝐠 (

𝒖 − 𝟏

𝒖 + 𝟏
)|
√𝟐

∞

= 
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=
𝟐

𝝅
𝐥𝐨𝐠(

√𝟐 + 𝟏

√𝟐 − 𝟏
) =

𝟐

𝝅
𝐥𝐨𝐠(𝟑 + 𝟐√𝟐) 

Therefore, 

∫
𝟏

√𝟏 + 𝐞𝐱𝐩 (
𝝅

√𝒙
)

𝒅𝒙

√𝒙𝟑

∞

𝟎

=
𝟐

𝝅
𝐥𝐨𝐠(𝟑 + 𝟐√𝟐) 

Solution 2 by Adrian Popa-Romania 

𝝅

√𝒙
= 𝒕 ⇒ 𝝅𝒙−

𝟏
𝟐 = 𝒕 ⇒

𝒅𝒙

√𝒙𝟑
= −

𝟐

𝝅
𝒅𝒕 ⇒ 

∫
𝟏

√𝟏 + 𝐞𝐱𝐩 (
𝝅

√𝒙
)

𝒅𝒙

√𝒙𝟑

∞

𝟎

=
𝟐

𝝅
∫

𝒅𝒕

√𝟏 + 𝒆𝒕

∞

𝟎

=
(∗)
;     (∗) {

√𝟏 + 𝒆𝒕 = 𝒖

𝒕 = 𝐥𝐨𝐠(𝒖𝟐 − 𝟏) , 𝒅𝒕 =
𝟐𝒖

𝒖𝟐 − 𝟏
𝒅𝒖

 

=
𝟐

𝝅
∫

𝟐𝒅𝒖

𝒖𝟐 − 𝟏

∞

√𝟐

=
𝟐

𝝅
∫ (

𝟏

𝒖 − 𝟏
−

𝟏

𝒖 + 𝟏
)

∞

√𝟐

𝒅𝒖 =
𝟐

𝝅
𝐥𝐨𝐠 (

𝒖 − 𝟏

𝒖 + 𝟏
)|
√𝟐

∞

= 

=
𝟐

𝝅
𝐥𝐨𝐠(

√𝟐 + 𝟏

√𝟐 − 𝟏
) =

𝟐

𝝅
𝐥𝐨𝐠(𝟑 + 𝟐√𝟐) 

Therefore, 

∫
𝟏

√𝟏 + 𝐞𝐱𝐩 (
𝝅

√𝒙
)

𝒅𝒙

√𝒙𝟑

∞

𝟎

=
𝟐

𝝅
𝐥𝐨𝐠(𝟑 + 𝟐√𝟐) 

Solution 3 by Ravi Prakash-New Delhi-India 

∫
𝟏

√𝟏 + 𝐞𝐱𝐩 (
𝝅

√𝒙
)

𝒅𝒙

√𝒙𝟑

∞

𝟎

=
(∗)
;      (∗)

{
 
 

 
 

𝝅

√𝒙
= 𝟐𝒕

−
𝟏

𝟐
⋅
𝝅

𝒙
𝟑
𝟐

𝒅𝒙 = 𝒅𝒕
 

=
𝟏

𝝅
∫ −

𝟒𝒅𝒕

√𝟏 + 𝒆𝟐𝒕

𝟎

∞

=
𝟒

𝝅
∫

𝒆−𝒕𝒅𝒕

√𝟏 − 𝒆−𝟐𝒕

∞

𝟎

= −
𝟒

𝝅
𝐥𝐨𝐠 (𝒆−𝒕 +√𝟏 + 𝒆−𝟐𝒕)|

𝟎

∞

= 

=
𝟐

𝝅
𝐥𝐨𝐠(𝟏 + √𝟐)

𝟐
=
𝟐

𝝅
𝐥𝐨𝐠(𝟑 + 𝟐√𝟐) 

Therefore, 
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∫
𝟏

√𝟏 + 𝐞𝐱𝐩 (
𝝅

√𝒙
)

𝒅𝒙

√𝒙𝟑

∞

𝟎

=
𝟐

𝝅
𝐥𝐨𝐠(𝟑 + 𝟐√𝟐) 

1640. Let 𝒂 > 0. Find: 

𝛀 = ∫
𝒅𝒙

𝒙𝟒√𝒙𝟐 − 𝒂𝟐
; 𝒙 ∈ (𝒂,∞) 

Proposed by Marin Chirciu-Romania 

Solution 1 by Kartick Chandra Betal-India 

𝛀 = ∫
𝒅𝒙

𝒙𝟒√𝒙𝟐 − 𝒂𝟐
=
(∗)
;    (∗): {

𝒙 = 𝒂𝐬𝐞𝐜 𝒚
𝒅𝒙 = 𝒂𝐬𝐞𝐜 𝒚 𝐭𝐚𝐧 𝒚𝒅𝒚 

= ∫
𝒂𝐬𝐞𝐜𝒚 𝐭𝐚𝐧𝒚

𝒂𝟒 𝐬𝐞𝐜𝟒 𝒚 ⋅ 𝒂 𝐭𝐚𝐧𝒚
𝒅𝒚 =

𝟏

𝒂𝟒
∫𝐜𝐨𝐬𝟑 𝒚𝒅𝒚 =

𝟏

𝟒𝒂𝟒
∫(𝐜𝐨𝐬 𝟑𝒚 + 𝟑𝐜𝐨𝐬 𝒚)𝒅𝒚 = 

=
𝟏

𝟒𝒂𝟒
(
𝐬𝐢𝐧𝟑𝒚

𝟑
+ 𝐬𝐢𝐧𝒚) =

𝟏

𝟒𝒂𝟒
(
𝟑 𝐬𝐢𝐧 𝒚 − 𝟒𝐬𝐢𝐧𝟑 𝒚

𝟑
+ 𝐬𝐢𝐧 𝒚) =

𝟏

𝟒𝒂𝟒
(𝟐 𝐬𝐢𝐧𝒚 −

𝟒

𝟑
𝐬𝐢𝐧𝟑 𝒚) 

=
𝟏

𝟒𝒂𝟒
(𝟐√𝟏 − (

𝒂

𝒙
)
𝟐

−
𝟒

𝟑
(𝟏 −

𝒂𝟐

𝒙𝟐
)√𝟏 −

𝒂𝟐

𝒙𝟐
= 

=
𝟏

𝟒𝒂𝟒
√𝟏 −

𝒂𝟐

𝒙𝟐
(𝟐 −

𝟒(𝒙𝟐 − 𝒂𝟐)

𝟑𝒙𝟐
) =

√𝒙𝟐 − 𝒂𝟐

𝟐𝒂𝟒𝒙
⋅
𝟑𝒙𝟐 − 𝟐𝒙𝟐 + 𝟐𝒂𝟐

𝟑𝒙𝟐
= 

=
𝒙𝟐 + 𝟐𝒂𝟐

𝟔𝒙𝟑𝒙𝟒
√𝒙𝟐 − 𝒂𝟐 + 𝑪 

Solution 2 by Ose Favour-Nigeria 

𝛀 = ∫
𝒅𝒙

𝒙𝟒√𝒙𝟐 − 𝒂𝟐
=
(∗)
;    (∗): {

𝒙 = 𝒂 𝐬𝐞𝐜𝜽
𝒅𝒙 = 𝒂𝐬𝐞𝐜 𝜽 𝐭𝐚𝐧 𝜽𝒅𝜽

 

=
𝟏

𝒂𝟒
∫𝐜𝐨𝐬𝟑 𝜽𝒅𝜽 =

𝟏

𝒂𝟒
∫(𝟏 − 𝐬𝐢𝐧𝟐 𝜽) 𝐜𝐨𝐬 𝜽𝒅𝜽 =

𝒖=𝐬𝐢𝐧𝜽
 

=
𝟏

𝒂𝟒
∫(𝟏− 𝒖𝟐) 𝒅𝒖 =

𝒖

𝒂𝟒
−
𝒖𝟑

𝟑𝒂𝟒
+ 𝑪 =

𝐬𝐢𝐧 𝜽

𝒂𝟒
−
𝐬𝐢𝐧𝟑 𝜽

𝟑𝒂𝟒
+ 𝑪 

𝐬𝐞𝐜𝜽 =
𝒙

𝒂
, 𝐜𝐨𝐬 𝜽 =

𝒂

𝒙
, 𝐬𝐢𝐧𝜽 = √𝟏 −

𝒂𝟐

𝒙𝟐
=
𝟏

𝒙
√𝒙𝟐 − 𝒂𝟐 
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𝛀 =
√𝒙𝟐 − 𝒂𝟐

𝒙𝒂𝟒
−
√(𝒙𝟐 − 𝒂𝟐)𝟑

𝟑𝒙𝟑𝒂𝟒
+ 𝑪 

Solution 3 by Yen Tung Chung-Taichung-Taiwan 

𝛀 = ∫
𝒅𝒙

𝒙𝟒√𝒙𝟐 − 𝒂𝟐
=
(∗)
;    (∗): 

{
 
 

 
 

𝒚 = √𝟏 −
𝒂𝟐

𝒙𝟐

−
𝟐𝒂𝟐

𝒙𝟑
𝒅𝒙 = −𝟐𝒚 𝒅𝒚

⇒
𝒂𝟐

𝒙𝟐
= 𝟏 − 𝒚𝟐 

=
(∗)
∫

𝟏
𝒙𝟐

√𝟏−
𝒂𝟐

𝒙𝟐

⋅
𝟏

𝒙𝟑
𝒅𝒙 = ∫

𝟏
𝒂𝟐
(𝟏 − 𝒚𝟐)

𝒚
⋅
𝟏

𝒂𝟐
𝒚𝒅𝒚 =

𝟏

𝒂𝟒
∫(𝟏− 𝒚𝟐) 𝒅𝒚 = 

=
𝟏

𝒂𝟒
(𝒚 −

𝟏

𝟑
𝒚𝟑) + 𝑪 =

𝟏

𝒂𝟒
(√𝟏 −

𝒂𝟐

𝒙𝟐
−
𝟏

𝟑
(√𝟏 −

𝒂𝟐

𝒙𝟐
)

𝟑

) + 𝑪 = 

=
(𝟐𝒙𝟐 + 𝒂𝟐)√𝒙𝟐 − 𝒂𝟐

𝟑𝒂𝟒𝒙𝟑
+ 𝑪 

Solution 4 by Ravi Prakash-New Delhi-India 

𝛀 = ∫
𝒅𝒙

𝒙𝟒√𝒙𝟐 − 𝒂𝟐
=
(∗)
;    (∗): {

𝒂

𝒙
= 𝒕

−
𝒂

𝒙𝟐
𝒅𝒙 = 𝒅𝒕

 

=
(∗)
−∫

𝒅𝒙

𝒂𝒙𝟑√𝟏− (
𝒂
𝒙
)
𝟐
(−
𝒂

𝒙
)𝒅𝒙 = −

𝟏

𝒂
∫

𝒅𝒕

(
𝒂
𝒕
)
𝟑
√𝟏 − 𝒕𝟐

= 

= −
𝟏

𝒂𝟒
∫

𝒕𝟑

√𝟏 − 𝒕𝟐
𝒅𝒕 = −

𝟏

𝒂𝟒
∫
(𝒕𝟑 − 𝒕) + 𝒕

√𝟏 − 𝒕𝟐
𝒅𝒕 =

𝟏

𝒂𝟒
[∫ 𝒕√𝟏 − 𝒕𝟐 𝒅𝒕 −∫

𝒕

√𝟏 − 𝒕𝟐
𝒅𝒕] = 

=
𝟏

𝒂𝟒
[−
𝟏

𝟑
(𝟏 − 𝒕𝟐)

𝟑
𝟐 + √𝟏 − 𝒕𝟐] + 𝑪 = 

=
𝟏

𝒂𝟒
[√𝟏 − (

𝒂

𝒙
)
𝟐

−
𝟏

𝟑
(𝟏 −

𝒂𝟐

𝒙𝟐
)

𝟑
𝟐

] =
𝟏

𝒂𝟒
[
√𝒙𝟐 − 𝒂𝟐

𝒙
−
𝟏

𝟑
⋅
(𝒙𝟐 − 𝒂𝟐)

𝟑
𝟐

𝒙𝟑
] + 𝑪 

Solution 5 by Hikmat Mammadov-Azerbaijan 

𝛀 = ∫
𝒅𝒙

𝒙𝟒√𝒙𝟐 − 𝒂𝟐
= ∫

𝒅𝒙

𝒙𝟓√𝟏− 𝒂𝒙−𝟐
=
(∗)
;    (∗): {

𝟐𝒂𝒙−𝟑 = 𝟐𝒕 𝒅𝒕
𝟏

𝒙𝒂𝟐
= 𝟏 − 𝒕𝟐

⇒ {
𝒙−𝟑𝒅𝒙 =

𝒕

𝒂
𝒅𝒕

𝟏

𝒙𝟐
= 𝒂(𝟏 − 𝒕𝟐)

 



 
www.ssmrmh.ro 

71 RMM-CALCULUS MARATHON 1601-1700 

 

=
(∗)
∫

𝒙−𝟑

𝒙𝟐√𝟏− 𝒂𝒙−𝟐
𝒅𝒙 = ∫

𝒂(𝟏 − 𝒕𝟐) ⋅ (
𝒕
𝒂)𝒅𝒕

𝒕
= ∫(𝟏 − 𝒕𝟐) 𝒅𝒕 = 𝒕 −

𝒕𝟑

𝟑
+ 𝑪 = 

=
𝟏

𝒂𝟒
(√𝟏 −

𝒂𝟐

𝒙𝟐
−
𝟏

𝟑
(√𝟏 −

𝒂𝟐

𝒙𝟐
)

𝟑

) + 𝑪 = 

=
(𝟐𝒙𝟐 + 𝒂𝟐)√𝒙𝟐 − 𝒂𝟐

𝟑𝒂𝟒𝒙𝟑
+ 𝑪 

1641. Prove that for 𝒏 ≥ 𝟏 

∫
𝟏

√𝒏 + 𝐞𝐱𝐩 (
𝝅

√𝒙
)

𝒅𝒙

√𝒙𝟑

∞

𝟎

=
𝟒

𝝅

𝐬𝐢𝐧𝐡−𝟏(√𝒏)

√𝒏
 

Proposed by Srinivasa Raghava-AIRMC-India 

Solution 1 by Asmat Qatea-Afghanistan 

𝛀 = ∫
𝟏

√𝒏 + 𝐞𝐱𝐩 (
𝝅

√𝒙
)

𝒅𝒙

√𝒙𝟑

∞

𝟎

=
𝒙→𝒙𝟐

∫
𝟐

√𝒏+ 𝒆
𝝅
𝒙

𝒅𝒙

𝒙𝟐

∞

𝟎

=

𝝅
𝒙
→𝒙 𝟐

𝝅
∫

𝒅𝒙

√𝒏 + 𝒆𝒙

∞

𝟎

= 

(∗) {
𝒏 + 𝒆𝒙 = 𝒖𝟐

𝒅𝒙 =
𝟐𝒖

𝒖𝟐 − 𝒏
𝒅𝒖

 

=
𝟐

𝝅
∫

𝟐

𝒖𝟐 − 𝒏

∞

√𝒏+𝟏

𝒅𝒖 =
𝟐

𝝅√𝒏
∫ (

𝟏

𝒖 − √𝒏
−

𝟏

𝒏 + √𝒏
)

∞

√𝒏+𝟏

𝒅𝒖 = 

=
𝟐

𝝅√𝒖
𝐥𝐨𝐠 (

𝒖 − √𝒏

𝒖 + √𝒏
)|
√𝒏+𝟏

∞

=
𝟐

𝝅√𝒏
𝐥𝐨𝐠(

√𝒏 + 𝟏 + √𝒏

√𝒏 + 𝟏 − √𝒏
) =

𝟒

𝝅√𝒏
𝐥𝐨𝐠(√𝒏 + 𝟏 + √𝒏) = 

=
𝟒

𝝅√𝒏
𝐬𝐢𝐧𝐡−𝟏(√𝒏) 

∵ 𝐬𝐢𝐧𝐡−𝟏 𝒙 = 𝐥𝐨𝐠 (𝒙 + √𝒙𝟐 + 𝟏) 

Therefore, 

∫
𝟏

√𝒏 + 𝐞𝐱𝐩 (
𝝅

√𝒙
)

𝒅𝒙

√𝒙𝟑

∞

𝟎

=
𝟒

𝝅

𝐬𝐢𝐧𝐡−𝟏(√𝒏)

√𝒏
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Solution 2 by Ankush Kumar Parcha-India 

𝛀 = ∫
𝟏

√𝒏 + 𝐞𝐱𝐩 (
𝝅

√𝒙
)

𝒅𝒙

√𝒙𝟑

∞

𝟎

⇒
𝒙=𝒌𝟐 𝛀

𝟐
= ∫

𝒅𝒌

𝒌𝟐√𝒏+ 𝒆
𝝅
𝒌

∞

𝟎

 

Let {
𝒏 + 𝒆

𝝅

𝒌 = 𝒉
𝒅𝒌

𝒌𝟐
= −

𝒅𝒉

𝝅(𝒉−𝒏)

, 𝒉 = {
∞,      𝒊𝒇 𝒌 = 𝟎
𝒏 + 𝟏, 𝒊𝒇 𝒌 = ∞

 then 

𝝅

𝟐
𝛀 = ∫

𝒅𝒉

(𝒉 − 𝒏)√𝒉

∞

𝒏+𝟏

 

Let { 𝒉 = 𝒘𝟐

𝒅𝒉 = 𝟐𝒘𝒅𝒘
,𝒘 = {√

𝒏 + 𝟏, 𝒊𝒇 𝒉 = 𝒏 + 𝟏
∞,    𝒊𝒇 𝒉 = ∞ 

. 

𝝅√𝒏

𝟒
𝛀 =

𝟏

𝟐
∫

𝒅𝒘

𝒘𝟐 − 𝒏

∞

√𝒏+𝟏

= 𝐥𝐨𝐠 (
𝒘− √𝒏

𝒘+ √𝒏
)|
√𝒏+𝟏

∞

= 𝐥𝐨𝐠 (
√𝒏 + 𝟏 + √𝒏

√𝒏 + 𝟏 − √𝒏
) = 

= 𝐥𝐨𝐠 [(√𝒏 + 𝟏 + √𝒏)
𝟐
] 

∵ 𝐬𝐢𝐧𝐡−𝟏 𝒙 = 𝐥𝐨𝐠 (𝒙 + √𝒙𝟐 + 𝟏) 

Therefore, 

∫
𝟏

√𝒏 + 𝐞𝐱𝐩 (
𝝅

√𝒙
)

𝒅𝒙

√𝒙𝟑

∞

𝟎

=
𝟒

𝝅

𝐬𝐢𝐧𝐡−𝟏(√𝒏)

√𝒏
 

Solution 3 by Ravi Prakash-New Delhi-India 

∫
𝟏

√𝒏 + 𝐞𝐱𝐩 (
𝝅

√𝒙
)

𝒅𝒙

√𝒙𝟑

∞

𝟎

=
(∗)
;     (∗):  

{
 

 
𝝅

√𝒙
= 𝟐𝒕

−
𝝅

𝒙
𝟑
𝟐

𝒅𝒙 = 𝟒𝒅𝒕
 

𝛀 =
𝟏

𝝅
∫

−𝟒𝒅𝒕

√𝒏 + 𝒆𝟐𝒕

𝟎

∞

=
𝟒

𝝅
∫

𝒆−𝒕

√𝒏𝒆−𝟐𝒕 + 𝟏

∞

𝟎

𝒅𝒕 = 

= −
𝟒

𝝅√𝒏
𝐥𝐨𝐠 (√𝒏𝒆−𝒕 +√𝟏 + 𝒏𝒆−𝟐𝒕)|

𝟎

∞

=
𝟒

𝝅√𝒏
𝐥𝐨𝐠(√𝒏 + √𝒏 + 𝟏) 

∵ 𝐬𝐢𝐧𝐡−𝟏 𝒙 = 𝐥𝐨𝐠 (𝒙 + √𝒙𝟐 + 𝟏) 
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Therefore, 

∫
𝟏

√𝒏 + 𝐞𝐱𝐩 (
𝝅

√𝒙
)

𝒅𝒙

√𝒙𝟑

∞

𝟎

=
𝟒

𝝅

𝐬𝐢𝐧𝐡−𝟏(√𝒏)

√𝒏
 

1642. Prove that: 

∫
𝟑𝒙 − 𝟐𝒙𝟑

(𝒙𝟒 − 𝟕𝒙𝟐 + 𝟑)𝟐 + (𝟔𝒙 − 𝟒𝒙𝟑)𝟐

∞

𝟎

𝒅𝒙 =
𝝅√𝟑

𝟐𝟒
−
𝐥𝐨𝐠 𝟑

𝟖
 

Proposed by Angad Singh-India 

Solution 1 by Rana Ranino-Setif-Algerie 

𝛀 = ∫
𝟑𝒙 − 𝟐𝒙𝟑

(𝒙𝟒 − 𝟕𝒙𝟐 + 𝟑)𝟐 + (𝟔𝒙 − 𝟒𝒙𝟑)𝟐

∞

𝟎

𝒅𝒙 =
𝒙𝟐=𝒕

 

=
𝟏

𝟐
∫

𝟑 − 𝟐𝒕

(𝒕𝟐 − 𝟕𝒕 + 𝟑)𝟐 + 𝟒𝒕(𝟑 − 𝟐𝒕)𝟐
𝒅𝒕

∞

𝟎

= 

=
𝟏

𝟐
∫

𝟑 − 𝟐𝒕

(𝒕𝟐 − 𝒕 + 𝟏)(𝒕𝟐 + 𝟑𝒕 + 𝟗)
𝒅𝒙

∞

𝟎

=
𝟏

𝟖
∫ (

𝒕 + 𝟑

𝒕𝟐 + 𝟑𝒕 + 𝟗
−

𝒕 − 𝟏

𝒕𝟐 − 𝒕 + 𝟏
)

∞

𝟎

𝒅𝒕 = 

=
𝟏

𝟏𝟔
∫ (

𝟐𝒕 + 𝟑

𝒕𝟐 + 𝟑𝒕 + 𝟗
−

𝟐𝒕 − 𝟏

𝒕𝟐 − 𝒕 + 𝟏
)

∞

𝟎

𝒅𝒕 +
𝟑

𝟏𝟔
∫

𝒅𝒕

𝒕𝟐 + 𝟑𝒕 + 𝟗

∞

𝟎

+
𝟏

𝟏𝟔
∫

𝒅𝒕

𝒕𝟐 − 𝒕 + 𝟏

∞

𝟎

= 

=
𝟏

𝟏𝟔
𝐥𝐨𝐠 (

𝒕𝟐 + 𝟑𝒕 + 𝟗

𝒕𝟐 − 𝒕 + 𝟏
)|
𝟎

∞

+
𝟑

𝟏𝟔
∫

𝒅𝒕

(𝒕 +
𝟑
𝟐)
𝟐

+
𝟐𝟕
𝟒

∞

𝟎

+
𝟏

𝟏𝟔
∫

𝒅𝒕

(𝒕 −
𝟏
𝟐)
𝟐

+
𝟑
𝟒

∞

𝟎

= 

= −
𝐥𝐨𝐠𝟑

𝟖
+
𝟏

𝟖√𝟑
[𝐭𝐚𝐧−𝟏 (

𝟐𝒕 + 𝟑

𝟑√𝟑
) + 𝐭𝐚𝐧−𝟏 (

𝟐𝒕 − 𝟏

√𝟑
)]|

𝟎

∞

= −
𝐥𝐨𝐠 𝟑

𝟖
+
𝝅

𝟖√𝟑
 

Therefore, 

∫
𝟑𝒙 − 𝟐𝒙𝟑

(𝒙𝟒 − 𝟕𝒙𝟐 + 𝟑)𝟐 + (𝟔𝒙 − 𝟒𝒙𝟑)𝟐

∞

𝟎

𝒅𝒙 =
𝝅√𝟑

𝟐𝟒
−
𝐥𝐨𝐠𝟑

𝟖
 

 Solution 2 by Amrit Awasthi-India 

Consider the closed line integral: 

𝑰 = ∮
𝟏

𝟏 + 𝒛𝟐 + 𝒛𝟒𝑪

𝒅𝒛 
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Where 𝑪 is a rectangle having vertices 𝟎, 𝟏, 𝟏 + 𝒊𝑹, 𝟎 + 𝒊𝑹 traversed counter clockwise and 

𝑹 approaches infinity. Hence, 

𝑰 = ∮
𝟏

𝟏 + 𝒛𝟐 + 𝒛𝟒𝑪

𝒅𝒛 = 𝑰𝟏 + 𝑰𝟐 + 𝑰𝟑 + 𝑰𝟒, 𝐰𝐡𝐞𝐫𝐞 

𝑰𝟏 = ∫
𝒅𝒙

𝟏 + 𝒙𝟐 + 𝒙𝟒

𝟏

𝟎

; 𝑰𝟐 = ∫
𝒊𝒅𝒚

𝟏 + (𝟏 + 𝒊𝒚)𝟐 + (𝟏 + 𝒊𝒚)𝟒

𝑹

𝟎

 

𝑰𝟑 = ∫
𝒅𝒙

𝟏 + (𝒙 + 𝒊𝑹)𝟐 + (𝒙 + 𝒊𝑹)𝟒

𝟎

𝟏

; 𝑰𝟒 = ∫
𝒊𝒅𝒚

𝟏 + (𝒊𝒚)𝟐 + (𝒊𝒚)𝟒

𝟎

𝑹

 

Clearly the conditions for applying residuum is satisfied hence using the residue theorem 

we get: 

𝑰 = 𝟐𝒊𝝅 ⋅
𝟏

𝟐 (𝒆−
𝒊𝝅
𝟑 − 𝟐)

 

Consider only the real part of 𝑰, we get: 

𝑹𝒆(𝑰) =
𝝅

𝟐√𝟑
; (∗) 

Now, we’ll evaluate the real parts of our 𝑰𝟏, 𝑰𝟐, 𝑰𝟑, 𝑰𝟒 and then Equate with the real part of 

𝑰. First note that  

𝑰𝟒 = ∫
𝒊𝒅𝒚

𝟏 + (𝒊𝒚)𝟐 + (𝒊𝒚)𝟒

𝟎

𝑹

= −𝒊∫
𝒅𝒚

𝟏 − 𝒚𝟐 + 𝒚𝟒

𝑹

𝟎

⇒ 𝑹𝒆(𝑰𝟒) = 𝟎; (𝒊) 

Now, note that 

|𝑰𝟑| = |∫
𝒅𝒙

𝟏 + (𝒙 + 𝒊𝑹)𝟐 + (𝒙 + 𝒊𝑹)𝟒

𝟎

𝟏

| ≤ ∫
𝒅𝒙

|𝟏 + (𝒙 + 𝒊𝑹)𝟐 + (𝒙 + 𝒊𝑹)𝟒|

𝟏

𝟎

 

Therefore, using properties of modulus and some manipulations it can be shown that 𝑰𝟑 

vanishes as 𝑹 approaches infinity. Hence, 

𝑹𝒆(𝑰𝟑) = 𝟎; (𝒊𝒊) 

Now, using real methods we can easily evaluate 𝑰𝟏, 

𝑰𝟏 = ∫
𝒅𝒙

𝟏 + 𝒙𝟐 + 𝒙𝟒

𝟏

𝟎

= [
𝟏

𝟒
𝐥𝐨𝐠 |

𝒙𝟐 + 𝒙 + 𝟏

𝒙𝟐 − 𝒙 + 𝟏
| +

𝟏

𝟐√𝟑
𝐭𝐚𝐧−𝟏 (

√𝟑𝒙

𝟏 − 𝒙𝟐
)]
𝟎

𝟏

 

𝑹𝒆(𝑰𝟏) = 𝑰𝟏 =
𝐥𝐨𝐠𝟑

𝟒
+
𝝅

𝟒√𝟑
; (𝒊𝒊𝒊) 
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Now, observe that 

𝑹𝒆(𝑰𝟐) = 𝐥𝐢𝐦
𝑹→∞

∫
𝟔𝒙 − 𝟒𝒙𝟑

(𝒙𝟒 − 𝟕𝒙𝟐 + 𝟑)𝟐 + (𝟔𝒙 − 𝟒𝒙𝟑)𝟐
𝒅𝒙

𝑹

𝟎

= 

= ∫
𝟔𝒙 − 𝟒𝒙𝟑

(𝒙𝟒 − 𝟕𝒙𝟐 + 𝟑)𝟐 + (𝟔𝒙 − 𝟒𝒙𝟑)𝟐
𝒅𝒙

∞

𝟎

; (𝒊𝒗) 

By adding (𝒊), (𝒊𝒊), (𝒊𝒊𝒊), (𝒊𝒗) we get: 
𝐥𝐨𝐠 𝟑

𝟖
+
𝝅

𝟒√𝟑
= ∫

𝟑𝒙 − 𝟐𝒙𝟑

(𝒙𝟒 − 𝟕𝒙𝟐 + 𝟑)𝟐 + (𝟔𝒙 − 𝟒𝒙𝟑)𝟐

∞

𝟎

𝒅𝒙 =
𝝅

𝟐√𝟑
 

Therefore, 

∫
𝟑𝒙 − 𝟐𝒙𝟑

(𝒙𝟒 − 𝟕𝒙𝟐 + 𝟑)𝟐 + (𝟔𝒙 − 𝟒𝒙𝟑)𝟐

∞

𝟎

𝒅𝒙 =
𝝅√𝟑

𝟐𝟒
−
𝐥𝐨𝐠𝟑

𝟖
 

1643. Prove that for 𝒏 ∈ ℕ 

∫
(𝐭𝐚𝐧−𝟏 𝒙 − 𝐜𝐨𝐭−𝟏 𝒙)𝟐𝒏

(𝒙𝟐 + 𝟏)𝟐
𝒅𝒙

∞

𝟎

=
𝟐−(𝟐𝒏+𝟏)𝝅𝟐𝒏+𝟏

𝟐𝒏 + 𝟏
 

Proposed by Srinivasa Raghava-AIRMC-India 

Solution 1 by Rana Ranino-Setif-Algerie 

𝛀 = ∫
(𝐭𝐚𝐧−𝟏 𝒙 − 𝐜𝐨𝐭−𝟏 𝒙)𝟐𝒏

(𝒙𝟐 + 𝟏)𝟐
𝒅𝒙

∞

𝟎

= ∫
(𝟐𝐭𝐚𝐧−𝟏 𝒙 −

𝝅
𝟐)

𝟐𝒏

(𝟏 + 𝒙𝟐)𝟐
𝒅𝒙

∞

𝟎

=
𝒙=𝐭𝐚𝐧 𝒕

 

= ∫ (𝟐𝒕 −
𝝅

𝟐
)
𝟐𝒏

𝝅
𝟐

𝟎

𝐜𝐨𝐬𝟐 𝒕 𝒅𝒕 =
𝒚=𝟐𝒕−

𝝅
𝟐 𝟏

𝟐
∫ 𝒚𝟐𝒏 𝐜𝐨𝐬𝟐 (

𝒚

𝟐
+
𝝅

𝟒
)

𝝅
𝟐

−
𝝅
𝟐

𝒅𝒚 = 

=
𝟏

𝟒
∫ 𝒚𝟐𝒏 (𝟏 + 𝐜𝐨𝐬 (𝒚 +

𝝅

𝟐
))

𝝅
𝟐

−
𝝅
𝟐

𝒅𝒚 =
𝟏

𝟒
∫ 𝒚𝟐𝒏(𝟏 − 𝐬𝐢𝐧𝒚)

𝝅
𝟐

−
𝝅
𝟐

𝒅𝒚 = 

=
𝟏

𝟒
∫ 𝒚𝟐𝒏
𝝅
𝟐

−
𝝅
𝟐

𝒅𝒚 −
𝟏

𝟒
∫ 𝒚𝟐𝒏 𝐬𝐢𝐧 𝒚

𝝅
𝟐

−
𝝅
𝟐

𝒅𝒚
⏟          
=𝟎−𝒐𝒅𝒅 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

=
𝝅𝟐𝒏+𝟏

𝟐𝟐𝒏+𝟐(𝟐𝒏 + 𝟏)
 

Therefore, 

∫
(𝐭𝐚𝐧−𝟏 𝒙 − 𝐜𝐨𝐭−𝟏 𝒙)𝟐𝒏

(𝒙𝟐 + 𝟏)𝟐
𝒅𝒙

∞

𝟎

=
𝟐−(𝟐𝒏+𝟏)𝝅𝟐𝒏+𝟏

𝟐𝒏 + 𝟏
 

Solution 2 by Syed Shahabudeen-Kerala-India 

𝛀 = ∫
(𝐭𝐚𝐧−𝟏 𝒙 − 𝐜𝐨𝐭−𝟏 𝒙)𝟐𝒏

(𝒙𝟐 + 𝟏)𝟐
𝒅𝒙

∞

𝟎

= ∫
(𝟐 𝐭𝐚𝐧−𝟏 𝒙 −

𝝅
𝟐)

𝟐𝒏

(𝒙𝟐 + 𝟏)𝟐
𝒅𝒙

∞

𝟎

=
𝒕=𝟐 𝐭𝐚𝐧−𝟏 𝒙−

𝝅
𝟐
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=
𝟏

𝟐
∫

𝒕𝟐𝒏

𝐭𝐚𝐧𝟐 (
𝝅
𝟒 +

𝒕
𝟐) + 𝟏

𝒅𝒕

𝝅
𝟐

−
𝝅
𝟐

=
𝟏

𝟐
∫ 𝒕𝟐𝒏 (𝐜𝐨𝐬𝟐 (

𝝅

𝟒
+
𝒕

𝟐
) + 𝐜𝐨𝐬𝟐 (

𝝅

𝟒
−
𝒕

𝟐
))

𝝅
𝟐

𝟎

𝒅𝒕 = 

=
𝟏

𝟐
∫ 𝒕𝟐𝒏 (𝟏 + 𝐜𝐨𝐬𝟐 (

𝝅

𝟒
+
𝒕

𝟐
) − 𝐬𝐢𝐧𝟐 (

𝝅

𝟒
−
𝒕

𝟐
))

𝝅
𝟐

𝟎

𝒅𝒕 

∵ 𝐜𝐨𝐬𝟐(𝒂 + 𝒃) − 𝐬𝐢𝐧𝟐(𝒂 + 𝒃) = 𝐜𝐨𝐬 𝟐𝒂 𝐬𝐢𝐧𝟐𝒃 

𝛀 =
𝟏

𝟐
∫ 𝒕𝟐𝒏 (𝟏 + 𝐜𝐨𝐬

𝝅

𝟐
𝐜𝐨𝐬 𝒕)

𝝅
𝟐

𝟎

𝒅𝒕 =
𝟏

𝟐
∫ 𝒕𝟐𝒏
𝝅
𝟐

𝟎

𝒅𝒕 =
𝟐−(𝟐𝒏+𝟏)𝝅𝟐𝒏+𝟏

𝟐𝒏 + 𝟏
 

Therefore, 

∫
(𝐭𝐚𝐧−𝟏 𝒙 − 𝐜𝐨𝐭−𝟏 𝒙)𝟐𝒏

(𝒙𝟐 + 𝟏)𝟐
𝒅𝒙

∞

𝟎

=
𝟐−(𝟐𝒏+𝟏)𝝅𝟐𝒏+𝟏

𝟐𝒏 + 𝟏
 

Solution 3 by Kartick Chandra Betal-India 

𝛀 = ∫
(𝐭𝐚𝐧−𝟏 𝒙 − 𝐜𝐨𝐭−𝟏 𝒙)𝟐𝒏

(𝒙𝟐 + 𝟏)𝟐
𝒅𝒙

∞

𝟎

= ∫
𝒙𝟐(𝐜𝐨𝐬𝐭−𝟏𝒙 − 𝐭𝐚𝐧−𝟏 𝒙)𝟐𝒏

(𝟏 + 𝒙𝟐)𝟐

∞

𝟎

𝒅𝒙 

𝟐𝛀 = ∫
(𝐭𝐚𝐧−𝟏 𝒙 − 𝐜𝐨𝐭−𝟏 𝒙)𝟐𝒏

𝟏 + 𝒙𝟐
𝒅𝒙

∞

𝟎

= ∫ (
𝝅

𝟐
− 𝟐𝒙)

𝟐𝒏
𝝅
𝟐

𝟎

𝒅𝒙 = 

=
𝟏

𝟐
∫ (

𝝅

𝟐
− 𝒙)

𝟐𝒏𝝅

𝟎

𝒅𝒙 =
𝟏

𝟐
∫ 𝒙𝟐𝒏
𝝅
𝟐

−
𝝅
𝟐

(−𝒅𝒙) = ∫ 𝒙𝟐𝒏
𝝅
𝟐

𝟎

𝒅𝒙 = 

=
(
𝝅
𝟐)

𝟐𝒏+𝟏

𝟐𝒏 + 𝟏
=
𝟐−(𝟐𝒏+𝟏)𝝅𝟐𝒏+𝟏

𝟐𝒏 + 𝟏
 

Therefore, 

∫
(𝐭𝐚𝐧−𝟏 𝒙 − 𝐜𝐨𝐭−𝟏 𝒙)𝟐𝒏

(𝒙𝟐 + 𝟏)𝟐
𝒅𝒙

∞

𝟎

=
𝟐−(𝟐𝒏+𝟏)𝝅𝟐𝒏+𝟏

𝟐𝒏 + 𝟏
 

1644. Find: 

𝛀 = ∫
𝐥𝐨𝐠 𝒙

(𝒙 + 𝟏)(𝒙𝟐 + 𝟏)
𝒅𝒙

∞

𝟏

 

Proposed by Vasile Mircea Popa-Romania 

Solution 1 by Rana Ranino-Setif-Algerie 

𝛀 = ∫
𝐥𝐨𝐠 𝒙

(𝒙 + 𝟏)(𝒙𝟐 + 𝟏)
𝒅𝒙

∞

𝟏

=
𝒙=
𝟏
𝒙
−∫

𝒙 𝐥𝐨𝐠 𝒙

(𝟏 + 𝒙)(𝟏 + 𝒙𝟐)

𝟏

𝟎

𝒅𝒙 = 
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=
𝟏

𝟐
(∫

𝐥𝐨𝐠 𝒙

𝟏 + 𝒙

𝟏

𝟎

𝒅𝒙 −∫
𝐥𝐨𝐠 𝒙

𝟏 + 𝒙𝟐
𝒅𝒙

𝟏

𝟎

−∫
𝒙 𝐥𝐨𝐠 𝒙

𝟏 + 𝒙𝟐
𝒅𝒙

𝟏

𝟎

) =
𝟏

𝟐
(𝑨 − 𝑩 − 𝑪), 

𝑨 = ∫
𝐥𝐨𝐠 𝒙

𝟏 + 𝒙

𝟏

𝟎

𝒅𝒙 = ∑(−𝟏)𝒏−𝟏
∞

𝒏=𝟏

∫ 𝒙𝒏−𝟏 𝐥𝐨𝐠 𝒙
𝟏

𝟎

𝒅𝒙 = ∑
(−𝟏)𝒏

𝒏𝟐

∞

𝒏=𝟏

= −
𝝅𝟐

𝟏𝟐
 

𝑩 = ∫
𝐥𝐨𝐠 𝒙

𝟏 + 𝒙𝟐
𝒅𝒙

𝟏

𝟎

= ∑(−𝟏)𝒏−𝟏
∞

𝒏=𝟏

∫ 𝒙𝟐𝒏−𝟐
𝟏

𝟎

𝐥𝐨𝐠 𝒙𝒅𝒙 = ∑
(−𝟏)𝒏

(𝟐𝒏 − 𝟏)𝟐

∞

𝒏=𝟏

= −𝑮 

𝑪 = ∫
𝒙 𝐥𝐨𝐠𝒙

𝟏 + 𝒙𝟐
𝒅𝒙

𝟏

𝟎

= ∑(−𝟏)𝒏−𝟏
∞

𝒏=𝟏

∫ 𝒙𝟐𝒏−𝟏 𝐥𝐨𝐠 𝒙
𝟏

𝟎

𝒅𝒙 = ∑
(−𝟏)𝒏

(𝟐𝒏)𝟐

∞

𝒏=𝟏

= −
𝝅𝟐

𝟒𝟖
 

Therefore, 

𝛀 =
𝟏

𝟐
(−
𝝅𝟐

𝟏𝟐
+ 𝑮 +

𝝅𝟐

𝟒𝟖
) =

𝑮

𝟐
−
𝝅𝟐

𝟑𝟐
 

Solution 2 Serlea Kabay-Liberia 

𝛀 = ∫
𝐥𝐨𝐠𝒙

(𝒙 + 𝟏)(𝒙𝟐 + 𝟏)
𝒅𝒙

∞

𝟏

=
𝒙=
𝟏
𝒙
−∫

𝒙 𝐥𝐨𝐠 𝒙

𝟏 + 𝒙 + 𝒙𝟐 + 𝒙𝟑

𝟏

𝟎

𝒅𝒙 = 

= ∫
(𝒙 − 𝒙𝟐) 𝐥𝐨𝐠 𝒙

𝟏 − 𝒙𝟒
𝒅𝒙

𝟏

𝟎

=
𝒖=𝒙𝟒

−
𝟏

𝟏𝟔
∫
(𝒖−

𝟏
𝟐 − 𝒖−

𝟏
𝟒) 𝐥𝐨𝐠 𝒖

𝟏 − 𝒖
𝒅𝒖

𝟏

𝟎

= 

=
𝟏

𝟏𝟔
∑∫ 𝒖𝒏−

𝟏
𝟒 𝐥𝐨𝐠 𝒖

𝟏

𝟎

𝒅𝒖

∞

𝒏=𝟎

−
𝟏

𝟏𝟔
∑∫ 𝒖𝒏−

𝟏
𝟐 𝐥𝐨𝐠𝒖

𝟏

𝟎

𝒅𝒖

∞

𝒏=𝟎

 

∵ ∫ 𝒙𝒂 𝐥𝐨𝐠 𝒙
𝟏

𝟎

𝒅𝒙 =
𝑰𝑩𝑷
−

𝟏

(𝒂 + 𝟏)𝟐
  

⇒ 𝛀 = −
𝟏

𝟏𝟔
(∑

𝟏

(𝒏 +
𝟑
𝟒)
𝟐

∞

𝒏=𝟎

−∑
𝟏

(𝒏 +
𝟏
𝟐)
𝟐

∞

𝒏=𝟎

) = 

= −
𝟏

𝟏𝟔
(𝝍(𝟏) (

𝟑

𝟒
) − 𝝍(𝟏) (

𝟏

𝟐
)) ; (∵ 𝝍(𝟏) (

𝟑

𝟒
) = 𝝅𝟐 − 𝟖𝑮,𝝍(𝟏) (

𝟏

𝟐
) =

𝝅𝟐

𝟐
) 

𝛀 =
𝟏

𝟏𝟔
(
𝝅𝟐

𝟐
− 𝟖𝑮) =

𝑮

𝟐
−
𝝅𝟐

𝟑𝟐
 

Therefore, 
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𝛀 =
𝟏

𝟐
(−
𝝅𝟐

𝟏𝟐
+ 𝑮 +

𝝅𝟐

𝟒𝟖
) =

𝑮

𝟐
−
𝝅𝟐

𝟑𝟐
 

Solution 3 by Kartick Chandra Betal-India 

𝛀 = ∫
𝐥𝐨𝐠 𝒙

(𝒙 + 𝟏)(𝒙𝟐 + 𝟏)
𝒅𝒙

∞

𝟏

=
𝒙=
𝟏
𝒙
−∫

𝒙 𝐥𝐨𝐠 𝒙

(𝟏 + 𝒙)(𝟏 + 𝒙𝟐)

𝟏

𝟎

𝒅𝒙 = 

=
𝟏

𝟐
∫
𝐥𝐨𝐠 𝒙

𝟏 + 𝒙

𝟏

𝟎

𝒅𝒙 −
𝟏

𝟐
∫

𝐥𝐨𝐠𝒙

𝟏 + 𝒙𝟐
𝒅𝒙

𝟏

𝟎

−
𝟏

𝟐
∫
𝒙 𝐥𝐨𝐠𝒙

𝟏 + 𝒙𝟐
𝒅𝒙

𝟏

𝟎

= 

=
𝟏

𝟐
∫
𝐥𝐨𝐠 𝒙

𝟏 + 𝒙

𝟏

𝟎

𝒅𝒙 −
𝟏

𝟖
∫
𝐥𝐨𝐠𝒙

𝟏 + 𝒙
𝒅𝒙

𝟏

𝟎

−
𝟏

𝟐
∫ 𝐥𝐨𝐠(𝐭𝐚𝐧𝒙)

𝝅
𝟒

𝟎

𝒅𝒙 = 

=
𝟑

𝟖
[𝐥𝐨𝐠𝒙 𝐥𝐨𝐠(𝟏 + 𝒙)]𝟎

𝟏 −
𝟑

𝟖
∫
𝐥𝐨𝐠(𝟏 + 𝒙)

𝒙
𝒅𝒙

𝟏

𝟎

+
𝑮

𝟐
= 

= −
𝟑

𝟖
𝜼(𝟐) +

𝑮

𝟐
=
𝑮

𝟐
−
𝝅𝟐

𝟑𝟐
 

Solution 4 by Hikmat Mammadov-Azerbaijan 

𝛀 = ∫
𝐥𝐨𝐠𝒙

(𝒙 + 𝟏)(𝒙𝟐 + 𝟏)
𝒅𝒙

∞

𝟏

= ∫
−𝒖𝐥𝐨𝐠 𝒖

(𝟏 + 𝒖)(𝟏 + 𝒖𝟐)
𝒅𝒖

𝟏

𝟎

= 

= −∫
𝒖 𝐥𝐨𝐠 𝒖

(𝟏 + 𝒖)(𝟏 + 𝒖𝟐)
𝒅𝒖

𝟏

𝟎

= −
𝟏

𝟐
∫ (

𝟏

𝒖 + 𝟏
−
𝒖 − 𝟏

𝒖𝟐 + 𝟏
)𝒅𝒖

𝟏

𝟎

= 

=
𝟏

𝟐
∫
𝐥𝐨𝐠𝒖

𝟏 + 𝒖
𝒅𝒖

𝟏

𝟎

−
𝟏

𝟐
∫

𝐥𝐨𝐠𝒖

𝟏 + 𝒖𝟐
𝒅𝒖

𝟏

𝟎

−
𝟏

𝟐
∫
𝒖 𝐥𝐨𝐠𝒖

𝟏 + 𝒖𝟐

𝟏

𝟎

𝒅𝒖 = 

=
𝟏

𝟐
∫
(𝟏 − 𝒖) 𝐥𝐨𝐠𝒖

𝟏 − 𝒖𝟐
𝒅𝒖

𝟏

𝟎

−
𝟏

𝟐
∫ 𝐥𝐨𝐠(𝐭𝐚𝐧𝜶)

𝝅
𝟒

𝟎

𝒅𝜶 −
𝟏

𝟖
∫

𝐥𝐨𝐠 𝒖

𝟏 + 𝒖𝟐
𝒅𝒖

𝟏

𝟎

= 

=
𝟏

𝟖
∫
(𝒗𝟏−𝟐 − 𝟏) 𝐥𝐨𝐠 𝒗

𝟏 − 𝒗
𝒅𝒗

𝟏

𝟎

+
𝑮

𝟐
−
𝟏

𝟑𝟐
∫
(𝒛𝟏−𝟐 − 𝟏) 𝐥𝐨𝐠 𝒛

𝟏 − 𝒛
𝒅𝒛

𝟏

𝟎

= 

=
𝟏

𝟖
[𝜻(𝟐) − 𝟑𝜻(𝟐)] +

𝑮

𝟐
−
𝟏

𝟑𝟐
[𝜻(𝟐) − 𝟑𝜻(𝟐)] = 

=
𝑮

𝟐
+
𝟑

𝟑𝟐
(−
𝝅𝟐

𝟑
) =

𝑮

𝟐
−
𝝅𝟐

𝟑𝟐
 

 
1645. Let 𝒏 ∈ ℕ∗ and 𝝀 ≥ 𝟎. Find: 

∫
𝐜𝐨𝐬𝒏 𝒙 + 𝝀 𝐬𝐢𝐧𝟐 𝒙

𝝀 + 𝐬𝐢𝐧𝒏 𝒙 + 𝐜𝐨𝐬𝒏 𝒙

𝝅
𝟐

𝟎

𝒅𝒙 

Proposed by Marin Chirciu – Romania  
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Solution 1 by George Florin Serban-Romania 

𝑰 = ∫
𝐜𝐨𝐬𝒏 𝒙 + 𝝀𝐬𝐢𝐧𝟐 𝒙

𝝀 + 𝐬𝐢𝐧𝒏 𝒙 + 𝐜𝐨𝐬𝒏 𝒙

𝝅
𝟐

𝟎

𝒅𝒙 

𝝅

𝟐
− 𝒙 = 𝒚 ⇒ 𝒅𝒙 = 𝒅𝒚 

𝒙 = 𝟎 ⇒ 𝒚 =
𝝅

𝟐
, 𝒙 =

𝝅

𝟐
⇒ 𝒚 = 𝟎 

⇒ 𝑰 = −∫
𝐜𝐨𝐬𝒏 (

𝝅
𝟐 − 𝒚) + 𝝀 𝐬𝐢𝐧

𝟐 (
𝝅
𝟐 − 𝒚)

𝝀 + 𝐬𝐢𝐧𝒏 (
𝝅
𝟐 − 𝒚) + 𝐜𝐨𝐬

𝒏 (
𝝅
𝟐 − 𝒚)

𝟎

𝝅
𝟐

𝒅𝒚 

𝑰 = ∫
𝐬𝐢𝐧𝒏 𝒚 + 𝝀 𝐜𝐨𝐬𝟐 𝒚

𝝀 + 𝐜𝐨𝐬𝒏 𝒚 + 𝐬𝐢𝐧𝒏 𝒚

𝝅
𝟐

𝟎

𝒅𝒙 

⇒ 𝟐𝑰 = ∫
𝐜𝐨𝐬𝒏 𝒙 + 𝝀 𝐬𝐢𝐧𝟐 𝒙 + 𝐬𝐢𝐧𝒏 𝒙 + 𝝀𝐜𝐨𝐬𝟐 𝒙

𝝀 + 𝐬𝐢𝐧𝒏 𝒙 + 𝐜𝐨𝐬𝒏 𝒙

𝝅
𝟐

𝟎

𝒅𝒙 

𝟐𝑰 = ∫
−𝐬𝐢𝐧𝒏 𝒙 + 𝐜𝐨𝐬𝒏 𝒙 + 𝝀(𝐬𝐢𝐧𝟐 𝒙 + 𝐜𝐨𝐬𝟐 𝒙)

𝝀 + 𝐬𝐢𝐧𝒏 𝒙 + 𝐜𝐨𝐬𝒏 𝒙

𝝅
𝟐

𝟎

𝒅𝒙 

𝟐𝑰 = ∫
𝐬𝐢𝐧𝒏 𝒙 + 𝐜𝐨𝐬𝒏 𝒙 + 𝝀

𝐬𝐢𝐧𝒏 𝒙 + 𝐜𝐨𝐬𝒏 𝒙 + 𝝀

𝝅
𝟐

𝟎

𝒅𝒙 = ∫ 𝟏

𝝅
𝟐

𝟎

𝒅𝒙 

𝟐𝑰 = 𝒙|
𝟎

𝝅
𝟐 =

𝝅

𝟐
− 𝟎 =

𝝅

𝟐
⇒ 𝑰 =

𝝅

𝟒
 

⇒ ∫
𝐜𝐨𝐬𝒏 𝒙 + 𝝀 𝐬𝐢𝐧𝟐 𝒙

𝝀 + 𝐬𝐢𝐧𝒏 𝒙 + 𝐜𝐨𝐬𝒏 𝒙

𝝅
𝟐

𝟎

𝒅𝒙 =
𝝅

𝟒
 

Solution 2 by Ankush Kumar Parcha-India 

𝑰 = ∫
𝐜𝐨𝐬𝒏(𝒙)+𝝀 𝐬𝐢𝐧𝟐(𝒙)

𝝀+𝐬𝐢𝐧𝒏(𝒙)+𝐜𝐨𝐬𝒏(𝒙)

𝝅

𝟐
𝟎

𝒅𝒙    (1) 

𝑰 = ∫
𝐜𝐨𝐬𝒏(𝒙) + 𝝀 𝐬𝐢𝐧𝟐(𝒙)

𝝀 + 𝐬𝐢𝐧𝒏(𝒙) + 𝐜𝐨𝐬𝒏(𝒙)

𝝅
𝟐

𝟎

𝒅𝒙 = ∫
𝐬𝐢𝐧𝒏(𝒙) + 𝝀𝐜𝐨𝐬𝟐(𝒙)

𝝀 + 𝐬𝐢𝐧𝒏(𝒙) + 𝐜𝐨𝐬𝒏(𝒙)

𝝅
𝟐

𝟎

𝒅𝒙 

(∵ ∫ 𝒇(𝒙)
𝒃

𝒂

𝒅𝒙 = ∫ 𝒇(𝒂 + 𝒃 − 𝒙)𝒅𝒙
𝒃

𝒂

) 

Adding above equation with equation (1) 
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𝟐𝑰 = ∫
𝐬𝐢𝐧𝒏(𝒙) + 𝐜𝐨𝐬𝒏(𝒙) + 𝝀(𝐬𝐢𝐧𝟐(𝒙) + 𝐜𝐨𝐬𝟐(𝒙))

𝝀 + 𝐬𝐢𝐧𝒏(𝒙) + 𝐜𝐨𝐬𝒏(𝒙)

𝝅
𝟐

𝟎

𝒅𝒙 

𝑰 = ∫
𝐜𝐨𝐬𝒏(𝒙) + 𝝀 𝐬𝐢𝐧𝟐(𝒙)

𝝀 + 𝐬𝐢𝐧𝒏(𝒙) + 𝐜𝐨𝐬𝒏(𝒙)

𝝅
𝟐

𝟎

𝒅𝒙 =
𝝅

𝟒
 

1646. Find: 

𝛀 = ∫
𝟏

𝟏 + √𝒙
√
√𝒙 − 𝟏

√𝒙 + 𝟏

𝟑

𝒅𝒙 

Proposed by Asliddin Egamberdiyev-Uzbekistan 

Solution 1 by Adrian Popa-Romania 

𝛀 = ∫
𝟏

𝟏 + √𝒙
√
√𝒙 − 𝟏

√𝒙 + 𝟏

𝟑

𝒅𝒙 =
(∗)
;    (∗): 

{
 
 

 
 √𝒙− 𝟏

√𝒙+ 𝟏
= 𝒕 ⇒ 𝒙 = (

𝟏 + 𝒕𝟑

𝟏 − 𝒕𝟑
)

𝟐

𝒅𝒙 =
𝟔𝒕𝟐

(𝟏 − 𝒕𝟑)𝟐
𝒅𝒕

 

=
(∗)
∫
𝟏 − 𝒕𝟑

𝟐
⋅ 𝒕 ⋅

𝟔𝒕𝟐

(𝟏 − 𝒕𝟑)𝟐
𝒅𝒕 = ∫

𝟑𝒕𝟐

𝟏 − 𝒕𝟑
𝒅𝒕 = ∫

𝟑𝒕𝟑 − 𝟑 + 𝟑

𝟏 − 𝒕𝟐
𝒅𝒕 = 

= −𝒕 + 𝟑∫
𝒅𝒕

(𝟏 − 𝒕)(𝟏 + 𝒕 + 𝒕𝟐)
= −𝒕 + 𝟑∫(

𝑨

𝟏− 𝒕
+

𝑩𝒕 + 𝑪

𝟏 + 𝒕 + 𝒕𝟐
)𝒅𝒕 

𝑨 + 𝑨𝒕 + 𝑨𝒕𝟐 +𝑩𝒕 + 𝑪 − 𝑩𝒕𝟐 − 𝑪𝒕 = 𝟏 ⇒ 𝑨 −𝑩 = 𝟎 ⇒ 𝑨 = 𝑩 

𝑨 +𝑩 − 𝑪 = 𝟎 ⇒ 𝟐𝑨 = 𝑪 

𝑨 + 𝑪 = 𝟏 ⇒ 𝟑𝑨 = 𝟏 ⇒ 𝑨 = 𝑩 =
𝟏

𝟑
, 𝑪 =

𝟐

𝟑
 

Hence, we have: 

𝛀 = −𝒕 + 𝟑∫(
𝟏

𝟑
⋅
𝟏

𝟏 − 𝒕
+
𝟏

𝟑
⋅
𝒕 + 𝟐

𝟏 + 𝒕 + 𝒕𝟐
)𝒅𝒕 = −𝒕 + ∫

𝒅𝒕

𝟏 − 𝒕
+ ∫

𝒕 + 𝟐

𝒕𝟐 + 𝒕 + 𝟏
𝒅𝒕 = 

= −𝒕 + 𝐥𝐨𝐠|𝟏 − 𝒕| +
𝟏

𝟐
∫

𝟐𝒕 + 𝟏

𝒕𝟐 + 𝒕 + 𝟏
𝒅𝒕 +

𝟑

𝟐
∫

𝒅𝒕

𝒕𝟐 + 𝒕 + 𝟏
= 

= −𝒕 + 𝐥𝐨𝐠|𝟏 − 𝒕| +
𝟏

𝟐
𝐥𝐨𝐠(𝒕𝟐 + 𝒕 + 𝟏) +

𝟑

𝟐
∫

𝒅𝒕

(𝒕 +
𝟏
𝟐)
𝟐

+
𝟑
𝟒

= 
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= −𝒕 + 𝐥𝐨𝐠|𝟏 − 𝒕| +
𝟑

𝟐
⋅
𝟐√𝟑

𝟑
𝐭𝐚𝐧−𝟏(

𝟐√𝟑

𝟑
(𝒕 +

𝟏

𝟐
))+ 𝑪 = 

=
(∗)
√
√𝒙 − 𝟏

√𝒙 + 𝟏

𝟑

+ 𝐥𝐨𝐠 [(𝟏 − √
√𝒙 − 𝟏

√𝒙 + 𝟏

𝟑

)((√
√𝒙 − 𝟏

√𝒙 + 𝟏

𝟑

)

𝟐

+ √
√𝒙 − 𝟏

√𝒙 + 𝟏

𝟑

+ 𝟏)]

+ 𝟑 𝐭𝐚𝐧−𝟏 [
𝟐√𝟑

𝟑
(√
√𝒙 − 𝟏

√𝒙 + 𝟏

𝟑

+
𝟏

𝟐
)] + 𝑪 

Solution 2 by Ankush Kumar Parcha-India 

𝛀 = ∫
𝟏

𝟏 + √𝒙
√
√𝒙 − 𝟏

√𝒙 + 𝟏

𝟑

𝒅𝒙 =
𝒚𝟐=𝒙

∫
𝒚 + 𝟏 + 𝒚 − 𝟏

𝟏 + 𝒚
√
𝒚 − 𝟏

𝒚 + 𝟏

𝟑

𝒅𝒚 = 

= ∫ √
𝒚 − 𝟏

𝒚 + 𝟏

𝟑

𝒅𝒚 +∫ √(
𝒚 − 𝟏

𝒚 + 𝟏
)
𝟒𝟑

𝒅𝒚 = 𝛀𝟏
𝟑

+𝛀𝟒
𝟑
, 𝐰𝐡𝐞𝐫𝐞 

𝛀𝟏
𝟑

= ∫ √
𝒚 − 𝟏

𝒚 + 𝟏

𝟑

𝒅𝒚 =

𝒚−𝟏
𝒚+𝟏

=𝒕𝟑

∫𝟔𝒕 ⋅
𝒕𝟐

(𝟏 − 𝒕𝟑)𝟐
𝒅𝒕 =

𝟐𝒕

𝟏 − 𝒕𝟑
− 𝟐∫

𝒅𝒕

𝟏 − 𝒕𝟑⏟    
=𝝎

 

Hence, we get: 

𝟏

𝟐
𝛀𝟏
𝟑

=
𝒕

𝟏 − 𝒕𝟑
− 𝝎,𝝎 = ∫

𝒅𝒕

𝟏 − 𝒕𝟑
= ∫

𝒅𝒕

(𝟏 − 𝒕)(𝒕𝟐 + 𝒕 + 𝟏)
 

Using partial decomposition, we have: 

𝟏

(𝟏 − 𝒕)(𝒕𝟐 + 𝒕 + 𝟏)
=

𝑨

𝟏 − 𝒕
+
𝑩𝒙 + 𝑪

𝒕𝟐 + 𝒕 + 𝟏
 

By solving system of equation, we get: 𝑨 = 𝑩 =
𝟏

𝟑
, 𝑪 =

𝟐

𝟑
 

𝟑𝝎 = ∫
𝟏

𝟏 − 𝒕
𝒅𝒕 +∫

𝟐𝒕 + 𝟏

𝒕𝟐 + 𝒕 + 𝟏
𝒅𝒕 +∫

𝟑

𝒕𝟐 + 𝒕 + 𝟏
𝒅𝒕 = 

= −𝐥𝐨𝐠 |𝟏 − 𝒙| + 𝐥𝐨𝐠 |𝒕𝟐 + 𝒕 + 𝟏| + 𝟑∫
𝒅𝒕

(𝒕 +
𝟏
𝟐)
𝟐

+ (
√𝟑
𝟐 )

𝟐 
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𝛀𝟏
𝟑

=

𝟐√√
𝒙− 𝟏

√𝒙+ 𝟏

𝟑

𝟏 − √√
𝒙 − 𝟏

√𝒙 + 𝟏

𝟑

− 𝐥𝐨𝐠

(

 
 
 
 
 

√
  
  
  
  
  
  
  
 

(√√
𝒙 − 𝟏

√𝒙 + 𝟏

𝟑

)

𝟐

+ √√
𝒙− 𝟏

√𝒙+ 𝟏

𝟑

+ 𝟏

(𝟏 − √√
𝒙 − 𝟏

√𝒙 + 𝟏

𝟑

)

𝟐

𝟑

)

 
 
 
 
 

−
𝟐√𝟑

𝟑
(
𝟐√𝟑

𝟑
⋅ (√

√𝒙 − 𝟏

√𝒙 + 𝟏

𝟑

+ √𝟑)) 

Consider the integral 𝛀𝒂 = ∫ (
𝒙−𝟏

𝒙+𝟏
)
𝒂

𝒅𝒙;∀𝒂 ∈ ℝ − {−𝟏}. The recurrence relation of the 

above integral is: 

𝛀𝒂 =
𝒙 − 𝟏

𝒂 + 𝟏
⋅ (
𝒙 − 𝟏

𝒙 + 𝟏
)
𝒂

+
𝒂

𝒂 + 𝟏
𝛀𝒂+𝟏 

Put 𝒂 =
𝟏

𝟑
 in the above recurrence relation, we get 

𝛀𝟏
𝟑

=
𝟑(𝒙 − 𝟏)

𝟒
√
𝒙 − 𝟏

𝒙 + 𝟏

𝟑

+
𝟏

𝟒
𝛀𝟒
𝟑
⇒ 𝛀𝟒

𝟑
= 𝟒𝛀𝟏

𝟑

− 𝟑(𝒙 − 𝟏) (
𝒙 − 𝟏

𝒙 + 𝟏
)

𝟒
𝟑

 

Therefore, 

𝛀 = √
√𝒙− 𝟏

√𝒙+ 𝟏

𝟑

+ 𝐥𝐨𝐠 [(𝟏 − √
√𝒙 − 𝟏

√𝒙 + 𝟏

𝟑

)((√
√𝒙− 𝟏

√𝒙+ 𝟏

𝟑

)

𝟐

+ √
√𝒙 − 𝟏

√𝒙 + 𝟏

𝟑

+ 𝟏)]

+ 𝟑 𝐭𝐚𝐧−𝟏 [
𝟐√𝟑

𝟑
(√
√𝒙− 𝟏

√𝒙+ 𝟏

𝟑

+
𝟏

𝟐
)] + 𝑪 

Solution 3 by Hikmat Mammadov-Azerbaijan 

𝐋𝐞𝐭: 

{
 
 
 

 
 
 √𝒙 − 𝟏

√𝒙 + 𝟏
= 𝒛𝟑 ⇒ √𝒙 =

𝒛𝟑 + 𝟏

𝒛𝟑 − 𝟏

𝒙 =
(𝒛𝟑 + 𝟏)𝟐

(𝒛𝟑 − 𝟏)𝟐
⇒

𝟏

𝟏 + √𝒙
=
𝒛𝟑 − 𝟏

𝟐𝒛𝟑

𝒅𝒙 = [−𝟏𝟐𝒛𝟐 ⋅
𝒛𝟑 + 𝟏

(𝒛𝟑 − 𝟏)𝟐
] 𝒅𝒛

 



 
www.ssmrmh.ro 

83 RMM-CALCULUS MARATHON 1601-1700 

 

𝛀 = ∫
𝟏

𝟏 + √𝒙
√
√𝒙 − 𝟏

√𝒙 + 𝟏

𝟑

𝒅𝒙 = ∫
𝒛𝟑 − 𝟏

𝟐𝒛𝟑
⋅ 𝒛 ⋅ (−𝟏𝟐𝒛𝟐 ⋅

𝒛𝟑 + 𝟏

(𝒛𝟑 − 𝟏)𝟑
)𝒅𝒛 = 

= −𝟔∫(𝒛𝟑 − 𝟏) ⋅ (
𝒛𝟑 + 𝟏

(𝒛𝟑 − 𝟏)𝟑
)𝒅𝒛 = −𝟔∫

𝒛𝟑 + 𝟏

𝒛𝟑 − 𝟏
𝒅𝒛 = −𝟔∫

(𝒛𝟑 − 𝟏) + 𝟐

𝒛𝟑 − 𝟏
𝒅𝒛 = 

= −𝟔𝒛 − 𝟔∫
𝟐

(𝒛 − 𝟏)(𝒛𝟐 + 𝒛+ 𝟏)
𝒅𝒛 = −𝟔𝒛 − 𝟔 [

𝟐

𝟑
∫
(𝒛𝟐 + 𝒛 + 𝟏) − (𝒛 − 𝟏)(𝒛 + 𝟐)

(𝒛 − 𝟏)(𝒛𝟐 + 𝒛 + 𝟏)
𝒅𝒛]

= 

= −𝟔𝒛 − 𝟔 [
𝟐

𝟑
∫(

𝟏

𝒛 − 𝟏
−

𝒛 + 𝟐

𝒛𝟐 + 𝒛 + 𝟏
)𝒅𝒛] 

= −𝟔𝒛 − 𝟔[
𝟐

𝟑
𝐥𝐨𝐠|𝒛 − 𝟏| −

𝟏

𝟑
∫
((𝟐𝒛 + 𝟏) + 𝟑)𝒅𝒛

𝒛𝟐 + 𝒛 + 𝟏
 

= −𝟔𝒛 − 𝟔 [
𝟐

𝟑
𝐥𝐨𝐠|𝒛 − 𝟏| −

𝟏

𝟑
𝐥𝐨𝐠(𝒛𝟐 + 𝒛 + 𝟏) −

𝟐√𝟑

𝟑
𝐭𝐚𝐧−𝟏 (

√𝟑(𝒛 + 𝟏)

𝟑
+ 𝑪)] = 

= −𝟔𝒛 − 𝟒 𝐥𝐨𝐠|𝒛 − 𝟏| + 𝟐 𝐥𝐨𝐠(𝒛𝟐 + 𝒛 + 𝟏) − 𝟒√𝟑 𝐭𝐚𝐧−𝟏 (
√𝟑(𝟐𝒛 + 𝟏)

𝟑
) + 𝑪 

Therefore, 

𝛀 = √
√𝒙− 𝟏

√𝒙+ 𝟏

𝟑

+ 𝐥𝐨𝐠 [(𝟏 − √
√𝒙 − 𝟏

√𝒙 + 𝟏

𝟑

)((√
√𝒙− 𝟏

√𝒙+ 𝟏

𝟑

)

𝟐

+ √
√𝒙 − 𝟏

√𝒙 + 𝟏

𝟑

+ 𝟏)]

+ 𝟑 𝐭𝐚𝐧−𝟏 [
𝟐√𝟑

𝟑
(√
√𝒙− 𝟏

√𝒙+ 𝟏

𝟑

+
𝟏

𝟐
)] + 𝑪 

1647. Find: 

𝛀 = ∫ √
√𝒙 − 𝟏

√𝒙

𝟒

𝟏

𝒅𝒙 

Proposed by Durmuş Ogmen-Turkiye 

Solution 1 by Yen Tung Chung-Taichung-Taiwan 

𝐋𝐞𝐭: 𝒚 = √𝟏 −
𝟏

√𝒙
⇒
𝟏

√𝒙
= 𝟏 − 𝒚𝟐 ⇒ 𝒙 =

𝟏

(𝟏 − 𝒚𝟐)𝟐
 

Hence, we have: 
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𝛀 = ∫ √
√𝒙− 𝟏

√𝒙

𝟒

𝟏

𝒅𝒙 = ∫ √𝟏 −
𝟏

√𝒙

𝟒

𝟏

𝒅𝒙 = 

= ∫ 𝒚 𝒅(
𝟏

(𝟏 − 𝒚𝟐)𝟐
)

𝟏

√𝟐

𝟎

=
𝒚

(𝟏 − 𝒚𝟐)𝟐
|
𝟎

𝟏

√𝟐 −∫
𝟏

(𝟏 − 𝒚𝟐)𝟐

𝟏

√𝟐

𝟎

𝒅𝒚 = 

= 𝟐√𝟐 − ∫
𝟏

(𝟏 − 𝒚𝟐)𝟐
𝒅𝒚

𝟏

√𝟐

𝟎

=
𝒚=𝐬𝐢𝐧 𝜽

𝟐√𝟐− ∫
𝟏

(𝟏 − 𝐬𝐢𝐧𝟐 𝜽)𝟐
⋅ 𝐜𝐨𝐬 𝜽

𝝅
𝟒

𝟎

𝒅𝜽 = 

= 𝟐√𝟐 −∫ 𝐬𝐞𝐜𝟑 𝜽

𝝅
𝟒

𝟎

𝒅𝜽 = 𝟐√𝟐− (
𝟏

𝟐
𝐬𝐞𝐜𝜽 𝐭𝐚𝐧 𝜽 +

𝟏

𝟐
𝐥𝐨𝐠|𝐬𝐞𝐜𝜽 + 𝐭𝐚𝐧 𝜽|)|

𝟎

𝝅
𝟒
= 

= 𝟐√𝟐− (
√𝟐

𝟐
+
𝟏

𝟐
𝐥𝐨𝐠(𝟏 + √𝟐)) =

𝟑√𝟐

𝟐
−
𝟏

𝟐
𝐥𝐨𝐠(𝟏 + √𝟐) 

Solution 2 by Adrian Popa-Romania 

Let: √𝒙
𝟒 = 𝒕 ⇒ 𝒙 = 𝒕𝟒, 𝒅𝒙 = 𝟒𝒕𝟑𝒅𝒕 

𝛀 = ∫ √
√𝒙 − 𝟏

√𝒙

𝟒

𝟏

𝒅𝒙 = ∫ √
𝒕𝟐 − 𝟏

𝒕𝟐

√𝟐

𝟏

⋅ 𝟒𝒕𝟑𝒅𝒕 = 𝟒∫ 𝒕𝟐√𝒕𝟐 − 𝟏
√𝟐

𝟏

𝒅𝒕 = 

= 𝟒∫
𝒕𝟒𝒅𝒕

√𝒕𝟐 − 𝟏

√𝟐

𝟏

− 𝟒∫
𝒕𝟐𝒅𝒕

√𝒕𝟐 − 𝟏

√𝟐

𝟏

= 𝛀𝟐 −𝛀𝟏, 𝐰𝐡𝐞𝐫𝐞 

𝛀𝟏 = 𝟒∫
𝒕𝟒𝒅𝒕

√𝒕𝟐 − 𝟏

√𝟐

𝟏

= 𝟒∫ 𝒕 (√𝒕𝟐 − 𝟏)
′√𝟐

𝟏

𝒅𝒕 = 𝟒𝒕√𝒕𝟐 − 𝟏|
𝟏

√𝟐

− 𝟒∫ √𝒕𝟐 − 𝟏
√𝟐

𝟏

𝒅𝒕 = 

= 𝟒√𝟐 − 𝟒∫ √𝒕𝟐 − 𝟏
√𝟐

𝟏

𝒅𝒕 = 𝟒√𝟐 − 𝛀𝟏𝟏, 𝐰𝐡𝐞𝐫𝐞 

𝛀𝟏𝟏 = 𝟒∫ √𝒕𝟐 − 𝟏
√𝟐

𝟏

𝒅𝒕 = 𝟒∫
𝒕𝟐 − 𝟏

√𝒕𝟐 − 𝟏

√𝟐

𝟏

𝒅𝒕 = 𝟒∫
𝒕𝟐

√𝒕𝟐 − 𝟏

√𝟐

𝟏

𝒅𝒕 − 𝟒∫
𝒅𝒕

√𝟏 − 𝒕𝟐

√𝟐

𝟏

= 

= 𝛀𝟏 − 𝟒 𝐥𝐨𝐠 (𝒕 + √𝒕𝟐 + 𝟏)|
𝟏

√𝟐

= 𝛀𝟏 − 𝟒 𝐥𝐨𝐠(√𝟐 + 𝟏) 

Hence, we have: 

𝛀𝟏 = 𝟒√𝟐 −𝛀𝟏 + 𝟒 𝐥𝐨𝐠(√𝟐 + 𝟏) ⇒ 𝛀𝟏 = 𝟐√𝟐 + 𝟐 𝐥𝐨𝐠(√𝟐 + 𝟏) 
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𝛀𝟐 = 𝟒∫
𝒕𝟐𝒅𝒕

√𝒕𝟐 − 𝟏

√𝟐

𝟏

= 𝟒∫ 𝒕𝟑 (√𝒕𝟐 − 𝟏)
′√𝟐

𝟏

𝒅𝒕 = 𝟒𝒕𝟑√𝒕𝟐 − 𝟏|
𝟏

√𝟐

− 𝟒∫ 𝟑𝒕𝟐√𝒕𝟐 − 𝟏
√𝟐

𝟏

𝒅𝒕

= 

= 𝟖√𝟐 − 𝟏𝟐∫
𝒕𝟒 − 𝒕𝟐

√𝒕𝟐 − 𝟏

√𝟐

𝟏

𝒅𝒕 = 𝟖√𝟑 − 𝟑𝛀 

Therefore, 

𝛀 = ∫ √
√𝒙− 𝟏

√𝒙

𝟒

𝟏

𝒅𝒙 =
𝟑√𝟐

𝟐
−
𝟏

𝟐
𝐥𝐨𝐠(𝟏 + √𝟐) 

Solution 3 by Ankush Kumar Parcha-India 

𝛀 = ∫ √
√𝒙 − 𝟏

√𝒙

𝟒

𝟏

𝒅𝒙 

𝐋𝐞𝐭: 𝑰 = ∫√
√𝒙− 𝟏

√𝒙
𝒅𝒙 =

√𝒙=𝒚
∫𝟐√𝒚𝟐 − 𝒚𝒅𝒚 

𝟏

𝟐
𝑰 = ∫√𝒚𝟐 − 𝒚𝒅𝒚 = ∫√(𝒚 −

𝟏

𝟐
)
𝟐

− (
𝟏

𝟐
)
𝟐

𝒅𝒚 

∵ ∫√𝒙𝟐 − 𝒂𝟐 𝒅𝒙 =
𝒙√𝒙𝟐 − 𝒂𝟐

𝟐
−
𝒂𝟐

𝟐
𝐥𝐨𝐠 |𝒙 + √𝒙𝟐 − 𝒂𝟐| + 𝑪 

𝑰 =
(𝟐√𝒙 − 𝟏)√√𝒙(√𝒙 − 𝟏)

𝟐
−
𝟏

𝟒
𝐥𝐨𝐠 |√𝒙 −

𝟏

𝟐
√√𝒙(√𝒙 − 𝟏)| + 𝑪 

Therefore, 

𝛀 = ∫ √
√𝒙− 𝟏

√𝒙

𝟒

𝟏

𝒅𝒙 =
𝟑√𝟐

𝟐
−
𝟏

𝟐
𝐥𝐨𝐠(𝟏 + √𝟐) 

Solution 4 by Ravi Prakash-New Delhi-India 

Let √𝒙 = 𝒕 + 𝟏 ⇒ 𝒙 = (𝒕 + 𝟏)𝟐, 𝒅𝒙 = 𝟐(𝒕 + 𝟏)𝒅𝒕; (∗) 

𝛀 = ∫ √
√𝒙 − 𝟏

√𝒙

𝟒

𝟏

𝒅𝒙 =
(∗)
𝟐∫

(𝒕 + 𝟏)√𝒕

√𝒕 + 𝟏
𝒅𝒕

𝟏

𝟎

= 𝟐∫ √𝒕(𝒕 + 𝟏)
𝟏

𝟎

𝒅𝒕 = 
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= 𝟐∫ √(𝒕 +
𝟏

𝟐
)
𝟐

−
𝟏

𝟒

𝟏

𝟎

𝒅𝒕 =
𝒕+
𝟏
𝟐
=𝒖

𝟐∫ √𝒖𝟐 −
𝟏

𝟒

𝟑
𝟐

𝟏
𝟐

𝒅𝒖 = 

= [𝒖√𝒖𝟐 −
𝟏

𝟒
−
𝟏

𝟒
𝐥𝐨𝐠 (𝒖 +√𝒖𝟐 −

𝟏

𝟒
)|

𝟏
𝟐

𝟑
𝟐

=
𝟑√𝟐

𝟐
−
𝟏

𝟒
𝐥𝐨𝐠 (

𝟑

𝟐
+ √𝟐) +

𝟏

𝟒
𝐥𝐨𝐠 (

𝟏

𝟐
) = 

=
𝟑√𝟐

𝟐
−
𝟏

𝟒
𝐥𝐨𝐠(𝟑 + 𝟐√𝟐) 

1648. Solve the integral for 𝒄, if 𝒂 + 𝒃 = 𝒄 

∫
𝒂𝒙𝟐 + 𝒃𝒙 + 𝒄

𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝟏

∞

𝟎

𝒅𝒙

√𝒙
= 𝝅 

Proposed by Srinivasa Raghava-AIRMC-India 

Solution by Asmat Qatea-Afghanistan 

Let’s start with this integral 

𝑰𝒏 = ∫
𝒙𝒏

𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝟏

∞

𝟎

𝒅𝒙 = ∫
𝒙𝒏 − 𝒙𝒏+𝟏

𝟏 − 𝒙𝟓

∞

𝟎

= 

= ∫
𝒙𝒏 − 𝒙𝒏+𝟏

𝟏 − 𝒙𝟓⏟      
𝒙𝟓→𝒙

𝟏

𝟎

𝒅𝒙 +∫
𝒙𝒏 − 𝒙𝒏+𝟏

𝟏 − 𝒙𝟓⏟      

𝒙→
𝟏
𝒙

∞

𝟏

𝒅𝒙 

=
𝟏

𝟓
(∫

𝒙
𝒏−𝟒
𝟓 − 𝒙

𝒏−𝟑
𝟓

𝟏 − 𝒙

𝟏

𝟎

𝒅𝒙) + ∫
𝒙−𝒏 − 𝒙−(𝒏+𝟏)

𝟏 − 𝒙−𝟓

𝟏

𝟎

⋅
𝟏

𝒙𝟐
𝒅𝒙 

=
𝟏

𝟓
(𝝍(

𝒏 + 𝟐

𝟓
) −𝝍(

𝒏 + 𝟏

𝟓
) +∫

𝒙
−𝒏−𝟐
𝟓 − 𝒙

−𝒏−𝟏
𝟓

𝟏 − 𝒙

𝟏

𝟎

𝒅𝒙) 

=
𝟏

𝟓
(𝝍(

𝒏 + 𝟐

𝟓
) − 𝝍(

𝒏 + 𝟏

𝟓
) + 𝝍(

−𝒏 + 𝟒

𝟓
) − 𝝍(

−𝒏 + 𝟑

𝟓
)) 

=
𝟏

𝟓
(𝝍(

𝒏 + 𝟐

𝟓
) −𝝍 (

𝒏 + 𝟏

𝟓
) +𝝍 (𝟏−

𝒏 + 𝟏

𝟓
) − 𝝍(𝟏 −

𝒏 + 𝟐

𝟓
)) 

𝝍(𝟏 − 𝒙) − 𝝍(𝒙) = 𝝅𝐜𝐨𝐭 𝝅𝒙 and 𝐜𝐨𝐭 𝒙 − 𝐜𝐨𝐭 𝒚 =
𝟏+𝐜𝐨𝐭 𝒙 𝐜𝐨𝐭 𝒚

𝐜𝐨𝐭(𝒚−𝒙)
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=
𝝅

𝟓
(𝐜𝐨𝐭 (

𝒏 + 𝟏

𝟓
𝝅) − 𝐜𝐨𝐭 (

𝒏 + 𝟐

𝟓
𝝅)) =

𝝅

𝟓
⋅
𝟏 + 𝐜𝐨𝐭 (

𝒏 + 𝟏
𝟓 𝝅) 𝐜𝐨𝐭 (

𝒏 + 𝟐
𝟓 𝝅)

𝐜𝐨𝐭 (
𝝅
𝟓)

 

∫
𝒙𝒏

𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝟏

∞

𝟎

𝒅𝒙 =
𝝅

𝟓𝐜𝐨𝐭 (
𝝅
𝟓)
(𝟏 + 𝐜𝐨𝐭 (

𝒏 + 𝟏

𝟓
𝝅) 𝐜𝐨𝐭 (

𝒏 + 𝟐

𝟓
𝝅)) 

𝛀 = ∫
𝒂𝒙𝟐+𝒃𝒙+𝒄

𝒙𝟒+𝒙𝟑+𝒙𝟐+𝒙+𝟏

∞

𝟎

𝒅𝒙

√𝒙
= 𝝅 and 𝒂 + 𝒃 = 𝒄 

𝒂∫
𝒙
𝟑
𝟐

𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝟏

∞

𝟎

𝒅𝒙 + 𝒃∫
𝒙
𝟏
𝟐

𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝒙 + 𝟏

∞

𝟎

𝒅𝒙 + 

+𝒄∫
𝒙−
𝟏
𝟐

𝒙𝟒 + 𝒙𝟑 + 𝒙𝟐 + 𝒙+ 𝟏

∞

𝟎

𝒅𝒙 = 𝝅 

𝒂(𝟏 + 𝐜𝐨𝐭 (
𝝅

𝟐
) 𝐜𝐨𝐭 (

𝟕

𝟓
𝝅)

⏟            
𝟎

) + 𝒃(𝟏 + 𝐜𝐨𝐭 (
𝟑

𝟏𝟎
𝝅) 𝐜𝐨𝐭 (

𝝅

𝟐
)

⏟            
𝟎

) + 

+𝒄 (𝟏 + 𝐜𝐨𝐭 (
𝝅

𝟏𝟎
) 𝐜𝐨𝐭 (

𝟑

𝟏𝟎
𝝅)) = 𝟓𝐜𝐨𝐭 (

𝝅

𝟓
) 

𝒄 =
𝟓 𝐜𝐨𝐭 (

𝝅
𝟓)

𝟐 + 𝐜𝐨𝐭 (
𝝅
𝟏𝟎)𝐜𝐨𝐭 (

𝟑
𝟏𝟎𝝅)⏟            

√𝟓

=

𝟓

√𝟓 − 𝟐√𝟓

𝟐 + √𝟓
⇒ 𝒄 =

𝟓

(𝟐 + √𝟓) (√𝟓− 𝟐√𝟓)
 

1649. If 𝟎 < 𝑎 ≤ 𝑏 then: 

∫ (
𝟏

𝒙
⋅ 𝐭𝐚𝐧−𝟏 𝒙)

𝒃

𝒂

𝒅𝒙 ≥ 𝐥𝐨𝐠 (
𝒃 + √𝟏 + 𝒃𝟐

𝒂 + √𝟏 + 𝒂𝟐
) 

Proposed by Daniel Sitaru-Romania 

Solution 1 by Adrian Popa-Romania 

𝐥𝐨𝐠 (
𝒃 + √𝟏 + 𝒃𝟐

𝒂 + √𝟏 + 𝒂𝟐
) = 𝐥𝐨𝐠 (𝒃 + √𝟏 + 𝒃𝟐) − 𝐥𝐨𝐠 (𝒂 + √𝟏 + 𝒂𝟐) = 

= 𝐥𝐨𝐠 (𝒙 + √𝟏 + 𝒙𝟐)|
𝒂

𝒃

= ∫
𝒅𝒙

√𝟏 + 𝒙𝟐

𝒃

𝒂

 

We must to prove: 
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𝐭𝐚𝐧−𝟏 𝒙

𝒙
≥

𝟏

√𝟏+ 𝒙𝟐
, ∀𝒙 > 0 

𝐋𝐞𝐭: 𝒇(𝒙) = 𝐭𝐚𝐧−𝟏 𝒙 −
𝒙

√𝟏 + 𝒙𝟐
, 𝒙 > 0 𝐭𝐡𝐞𝐧 𝒇′(𝒙) =

√𝟏 + 𝒙𝟐 − 𝟏

𝟏 + 𝒙𝟐
> 0,∀𝑥 > 0 

⇒ 𝒇 ↗ and 𝒇(𝟎) = 𝟎 ⇒ 𝒇(𝒙) > 0, ∀𝑥 > 0 ⇒ 𝐭𝐚𝐧−𝟏 𝒙 ≥
𝒙

√𝟏+𝒙𝟐
, ∀𝒙 > 0. 

Therefore, 

∫ (
𝟏

𝒙
⋅ 𝐭𝐚𝐧−𝟏 𝒙)

𝒃

𝒂

𝒅𝒙 ≥ 𝐥𝐨𝐠(
𝒃 + √𝟏 + 𝒃𝟐

𝒂 + √𝟏 + 𝒂𝟐
) 

Equality holds for 𝒂 = 𝒃. 

 Solution 2 by Amrit Awasthi-India 

𝐬𝐢𝐧 𝒙 < 𝑥, ∀𝑥 > 0 ⇒ 𝐬𝐢𝐧−𝟏(𝐬𝐢𝐧 𝒙) < 𝐬𝐢𝐧−𝟏 𝒙 ⇒ 𝒙 < 𝐬𝐢𝐧−𝟏 𝒙 ⇒ 

𝐬𝐢𝐧−𝟏 (
𝒙

√𝟏 + 𝒙𝟐
) >

𝒙

√𝟏 + 𝒙𝟐
, 𝐛𝐮𝐭  𝐬𝐢𝐧−𝟏 (

𝒙

√𝟏 + 𝒙𝟐
) = 𝐭𝐚𝐧−𝟏 𝒙 

⇒ 𝐭𝐚𝐧−𝟏 𝒙 >
𝒙

√𝟏+ 𝒙𝟐
⇒
𝐭𝐚𝐧−𝟏 𝒙

𝒙
≥

𝟏

√𝟏 + 𝒙𝟐
, ∀𝒙 > 0; (𝟏) 

Integrating both sides w.r.t. 𝒙 from 𝒂  to 𝒃,  it follows 

∫
𝐭𝐚𝐧−𝟏 𝒙

𝒙
𝒅𝒙

𝒃

𝒂

≥ ∫
𝒅𝒙

√𝟏 + 𝒙𝟐

𝒃

𝒂

= 𝐥𝐨𝐠 (𝒙 + √𝟏 + 𝒙𝟐)|
𝒂

𝒃

= 

= 𝐥𝐨𝐠 (𝒃 + √𝟏 + 𝒃𝟐) − 𝐥𝐨𝐠 (𝒂 + √𝟏 + 𝒂𝟐) = 𝐥𝐨𝐠 (
𝒃 + √𝟏 + 𝒃𝟐

𝒂 + √𝟏 + 𝒂𝟐
) 

Therefore, 

∫ (
𝟏

𝒙
⋅ 𝐭𝐚𝐧−𝟏 𝒙)

𝒃

𝒂

𝒅𝒙 ≥ 𝐥𝐨𝐠(
𝒃 + √𝟏 + 𝒃𝟐

𝒂 + √𝟏 + 𝒂𝟐
) 

Equality holds for 𝒂 = 𝒃. 

 Solution 3 by Kamel Gandouli Rezgui-Tunisia 

(𝒙 + √𝟏 + 𝒙𝟐)
′

𝒙 + √𝟏+ 𝒙𝟐
=

𝟏 +
𝒙

√𝟏 + 𝒙𝟐

𝒙 + √𝟏 + 𝒙𝟐
=

𝟏

√𝟏 + 𝒙𝟐
= (𝐬𝐢𝐧𝐡−𝟏 𝒙)′ 

𝐋𝐞𝐭: 𝒇(𝒙) = 𝐭𝐚𝐧−𝟏 𝒙 −
𝒙

√𝟏 + 𝒙𝟐
, 𝐭𝐡𝐞𝐧 𝒇′(𝒙) =

√𝟏+ 𝒙𝟐 − 𝟏

√𝟏+ 𝒙𝟐
≥ 𝟎,∀𝒙 > 0 
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𝒇 ↗ (𝟎,∞) ⇒ 𝒇(𝒙) ≥ 𝒇(𝟎) = 𝟎,∀𝒙 ≥ 𝟎 

𝐭𝐚𝐧−𝟏 𝒙

𝒙
≥

𝟏

√𝟏+ 𝒙𝟐
, ∀𝒙 > 0 

∫
𝐭𝐚𝐧−𝟏 𝒙

𝒙
𝒅𝒙

𝒃

𝒂

≥ ∫
𝒅𝒙

√𝟏 + 𝒙𝟐

𝒃

𝒂

= 𝐥𝐨𝐠 (𝒙 + √𝟏 + 𝒙𝟐)|
𝒂

𝒃

= 

= 𝐥𝐨𝐠 (𝒃 + √𝟏 + 𝒃𝟐) − 𝐥𝐨𝐠 (𝒂 + √𝟏 + 𝒂𝟐) = 𝐥𝐨𝐠 (
𝒃 + √𝟏 + 𝒃𝟐

𝒂 + √𝟏 + 𝒂𝟐
) 

Therefore, 

∫ (
𝟏

𝒙
⋅ 𝐭𝐚𝐧−𝟏 𝒙)

𝒃

𝒂

𝒅𝒙 ≥ 𝐥𝐨𝐠(
𝒃 + √𝟏 + 𝒃𝟐

𝒂 + √𝟏 + 𝒂𝟐
) 

Equality holds for 𝒂 = 𝒃. 

1650. Prove that: 

∑
(−𝟏)𝒏+𝟏

𝒏
⋅
𝚪 (
𝒏
𝟐
)

𝚪 (
𝒏 + 𝟏
𝟐
)

∞

𝒏=𝟏

=
𝝅
𝟑
𝟐

𝟒
 

where 𝚪(𝒙) −is Gamma function. 

Proposed by Naren Bhandari-Bajura-Nepal 
Solution by Rana Ranino-Setif-Algerie 

𝛀 = ∑
(−𝟏)𝒏+𝟏

𝒏
⋅
𝚪 (
𝒏
𝟐
)

𝚪 (
𝒏 + 𝟏
𝟐 )

∞

𝒏=𝟏

=
𝟏

√𝝅
∑
(−𝟏)𝒏+𝟏

𝒏
⋅
𝚪 (
𝒏
𝟐
) 𝚪(

𝟏
𝟐
)

𝚪 (
𝒏 + 𝟐
𝟐 )

∞

𝒏=𝟏

=
𝟏

√𝝅
∑
(−𝟏)𝒏+𝟏

𝒏
𝑩(
𝒏

𝟐
,
𝟏

𝟐
)

∞

𝒏=𝟏

 

𝛀 =
𝟐

√𝝅
∑
(−𝟏)𝒏+𝟏

𝒏

∞

𝒏=𝟏

∫ 𝐬𝐢𝐧𝒏−𝟏 𝒙

𝝅
𝟐

𝟎

𝒅𝒙 =
𝟐

√𝝅
∫

𝟏

𝐬𝐢𝐧 𝒙
(∑

(−𝟏)𝒏+𝟏 𝐬𝐢𝐧𝒏 𝒙

𝒏

∞

𝒏=𝟏

)

𝝅
𝟐

𝟎

𝒅𝒙 = 

=
𝟐

√𝝅
∫
𝐥𝐨𝐠(𝟏 + 𝐬𝐢𝐧𝒙)

𝐬𝐢𝐧 𝒙

𝝅
𝟐

𝟎

𝒅𝒙

⏞              
𝑰

=
𝒕=𝐭𝐚𝐧(

𝒙
𝟐
)

∫
𝐥𝐨𝐠 (𝟏 +

𝟐𝒕
𝟏 + 𝒕𝟐

)

𝟐𝒕
𝟏 + 𝒕𝟐

𝟐𝒅𝒕

𝟏 + 𝒕𝟐

𝟏

𝟎

= 

= ∫
𝟐 𝐥𝐨𝐠(𝟏 + 𝒕) − 𝐥𝐨𝐠(𝟏 + 𝒕𝟐)

𝒕
𝒅𝒕

𝟏

𝟎

= 𝟐∑
(−𝟏)𝒏+𝟏

𝒏𝟐

∞

𝒏=𝟏

−
𝟏

𝟐
∑
(−𝟏)𝒏+𝟏

𝒏𝟐

∞

𝒏=𝟏
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𝑰 =
𝟑

𝟐
∑
(−𝟏)𝒏+𝟏

𝒏𝟐

∞

𝒏=𝟏

=
𝝅𝟐

𝟖
⇒ 𝛀 =

𝟐

√𝝅
⋅
𝝅𝟐

𝟖
=
𝝅
𝟑
𝟐

𝟒
 

Therefore, 

∑
(−𝟏)𝒏+𝟏

𝒏
⋅
𝚪 (
𝒏
𝟐)

𝚪 (
𝒏 + 𝟏
𝟐 )

∞

𝒏=𝟏

=
𝝅
𝟑
𝟐

𝟒
 

1651. Given 𝒖𝟏 = 𝟏, 𝒖𝒏+𝟏 =
𝒏𝟐−𝒏+𝟏

𝒏𝟐
𝒖𝒏; ∀𝒏 ∈ ℕ

∗. Find: 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

𝒖𝒏. 

Proposed by Minh Vu-Vietnam 

Solution by Amrit Awasthi-India 

𝒖𝒏+𝟏 =
𝒏𝟐 − 𝒏+ 𝟏

𝒏𝟐
𝒖𝒏 ⇒

𝒖𝒏+𝟏
𝒖𝒏

=
𝒏𝟐 − 𝒏+ 𝟏

𝒏𝟐
; 𝒖𝟏 = 𝟏 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

𝒖𝒏 = 𝐥𝐢𝐦
𝒏→∞

𝒖𝒏
𝒖𝟏
= 𝐥𝐢𝐦
𝒏→∞

𝒖𝒏
𝒖𝟐
⋅
𝒖𝟐
𝒖𝟏
= 𝐥𝐢𝐦
𝒏→∞

𝒖𝒏
𝒖𝟑
⋅
𝒖𝟑
𝒖𝟐
⋅
𝒖𝟐
𝒖𝟏
= 

= 𝐥𝐢𝐦
𝒏→∞

𝒖𝒏
𝒖𝒏−𝟏

⋅
𝒖𝒏−𝟏
𝒖𝒏−𝟐

⋅ … ⋅
𝒖𝟑
𝒖𝟐
⋅
𝒖𝟐
𝒖𝟏
= 𝐥𝐢𝐦
𝒏→∞

∏
𝒌𝟐 − 𝒌 + 𝟏

𝒌𝟐

𝒏

𝒌=𝟏

= 

= 𝐥𝐢𝐦
𝒏→∞

∏

(𝒌−
𝟏
𝟐 −

√𝟑𝒊
𝟐 )(𝒌 −

𝟏
𝟐 +

√𝟑𝒊
𝟐 )

𝒌 ⋅ 𝒌

𝒏

𝒌=𝟏

= 

= 𝐥𝐢𝐦
𝒏→∞

𝚪 (𝒏 +
𝟏
𝟐 −

√𝟑𝒊
𝟐 )𝚪 (𝒏 +

𝟏
𝟐 +

√𝟑𝒊
𝟐 )

𝚪(𝒏 + 𝟏)𝚪(𝒏 + 𝟏)
⋅

𝟏

𝚪 (
𝟏
𝟐
−
√𝟑𝒊
𝟐
)𝚪 (

𝟏
𝟐
+
√𝟑𝒊
𝟐
)

= 

=

𝐜𝐨𝐬𝐡(
√𝟑𝝅
𝟐 )

𝝅
⋅ 𝐥𝐢𝐦
𝒏→∞

(𝒏
𝟏
𝟐
−
√𝟑𝒊
𝟐 ⋅ 𝒏−𝟏 ⋅ 𝒏

𝟏
𝟐
+
√𝟑𝒊
𝟐 ⋅ 𝒏−𝟏) =

𝐜𝐨𝐬𝐡 (
√𝟑𝝅
𝟐 )

𝝅
⋅ 𝐥𝐢𝐦
𝒏→∞

𝟏

𝒏
= 𝟎 

Therefore,  

𝛀 = 𝐥𝐢𝐦
𝒏→∞

𝒖𝒏 = 𝟎. 

 



 
www.ssmrmh.ro 

91 RMM-CALCULUS MARATHON 1601-1700 

 

1652. Given (𝒙𝒏) such that: 

𝒙𝟏 = 𝟏, 𝒙𝒏+𝟏 =
𝒏𝟑 − 𝟑𝒏𝟐 + 𝟒𝒏 + 𝟏

𝒏𝟑
𝒙𝒏 , ∀𝒏 ∈ ℕ

∗ 

Find: 

𝐥𝐢𝐦
𝒏→∞

𝒙𝒏 

Proposed by Minh Vu-Vietnam 

Solution 1 by Amrit Awasthi-India 

Note that 

𝒙𝒏+𝟏 =
𝒙𝒏+𝟏
𝒙𝒏

⋅
𝒙𝒏
𝒙𝒏−𝟏

⋅
𝒙𝒏−𝟏
𝒙𝒏−𝟐

⋅ … ⋅
𝒙𝟑
𝒙𝟐
⋅
𝒙𝟐
𝒙𝟏

 

This implies 

𝐥𝐢𝐦
𝒏→∞

𝒙𝒏 = 𝐥𝐢𝐦
𝒏→∞

∏
𝒌𝟑 − 𝟑𝒌𝟐 + 𝟒𝒌+ 𝟏

𝒌𝟑

𝒏

𝒌=𝟏

 

Now follow that for large “n” (𝒏 ≥ 𝟐)  

𝟒𝒏 + 𝟏 ≤ 𝟑𝒏𝟐 

−𝟑𝒏𝟐 + 𝟒𝒏 + 𝟏 ≤ 𝟎 → 𝒏𝟑 − 𝟑𝒏𝟐 + 𝟒𝒏 + 𝟏 ≤ 𝒏𝟑 →
𝒏𝟑 − 𝟑𝒏𝟐 + 𝟒𝒏 + 𝟏

𝒏𝟑
≤ 𝟏 

This implies that 

𝐥𝐢𝐦
𝒏→∞

∏
𝒌𝟑 − 𝟑𝒌𝟐 + 𝟒𝒌 + 𝟏

𝒌𝟑

𝒏

𝒌=𝟏

= 𝟎 

Hence we have 

𝐥𝐢𝐦
𝒏→∞

𝒙𝒏 = 𝟎 

Solution 2 by Supriyo Halder-India 

We have 𝒙𝟏 = 𝟏 and, 

𝒙𝒏+𝟏 =
𝒏𝟑 − 𝟑𝒏𝟐 + 𝟒𝒏 + 𝟏

𝒏𝟑
𝒙𝒏 =∏𝒇(𝒊)

𝒏

𝒊=𝟏

 

where 𝒇(𝒊) =
𝒊𝟑−𝟑𝒊𝟐+𝟒𝒊+𝟏

𝒊𝟑
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Now for sufficiently large 𝒊, 𝟎 < 𝑓(𝒊) < 1. So, (𝒙𝒏) is ultimately decreasing sequence of 

positive numbers. So, it must converges. Note that, 

(𝒏 + 𝟏)(𝒏𝟑 − 𝟑𝒏𝟐 + 𝟒𝒏 + 𝟏) = 𝒏𝟒 − 𝟐𝒏𝟑 + 𝒏𝟐 + 𝟓𝒏 + 𝟏 ≤ 𝒏𝟒 

for sufficiently large 𝒏 

⇒
𝒏𝟑−𝟑𝒏𝟐+𝟒𝒏+𝟏

𝒏𝟑
≤

𝒏

𝒏+𝟏
, for 𝒏 ≥ 𝒌,𝒌 ∈ ℕ 

⇒ ∀𝒏 ≥ 𝒌,∏𝒇(𝒊)

𝒏

𝒊=𝒌

≤
𝒌

𝒏 + 𝟏
⇒∏𝒇(𝒊)

∞

𝒊=𝟏

= 𝟎 

Hence,  

𝐥𝐢𝐦𝒙𝒏 = 𝐥𝐢𝐦∏𝒇(𝒊)

𝒏

𝒊=𝟏

= 𝟎 

1653. Prove that the following relationship holds: 

∑
𝑭𝟐𝒏𝑯𝒏
𝟒𝒏𝒏

∞

𝒏=𝟏

=
𝟏

√𝟓
(𝑳𝒊𝟐 (

𝟐

√𝟓
− 𝟏) − 𝑳𝒊𝟐 (−𝟏 −

𝟐

√𝟓
)) 

where 𝑭𝒏, 𝑯𝒏 and 𝑳𝒊𝟐(𝒙) are 𝒏𝒕𝒉 Fibonacci, Harmonic number and 

dilogarithm function respectively. 

Proposed by Naren Bhandari-Bajura-Nepal 

Solution by Lucas Paes Barreto-Pernambuco-Brazil 

∑
𝑭𝟐𝒏𝑯𝒏
𝟒𝒏𝒏

∞

𝒏=𝟏

=
𝟏

√𝟓
∑
𝝋𝒏 − (−𝝋)𝒏

𝟒𝒏𝒏
𝑯𝒏

∞

𝒏=𝟏

=
𝟏

√𝟓
{∑

𝝋𝟐𝒏

𝟒𝒏𝒏
𝑯𝒏

∞

𝒏=𝟏

−∑
(−𝝋)−𝟐𝒏

𝟒𝒏𝒏
𝑯𝒏

∞

𝒏=𝟏

} = 

=
𝟏

√𝟓
{𝑳𝒊𝟐 (

𝝋𝟐

𝟒
) +

𝟏

𝟐
𝐥𝐨𝐠𝟐 (𝟏 −

𝝋𝟐

𝟒
) − 𝑳𝒊𝟐 (

𝟏

𝟒𝝋𝟐
) −

𝟏

𝟐
𝐥𝐨𝐠𝟐 (𝟏 −

𝟏

𝟒𝝋𝟐
)} ; (𝟏) 

=
𝟏

√𝟓
{𝑳𝒊𝟐 (

𝝋𝟐

𝟒
) + [−𝑳𝒊𝟐 (

𝝋𝟐

𝟒
) − 𝑳𝒊𝟐(𝟏 −

𝟏

𝟏 −
𝝋𝟐

𝟒

)] − 𝑳𝒊𝟐 (
𝟏

𝟒𝝋𝟐
)

+ [𝑳𝒊𝟐 (
𝟏

𝟒𝝋𝟐
) + 𝑳𝒊𝟐(𝟏 −

𝟏

𝟏 −
𝟏
𝟒𝝋𝟐

)]} = 
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=
𝟏

√𝟓
{−𝑳𝒊𝟐 (𝟏−

𝟏

𝟏 −
𝟏
𝟒𝝋𝟐

) + 𝑳𝒊𝟐(𝟏 −
𝟏

𝟏 −
𝟏
𝟒𝝋𝟐

)} ; (𝟐) 

=
𝟏

√𝟓
{−𝑳𝒊𝟐 (𝟏 − 𝟐 −

𝟐

√𝟓
) + 𝑳𝒊𝟐 (𝟏 − 𝟐 +

𝟐

√𝟓
)} = 

=
𝟏

√𝟓
{−𝑳𝒊𝟐 (−𝟏 −

𝟐

√𝟓
) + 𝑳𝒊𝟐 (−𝟏 +

𝟐

√𝟓
)} 

(𝟏): −
𝟏

𝟐
𝐥𝐨𝐠𝟐 𝒙 = 𝑳𝒊𝟐(𝟏 − 𝒙) + 𝑳𝒊𝟐 (𝟏 −

𝟏

𝒙
) 

(𝟐):  𝝋 =
𝟏 + √𝟓

𝟐
 

1654. Let 𝒇 be a class 𝑪𝟑 function defined on [𝟎, 𝟏] such that: 

𝑰𝒏 = ∫ 𝒙𝒇′(𝒏𝒙)

𝟏
𝒏

𝟎

𝒅𝒙 +
𝟏

𝟐𝒏𝟒
∑(𝒇′ (

𝒌

𝒏
) + 𝟐𝒏𝒇(

𝒌

𝒏
))

𝒏−𝟏

𝒏=𝟎

 

𝑰𝒏 =
𝑨

𝒏𝟐
+
𝑩

𝒏𝟒
+ 𝑶(

𝟏

𝒏𝟒
) 

Find 𝑨 and 𝑩. 

Proposed by Serlea Kabay-Liberia 
Solution by proposer 

We have: 

∫ 𝒙𝒇′(𝒙)

𝟏
𝒏

𝟎

𝒅𝒙 =
𝟏

𝒏𝟐
∫ 𝒙𝒇′(𝒙)
𝟏

𝟎

𝒅𝒙 =
𝑰𝑩𝑷 𝟏

𝒏𝟐
𝒙𝒇(𝒙)|𝟎

𝟏 −
𝟏

𝒏𝟐
∫ 𝒇(𝒙)
𝟏

𝟎

𝒅𝒙 

∫ 𝒙𝒇′(𝒙)

𝟏
𝒏

𝟎

𝒅𝒙 =
𝒇(𝟎)

𝒏𝟐
−
𝟏

𝒏𝟐
∫ 𝒇(𝒙)
𝟏

𝟎

𝒅𝒙 

𝑰𝒏 =
𝒇(𝟎)

𝒏𝟐
−
𝟏

𝒏𝟐
∫ 𝒇(𝒙)
𝟏

𝟎

𝒅𝒙 +
𝟏

𝟐𝒏𝟒
∑(𝒇′ (

𝒌

𝒏
) + 𝟐𝒏𝒇 (

𝒌

𝒏
))

𝒏−𝟏

𝒌=𝟎

= 

=
𝒇(𝟎)

𝒏𝟐
−
𝟏

𝒏𝟐
[∑∫ 𝒇(𝒙)

𝒌+𝟏
𝒏

𝒌
𝒏

𝒅𝒙

𝒏−𝟏

𝒌=𝟎

−
𝟏

𝟐𝒏𝟐
∑(𝒇′ (

𝒌

𝒏
) + 𝟐𝒏𝒇 (

𝒌

𝒏
))

𝒏−𝟏

𝒌=𝟎

] 

Let 𝒇 = 𝒈′ ⇒ 𝒈 = ∫𝒇, then 
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𝑰𝒏 =
𝒇(𝟎)

𝒏𝟐
−
𝟏

𝒏𝟐
[∑(𝒈 (

𝒌 + 𝟏

𝒏
) − 𝒈(

𝒌

𝒏
) −

𝟏

𝒏
𝒈′ (

𝒌

𝒏
) −

𝟏

𝟐𝒏𝟐
𝒈′′ (

𝒌

𝒏
))

𝒏−𝟏

𝒌=𝟎

] 

Using the Taylor Lagrange Inequality, 

|𝒈 (
𝒌 + 𝟏

𝒏
) − 𝒈(

𝒌

𝒏
) −

𝟏

𝒏
𝒈′ (

𝒌

𝒏
) −

𝟏

𝟐𝒏𝟐
𝒈′′ (

𝒌

𝒏
) −

𝟏

𝟔𝒏𝟑
𝒈(𝟑) (

𝒌

𝒏
)| = 

= |𝒈 (
𝒌 + 𝟏

𝒏
) −∑

𝒈(𝒊) (
𝒌
𝒏)

𝒊!
(
𝟏

𝒏
)
𝒊𝟑

𝒊=𝟏

| ≤
𝑴

𝟐𝟒𝒏𝟒
, 𝐰𝐡𝐞𝐫𝐞 𝑴 = 𝐬𝐮𝐩 |𝒈(𝟒)(𝒙) |, ∀𝒙 ∈ [

𝒌 + 𝟏

𝒏
,
𝒌

𝒏
] 

Therefore, 

|𝒈 (
𝒌 + 𝟏

𝒏
) −∑

𝒈(𝒊) (
𝒌
𝒏)

𝒊!
(
𝟏

𝒏
)
𝒊𝟑

𝒊=𝟏

| = 𝑶(
𝟏

𝒏𝟒
) 

𝒈(
𝒌 + 𝟏

𝒏
) − 𝒈(

𝒌

𝒏
) −

𝟏

𝒏
𝒈′ (

𝒌

𝒏
) −

𝟏

𝟐𝒏𝟐
𝒈′′ (

𝒌

𝒏
) −

𝟏

𝟔𝒏𝟑
𝒈(𝟑) (

𝒌

𝒏
) = 𝑶(

𝟏

𝒏𝟒
)  

𝒈 (
𝒌 + 𝟏

𝒏
) − 𝒈(

𝒌

𝒏
) −

𝟏

𝒏
𝒈′ (

𝒌

𝒏
) −

𝟏

𝟐𝒏𝟐
𝒈′′ (

𝒌

𝒏
) =

𝟏

𝟔𝒏𝟑
𝒈(𝟑) (

𝒌

𝒏
) + 𝑶(

𝟏

𝒏𝟒
) 

Now, 

𝑰𝒏 =
𝒇(𝟎)

𝒏𝟐
−
𝟏

𝒏𝟐
∑(

𝟏

𝟔𝒏𝟑
𝒈(𝟑) (

𝒌

𝒏
) + 𝑶(

𝟏

𝒏𝟒
))

𝒏−𝟏

𝒌=𝟎

=
𝒇(𝟎)

𝒏𝟐
−
𝟏

𝟔𝒏𝟒
⋅
𝟏

𝒏
∑𝒈(𝟑) (

𝒌

𝒏
)

𝒏−𝟏

𝒌=𝟎

 

=
𝒇(𝟎)

𝒏𝟐
−
𝟏

𝟔𝒏𝟒
𝒈′′(𝒙)|𝟎

𝟏 + 𝑶(
𝟏

𝒏𝟒
) 

𝑰𝒏 =
𝒇(𝟏)

𝒏𝟐
−
𝒇′(𝟏) − 𝒇′(𝟎)

𝟔𝒏𝟒
+ 𝑶(

𝟏

𝒏𝟒
) 

Therefore,  𝑨 = 𝒇(𝟏),𝑩 =
𝟏

𝟔
[𝒇′(𝟏) − 𝒇′(𝟎)] 

1655. Prove that: 

∫
𝐜𝐨𝐬(𝒃𝒙) 𝐬𝐢𝐧(𝒂𝒙)

𝒙(𝐜𝐨𝐬𝐡(𝒑𝒙))

∞

𝟎

𝒅𝒙 =
𝟏

𝟐
𝐭𝐚𝐧−𝟏 (𝐬𝐢𝐧𝐡 (

𝝅(𝒂 + 𝒃)

𝟐𝒑
)) +

𝟏

𝟐
𝐭𝐚𝐧−𝟏 (𝐬𝐢𝐧𝐡 (

𝝅(𝒂 − 𝒃)

𝟐𝒑
)) 

Proposed by George Moses-Nigeria 

Solution by Rana Ranino-Setif-Algerie 

𝛀 = ∫
𝐜𝐨𝐬(𝒃𝒙) 𝐬𝐢𝐧(𝒂𝒙)

𝒙(𝐜𝐨𝐬𝐡(𝒑𝒙))

∞

𝟎

𝒅𝒙 =
𝒙=𝒑𝒙

∫
𝐬𝐢𝐧 (

𝒂𝒙
𝒑 )𝐜𝐨𝐬 (

𝒃𝒙
𝒑 )

𝒙 𝐜𝐨𝐬𝐡 𝒙

∞

𝟎

𝒅𝒙 = 
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=
𝟏

𝟐
(∫

𝐬𝐢𝐧 (
𝒂 + 𝒃
𝒑 )𝒙

𝒙 𝐜𝐨𝐬𝐡 𝒙

∞

𝟎

𝒅𝒙 +∫
𝐬𝐢𝐧 (

𝒂 − 𝒃
𝒑 )𝒙

𝒙 𝐜𝐨𝐬𝐡𝒙

∞

𝟎

𝒅𝒙) =
𝟏

𝟐
(𝑨 + 𝑩) 

𝑨 = ∫
𝐬𝐢𝐧 (

𝒂 + 𝒃
𝒑 )𝒙

𝒙 𝐜𝐨𝐬𝐡 𝒙

∞

𝟎

𝒅𝒙 =
𝒌=
𝒂+𝒃
𝒑
∫

𝐬𝐢𝐧(𝒌𝒙)

𝒙 𝐜𝐨𝐬𝐡 𝒙

∞

𝟎

𝒅𝒙 

𝒅𝑨

𝒅𝒌
= ∫

𝐜𝐨𝐬(𝒌𝒙)

𝐜𝐨𝐬𝐡𝒙

∞

𝟎

𝒅𝒙 = ∫
𝒆𝒊𝒌𝒙 + 𝒆−𝒊𝒌𝒙 

𝒆𝒙 + 𝒆−𝒙
𝒅𝒙

∞

𝟎

= ∫
𝒆−𝒙(𝟏−𝒊𝒌) + 𝒆−𝒙(𝟏+𝒊𝒌)

𝟏 + 𝒆−𝟐𝒙

∞

𝟎

𝒅𝒙 = 

= ∫
𝒆−𝒙(𝟏−𝒊𝒌) + 𝒆−𝒙(𝟏+𝒊𝒌)

𝟏 + 𝒆−𝟐𝒙 

∞

𝟎

𝒅𝒙 =
𝒕=𝒆−𝟐𝒙 𝟏

𝟐
∫

𝒕
𝟏−𝒊𝒌
𝟐
−𝟏 + 𝒕

𝟏+𝒊𝒌
𝟐
−𝟏

𝟏 + 𝒕
𝒅𝒕

∞

𝟎

 

∵ ∫
𝒕𝒏−𝟏

𝟏 + 𝒕

∞

𝟎

𝒅𝒕 =
𝟏

𝟐
{𝝍 (

𝒏 + 𝟏

𝟐
) − 𝝍(

𝒏

𝟐
)} 

𝒅𝑨

𝒅𝒌
=
𝟏

𝟒
[𝝍(

𝟑 − 𝒊𝒌

𝟒
) − 𝝍(

𝟏 + 𝒊𝒌

𝟒
) + 𝝍(

𝟑 + 𝒊𝒌

𝟒
) − 𝝍(

𝟏 − 𝒊𝒌

𝟐
)] = 

=
𝝅

𝟒
𝐜𝐨𝐭 (

𝝅

𝟒
+
𝒊𝒌𝝅

𝟒
) +

𝝅

𝟒
𝐜𝐨𝐭 (

𝝅

𝟒
−
𝒊𝒌𝝅

𝟒
) =

𝝅

𝟐
𝐬𝐞𝐜 (

𝒊𝒌𝝅

𝟐
) =

𝝅

𝟐
𝐬𝐞𝐜 (

𝒌𝝅

𝟐
) 

𝑨 =
𝝅

𝟐
∫ 𝐬𝐞𝐜𝐡 (

𝝅𝒚

𝟐
)

𝒌

𝟎

𝒅𝒚 = ∫ 𝐬𝐞𝐜𝐡 𝒕

𝒌𝝅
𝟐

𝟎

𝒅𝒕 = ∫
𝐜𝐨𝐬𝐡 𝒕

𝟏 + 𝐬𝐢𝐧𝐡𝟐 𝒕

𝒌𝝅
𝟐

𝟎

𝒅𝒕 =
𝒖=𝐬𝐢𝐧𝐡 𝒕

 

= ∫
𝒅𝒖

𝟏 + 𝒖𝟐

𝐬𝐢𝐧𝐡(
𝒌𝝅
𝟐
)

𝟎

= 𝐭𝐚𝐧−𝟏 (𝐬𝐢𝐧𝐡(
𝒌𝝅

𝟐
)) = 𝐭𝐚𝐧−𝟏 (𝐬𝐢𝐧𝐡 (

𝝅(𝒂 + 𝒃)

𝟐𝒑
)) 

Hence, 

𝑩 = 𝐭𝐚𝐧−𝟏 (𝐬𝐢𝐧𝐡(
𝝅(𝒂 + 𝒃)

𝟐𝒑
)) 

Therefore, 

∫
𝐜𝐨𝐬(𝒃𝒙) 𝐬𝐢𝐧(𝒂𝒙)

𝒙(𝐜𝐨𝐬𝐡(𝒑𝒙))

∞

𝟎

𝒅𝒙 =
𝟏

𝟐
𝐭𝐚𝐧−𝟏 (𝐬𝐢𝐧𝐡 (

𝝅(𝒂 + 𝒃)

𝟐𝒑
)) +

𝟏

𝟐
𝐭𝐚𝐧−𝟏 (𝐬𝐢𝐧𝐡 (

𝝅(𝒂 − 𝒃)

𝟐𝒑
)) 

 

 

1656. Prove that for 𝒂 > 𝟏, the following relationship holds 

∫
𝒙𝟐 𝐭𝐚𝐧−𝟏(𝒂𝒙)

𝒙𝟒 + 𝒙𝟐 + 𝟏

∞

𝟏

𝒅𝒙 ≅
𝝅𝟐

𝟖√𝟑
+
𝝅

𝟖
𝐥𝐨𝐠 𝟑 −

𝝅

𝟔𝒂√𝟑
+
𝟏

𝟑𝒂𝟑
(
𝐥𝐨𝐠 𝟑

𝟒
−

𝝅

𝟏𝟐√𝟑
) − 

−
𝟏

𝟓𝒂𝟓
(
𝟏

𝟐
−

𝝅

𝟏𝟐√𝟐
−
𝐥𝐨𝐠 𝟑

𝟒
) +

𝟏

𝟕𝒂𝟕
(
𝝅

𝟔√𝟑
−
𝟏

𝟐
) −

𝟏

𝟏𝟎𝟖𝒂𝟗
+ 
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+
𝟏

𝟗𝒂𝟗
(
𝐥𝐨𝐠 𝟑

𝟗
−

𝝅

𝟏𝟐√𝟑
) −

𝟏

𝟏𝟏𝒂𝟏𝟏
(
𝟏𝟏

𝟐𝟒
−

𝝅

𝟏𝟐√𝟑
−
𝐥𝐨𝐠𝟑

𝟒
) +⋯ 

Proposed by Naren Bhandari-Bajura-Nepal 

Solution by Surjeet Singhania-India 

For every 𝒂 > 𝟏 and 𝒙 ∈ (𝟏,∞) it is known that 𝐭𝐚𝐧−𝟏(𝒂𝒙) =
𝝅

𝟐
− 𝐭𝐚𝐧−𝟏 (

𝟏

𝒂𝒙
) 

𝟎 <
𝟏

𝒂𝒙
< 𝟏 ⇒ 𝐭𝐚𝐧−𝟏(𝒛) = ∑

(−𝟏)𝒏+𝟏𝒛𝟐𝒏−𝟏

𝟐𝒏 − 𝟏

∞

𝒏=𝟏

, 𝐟𝐨𝐫 |𝒛| < 𝟏 

∫
𝒙𝟐 𝐭𝐚𝐧−𝟏(𝒂𝒙)

𝒙𝟒 + 𝒙𝟐 + 𝟏

∞

𝟏

𝒅𝒙 =
𝝅

𝟐
∫

𝒙𝟐

𝒙𝟒 + 𝒙𝟐 + 𝟏

∞

𝟏

𝒅𝒙 −∑
(−𝟏)𝒏+𝟏

𝒂𝟐𝒏−𝟏(𝟐𝒏 − 𝟏)

∞

𝒏=𝟏

∫
𝒙𝟑−𝟐𝒏

𝒙𝟒 + 𝒙𝟐 + 𝟏
𝒅𝒙

∞

𝟎⏟            
𝑰𝒏

 

𝑰𝒏 = ∫
𝒙𝟑−𝟐𝒏

𝒙𝟒 + 𝒙𝟐 + 𝟏
𝒅𝒙

∞

𝟎

=
𝟏

𝟐
∫

𝒙−𝒏+𝟏

𝒙𝟐 + 𝒙 + 𝟏
𝒅𝒙

∞

𝟎

=
𝟏

𝟐
∫
(𝟏 − 𝒙)𝒙𝒏−𝟏

𝟏 − 𝒙𝟑
𝒅𝒙

𝟏

𝟎

 

𝑰𝒏 =
𝟏

𝟔
𝝍(𝟎) (

𝒏 + 𝟏

𝟑
) −

𝟏

𝟔
𝝍(𝟎) (

𝒏

𝟑
) 

Also, 

∫
𝒙𝟐

𝒙𝟒 + 𝒙𝟐 + 𝟏
𝒅𝒙

∞

𝟎

=
𝐥𝐨𝐠𝟑

𝟒
+
𝝅

𝟒√𝟑
 

∫
𝒙𝟐 𝐭𝐚𝐧−𝟏(𝒂𝒙)

𝒙𝟒 + 𝒙𝟐 + 𝟏

∞

𝟏

𝒅𝒙 = 

=
𝝅

𝟖
𝐥𝐨𝐠 𝟑 +

𝝅𝟐

𝟖√𝟑
−
𝟏

𝟔
∑

(−𝟏)𝒏+𝟏

𝒂𝟐𝒏−𝟏(𝟐𝒏 − 𝟏)

∞

𝒏=𝟏

(
𝟏

𝟔
𝝍(𝟎) (

𝒏 + 𝟏

𝟑
) −

𝟏

𝟔
𝝍(𝟎) (

𝒏

𝟑
)) 

Therefore, 

∫
𝒙𝟐 𝐭𝐚𝐧−𝟏(𝒂𝒙)

𝒙𝟒 + 𝒙𝟐 + 𝟏

∞

𝟏

𝒅𝒙 ≅
𝝅𝟐

𝟖√𝟑
+
𝝅

𝟖
𝐥𝐨𝐠𝟑 −

𝝅

𝟔𝒂√𝟑
+
𝟏

𝟑𝒂𝟑
(
𝐥𝐨𝐠𝟑

𝟒
−

𝝅

𝟏𝟐√𝟑
) − 

−
𝟏

𝟓𝒂𝟓
(
𝟏

𝟐
−

𝝅

𝟏𝟐√𝟐
−
𝐥𝐨𝐠 𝟑

𝟒
) +

𝟏

𝟕𝒂𝟕
(
𝝅

𝟔√𝟑
−
𝟏

𝟐
) −

𝟏

𝟏𝟎𝟖𝒂𝟗
+ 

+
𝟏

𝟗𝒂𝟗
(
𝐥𝐨𝐠𝟑

𝟗
−

𝝅

𝟏𝟐√𝟑
) −

𝟏

𝟏𝟏𝒂𝟏𝟏
(
𝟏𝟏

𝟐𝟒
−

𝝅

𝟏𝟐√𝟑
−
𝐥𝐨𝐠 𝟑

𝟒
) +⋯ 

 



 
www.ssmrmh.ro 

97 RMM-CALCULUS MARATHON 1601-1700 

 

1657. Find a closed form: 

𝛀(𝒂) = ∫
𝒙√𝒙

(𝒙𝟐 + 𝟏)(𝟏 + 𝒂𝒙)

∞

𝟎

𝒅𝒙, 𝒂 > 𝟎 

Proposed by Vasile Mircea Popa-Romania 

Solution 1 by Kartick Chandra Betal-India 

𝛀(𝒂) = ∫
𝒙√𝒙

(𝒙𝟐 + 𝟏)(𝟏 + 𝒂𝒙)

∞

𝟎

𝒅𝒙 = ∫
𝒅𝒙

√𝒙(𝟏 + 𝒙𝟐)(𝒙 + 𝒂)

∞

𝟎

= 

=
𝟏

𝟏 + 𝒂𝟐
∫

𝟏

√𝒙
(
𝒂 − 𝒙

𝟏 + 𝒙𝟐
+

𝟏

𝒂 + 𝒙
)

∞

𝟎

𝒅𝒙 = 

=
𝟏

𝟏 + 𝒂𝟐
∫ (

𝒂

√𝒙(𝟏 + 𝒙𝟐)
−

√𝒙

𝟏 + 𝒙𝟐
+

𝟏

√𝒙(𝒂 + 𝒙)
)

∞

𝟎

𝒅𝒙 = 

=
𝟐𝒂

𝟏 + 𝒂𝟐
∫

𝒅𝒙

𝟏 + 𝒙𝟒

∞

𝟎

−
𝟏

𝟏 + 𝒂𝟐
∫

𝒙 ⋅ 𝟐𝒙

𝟏 + 𝒙𝟒
𝒅𝒙

∞

𝟎

+
𝟐

𝟏 + 𝒂𝟐
∫

𝒅𝒙

𝒂 + 𝒙𝟐

∞

𝟎

= 

=
𝟐𝒂

𝟏 + 𝒂𝟐
⋅
𝟏

𝟒
∫

𝒙
𝟏
𝟒
−𝟏𝒅𝒙

𝟏 + 𝒙

∞

𝟎

−
𝟐

𝟏 + 𝒂𝟐
⋅
𝟏

𝟒
∫

𝒙
𝟑
𝟒
−𝟏

𝟏 + 𝒙
𝒅𝒙

∞

𝟎

+
𝟐

(𝟏 + 𝒂𝟐)√𝒂
∫

𝒅𝒙

𝒙𝟐 + 𝟏

∞

𝟎

= 

=
𝒂

𝟐(𝟏 + 𝒂𝟐)
⋅
𝝅

𝐬𝐢𝐧
𝝅
𝟒

−
𝟏

𝟐(𝟏 + 𝒂𝟐)
⋅
𝚪 (
𝟑
𝟒)𝚪 (

𝟏
𝟒)

𝟏
+

𝝅

√𝒂(𝟏 + 𝒂𝟐)
= 

=
𝝅𝒂

√𝟐(𝟏 + 𝒂𝟐)
−

𝝅

√𝟐(𝟏 + 𝒂𝟐)
+

𝝅

√𝒂(𝟏 + 𝒂𝟐)
=
𝝅(𝒂 − 𝟏)

√𝟐(𝟏 + 𝒂𝟐)
+

𝝅

√𝒂(𝟏 + 𝒂𝟐)
= 

=
𝝅√𝒂(𝒂 − 𝟏) + √𝟐𝝅

√𝟐𝒂(𝟏 + 𝒂𝟐)
=

𝝅

𝒂√𝟐(𝟏 + 𝒂𝟐)
(𝒂(𝒂 − 𝟏) + √𝟐𝒂) 

 Solution 2 by Ose Favour-Nigeria 

𝛀(𝒂) = ∫
𝒙√𝒙

(𝒙𝟐 + 𝟏)(𝟏 + 𝒂𝒙)

∞

𝟎

𝒅𝒙 =
𝒙=
𝟏
𝒖
∫

𝟏

𝒙𝟑√𝒙(𝟏 +
𝟏
𝒙𝟐
) (𝟏 +

𝒂
𝒙)
𝒅𝒙

∞

𝟎

= 

= ∫
𝒅𝒙

√𝒙(𝟏 + 𝒙𝟐)(𝒂 + 𝒙)

∞

𝟎

 

𝟏

(𝟏 + 𝒙𝟐)(𝟏 + 𝒂𝒙)
=

𝒂

(𝒂𝟐 + 𝟏)(𝟏 + 𝒙𝟐)
−

𝒙

(𝒂𝟐 + 𝟏)(𝟏 + 𝒙𝟐)
+

𝟏

(𝒂𝟐 + 𝟏)(𝒙 + 𝒂)
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𝛀 =
𝟏

𝒂𝟐 + 𝟏
(𝒂∫

𝒅𝒙

√𝒙(𝟏 + 𝒙𝟐)

∞

𝟎

−∫
𝒙

√𝒙(𝟏 + 𝒙𝟐)
𝒅𝒙

∞

𝟎

+ ∫
𝒅𝒙

√𝒙(𝒙 + 𝒂)

∞

𝟎

) = 

=
𝟏

𝒂𝟐 + 𝟏
(𝒂𝛀𝟏 − 𝛀𝟐 +𝛀𝟑), 𝐰𝐡𝐞𝐫𝐞 

𝛀𝟏 = ∫
𝒅𝒙

√𝒙(𝟏 + 𝒙𝟐)

∞

𝟎

=
𝒙=𝒖𝟐

𝟐∫
𝒅𝒖

𝟏 + 𝒖𝟒

∞

𝟎

=
𝒖=𝒚

𝟏
𝟒 𝟏

𝟐
∫

𝒚
𝟏
𝟒
−𝟏

𝟏 + 𝒚
𝒅𝒚

∞

𝟎

=
𝝅√𝟐

𝟐
 

𝛀𝟐 = ∫
𝒙

√𝒙(𝟏 + 𝒙𝟐)
𝒅𝒙

∞

𝟎

=
𝒙=𝒖𝟐 𝟏

𝟐
∫

𝒚
𝟏
𝟐
+
𝟏
𝟒
−𝟏

𝟏 + 𝒚
𝒅𝒚

∞

𝟎

=
𝝅√𝟐

𝟐
 

𝛀𝟑 = ∫
𝒅𝒙

√𝒙(𝒙 + 𝒂)

∞

𝟎

=
𝒙=𝒖𝟐

𝟐∫
𝒅𝒖

𝒂 + 𝒖𝟐

∞

𝟎

=
𝒖=√𝒂 𝐭𝐚𝐧−𝟏 𝜽 𝟐√𝒂

𝒂
∫ 𝟏

𝝅
𝟐

𝟎

𝒅𝜽 =
𝝅√𝒂

𝒂
 

Therefore, 

𝛀 =
𝝅

𝟐(𝒂𝟐 + 𝟏)
(√𝟐(𝒂 − 𝟏) +

√𝒂

𝒂
) 

Solution 3 by Hikmat Mammadov-Azerbaijan 

𝛀(𝒂) = ∫
𝒙√𝒙

(𝒙𝟐 + 𝟏)(𝟏 + 𝒂𝒙)

∞

𝟎

𝒅𝒙 =
𝒙=𝒖𝟐

∫
𝟐𝒖𝟒

(𝒖𝟒 + 𝟏)(𝟏 + 𝒂𝒖𝟐)
𝒅𝒖

∞

𝟎

 

𝒖𝟒

(𝒖𝟒 + 𝟏)(𝟏 + 𝒂𝒖𝟐)
=
𝑨𝒖𝟐 + 𝑩

𝒖𝟒 + 𝟏
+

𝑪

𝟏 + 𝒂𝒖𝟐
⇒ 𝒖𝟒 = 𝒖𝟒(𝒂𝑨 + 𝑪) + 𝒖𝟐(𝑨 + 𝒂𝑩) + 𝑩 + 𝑪 

⇒ 𝑨 =
𝒂

𝟏 + 𝒂𝟐
; 𝑩 = −

𝟏

𝟏 + 𝒂𝟐
; 𝑪 =

𝟏

𝟏 + 𝒂𝟐
 

⇒ 𝛀 = 𝟐∫ (
𝑨𝒖𝟐 + 𝑩

𝒖𝟒 + 𝟏
+

𝑪

𝟏 + 𝒂𝒖𝟐
)

∞

𝟎

𝒅𝒖 = 

= 𝟐𝑨∫
𝒖𝟐

𝒖𝟒 + 𝟏
𝒅𝒖

∞

𝟎

+ 𝟐𝑩∫
𝒅𝒖

𝒖𝟒 + 𝟏

∞

𝟎

+
𝟐𝑪

√𝒂
∫

𝒅(√𝒂𝒖)

𝟏 + (√𝒂𝒖)
𝟐

∞

𝟎

= 

= 𝑨𝛀𝟏 +𝑩𝛀𝟐 + 𝟐𝑪 ⋅ 𝐭𝐚𝐧
−𝟏(√𝒂𝒖)|

𝟎

∞
= 

= 𝑨𝛀𝟏 +𝑩𝛀𝟐 + 𝟐𝑪 [𝐥𝐢𝐦
𝒖→∞

𝐭𝐚𝐧−𝟏(√𝒂𝒖) − 𝐭𝐚𝐧−𝟏 𝟎] = 𝑨𝛀𝟏 +𝑩𝛀𝟐 +𝝅𝑪 

𝛀𝟐 = ∫
𝟐𝒅𝒖

𝒖𝟒 + 𝟏

∞

𝟎

= ∫
(𝒖𝟐 + 𝟏) − (𝒖𝟐 − 𝟏)

𝒖𝟒 + 𝟏
𝒅𝒖

∞

𝟎

= ∫ (
𝒖𝟐 + 𝟏

𝒖𝟒 + 𝟏
−
𝒖𝟐 − 𝟏

𝒖𝟒 + 𝟏
)𝒅𝒖

∞

𝟎

= 



 
www.ssmrmh.ro 

99 RMM-CALCULUS MARATHON 1601-1700 

 

= ∫ (
𝟏 + 𝒖−𝟐

𝒖𝟐 + 𝒖−𝟐
−
𝟏 − 𝒖−𝟐

𝒖𝟐 + 𝒖−𝟐
)

∞

𝟎

𝒅𝒖

= ∫
𝟏 + 𝒖−𝟐

𝒖𝟐 − 𝟐 + 𝒖−𝟐 + 𝟐
𝒅𝒖

∞

𝟎

−∫
𝟏 − 𝒖−𝟐

𝒖𝟐 + 𝟐 + 𝒖−𝟐 − 𝟐
𝒅𝒖

∞

𝟎

 

= ∫
𝒅(𝒖 − 𝒖−𝟏)

(𝒖 − 𝒖−𝟏)𝟐 + (√𝟐)
𝟐

∞

𝟎

−∫
𝒅(𝒖 + 𝒖−𝟏)

(𝒖 + 𝒖−𝟏)𝟐 − (√𝟐)
𝟐

∞

𝟎

= 

=
𝟏

√𝟐
𝐭𝐚𝐧−𝟏 (

𝒖 − 𝒖−𝟏

√𝟐
)|
𝟎

∞

−
𝟏

𝟐√𝟐
𝐥𝐨𝐠 |

𝒖 + 𝒖−𝟏 − √𝟐

𝒖 + 𝒖−𝟏 + √𝟐
||
𝟎

∞

= 

=
𝟏

√𝟐
[𝐥𝐢𝐦
𝒏→∞

𝐭𝐚𝐧−𝟏 (
𝒖 − 𝒖−𝟏

√𝟐
) − 𝐥𝐢𝐦

𝒏→𝟎+
𝐭𝐚𝐧−𝟏 (

𝒖 − 𝒖−𝟏

√𝟐
)] − 

−
𝟏

𝟐√𝟐
[𝐥𝐢𝐦
𝒏→∞

𝐥𝐨𝐠 |
𝒖 + 𝒖−𝟏 − √𝟐

𝒖 + 𝒖−𝟏 + √𝟐
| − 𝐥𝐢𝐦

𝒏→𝟎+
𝐥𝐨𝐠 |

𝒖 + 𝒖−𝟏 − √𝟐

𝒖 + 𝒖−𝟏 + √𝟐
|] ⇒ 𝛀𝟐 =

𝝅

√𝟐
 

𝛀𝟏 = ∫
𝟐𝒖𝟐

𝒖𝟒 + 𝟏

∞

𝟎

𝒅𝒖 = ∫
(𝒖𝟐 + 𝟏) + (𝒖𝟐 − 𝟏)

𝒖𝟒 + 𝟏
𝒅𝒖

∞

𝟎

= ∫
𝒖𝟐 + 𝟏

𝒖𝟒 + 𝟏
𝒅𝒖

∞

𝟎

+ ∫
𝒖𝟐 − 𝟏

𝒖𝟒 + 𝟏

∞

𝟎

𝒅𝒖 

⇒ 𝛀𝟏 =
𝝅

√𝟐
⇒ 𝛀 = 𝑨𝛀𝟏 + 𝑩𝛀𝟐 +𝝅𝑪 =

𝝅

√𝟐
⋅
𝒂 − 𝟏 + √𝟐

𝟏 + 𝒂𝟐
 

Therefore, 

𝛀 =
𝝅

𝟐(𝒂𝟐 + 𝟏)
(√𝟐(𝒂 − 𝟏) +

√𝒂

𝒂
) 

1658. Prove that: 

∫ 𝐥𝐨𝐠(𝟏𝟎 + 𝟔𝐜𝐨𝐬 𝜽)
𝟐𝝅

𝟎

𝒅𝜽 = 𝟒𝝅 𝐥𝐨𝐠 𝟑 

Proposed by Surjeet Singhania-India 

Solution 1 by Kartick Chandra Betal-India 

𝛀 = ∫ 𝐥𝐨𝐠(𝟏𝟎 + 𝟔 𝐜𝐨𝐬𝜽)
𝟐𝝅

𝟎

𝒅𝜽 = 𝟐∫ 𝐥𝐨𝐠(𝟏𝟎 + 𝟔𝐜𝐨𝐬 𝜽)𝒅𝜽

𝝅
𝟐

𝟎

= 

= 𝟐∫ 𝐥𝐨𝐠(𝟏𝟎 − 𝟔𝐜𝐨𝐬 𝜽)𝒅𝜽
𝝅

𝟎
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⇒ 𝟐𝛀 = 𝟐∫ 𝐥𝐨𝐠(𝟏𝟎𝟐 − 𝟔𝟐 𝐜𝐨𝐬𝟐 𝜽)

𝝅
𝟐

𝟎

𝒅𝜽 = 𝟐∫ 𝐥𝐨𝐠(𝟏𝟎𝟐 𝐬𝐢𝐧𝟐 𝜽 + 𝟖𝟐 𝐜𝐨𝐬𝟐 𝜽)

𝝅
𝟐

𝟎

𝒅𝜽 = 

= 𝟐𝝅 𝐥𝐨𝐠 (
𝟏𝟎 + 𝟖

𝟐
) = 𝟐𝝅 𝐥𝐨𝐠 𝟗 = 𝟒𝝅 𝐥𝐨𝐠𝟑 

 Solution 2 by Rana Ranino-Setif-Algerie 

𝛀 = ∫ 𝐥𝐨𝐠(𝟏𝟎 + 𝟔 𝐜𝐨𝐬𝜽)
𝟐𝝅

𝟎

𝒅𝜽 = 𝟐∫ 𝐥𝐨𝐠(𝟏𝟎 + 𝟔𝐜𝐨𝐬 𝜽)𝒅𝜽
𝝅

𝟎

=
𝜽=𝟐𝒙

 

= 𝟒∫ 𝐥𝐨𝐠(𝟏𝟎 + 𝟔𝐜𝐨𝐬𝟐𝒙)𝒅𝒙

𝝅
𝟐

𝟎

= 𝟒∫ 𝐥𝐨𝐠(𝟒 + 𝟏𝟐 𝐜𝐨𝐬𝟐 𝒙)𝒅𝒙

𝝅
𝟐

𝟎

= 

= 𝟒∫ 𝐥𝐨𝐠(𝟒 𝐬𝐢𝐧𝟐 𝒙 + 𝟏𝟔𝐜𝐨𝐬𝟐 𝒙)

𝝅
𝟐

𝟎

𝒅𝒙 

∵ ∫ 𝐥𝐨𝐠(𝒂𝟐 𝐬𝐢𝐧𝟐 𝒙 + 𝒃𝟐 𝐜𝐨𝐬𝟐 𝒙)

𝝅
𝟐

𝟎

𝒅𝒙 = 𝝅 𝐥𝐨𝐠 (
𝒂 + 𝒃

𝟐
) 

𝛀 = 𝟒𝝅 𝐥𝐨𝐠 (
𝟐 + 𝟒

𝟐
) = 𝟒𝝅 𝐥𝐨𝐠 𝟑 

Therefore, 

∫ 𝐥𝐨𝐠(𝟏𝟎 + 𝟔𝐜𝐨𝐬𝜽)
𝟐𝝅

𝟎

𝒅𝜽 = 𝟒𝝅 𝐥𝐨𝐠𝟑 

1659. 𝒇(𝐜𝐨𝐭 𝒙) = 𝐬𝐢𝐧 𝟐𝒙 + 𝐜𝐨𝐬 𝟐𝒙 , 𝟎 < 𝑥 < 𝜋. Find: 

𝛀 = ∫ 𝐜𝐨𝐬 𝒙 ⋅ 𝒇(𝐬𝐢𝐧 𝒙)

𝝅
𝟑

𝝅
𝟔

𝒅𝒙 

Proposed by Neculai Stanciu-Romania 

Solution 1 by Ravi Prakash-New Delhi-India 

𝒇(𝐜𝐨𝐭 𝒙) =
𝟐 𝐭𝐚𝐧𝒙

𝟏 + 𝐭𝐚𝐧𝟐 𝒙
+
𝟏 − 𝐭𝐚𝐧𝟐 𝒙

𝟏 + 𝐭𝐚𝐧𝟐 𝒙
=

𝟐𝐜𝐨𝐭 𝒙

𝟏 + 𝐜𝐨𝐭𝟐 𝒙
+
𝐜𝐨𝐭𝟐 𝒙 − 𝟏

𝐜𝐨𝐭𝟐 𝒙 + 𝟏
= 

=
𝟐𝐜𝐨𝐭 𝒙 + 𝐜𝐨𝐭𝟐 𝒙 − 𝟏

𝐜𝐨𝐭𝟐 𝒙 + 𝟏
⇒ 𝒇(𝐬𝐢𝐧𝒙) =

𝟐𝐬𝐢𝐧𝒙 + 𝐬𝐢𝐧𝟐 𝒙 − 𝟏

𝐬𝐢𝐧𝟐 𝒙
+ 𝟏 

𝛀 = ∫ 𝐜𝐨𝐬𝒙 ⋅ 𝒇(𝐬𝐢𝐧 𝒙)

𝝅
𝟑

𝝅
𝟔

𝒅𝒙 = ∫
𝐜𝐨𝐬𝒙 (𝟐 𝐬𝐢𝐧 𝒙 + 𝐬𝐢𝐧𝟐 𝒙 − 𝟏)

𝟏 + 𝐬𝐢𝐧𝟐 𝒙
𝒅𝒙

𝝅
𝟑

𝝅
𝟔

= 
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= ∫
𝒕𝟐 + 𝟐𝒕 − 𝟏

𝒕𝟐 + 𝟏

√𝟑
𝟐

𝟏
𝟐

𝒅𝒕 = ∫ (𝟏 +
𝟐𝒕

𝒕𝟐 + 𝟏
−

𝟐

𝒕𝟐 + 𝟏
)

√𝟑
𝟐

𝟏
𝟐

𝒅𝒕 = 

= (𝒕 + 𝐥𝐨𝐠(𝒕𝟐 + 𝟏) − 𝟐 𝐭𝐚𝐧−𝟏(𝒕))|𝟏
𝟐

√𝟑
𝟐 = 

=
√𝟑 − 𝟏

𝟐
+ 𝐥𝐨𝐠 (

𝟕

𝟓
) − 𝟐 𝐭𝐚𝐧−𝟏 (

√𝟑

𝟐
) + 𝟐 𝐭𝐚𝐧−𝟏 (

𝟏

𝟐
) 

Solution 2 by Kartick Chandra Betal-India 

𝒇(𝐜𝐨𝐭 𝒙) = 𝐬𝐢𝐧𝟐𝒙 + 𝐜𝐨𝐬𝟐𝒙 =
𝟐 𝐭𝐚𝐧 𝒙

𝟏 + 𝐭𝐚𝐧𝟐 𝒙
+
𝟏 − 𝐭𝐚𝐧𝟐 𝒙

𝟏 + 𝐭𝐚𝐧𝟐 𝒙
 

𝒇(
𝟏

𝒙
) =

𝟐𝒙

𝟏 + 𝒙𝟐
+
𝟏 − 𝒙𝟐 

𝟏 + 𝒙𝟐
⇒ 𝒇(𝒙) =

𝟐𝒙

𝟏 + 𝒙𝟐
+
𝒙𝟐 − 𝟏

𝒙𝟐 + 𝟏
=
𝒙𝟐 + 𝟐𝒙 − 𝟏

𝟏 + 𝒙𝟐
 

𝛀 = ∫ 𝐜𝐨𝐬 𝒙 ⋅ 𝒇(𝐬𝐢𝐧 𝒙)

𝝅
𝟑

𝝅
𝟔

𝒅𝒙 = ∫ 𝒇(𝒙)

√𝟑
𝟐

𝟏
𝟐

𝒅𝒙 = 

= ∫
𝒙𝟐 + 𝟐𝒙 − 𝟏

𝒙𝟐 + 𝟏

√𝟑
𝟐

𝟏
𝟐

𝒅𝒙 = ∫ (𝟏 +
𝟐𝒙

𝟏 + 𝒙𝟐
−

𝟐

𝟏 + 𝒙𝟐
)

√𝟑
𝟐

𝟏
𝟐

𝒅𝒙 = 

=
√𝟑 − 𝟏

𝟐
+ 𝐥𝐨𝐠 (

𝟕

𝟓
) − 𝟐 𝐭𝐚𝐧−𝟏 (

𝟐√𝟑 − 𝟐

𝟒 + √𝟑
) 

Solution 3 by Myagmasuren Yadamsuren-Darkhan-Mongolia 

𝐬𝐢𝐧 𝟐𝒙 =
𝟐𝐜𝐨𝐭 𝒙

𝟏 + 𝐜𝐨𝐭𝟐 𝒙
, 𝐜𝐨𝐬 𝟐𝒙 =

𝐜𝐨𝐭𝟐 𝒙 − 𝟏

𝟏 + 𝐜𝐨𝐭𝟐 𝒙
 

𝒇(𝐜𝐨𝐭 𝒙) =
𝐜𝐨𝐭𝟐 𝒙 + 𝟐𝐜𝐨𝐭 𝒙 − 𝟏

𝟏+ 𝐜𝐨𝐭𝟐 𝒙
⇒ 𝒇(𝒕) =

𝒕𝟐 + 𝟐𝒕 − 𝟏

𝟏 + 𝒕𝟐
; (∗) 

𝛀 = ∫ 𝐜𝐨𝐬 𝒙 ⋅ 𝒇(𝐬𝐢𝐧 𝒙)

𝝅
𝟑

𝝅
𝟔

𝒅𝒙 = ∫ 𝒇(𝐬𝐢𝐧 𝒙)𝒅(𝐬𝐢𝐧𝒙)

𝝅
𝟑

𝝅
𝟔

= 

= ∫ 𝒇(𝒕)

√𝟑
𝟐

𝟏
𝟐

𝒅𝒕 = ∫
𝒕𝟐 + 𝟐𝒕 − 𝟏

𝟏 + 𝒕𝟐

√𝟑
𝟐

𝟏
𝟐

𝒅𝒕 = ∫ (𝟏+
𝟐𝒕 − 𝟐

𝟏 + 𝒕𝟐
)

√𝟑
𝟐

𝟏
𝟐

𝒅𝒕 = 

= ∫ (𝟏 +
𝟐𝒕

𝟏 + 𝒕𝟐
−

𝟐

𝟏 + 𝒕𝟐
)

√𝟑
𝟐

𝟏
𝟐

𝒅𝒕 = (𝒕 + 𝐥𝐨𝐠(𝟏 + 𝒕𝟐) − 𝟐 𝐭𝐚𝐧−𝟏 𝒕)|𝟏
𝟐

√𝟑
𝟐 = 
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=
√𝟑 − 𝟏

𝟐
+ 𝐥𝐨𝐠 (

𝟕

𝟓
) − 𝟐 𝐭𝐚𝐧−𝟏

𝟐

𝟏𝟑
(𝟓√𝟑 − 𝟕) 

Solution 4 by Hikmat Mammadov-Azerbaijan 

𝒇(𝐜𝐨𝐭 𝒙) = 𝐬𝐢𝐧 𝟐𝒙 + 𝐜𝐨𝐬𝟐𝒙 =
𝟐 𝐭𝐚𝐧 𝒙

𝟏 + 𝐭𝐚𝐧𝟐 𝒙
+
𝟏 − 𝐭𝐚𝐧𝟐 𝒙

𝟏 + 𝐭𝐚𝐧𝟐 𝒙
= 

=
𝐜𝐨𝐭𝟐 𝒙 + 𝟐𝐜𝐨𝐭 𝒙 − 𝟏

𝐜𝐨𝐭𝟐 𝒙 + 𝟏
⇒ 𝒇(𝒙) =

𝒙𝟐 + 𝟐𝒙 − 𝟏

𝒙𝟐 + 𝟏
= 𝟏 +

𝟐𝒙 − 𝟐

𝒙𝟐 + 𝟏
 

𝛀 = ∫ 𝐜𝐨𝐬𝒙 ⋅ 𝒇(𝐬𝐢𝐧 𝒙)

𝝅
𝟑

𝝅
𝟔

𝒅𝒙 = ∫ 𝐜𝐨𝐬 𝒙 ⋅ (𝟏 +
𝟐 𝐬𝐢𝐧𝒙 − 𝟐

𝐬𝐢𝐧𝟐 𝒙 + 𝟏
)

𝝅
𝟑

𝝅
𝟔

𝒅𝒙 = 

= ∫ 𝐜𝐨𝐬 𝒙

𝝅
𝟑

𝝅
𝟔

𝒅𝒙 + ∫
𝐜𝐨𝐬𝒙 ⋅ 𝐬𝐢𝐧 𝒙 − 𝟐𝐜𝐨𝐬 𝒙

𝟐 − 𝐜𝐨𝐬𝟐 𝒙

𝝅
𝟑

𝝅
𝟔

𝒅𝒙 = 

= 𝐬𝐢𝐧 𝒙|𝝅
𝟔

𝝅
𝟑 +∫

𝐬𝐢𝐧𝟐𝒙

𝟐 −
𝟏 + 𝐜𝐨𝐬 𝟐𝒙

𝟐

𝝅
𝟑

𝝅
𝟔

𝒅𝒙 − 𝟐∫
𝐜𝐨𝐬 𝒙

𝟐 − 𝐜𝐨𝐬𝟐 𝒙

𝝅
𝟑

𝝅
𝟔

𝒅𝒙 = 

=
√𝟑 − 𝟏

𝟐
+∫

𝒅(𝟑 − 𝐜𝐨𝐬𝟐𝒙)

𝟑 − 𝐜𝐨𝐬𝟐𝒙

𝝅
𝟑

𝝅
𝟔

− 𝟐∫
𝒅(𝐬𝐢𝐧 𝒙)

𝐬𝐢𝐧𝟐 𝒙 + 𝟏

𝝅
𝟑

𝝅
𝟔

= 

=
√𝟑 − 𝟏

𝟐
+ (𝐥𝐨𝐠(𝟑 − 𝐜𝐨𝐬𝟐𝒙) − 𝟐 𝐭𝐚𝐧−𝟏(𝐬𝐢𝐧 𝒙))|𝝅

𝟔

𝝅
𝟑 = 

=
√𝟑 − 𝟏

𝟐
+ 𝐥𝐨𝐠 (

𝟕

𝟓
) − 𝟐 𝐭𝐚𝐧−𝟏 (

√𝟑

𝟐
) − 𝟐 𝐭𝐚𝐧−𝟏 (

𝟏

𝟐
) 

1660. If 𝟎 < 𝒂 ≤ 𝒃 ≤ 𝟏 then: 

∫ ∫ ∫
𝒅𝒙 𝒅𝒚 𝒅𝒛

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝟑

𝒃

𝒂

𝒃

𝒂

𝒃

𝒂

≤
(𝒃 − 𝒂)𝟐

𝟑
∫

𝒅𝒙

𝒙 + 𝒙𝒙

𝒃

𝒂

 

Proposed by Daniel Sitaru-Romania 

Solution by Kamel Gandouli Rezgui-Tunisia 

𝒙, 𝒚, 𝒛 ∈ [𝒂, 𝒃]𝟑, 𝟎 < 𝒂 ≤ 𝒃 ≤ 𝟏 and 𝒇(𝒕) = 𝒕𝟐 + 𝟏 − 𝒕 − 𝒕𝒕 = 

= 𝒕𝟐 − 𝒕 + 𝟏 − 𝒕𝒕 ≥ 𝟎 in [𝟎, 𝟏] and 𝒕𝒕 ≤ 𝟏 

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝟑 = 𝒙𝟐 + 𝟏 + 𝒚𝟐 + 𝟏 + 𝒛𝟐 + 𝟏 ≥ 𝒙𝒙 + 𝒙 + 𝒚𝒚 + 𝒚 + 𝒛𝒛 + 𝒛 ⇒ 
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𝟏

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝟑
≤

𝟏

𝒙𝒙 + 𝒙 + 𝒚𝒚 + 𝒚 + 𝒛𝒛 + 𝒛
 

∵ (𝒂 + 𝒃 + 𝒄) (
𝟏

𝒂
+
𝟏

𝒃
+
𝟏

𝒄
) ≥
𝑪𝑩𝑺

𝟗 ⇒
𝟏

𝒂 + 𝒃 + 𝒄
≤
𝟏

𝟗𝒂
+
𝟏

𝟗𝒃
+
𝟏

𝟗𝒄
, ∀𝒂, 𝒃, 𝒄 > 𝟎 

Hence, we have: 

𝟏

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝟑
≤

𝟏

𝟗(𝒙𝒙 + 𝒙)
+

𝟏

𝟗(𝒚𝒚 + 𝒚)
+

𝟏

𝟗(𝒛𝒛 + 𝒛)
 

and then 

∫ ∫ ∫
𝒅𝒙 𝒅𝒚 𝒅𝒛

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝟑

𝒃

𝒂

𝒃

𝒂

𝒃

𝒂

≤
𝟏

𝟗
∫ ∫ ∫

𝒅𝒙 𝒅𝒚 𝒅𝒛

𝒙𝒙 + 𝒙

𝒃

𝒂

𝒃

𝒂

𝒃

𝒂

+
𝟏

𝟗
∫ ∫ ∫

𝒅𝒙 𝒅𝒚 𝒅𝒛

𝒚𝒚 + 𝒚

𝒃

𝒂

𝒃

𝒂

𝒃

𝒂

+ 

+
𝟏

𝟗
∫ ∫ ∫

𝒅𝒙 𝒅𝒚 𝒅𝒛

𝒛𝒛 + 𝒛

𝒃

𝒂

𝒃

𝒂

𝒃

𝒂

=
(𝒃 − 𝒂)𝟐

𝟗
∫

𝒅𝒙

𝒙𝒙 + 𝒙

𝒃

𝒂

+
(𝒃 − 𝒂)𝟐

𝟗
∫

𝒅𝒚

𝒚𝒚 + 𝒚

𝒃

𝒂

+
(𝒃 − 𝒂)𝟐

𝟗
∫

𝒅𝒛

𝒛𝒛 + 𝒛

𝒃

𝒂

 

= 𝟑 ⋅
(𝒃 − 𝒂)𝟐

𝟗
∫

𝒅𝒙

𝒙𝒙 + 𝒙

𝒃

𝒂

=
(𝒃 − 𝒂)𝟐

𝟑
∫

𝒅𝒙

𝒙𝒙 + 𝒙

𝒃

𝒂

 

Therefore, 

∫ ∫ ∫
𝒅𝒙 𝒅𝒚 𝒅𝒛

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝟑

𝒃

𝒂

𝒃

𝒂

𝒃

𝒂

≤
(𝒃 − 𝒂)𝟐

𝟑
∫

𝒅𝒙

𝒙 + 𝒙𝒙

𝒃

𝒂

 

1661. Find: 

𝛀 = 𝐥𝐢𝐦
𝒙→𝟎

(𝒆𝟑𝒙 𝐥𝐨𝐠(𝟏+𝒙)⋅𝐜𝐨𝐭𝒙 − 𝒆𝟓𝒙) ⋅ 𝐥𝐨𝐠(𝟏 + 𝐬𝐢𝐧 𝒙)

𝒙𝟐
 

Proposed by Dang Le Gia Khanh-Vietnam 

Solution 1 by Kamel Gandouli Rezgui-Tunisia 

𝛀 = 𝐥𝐢𝐦
𝒙→𝟎

(𝒆𝟑𝒙⋅𝐥𝐨𝐠(𝟏+𝒙)⋅𝐜𝐨𝐭 𝒙 − 𝒆𝟓𝒙) ⋅ 𝐥𝐨𝐠(𝟏 + 𝐬𝐢𝐧𝒙)

𝒙𝟐
= 

= 𝐥𝐢𝐦
𝒙→𝟎

𝐬𝐢𝐧 𝒙 (𝒆𝟑𝒙⋅𝐥𝐨𝐠(𝟏+𝒙)⋅𝐜𝐨𝐭 𝒙 − 𝒆𝟓𝒙) ⋅ 𝐥𝐨𝐠(𝟏 + 𝐬𝐢𝐧 𝒙)

𝒙𝟐 ⋅ 𝐬𝐢𝐧 𝒙
 

𝐥𝐢𝐦
𝒙→𝟎

𝐥𝐨𝐠(𝟏 + 𝐬𝐢𝐧𝒙)

𝐬𝐢𝐧 𝒙
= 𝟏, 𝐥𝐢𝐦

𝒙→𝟎

𝐬𝐢𝐧 𝒙

𝒙
= 𝟏 

𝐥𝐢𝐦
𝒙→𝟎

𝟑𝒙

𝐬𝐢𝐧𝒙
⋅ 𝐥𝐨𝐠(𝟏 + 𝒙) ⋅ 𝐜𝐨𝐭 𝒙 = 𝟎 

𝒆𝟑𝒙⋅𝐥𝐨𝐠(𝟏+𝒙)⋅𝐜𝐨𝐭 𝒙 − 𝒆𝟓𝒙 ≅ 𝟏 + 𝟑𝒙 ⋅ 𝐥𝐨𝐠(𝟏 + 𝒙) ⋅ 𝐜𝐨𝐭 𝒙 − 𝟏 − 𝟓𝒙 
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𝒆𝟑𝒙⋅𝐥𝐨𝐠(𝟏+𝒙)⋅𝐜𝐨𝐭 𝒙 − 𝒆𝟓𝒙

𝒙
≅ 𝟑 𝐥𝐨𝐠(𝟏 + 𝒙) ⋅ 𝐜𝐨𝐭 𝒙 − 𝟓 

𝟑 𝐥𝐨𝐠(𝟏 + 𝒙) ⋅ 𝐜𝐨𝐭 𝒙 = 𝟑 𝐥𝐨𝐠(𝟏 + 𝒙) ⋅
𝐜𝐨𝐬 𝒙

𝐬𝐢𝐧 𝒙
= 𝟑

𝐥𝐨𝐠(𝟏 + 𝒙)

𝒙
⋅
𝒙

𝐬𝐢𝐧 𝒙
⋅ 𝐜𝐨𝐬 𝒙 → 𝟑 

𝐥𝐢𝐦
𝒙→𝟎

𝒆𝟑𝒙⋅𝐥𝐨𝐠(𝟏+𝒙)⋅𝐜𝐨𝐭 𝒙 − 𝒆𝟓𝒙

𝒙
= −𝟐 

Therefore, 

𝛀 = 𝐥𝐢𝐦
𝒙→𝟎

(𝒆𝟑𝒙⋅𝐥𝐨𝐠(𝟏+𝒙)⋅𝐜𝐨𝐭 𝒙 − 𝒆𝟓𝒙) ⋅ 𝐥𝐨𝐠(𝟏 + 𝐬𝐢𝐧 𝒙)

𝒙𝟐
= −𝟐 

Solution 2 by Hikmat Mammadov-Azerbaijan 

𝛀 = 𝐥𝐢𝐦
𝒙→𝟎

(𝒆𝟑𝒙⋅𝐥𝐨𝐠(𝟏+𝒙)⋅𝐜𝐨𝐭 𝒙 − 𝒆𝟓𝒙) ⋅ 𝐥𝐨𝐠(𝟏 + 𝐬𝐢𝐧𝒙)

𝒙𝟐
 

𝐥𝐢𝐦
𝒙→𝟎

𝐥𝐨𝐠(𝟏 + 𝐬𝐢𝐧𝒙)

𝒙
= 𝐥𝐢𝐦
𝒙→𝟎

𝐥𝐨𝐠(𝟏 + 𝐬𝐢𝐧𝒙)

𝐬𝐢𝐧 𝒙
⋅
𝐬𝐢𝐧 𝒙

𝒙
= 𝟏 

Hence, 

𝛀 = 𝐥𝐢𝐦
𝒙→𝟎

(𝒆𝟑𝒙⋅𝐥𝐨𝐠(𝟏+𝒙)⋅𝐜𝐨𝐭 𝒙 − 𝒆𝟓𝒙) ⋅ 𝐥𝐨𝐠(𝟏 + 𝐬𝐢𝐧𝒙)

𝒙𝟐
= 

= 𝐥𝐢𝐦
𝒙→𝟎

𝒆𝟑𝒙⋅𝐥𝐨𝐠(𝟏+𝒙)⋅𝐜𝐨𝐭 𝒙 − 𝒆𝟓𝒙

𝒙
⋅ 𝐥𝐢𝐦
𝒙→𝟎

𝐥𝐨𝐠(𝟏 + 𝐬𝐢𝐧𝒙)

𝐬𝐢𝐧𝒙
⋅
𝐬𝐢𝐧 𝒙

𝒙
= 

= 𝐥𝐢𝐦
𝒙→𝟎

𝒆𝟑𝒙⋅𝐥𝐨𝐠(𝟏+𝒙)⋅𝐜𝐨𝐭 𝒙 − 𝒆𝟓𝒙

𝒙
= 𝐥𝐢𝐦
𝒙→𝟎

(
𝒆𝟑 𝐥𝐨𝐠(𝟏+𝒙) − 𝟏

𝟑𝐥𝐨𝐠(𝟏 + 𝒙)
⋅
𝟑 𝐥𝐨𝐠(𝟏 + 𝒙)

𝒙
−
𝒆𝟓𝒙 − 𝟏

𝟓𝒙
⋅ 𝟓) = 

= 𝟏 ⋅ 𝟑 − 𝟓 = −𝟐 

Solution 3 by Yen Tung Chung-Taichung-Taiwan 

𝟑𝒙 ⋅ 𝐜𝐨𝐭 𝒙 ⋅ 𝐥𝐨𝐠(𝟏 + 𝒙) =
𝟑𝒙 ⋅ 𝐜𝐨𝐬 𝒙 ⋅ 𝐥𝐨𝐠(𝟏 + 𝒙)

𝐬𝐢𝐧 𝒙
=
𝟑𝒙(𝟏 −

𝟏
𝟐𝒙

𝟐 +⋯)(𝒙 −
𝟏
𝟐 𝒙

𝟐 +⋯)

𝒙 −
𝟏
𝟔 𝒙

𝟐
= 

=
𝟑𝒙𝟐 −

𝟑
𝟐𝒙

𝟑 +⋯

𝒙 −
𝟏
𝟔𝒙

𝟐 +⋯
= 𝟑𝒙 −

𝟑

𝟐
𝒙𝟐 + 𝒐(𝒙𝟒) 

Thus, 

𝛀 = 𝐥𝐢𝐦
𝒙→𝟎

(𝒆𝟑𝒙 𝐥𝐨𝐠(𝟏+𝒙)⋅𝐜𝐨𝐭 𝒙 − 𝒆𝟓𝒙) ⋅ 𝐥𝐨𝐠(𝟏 + 𝐬𝐢𝐧𝒙)

𝒙𝟐
= 
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= 𝐥𝐢𝐦
𝒙→𝟎

(𝒆𝟑𝒙−
𝟑
𝟐
𝒙𝟐+𝒐(𝒙𝟒) − 𝒆𝟓𝒙) 𝐥𝐨𝐠 (𝟏 + 𝒙 + 𝒐(𝒙𝟑))

𝒙𝟐
= 

= 𝐥𝐢𝐦
𝒙→𝟎

(𝟏 + (𝟑𝒙 + 𝒐(𝒙𝟐)) − (𝟏 + 𝟓𝒙 + 𝒐(𝒙𝟐))) 𝐥𝐨𝐠 (𝟏 + 𝒙 + 𝒐(𝒙𝟑))

𝒙𝟐
= 

= 𝐥𝐢𝐦
𝒙→𝟎

(−𝟐𝒙 + 𝒐(𝒙𝟐)) (𝒙 + 𝒐(𝒙𝟑))

𝒙𝟐
= 𝐥𝐢𝐦
𝒙→𝟎

−𝟐𝒙𝟐 + 𝒐(𝒙𝟑)

𝒙𝟐
= −𝟐 

Solution 4 by Soumitra Mandal-Chandar Nagore-India 

𝐥𝐢𝐦
𝒙→𝟎

𝟑𝒙 ⋅ 𝐥𝐨𝐠(𝟏 + 𝒙) ⋅ 𝐜𝐨𝐭 𝒙 = 𝐥𝐢𝐦
𝒙→𝟎

𝟑 𝐥𝐨𝐠(𝟏 + 𝒙) ⋅ 𝐜𝐨𝐬 𝒙

𝐬𝐢𝐧 𝒙
𝒙

=
𝟎

𝟏
= 𝟎 

𝛀 = 𝐥𝐢𝐦
𝒙→𝟎

(𝒆𝟑𝒙 𝐥𝐨𝐠(𝟏+𝒙)⋅𝐜𝐨𝐭 𝒙 − 𝒆𝟓𝒙) ⋅ 𝐥𝐨𝐠(𝟏 + 𝐬𝐢𝐧𝒙)

𝒙𝟐
= 

= 𝐥𝐢𝐦
𝒙→𝟎

𝐬𝐢𝐧 𝒙

𝒙
⋅ 𝐥𝐢𝐦
𝒙→𝟎

𝐥𝐨𝐠
𝟏 + 𝐬𝐢𝐧𝒙

𝐬𝐢𝐧𝒙
⋅ (𝐥𝐢𝐦
𝒙→𝟎

𝟑𝟑𝒙⋅𝐥𝐨𝐠(𝟏+𝒙)⋅𝐜𝐨𝐭 𝒙 − 𝟏

𝒙
− 𝐥𝐢𝐦
𝒙→𝟎

𝒆𝟓𝒙 − 𝟏

𝒙
) = 

= 𝟏 ⋅ 𝟏 ⋅ (𝟑 𝐥𝐢𝐦
𝒙→𝟎

𝐥𝐨𝐠(𝟏 + 𝒙) ⋅ 𝐜𝐨𝐭 𝒙 ⋅ 𝐥𝐢𝐦
𝒙→𝟎

𝒆𝟑𝒙⋅𝐥𝐨𝐠(𝟏+𝒙)⋅𝐜𝐨𝐭 𝒙−𝟏

𝟑𝒙 ⋅ 𝐥𝐨𝐠(𝟏 + 𝒙) ⋅ 𝐜𝐨𝐭 𝒙
− 𝟓 ⋅ 𝐥𝐢𝐦

𝒙→𝟎

𝒆𝟓𝒙 − 𝟏

𝟓𝒙
) = 

= 𝟑 𝐥𝐢𝐦
𝒙→𝟎

𝒙

𝐭𝐚𝐧 𝒙
⋅ 𝐥𝐢𝐦
𝒙→𝟎

𝐥𝐨𝐠(𝟏 + 𝒙)

𝒙
− 𝟓 = 𝟑 − 𝟓 = −𝟐. 

1662. Find: 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

𝟏

𝒏
∑

(𝒏 − 𝒌 + 𝟏)𝑯𝒌
𝒌(𝒏 − 𝒌 + 𝟏)𝟐 + 𝒌

𝒏

𝒌=𝟏

 

Proposed by Daniel Sitaru-Romania 

Solution 1 by Kamel Gandouli Rezgui-Tunisia 

(𝒏 − 𝒌 + 𝟏)𝑯𝒌
𝒌(𝒏 − 𝒌 + 𝟏)𝟐 + 𝒌

=
𝒏− 𝒌 + 𝟏

𝒌[(𝒏 − 𝒌 + 𝟏)𝟐 + 𝟏]
≤
𝟏

𝒌
,∀𝒌 ≤ 𝒏 

Hence, 

𝟎 ≤
(𝒏 − 𝒌 + 𝟏)𝑯𝒌
𝒌(𝒏 − 𝒌 + 𝟏)𝟐 + 𝒌

≤
𝑯𝒌
𝒌

 

and then 

𝟎 ≤
𝟏

𝒏
∑

(𝒏 − 𝒌 + 𝟏)𝑯𝒌
𝒌(𝒏 − 𝒌 + 𝟏)𝟐 + 𝒌

𝒏

𝒌=𝟏

≤
𝟏

𝒏
∑
𝑯𝒌
𝒌

𝒏

𝒌=𝟏
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𝐥𝐢𝐦
𝒏→∞

𝟏

𝒏
∑
𝑯𝒌
𝒌

𝒏

𝒌=𝟏

≅ 𝐥𝐢𝐦
𝒏→∞

𝟏

𝒏
∑
𝐥𝐨𝐠𝒌

𝒌

𝒏

𝒌=𝟏

= 𝟎; (∵ 𝑯𝒏 ≅ 𝐥𝐨𝐠 𝒏) 

Therefore, 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

𝟏

𝒏
∑

(𝒏 − 𝒌 + 𝟏)𝑯𝒌
𝒌(𝒏− 𝒌 + 𝟏)𝟐 + 𝒌

𝒏

𝒌=𝟏

= 𝟎 

 Solution 2 by Ravi Prakash-New Delhi-India 

𝐅𝐨𝐫 𝟏 ≤ 𝒌 ≤ 𝒏, 𝐥𝐞𝐭 𝒂𝒌 =
(𝒏 − 𝒌 + 𝟏)𝑯𝒌
𝒌(𝒏 − 𝒌 + 𝟏)𝟐 + 𝒌

=
(𝒏 − 𝒌 + 𝟏)𝑯𝒌

((𝒏 − 𝒌 + 𝟏)𝟐 + 𝟏)𝒌
= 

=
𝒏− 𝒌 + 𝟏

(𝒏 − 𝒌 + 𝟏)𝟐 + 𝟏
⋅
𝑯𝒌
𝒌
<

𝟏

𝒏 − 𝒌+ 𝟏
⋅ 𝟏 =

𝟏

𝒏 − 𝒌 + 𝟏
 

Hence, 

𝟎 <
𝟏

𝒏
∑𝒂𝒌

𝒏

𝒌=𝟏

<
𝟏

𝒏
∑

𝟏

𝒏− 𝒌 + 𝟏

𝒏

𝒌=𝟏

=
𝟏

𝒏
∑
𝟏

𝒌

𝒏

𝒌=𝟏

 

𝐀𝐬 𝐥𝐢𝐦
𝒏→∞

𝟏

𝒏
∑
𝟏

𝒌

𝒏

𝒌=𝟏

=
𝑳.𝑪−𝑺

𝟎 

By the sandwich theorem, we get 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

𝟏

𝒏
∑

(𝒏 − 𝒌 + 𝟏)𝑯𝒌
𝒌(𝒏− 𝒌 + 𝟏)𝟐 + 𝒌

𝒏

𝒌=𝟏

= 𝟎 

1663. Find: 

𝛀(𝒌) = 𝐥𝐢𝐦
𝒏→∞

𝒏𝟐𝒌 (
𝐭𝐚𝐧−𝟏(𝒏𝒌)

𝒏𝒌
−
𝐭𝐚𝐧−𝟏(𝟏 + 𝒏𝒌)

𝟏 + 𝒏𝒌
) , 𝒌 ∈ ℕ∗ 

Proposed by Ovidiu Gabriel Dinu-Romania 

Solution by Ravi Prakash-New Delhi-India 

𝐋𝐞𝐭 𝒂 = 𝒏𝒌 𝐚𝐧𝐝 𝒇(𝒙) =
𝐭𝐚𝐧−𝟏 𝒙

𝒙
, 𝒙 ∈ [𝒂, 𝒂 + 𝟏], 𝐭𝐡𝐞𝐧 𝒇′(𝒙) =

𝟏

𝒙(𝟏 + 𝒙𝟐)
−
𝐭𝐚𝐧−𝟏 𝒙

𝒙𝟐
 

By the Lagrange’s mean value theorem, we have: 

𝒇(𝒂 + 𝟏) − 𝒇(𝒂) = 𝒇′(𝒂 + 𝜽) for some 𝜽 ∈ (𝟎, 𝟏). 

Hence, 
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𝒏𝟐𝒌 (
𝐭𝐚𝐧−𝟏(𝒏𝒌)

𝒏𝒌
−
𝐭𝐚𝐧−𝟏(𝟏 + 𝒏𝒌)

𝟏 + 𝒏𝒌
) = 𝒏𝟐𝒌 (

𝟏

(𝒏𝒌 + 𝜽)[𝟏 + (𝒏𝒌 + 𝜽)𝟐]
−
𝐭𝐚𝐧−𝟏(𝒏𝒌 + 𝜽)

(𝒏𝒌 + 𝜽)𝟐
) 

Taking limit as 𝒏 → ∞, we get: 

𝛀(𝒌) = 𝐥𝐢𝐦
𝒏→∞

𝒏𝟐𝒌 (
𝐭𝐚𝐧−𝟏(𝒏𝒌)

𝒏𝒌
−
𝐭𝐚𝐧−𝟏(𝟏 + 𝒏𝒌)

𝟏 + 𝒏𝒌
) = 

= 𝐥𝐢𝐦
𝒏→∞

𝒏𝟐𝒌 (
𝟏

(𝒏𝒌 + 𝜽)[𝟏 + (𝒏𝒌 + 𝜽)𝟐]
−
𝐭𝐚𝐧−𝟏(𝒏𝒌 + 𝜽)

(𝒏𝒌 + 𝜽)𝟐
) = 

= 𝐥𝐢𝐦
𝒏→∞

(−
𝟏

𝒏𝒌 + 𝜽
⋅

𝟏

𝟏
𝒏𝟐𝒌

+ (𝟏+
𝜽
𝒏𝒌
)
𝟐 +

𝐭𝐚𝐧−𝟏(𝒏𝒌 + 𝜽)

(𝟏 +
𝜽
𝒏𝒌
)
𝟐 ) =

𝝅

𝟐
 

1664. For all 𝒌 ∈ ℕ∗ let 𝑺(𝒌) be the 𝒌𝒕𝒉 term in the sequence 

𝟏, 𝟐, 𝟓, 𝟏𝟐, 𝟐𝟗, 𝟕𝟎, 𝟏𝟔𝟗, 𝟒𝟎𝟖, 𝟗𝟖𝟓, 𝟐𝟑𝟕𝟖, … 

Then prove the following summations 

∑
𝑺(𝒏)

𝒏!

∞

𝒏=𝟏

=
𝒆 𝐬𝐢𝐧𝐡(√𝟐)

√𝟐
 

∑
𝑺(𝟑𝒏)

(𝟑𝒏)!

∞

𝒏=𝟏

=
𝟏

𝟑√𝟐
(

𝟏

√𝒆√𝟐+𝟏
𝐜𝐨𝐬 (

√𝟔 + √𝟑

𝟐
) − √𝒆√𝟐−𝟏 𝐜𝐨𝐬 (

√𝟔 − √𝟑

𝟐
) + 𝒆 𝐬𝐢𝐧𝐡(√𝟐)) 

Proposed by Amrit Awasthi-India 

Solution 1 by Ahmed Yacoube Chach-Mauritania 

{
𝑺(𝟏) = 𝟏; 𝑺(𝟐) = 𝟐

𝑺(𝒏 + 𝟐) = 𝟐𝑺(𝒏 + 𝟏) + 𝑺(𝒏)
 

𝒙𝟐 − 𝟐𝒙 − 𝟏 = 𝟎 equation associate of 𝑺(𝒏) = 𝜶(𝟏 + √𝟐)
𝒏
+𝜷(𝟏 − √𝟐)

𝒏
  and from 

initial conditions, we get: 𝑺(𝒏) =
(𝟏+√𝟐)

𝒏
−(𝟏−√𝟐)

𝒏

𝟐√𝟐
 

∑
𝑺(𝒏)

𝒏!

∞

𝒏=𝟏

=
𝟏

𝟐√𝟐
(∑

(𝟏 + √𝟐)
𝒏

𝟐

∞

𝒏=𝟏

−∑
(𝟏 − √𝟐)

𝒏

𝟐

∞

𝒏=𝟏

) = 

=
𝟏

𝟐√𝟐
(𝒆𝟏+√𝟐 − 𝟏 − (𝒆𝟏−√𝟐 − 𝟏)) =

𝒆

√𝟐
⋅
𝒆√𝟐 − 𝒆−√𝟐

𝟐
=
𝒆 𝐬𝐢𝐧𝐡(√𝟐)

√𝟐
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𝐋𝐞𝐭 𝒇(𝒙) = ∑
𝒙𝟑𝒏

(𝟑𝒏)!

∞

𝒏=𝟎

⇒ 𝒇(𝟑)(𝒙) = 𝒇(𝒙) 𝐚𝐧𝐝 𝒇(𝟎) = 𝟏, 𝒇′(𝟎) = 𝒇′′(𝟎) = 𝟎 

𝒙𝟑 − 𝟏 = 𝟎 

𝒇(𝒙) = 𝑨𝒆𝒙 + 𝑩𝒆−
𝒙
𝟐 𝐜𝐨𝐬 (

√𝟑

𝟐
𝒙) + 𝑪𝒆−

𝒙
𝟐 𝐬𝐢𝐧 (

√𝟑

𝟐
𝒙) ⇒ 

𝒇(𝒙) =
𝟏

𝟑
𝒆𝒙 +

𝟐

𝟑
𝒆−
𝒙
𝟐 𝐜𝐨𝐬 (

√𝟑

𝟐
𝒙) 

∑
𝑺(𝟑𝒏)

(𝟑𝒏)!

∞

𝒏=𝟏

=
𝟏

𝟐√𝟐
(∑

(𝟏 + √𝟑)
𝟑𝒏

(𝟑𝒏)!

∞

𝒏=𝟏

−∑
(𝟏 − √𝟐)

𝟑𝒏

(𝟑𝒏)!

∞

𝒏=𝟏

) = 

=
𝟏

𝟐√𝟐
(
𝟏

𝟑
𝒆𝟏+√𝟐 +

𝟐

𝟑
𝒆−
𝟏+√𝟐
𝟐 𝐜𝐨𝐬(

√𝟑

𝟐
(𝟏 + √𝟐)) − 𝟏) − 

−
𝟏

𝟐√𝟐
(
𝟏

𝟑
𝒆𝟏−√𝟐 +

𝟐

𝟑
𝒆−
𝟏−√𝟐
𝟐 𝐜𝐨𝐬 (

√𝟑

𝟐
(𝟏 − √𝟐)) − 𝟏) = 

=
𝟏

𝟑√𝟐
(
𝟏

𝟐
𝒆𝟏+√𝟐 + 𝒆−

𝟏+√𝟐
𝟐 𝐜𝐨𝐬 (

√𝟔 + √𝟑

𝟐
)) − 

−
𝟏

𝟑√𝟐
(
𝟏

𝟐
𝒆𝟏−√𝟐 + 𝒆−

𝟏−√𝟐
𝟐 𝐜𝐨𝐬 (

√𝟔 − √𝟑

𝟐
)) = 

𝟏

𝟑√𝟐
(

𝟏

√𝒆√𝟐+𝟏
𝐜𝐨𝐬 (

√𝟔 + √𝟑

𝟐
) − √𝒆√𝟐−𝟏 𝐜𝐨𝐬 (

√𝟔 − √𝟑

𝟐
) + 𝒆 𝐬𝐢𝐧𝐡(√𝟐)) 

 Solution 2 by Kamel Rezgui Gandouli-Tunisia 

𝒔𝒌 ∈ {𝟎, 𝟏, 𝟐, 𝟓, 𝟏𝟐, 𝟐𝟗,… } ⇒ {
𝒔𝟎 = 𝟎, 𝒔𝟏 = 𝟏

𝒔𝒏+𝟐 = 𝟐𝒔𝒏+𝟏 + 𝒔𝒏
 

𝒙𝟐 = 𝟐𝒙 + 𝟏 ⇒ 𝒔𝒏 = 𝜶(𝟏 + √𝟐)
𝒏
+ 𝜷(𝟏 − √𝟐)

𝒏
 

𝒔𝟎 = 𝟎 ⇒ 𝜶 = −𝜷 ⇒ 𝜶 =
𝟏

𝟐√𝟐
⇒ 𝒔𝒏 =

𝟏

𝟐√𝟐
{(𝟏 + √𝟐)

𝒏
− (𝟏 − √𝟐)

𝒏
} ⇒ 

∑
𝑺(𝒏)

𝒏!

∞

𝒏=𝟏

=
𝟏

𝟐√𝟐
∑{(𝟏 + √𝟐)

𝒏
− (𝟏 − √𝟐)

𝒏
}

∞

𝒏=𝟏

=
𝟏

𝟐√𝟐
𝒆𝟏+√𝟐 −

𝟏

𝟐√𝟐
𝒆𝟏−√𝟐 = 

=
𝟏

√𝟐
⋅
𝒆√𝟐 − 𝒆−√𝟐

𝟐
=
𝒆 𝐬𝐢𝐧𝐡(√𝟐)

√𝟐
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𝐋𝐞𝐭 𝒔(𝒙) = ∑
𝒙𝟑𝒏

(𝟑𝒏)!

∞

𝒏=𝟎

⇒ 𝒔(𝟑)(𝒙) = ∑
𝒙𝟑𝒏−𝟑

(𝟑𝒏 − 𝟑)!

∞

𝒏=𝟏

= 𝒔(𝒙) ⇒ 𝒔(𝒙) = 𝒂𝒆𝒙 + 𝒃𝒆𝒊𝒙 + 𝒄𝒆𝒋
𝟐𝒙 

𝒔(𝟎) = 𝟏, 𝒔′(𝟎) = 𝒔′′(𝟎) = 𝟎 

{

𝒂 + 𝒃 + 𝒄 = 𝟏
𝒂 + 𝒃𝒋 + 𝒄𝒋𝟐 = 𝟎

𝒂 + 𝒃𝒋𝟐 + 𝒄𝒋 = 𝟎
⇒ 𝒂 + 𝒃 + 𝒄 =

𝟏

𝟑
⇒ 

𝒔(𝒙) =
𝟏

𝟑
(𝒆𝒙 + 𝒆𝒋𝒙 + 𝒆𝒋

𝟐𝒙) =
𝒆𝒙

𝟑
+
𝟐

𝟑
𝒆−
𝒙
𝟐 𝐜𝐨𝐬 (

√𝟑

𝟐
𝒙) 

∑
𝒔(𝟑𝒏)

(𝟑𝒏)!

∞

𝒏=𝟎

=
𝟏

𝟐√𝟐
𝒔(𝟏 + √𝟐) −

𝟏

𝟐√𝟐
𝒔(𝟏 − √𝟐) = 

=
𝟏

𝟔√𝟐
𝒆𝟏+√𝟐 +

𝟏

𝟑√𝟐

𝟏

√𝒆𝟏+√𝟐
𝐜𝐨𝐬 (

√𝟑

𝟐
(𝟏 + √𝟐)) − 

−
𝟏

𝟔√𝟐
𝒆𝟏−√𝟐 +

𝟏

𝟑√𝟐

𝟏

√𝒆𝟏−√𝟐
𝐜𝐨𝐬 (

√𝟑

𝟐
(𝟏 − √𝟐)) = 

=
𝟏

𝟑√𝟐
(

𝟏

√𝒆√𝟐+𝟏
𝐜𝐨𝐬 (

√𝟔 + √𝟑

𝟐
) − √𝒆√𝟐−𝟏 𝐜𝐨𝐬 (

√𝟔 − √𝟑

𝟐
) + 𝒆 𝐬𝐢𝐧𝐡(√𝟐)) 

1665. For all 𝒌 ∈ ℕ∗ let 𝑺(𝒌) be the 𝒌𝒕𝒉 term in the sequence 

𝟏, 𝟐, 𝟓, 𝟏𝟐, 𝟐𝟗, 𝟕𝟎, 𝟏𝟔𝟗, 𝟒𝟎𝟖, 𝟗𝟖𝟓, 𝟐𝟑𝟕𝟖,…Then prove the following summations 

∑
𝑺(𝒏)

𝒏!

∞

𝒏=𝟏

=
𝒆𝐬𝐢𝐧𝐡(√𝟐)

√𝟐
 

∑
𝑺(𝟑𝒏)

(𝟑𝒏)!

∞

𝒏=𝟏

=
𝟏

𝟑√𝟐
(

𝟏

√𝒆√𝟐+𝟏
𝐜𝐨𝐬 (

√𝟔 + √𝟑

𝟐
) − √𝒆√𝟐−𝟏 𝐜𝐨𝐬 (

√𝟔 − √𝟑

𝟐
) + 𝒆 𝐬𝐢𝐧𝐡(√𝟐)) 

Proposed by Amrit Awasthi-India 

Solution 1 by Ahmed Yacoube Chach-Mauritania 

{
𝑺(𝟏) = 𝟏; 𝑺(𝟐) = 𝟐

𝑺(𝒏 + 𝟐) = 𝟐𝑺(𝒏 + 𝟏) + 𝑺(𝒏)
 

𝒙𝟐 − 𝟐𝒙 − 𝟏 = 𝟎 equation associate of 𝑺(𝒏) = 𝜶(𝟏 + √𝟐)
𝒏
+𝜷(𝟏 − √𝟐)

𝒏
  and from 

initial conditions, we get: 𝑺(𝒏) =
(𝟏+√𝟐)

𝒏
−(𝟏−√𝟐)

𝒏

𝟐√𝟐
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∑
𝑺(𝒏)

𝒏!

∞

𝒏=𝟏

=
𝟏

𝟐√𝟐
(∑

(𝟏 + √𝟐)
𝒏

𝟐

∞

𝒏=𝟏

−∑
(𝟏 − √𝟐)

𝒏

𝟐

∞

𝒏=𝟏

) = 

=
𝟏

𝟐√𝟐
(𝒆𝟏+√𝟐 − 𝟏 − (𝒆𝟏−√𝟐 − 𝟏)) =

𝒆

√𝟐
⋅
𝒆√𝟐 − 𝒆−√𝟐

𝟐
=
𝒆 𝐬𝐢𝐧𝐡(√𝟐)

√𝟐
 

𝐋𝐞𝐭 𝒇(𝒙) = ∑
𝒙𝟑𝒏

(𝟑𝒏)!

∞

𝒏=𝟎

⇒ 𝒇(𝟑)(𝒙) = 𝒇(𝒙) 𝐚𝐧𝐝 𝒇(𝟎) = 𝟏, 𝒇′(𝟎) = 𝒇′′(𝟎) = 𝟎 

𝒙𝟑 − 𝟏 = 𝟎 

𝒇(𝒙) = 𝑨𝒆𝒙 + 𝑩𝒆−
𝒙
𝟐 𝐜𝐨𝐬 (

√𝟑

𝟐
𝒙) + 𝑪𝒆−

𝒙
𝟐 𝐬𝐢𝐧 (

√𝟑

𝟐
𝒙) ⇒ 

𝒇(𝒙) =
𝟏

𝟑
𝒆𝒙 +

𝟐

𝟑
𝒆−
𝒙
𝟐 𝐜𝐨𝐬 (

√𝟑

𝟐
𝒙) 

∑
𝑺(𝟑𝒏)

(𝟑𝒏)!

∞

𝒏=𝟏

=
𝟏

𝟐√𝟐
(∑

(𝟏 + √𝟑)
𝟑𝒏

(𝟑𝒏)!

∞

𝒏=𝟏

−∑
(𝟏 − √𝟐)

𝟑𝒏

(𝟑𝒏)!

∞

𝒏=𝟏

) = 

=
𝟏

𝟐√𝟐
(
𝟏

𝟑
𝒆𝟏+√𝟐 +

𝟐

𝟑
𝒆−
𝟏+√𝟐
𝟐 𝐜𝐨𝐬(

√𝟑

𝟐
(𝟏 + √𝟐)) − 𝟏) − 

−
𝟏

𝟐√𝟐
(
𝟏

𝟑
𝒆𝟏−√𝟐 +

𝟐

𝟑
𝒆−
𝟏−√𝟐
𝟐 𝐜𝐨𝐬 (

√𝟑

𝟐
(𝟏 − √𝟐)) − 𝟏) = 

=
𝟏

𝟑√𝟐
(
𝟏

𝟐
𝒆𝟏+√𝟐 + 𝒆−

𝟏+√𝟐
𝟐 𝐜𝐨𝐬 (

√𝟔 + √𝟑

𝟐
)) − 

−
𝟏

𝟑√𝟐
(
𝟏

𝟐
𝒆𝟏−√𝟐 + 𝒆−

𝟏−√𝟐
𝟐 𝐜𝐨𝐬 (

√𝟔 − √𝟑

𝟐
)) = 

𝟏

𝟑√𝟐
(

𝟏

√𝒆√𝟐+𝟏
𝐜𝐨𝐬 (

√𝟔 + √𝟑

𝟐
) − √𝒆√𝟐−𝟏 𝐜𝐨𝐬 (

√𝟔 − √𝟑

𝟐
) + 𝒆 𝐬𝐢𝐧𝐡(√𝟐)) 

 Solution 2 by Kamel Rezgui Gandouli-Tunisia 

𝒔𝒌 ∈ {𝟎, 𝟏, 𝟐, 𝟓, 𝟏𝟐, 𝟐𝟗,… } ⇒ {
𝒔𝟎 = 𝟎, 𝒔𝟏 = 𝟏

𝒔𝒏+𝟐 = 𝟐𝒔𝒏+𝟏 + 𝒔𝒏
 

𝒙𝟐 = 𝟐𝒙 + 𝟏 ⇒ 𝒔𝒏 = 𝜶(𝟏 + √𝟐)
𝒏
+ 𝜷(𝟏 − √𝟐)

𝒏
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𝒔𝟎 = 𝟎 ⇒ 𝜶 = −𝜷 ⇒ 𝜶 =
𝟏

𝟐√𝟐
⇒ 𝒔𝒏 =

𝟏

𝟐√𝟐
{(𝟏 + √𝟐)

𝒏
− (𝟏 − √𝟐)

𝒏
} ⇒ 

∑
𝑺(𝒏)

𝒏!

∞

𝒏=𝟏

=
𝟏

𝟐√𝟐
∑{(𝟏 + √𝟐)

𝒏
− (𝟏 − √𝟐)

𝒏
}

∞

𝒏=𝟏

=
𝟏

𝟐√𝟐
𝒆𝟏+√𝟐 −

𝟏

𝟐√𝟐
𝒆𝟏−√𝟐 = 

=
𝟏

√𝟐
⋅
𝒆√𝟐 − 𝒆−√𝟐

𝟐
=
𝒆 𝐬𝐢𝐧𝐡(√𝟐)

√𝟐
 

𝐋𝐞𝐭 𝒔(𝒙) = ∑
𝒙𝟑𝒏

(𝟑𝒏)!

∞

𝒏=𝟎

⇒ 𝒔(𝟑)(𝒙) = ∑
𝒙𝟑𝒏−𝟑

(𝟑𝒏 − 𝟑)!

∞

𝒏=𝟏

= 𝒔(𝒙) ⇒ 𝒔(𝒙) = 𝒂𝒆𝒙 + 𝒃𝒆𝒊𝒙 + 𝒄𝒆𝒋
𝟐𝒙 

𝒔(𝟎) = 𝟏, 𝒔′(𝟎) = 𝒔′′(𝟎) = 𝟎 

{

𝒂 + 𝒃 + 𝒄 = 𝟏
𝒂 + 𝒃𝒋 + 𝒄𝒋𝟐 = 𝟎

𝒂 + 𝒃𝒋𝟐 + 𝒄𝒋 = 𝟎
⇒ 𝒂 + 𝒃 + 𝒄 =

𝟏

𝟑
⇒ 

𝒔(𝒙) =
𝟏

𝟑
(𝒆𝒙 + 𝒆𝒋𝒙 + 𝒆𝒋

𝟐𝒙) =
𝒆𝒙

𝟑
+
𝟐

𝟑
𝒆−
𝒙
𝟐 𝐜𝐨𝐬 (

√𝟑

𝟐
𝒙) 

∑
𝒔(𝟑𝒏)

(𝟑𝒏)!

∞

𝒏=𝟎

=
𝟏

𝟐√𝟐
𝒔(𝟏 + √𝟐) −

𝟏

𝟐√𝟐
𝒔(𝟏 − √𝟐) = 

=
𝟏

𝟔√𝟐
𝒆𝟏+√𝟐 +

𝟏

𝟑√𝟐

𝟏

√𝒆𝟏+√𝟐
𝐜𝐨𝐬 (

√𝟑

𝟐
(𝟏 + √𝟐)) − 

−
𝟏

𝟔√𝟐
𝒆𝟏−√𝟐 +

𝟏

𝟑√𝟐

𝟏

√𝒆𝟏−√𝟐
𝐜𝐨𝐬 (

√𝟑

𝟐
(𝟏 − √𝟐)) = 

=
𝟏

𝟑√𝟐
(

𝟏

√𝒆√𝟐+𝟏
𝐜𝐨𝐬 (

√𝟔 + √𝟑

𝟐
) − √𝒆√𝟐−𝟏 𝐜𝐨𝐬 (

√𝟔 − √𝟑

𝟐
) + 𝒆 𝐬𝐢𝐧𝐡(√𝟐)) 

1666. If we defined the sequence ∀𝒌,𝒏 ∈ ℕ with recursive relation  𝑴𝒌(𝒏 + 𝟏) = 𝒌 ⋅

𝑴𝒌(𝒏) + 𝑴𝒌(𝒏 − 𝟏) and 𝑴𝒌(𝟎) = 𝟎,𝑴𝒌(𝟏) = 𝟏.  Prove the following summations: 

∑
𝑴𝒌(𝒏)

𝒏!

∞

𝒏=𝟎

=
𝟐√𝒆𝒌

√𝒌𝟐 + 𝟒
𝐬𝐢𝐧𝐡 (

√𝒌𝟐 + 𝟒

𝟐
) 



 
www.ssmrmh.ro 

112 RMM-CALCULUS MARATHON 1601-1700 

 

∑
𝑴𝒌(𝟑𝒏)

(𝟑𝒏)!

∞

𝒏=𝟎

=
𝟐

𝟑√𝒌𝟐 + 𝟒
(

 
𝟏

√𝒆√𝒌
𝟐+𝟒+𝒌

𝟒
𝐜𝐨𝐬 (

√𝟑𝒌𝟐 + 𝟏𝟐 + √𝟑𝒌

𝟒
)

− √𝒆√𝒌
𝟐+𝟒−𝒌

𝟒

𝐜𝐨𝐬 (
√𝟑𝒌𝟐 + 𝟏𝟐 − √𝟑𝒌

𝟒
) +

𝟐√𝒆𝒌

𝟑√𝒌𝟐 + 𝟒
𝐬𝐢𝐧𝐡(

√𝒌𝟐 + 𝟒

𝟐
)

)

  

Proposed by Amrit Awasthi-India 
Solution by Kamel Gandouli Rezgui-Tunisia 

𝑴𝒌(𝒏 + 𝟏) = 𝒌 ⋅ 𝑴𝒌(𝒏) + 𝑴𝒌(𝒏 − 𝟏) and  

𝑴𝒌(𝟎) = 𝟎,𝑴𝒌(𝟏) = 𝟏 ⇒ 𝑴𝒌(𝒏) = 𝜶𝒙𝟏
𝒏 + 𝜷𝒙𝟐

𝒏, 

𝒙𝟏, 𝒙𝟐 are solutions of the equation 𝒙𝟐 = 𝒌𝒙+ 𝟏 

𝒙 =
𝒌 ± √𝒌𝟐 + 𝟒

𝟐
,𝑴𝒌(𝟎) = 𝟎 ⇒ 𝜶 = −𝜷 

𝑴𝒌(𝟏) = 𝟏 ⇒ 𝜶 = −𝜷 = −
𝟏

√𝒌𝟐 + 𝟒
⇒ 𝑴𝒏(𝒌) =

𝟏

√𝒌𝟐 + 𝟒
𝒙𝟏
𝒏 −

𝟏

√𝒌𝟐 + 𝟒
𝒙𝟐
𝒏 

∑
𝑴𝒌(𝒏)

𝒏!

∞

𝒏=𝟎

=
𝟏

√𝒌𝟐 + 𝟒
𝒆𝒙𝟏 −

𝟏

√𝒌𝟐 + 𝟒
𝒆𝒙𝟐 =

𝟏

√𝒌𝟐 + 𝟒
(𝒆
𝒌+√𝒌𝟐+𝟒

𝟐 − 𝒆
𝒌−√𝒌𝟐+𝟒

𝟐 ) = 

=
𝟐𝒆

𝒌
𝟐

√𝒌𝟐 + 𝟒

𝟏

𝟐
(𝒆
√𝒌𝟐+𝟒
𝟐 − 𝒆−

√𝒌𝟐+𝟒
𝟐 ) =

𝟐√𝒆𝒌

√𝒌𝟐 + 𝟒
𝐬𝐢𝐧𝐡 (

√𝒌𝟐 + 𝟒

𝟐
) 

𝒇(𝒙) = (∑
𝒙𝟑𝒏

(𝟑𝒏)!

∞

𝒏=𝟎

)

(𝟑)

= ∑
𝒙𝟑𝒏

(𝟑𝒏)!

∞

𝒏=𝟎

 

𝒕𝟑 − 𝟏 = 𝟎 ⇒ 𝒕 ∈ {𝟏, 𝒋, 𝒋𝟐}, 𝒇′(𝟎) = 𝟏, 𝒇′′(𝟎) = 𝒇(𝟑)(𝟎) = 𝟎 

⇒ {

𝒂 + 𝒃 + 𝒄 = 𝟏
𝒂 + 𝒃𝒋 + 𝒄𝒋𝟐 = 𝟎

𝒂 + 𝒃𝒋𝟐 + 𝒄𝒋 = 𝟎
⇒ 𝒂 = 𝒃 =

𝟏

𝟑
⇒ 𝒇(𝒙) =

𝟏

𝟑
(𝒆𝒙 + 𝒆𝒊𝒙 + 𝒆𝒋

𝟐𝒙) = 

=
𝒆𝒙

𝟑
+
𝟐

𝟑
𝒆−
𝒙
𝟐 𝐜𝐨𝐬 (

√𝟑

𝟐
𝒙) =

𝒆𝒙

𝟑
+
𝟐

𝟑
√𝒆−𝒙 𝐜𝐨𝐬 (

√𝟑

𝟐
𝒙) 

∑
𝑴𝒌(𝟑𝒏)

(𝟑𝒏)!

∞

𝒏=𝟎

=
𝟏

√𝒌𝟐 + 𝟒
(𝒇(

𝒌 + √𝒌𝟐 + 𝟒

𝟐
) − 𝒇(

𝒌 − √𝒌𝟐 + 𝟒

𝟐
)) = 
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=
𝟏

𝟑√𝒌𝟐 + 𝟒
(𝒆

𝒌+√𝒌𝟐+𝟒
𝟐 + 𝟐

√
𝒆−
𝒌+√𝒌𝟐+𝟒

𝟐 𝐜𝐨𝐬
√𝟑(𝒌 + √𝒌𝟐 + 𝟒)

𝟒
) − 

−
𝟏

𝟑√𝒌𝟐 + 𝟒
(𝒆

𝒌−√𝒌𝟐+𝟒
𝟐 + 𝟐

√
𝒆−
∓√𝒌𝟐+𝟒

𝟐 𝐜𝐨𝐬
√𝟑(𝒌 − √𝒌𝟐 + 𝟒)

𝟒
) = 

=
𝟏

𝟑√𝒌𝟐 + 𝟒
(

 𝒆
𝒌+√𝒌𝟐+𝟒

𝟐 +
𝟐

√𝒆√𝒌
𝟐+𝟒+𝒌

𝟒
𝐜𝐨𝐬

√𝟑𝒌 + √𝟑𝒌𝟐 + 𝟏𝟐

𝟒

)

 − 

−
𝟏

𝟑√𝒌𝟐 + 𝟒
(

 𝒆
𝒌−√𝒌𝟐+𝟒

𝟐 +
𝟐

√𝒆√𝒌
𝟐+𝟒−𝒌

𝟒
𝐜𝐨𝐬

√𝟑𝒌 − √𝟑𝒌𝟐 + 𝟏𝟐

𝟒

)

 = 

=
𝟐

𝟑√𝒌𝟐 + 𝟒
(

 
𝟏

√𝒆√𝒌
𝟐+𝟒+𝒌

𝟒
𝐜𝐨𝐬 (

√𝟑𝒌𝟐 + 𝟏𝟐 + √𝟑𝒌

𝟒
)

− √𝒆√𝒌
𝟐+𝟒−𝒌

𝟒

𝐜𝐨𝐬 (
√𝟑𝒌𝟐 + 𝟏𝟐 − √𝟑𝒌

𝟒
) +

𝟐√𝒆𝒌

𝟑√𝒌𝟐 + 𝟒
𝐬𝐢𝐧𝐡 (

√𝒌𝟐 + 𝟒

𝟐
)

)

  

1667. Prove that: 

𝜸 = 𝐥𝐢𝐦
𝒏→∞

(−𝟏)𝒏+𝟏𝒏𝒏+𝟏

𝒏!

𝒅𝒏

𝒅𝒙𝒏
(
𝐥𝐨𝐠 𝒙

𝒙
)|
𝒙=𝒏

 

where 𝜸 is Euler-Mascheroni constant. 

Proposed by Amrit Awasthi-India 

Solution 1 by Serlea Kabay-Liberia 

𝒚 =
𝟏

𝒙
𝐥𝐨𝐠𝒙 , 𝒖(𝒙) =

𝟏

𝒙
 𝐚𝐧𝐝 𝒗(𝒙) = 𝐥𝐨𝐠𝒙 

𝒖(𝒏)(𝒙) =
(−𝟏)𝒏𝒏!

𝒙𝒏+𝟏
 𝐚𝐧𝐝 𝒗(𝒏)(𝒙) =

(−𝟏)𝒏𝒏!

𝒏𝒙𝒏
 

𝒚(𝒏) =
(−𝟏)𝒏𝒏!

𝒙𝒏+𝟏
𝐥𝐨𝐠 𝒙 −

(−𝟏)𝒏𝒏!

𝒙𝒏+𝟏
−
(−𝟏)𝒏𝒏!

𝟐𝒙𝒏+𝟏
−
(−𝟏)𝒏𝒏!

𝟑𝒙𝒏+𝟏
+⋯+

(−𝟏)𝒏𝒏!

𝒏𝒙𝒏+𝟏
= 

=
(−𝟏)𝒏𝒏!

𝒙𝒏+𝟏
[𝐥𝐨𝐠 𝒙 − 𝟏 −

𝟏

𝟐
−
𝟏

𝟑
− ⋯−

𝟏

𝒏
] =

(−𝟏)𝒏𝒏!

𝒙𝒏+𝟏
(𝐥𝐨𝐠 𝒙 −𝑯𝒏) 
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Therefore, 

𝒅𝒏

𝒅𝒙𝒏
(
𝐥𝐨𝐠 𝒙

𝒙
)|
𝒙=𝒏

=
(−𝟏)𝒏𝒏!

𝒏𝒏+𝟏
(𝐥𝐨𝐠 𝒏 − 𝑯𝒏) 

𝐥𝐢𝐦
𝒏→∞

(−𝟏)𝒏+𝟏𝒏𝒏+𝟏

𝒏!

𝒅𝒏

𝒅𝒙𝒏
(
𝐥𝐨𝐠𝒙

𝒙
)|
𝒙=𝒏

= − 𝐥𝐢𝐦
𝒏→∞

(−𝟏)𝒏+𝟏𝒏𝒏+𝟏

𝒏!
⋅
(−𝟏)𝒏𝒏!

𝒏𝒏+𝟏
(𝐥𝐨𝐠𝒏 − 𝑯𝒏) = 

= − 𝐥𝐢𝐦
𝒏→∞

(𝐥𝐨𝐠𝒏 − 𝑯𝒏) = 𝜸 

 Solution 2 by proposer 

𝒚 =
𝟏

𝒙
𝐥𝐨𝐠𝒙 , 𝒖(𝒙) =

𝟏

𝒙
 𝐚𝐧𝐝 𝒗(𝒙) = 𝐥𝐨𝐠𝒙 

𝒖(𝒏)(𝒙) =
(−𝟏)𝒏𝒏!

𝒙𝒏+𝟏
 𝐚𝐧𝐝 𝒗(𝒏)(𝒙) =

(−𝟏)𝒏𝒏!

𝒏𝒙𝒏
 

𝒚 = 𝒖(𝒙) ⋅ 𝒗(𝒙) =
𝐥𝐨𝐠 𝒙

𝒙
 

𝒅𝒏

𝒅𝒙𝒏
(
𝐥𝐨𝐠𝒙

𝒙
)|
𝒙=𝒏

=
(−𝟏)𝒏𝒏!

𝒙𝒏+𝟏
𝐥𝐨𝐠 𝒙 −

(−𝟏)𝒏𝒏!

𝒙𝒏+𝟏
−
(−𝟏)𝒏𝒏!

𝟐𝒙𝒏+𝟏
−
(−𝟏)𝒏𝒏!

𝟑𝒙𝒏+𝟏
+⋯+

(−𝟏)𝒏𝒏!

𝒏𝒙𝒏+𝟏
 

𝒅𝒏

𝒅𝒙𝒏
(
𝐥𝐨𝐠 𝒙

𝒙
)|
𝒙=𝒏

=
(−𝟏)𝒏𝒏!

𝒙𝒏+𝟏
[𝐥𝐨𝐠 𝒙 − 𝟏 −

𝟏

𝟐
−
𝟏

𝟑
− ⋯−

𝟏

𝒏
] =

(−𝟏)𝒏𝒏!

𝒙𝒏+𝟏
(𝐥𝐨𝐠𝒙 − 𝑯𝒏) 

Therefore, 

𝒅𝒏

𝒅𝒙𝒏
(
𝐥𝐨𝐠 𝒙

𝒙
)|
𝒙=𝒏

=
(−𝟏)𝒏𝒏!

𝒏𝒏+𝟏
(𝐥𝐨𝐠 𝒏 − 𝑯𝒏) 

𝐥𝐢𝐦
𝒏→∞

(−𝟏)𝒏+𝟏𝒏𝒏+𝟏

𝒏!

𝒅𝒏

𝒅𝒙𝒏
(
𝐥𝐨𝐠𝒙

𝒙
)|
𝒙=𝒏

= − 𝐥𝐢𝐦
𝒏→∞

(−𝟏)𝒏+𝟏𝒏𝒏+𝟏

𝒏!
⋅
(−𝟏)𝒏𝒏!

𝒏𝒏+𝟏
(𝐥𝐨𝐠𝒏 − 𝑯𝒏) = 

= − 𝐥𝐢𝐦
𝒏→∞

(𝐥𝐨𝐠𝒏 − 𝑯𝒏) = 𝜸 

1668. Let the sequence 𝒂(𝒏 − 𝟐) + 𝒂(𝒏 − 𝟏) + 𝒂(𝒏 + 𝟏) + 𝒂(𝒏) = 𝝋−𝒏 

𝒂(𝟎) = 𝝋−𝟏, 𝒂(𝟏) = 𝝋, 𝒂(𝟐) = 𝝋𝟐 

Evaluate the sum: 

𝛀 = ∑
𝒂(𝒎)

𝝋𝒎

∞

𝒎=𝟎

 

Proposed by Srinivasa Raghava-AIRMC-India 
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Solution by Kamel Gandouli Rezgui-Tunisia 

𝒂(𝒏 − 𝟐) + 𝒂(𝒏 − 𝟏) + 𝒂(𝒏 + 𝟏) + 𝒂(𝒏) = 𝝋−𝒏 

𝒂(𝟎) =
𝟏

𝝋
, 𝒂(𝟏) = 𝝋, 𝒂(𝟐) = 𝝋𝟐 ⇒ 𝒂(𝒎) + 𝒂(𝒎+ 𝟏) + 𝒂(𝒎+ 𝟐) + 𝒂(𝒎+ 𝟑) =

𝟏

𝝋𝒎+𝟐
 

𝛀 = ∑
𝒂(𝒎)

𝝋𝒎

∞

𝒎=𝟎

+ ∑
𝒂(𝒎+ 𝟏)

𝝋𝒎

∞

𝒎=𝟎

+ ∑
𝒂(𝒎+ 𝟐)

𝝋𝒎

∞

𝒎=𝟎

+ ∑
𝒂(𝒎+ 𝟑)

𝝋𝒎

∞

𝒎=𝟎

= ∑
𝟏

(𝝋𝟐)𝒎+𝟏

∞

𝒎=𝟎

 

∑
𝒂(𝒎+ 𝟏)

𝝋𝒎

∞

𝒎=𝟎

= 𝝋∑
𝒂(𝒎+ 𝟏)

𝝋𝒎+𝟏

∞

𝒎=𝟎

= 𝝋∑
𝒂(𝒎)

𝝋𝒎

∞

𝒎=𝟏

= 𝝋∑
𝒂(𝒎)

𝝋𝒎

∞

𝒎=𝟎

− 𝟏 

∑
𝒂(𝒎+ 𝟐)

𝝋𝒎

∞

𝒎=𝟎

= 𝝋𝟐 ∑
𝒂(𝒎+ 𝟐)

𝝋𝒎+𝟐

∞

𝒎=𝟎

= 𝝋𝟐∑
𝒂(𝒎)

𝝋𝒎

∞

𝒎=𝟐

= 𝝋𝟐 ∑
𝒂(𝒎)

𝝋𝒎

∞

𝒎=𝟎

−𝝋− 𝝋𝟐 

∑
𝒂(𝒎+ 𝟑)

𝝋𝒎

∞

𝒎=𝟎

= 𝝋𝟑 ∑
𝒂(𝒎)

𝝋𝒎

∞

𝒎=𝟑

= 𝝋𝟑 ∑
𝒂(𝒎)

𝝋𝒎

∞

𝒎=𝟎

− 𝝋𝟐 −𝝋𝟑 −𝝋𝟑 

𝐋𝐞𝐭 𝒙 = ∑
𝒂(𝒎)

𝝋𝒎

∞

𝒎=𝟎

, 𝝋𝟐 = 𝟏 + 𝝋,𝝋𝟑 = 𝟐𝝋 + 𝟏,
𝟏

𝝋
= 𝝋 − 𝟏 

𝒙 + 𝝋𝒙 +𝝋𝟐𝒙 + 𝝋𝟑𝒙 − 𝟏 − 𝝋 − 𝟐𝝋𝟐 − 𝟐𝝋𝟑 = ∑
𝟏

(𝝋𝟐)𝒎+𝟏

∞

𝒎=𝟎

 

(𝟑 + 𝟒𝝋)𝒙 − 𝟓 − 𝟕𝝋 =
𝟏

𝝋𝟐
∑

𝟏

𝝋𝟐𝒎

∞

𝒎=𝟎

=
𝟏

𝝋𝟐
𝝋𝟐

𝝋𝟐 − 𝟏
=
𝟏

𝝋
= 𝝋 − 𝟏 

⇒ (𝟑+ 𝟒𝝋)𝒙 = 𝟖𝝋 + 𝟒 ⇒ 𝒙 =
𝟖 + 𝟒√𝟓

𝟓 + 𝟐√𝟓
=
𝟒√𝟓

𝟓
 

Therefore, 

𝛀 = ∑
𝒂(𝒎)

𝝋𝒎

∞

𝒎=𝟎

=
𝟒√𝟓

𝟓
 

1669. If we define  

𝑺(𝒙, 𝒏) =
(−𝟏)𝒏 ⋅ 𝒏!

𝒙𝒏+𝟏
⋅∑

(−𝟏)𝒌

𝒌!
⋅ 𝐬𝐢𝐧 (

𝒌𝝅

𝟐
+ 𝒙) ⋅ 𝒙𝒌

𝒏

𝒌=𝟎

 

Then prove: 
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𝐥𝐢𝐦
𝒏→∞

∑𝐥𝐢𝐦
𝒙→𝟎

𝑺(𝒙, 𝒏)

𝟐𝒎

𝒏=𝟎

=
𝝅

𝟒
 

Proposed by Amrit Awasthi-India 
Solution by Ravi Prakash-New Delhi-India 

𝐅𝐨𝐫 𝒙 ≠ 𝟎, 𝑺(𝒙, 𝒏) =
(−𝟏)𝒏 ⋅ 𝒏!

𝒙𝒏+𝟏
⋅ ∑

(−𝟏)𝒌

𝒌!
⋅ 𝐬𝐢𝐧 (

𝒌𝝅

𝟐
+ 𝒙) ⋅ 𝒙𝒌

𝒏

𝒌=𝟎

= 

= ∑(
𝒏

𝒌
)

𝒏

𝒌=𝟎

𝒅𝒌(𝐬𝐢𝐧 𝒙)

𝒅𝒙𝒌
𝒅𝒏−𝒌

𝒅𝒙𝒏−𝒌
(
𝟏

𝒙
) =

𝒅𝒏

𝒅𝒙𝒏
(
𝐬𝐢𝐧 𝒙

𝒙
) ; (𝐛𝐲 𝐋𝐞𝐢𝐛𝐧𝐢𝐳′𝐬 𝐭𝐡𝐞𝐨𝐫𝐞𝐦) 

 

=
𝒅𝒏

𝒅𝒙𝒏
[
𝟏

𝒙
(𝒙 −

𝟏

𝟑!
𝒙𝟑 +

𝟏

𝟓!
𝒙𝟓 −

𝟏

𝟕!
𝒙𝟕……)] =

𝒅𝒏

𝒅𝒙𝒏
(𝟏 −

𝒙𝟐

𝟑!
+
𝒙𝟒

𝟓!
−
𝒙𝟔

𝟕!
+⋯) 

𝐥𝐢𝐦
𝒙→𝟎

𝑺(𝒙, 𝒏) =

{
 
 
 
 

 
 
 
 
𝟏, 𝐢𝐟 𝒏 = 𝟎
𝟎, 𝐢𝐟 𝒏 = 𝟏

−
𝟏

𝟑
, 𝐢𝐟 𝒏 = 𝟐

𝟎, 𝐢𝐟 𝒏 = 𝟑
𝟏

𝟓
, 𝐢𝐟 𝒏 = 𝟒

𝟎, 𝐢𝐟 𝒏 = 𝟓

−
𝟏

𝟕
, 𝐢𝐟 𝒏 = 𝟔

 

Thus, 

∑𝐥𝐢𝐦
𝒙→𝟎

𝑺(𝒙, 𝒏)

𝟐𝒎

𝒏=𝟎

= ∑𝐥𝐢𝐦
𝒙→𝟎

𝑺(𝒙, 𝟐𝒏)

𝒎

𝒏=𝟎

= 𝟏 −
𝟏

𝟑
+
𝟏

𝟓
−
𝟏

𝟕
+ ⋯+

(−𝟏)𝒎

𝟐𝒎 + 𝟏
 

𝐥𝐢𝐦
𝒏→∞

∑𝐥𝐢𝐦
𝒙→𝟎

𝑺(𝒙, 𝒏)

𝟐𝒎

𝒏=𝟎

= 𝐥𝐢𝐦
𝒏→∞

(𝟏 −
𝟏

𝟑
+
𝟏

𝟓
−
𝟏

𝟕
+⋯+

(−𝟏)𝒎

𝟐𝒎+ 𝟏
) =

𝝅

𝟒
 

1670. Find: 

𝛀 = ∫𝐜𝐨𝐬𝐡(𝟑𝒙) ⋅ 𝐜𝐨𝐬𝐡 (
𝟑𝒙

𝟐
) ⋅ 𝐜𝐨𝐬𝐡 (

𝟏𝟑𝒙

𝟐
) 𝒅𝒙 

Proposed by Daniel Sitaru-Romania 
Solution 1 by Ruxandra Daniela Tonilă-Romania 

𝛀 = ∫𝐜𝐨𝐬𝐡(𝟑𝒙) ⋅ 𝐜𝐨𝐬𝐡 (
𝟑𝒙

𝟐
) ⋅ 𝐜𝐨𝐬𝐡 (

𝟏𝟑𝒙

𝟐
)𝒅𝒙 = 

= ∫
𝒆𝟑𝒙 + 𝒆−𝟑𝒙

𝟐
⋅
𝒆
𝟑𝒙
𝟐 + 𝒆−

𝟑𝒙
𝟐

𝟐
⋅
𝒆
𝟏𝟑𝒙
𝟐 + 𝒆−

𝟏𝟑𝒙
𝟐

𝟐
𝒅𝒙 = 
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=
𝟏

𝟖
∫(𝒆𝟑𝒙 + 𝒆−𝟑𝒙) (𝒆

𝟑𝒙
𝟐 + 𝒆−

𝟑𝒙
𝟐 ) (𝒆

𝟏𝟑𝒙
𝟐 + 𝒆−

𝟏𝟑𝒙
𝟐 )𝒅𝒙 = 

=
𝟏

𝟖
∫(𝒆

𝟗𝒙
𝟐 + 𝒆

𝟑𝒙
𝟐 + 𝒆−

𝟑𝒙
𝟐 + 𝒆−

𝟗𝒙
𝟐 ) (𝒆

𝟏𝟑𝒙
𝟐 + 𝒆−

𝟏𝟑𝒙
𝟐 )𝒅𝒙 = 

=
𝟏

𝟖
∫(𝒆𝟏𝟏𝒙 + 𝒆−𝟐𝒙 + 𝒆𝟖𝒙 + 𝒆−𝟓𝒙 + 𝒆𝟓𝒙 + 𝒆−𝟖𝒙 + 𝒆𝟐𝒙 + 𝒆−𝟏𝟏𝒙) 𝒅𝒙 = 

=
𝟏

𝟖
(
𝒆𝟏𝟏𝒙 − 𝒆−𝟏𝟏𝒙

𝟐
+
𝒆𝟐𝒙 − 𝒆−𝟐𝒙

𝟐
+
𝒆𝟓𝒙 − 𝒆−𝟓𝒙

𝟓
+
𝒆𝟖𝒙 − 𝒆−𝟖𝒙

𝟖
) + 𝑪 = 

=
𝐬𝐢𝐧𝐡(𝟏𝟏𝒙)

𝟒𝟒
+
𝐬𝐢𝐧𝐡(𝟐𝒙)

𝟖
+
𝐬𝐢𝐧𝐡(𝟓𝒙)

𝟐𝟎
+
𝐬𝐢𝐧𝐡(𝟖𝒙)

𝟑𝟐
+ 𝑪 

Solution 2 by Rana Ranino-Setif-Algerie 

(∵) 𝐜𝐨𝐬𝐡(𝒂) + 𝐜𝐨𝐬𝐡(𝒃) = 𝟐𝐜𝐨𝐬𝐡 (
𝒂 − 𝒃

𝟐
) 𝐜𝐨𝐬𝐡 (

𝒂 + 𝒃

𝟐
) 

𝐜𝐨𝐬𝐡 (
𝟑𝒙

𝟐
) ⋅ 𝐜𝐨𝐬𝐡(

𝟏𝟑𝒙

𝟐
) =

𝟏

𝟐
(𝐜𝐨𝐬𝐡(𝟖𝒙) + 𝐜𝐨𝐬𝐡(𝟓𝒙)) 

𝐜𝐨𝐬𝐡(𝟑𝒙) 𝐜𝐨𝐬𝐡(𝟖𝒙) =
𝟏

𝟐
(𝐜𝐨𝐬𝐡(𝟏𝟏𝒙) + 𝐜𝐨𝐬𝐡(𝟓𝒙)) 

𝐜𝐨𝐬𝐡(𝟑𝒙)𝐜𝐨𝐬𝐡(𝟓𝒙) =
𝟏

𝟐
(𝐜𝐨𝐬𝐡(𝟖𝒙) + 𝐜𝐨𝐬𝐡(𝟐𝒙)) 

Hence, 

𝐜𝐨𝐬𝐡(𝟑𝒙) ⋅ 𝐜𝐨𝐬𝐡 (
𝟑𝒙

𝟐
) ⋅ 𝐜𝐨𝐬𝐡 (

𝟏𝟑𝒙

𝟐
)

=
𝟏

𝟒
(𝐜𝐨𝐬𝐡(𝟐𝒙) + 𝐜𝐨𝐬𝐡(𝟓𝒙) + 𝐜𝐨𝐬𝐡(𝟖𝒙) + 𝐜𝐨𝐬𝐡(𝟏𝟏𝒙)) 

Therefore, 

∫𝐜𝐨𝐬𝐡(𝟑𝒙) ⋅ 𝐜𝐨𝐬𝐡 (
𝟑𝒙

𝟐
) ⋅ 𝐜𝐨𝐬𝐡 (

𝟏𝟑𝒙

𝟐
)𝒅𝒙 = 

=
𝐬𝐢𝐧𝐡(𝟏𝟏𝒙)

𝟒𝟒
+
𝐬𝐢𝐧𝐡(𝟐𝒙)

𝟖
+
𝐬𝐢𝐧𝐡(𝟓𝒙)

𝟐𝟎
+
𝐬𝐢𝐧𝐡(𝟖𝒙)

𝟑𝟐
+ 𝑪 

Solution 3 by Ankush Kumar Parcha-India 

𝛀 = ∫𝐜𝐨𝐬𝐡(𝟑𝒙) ⋅ 𝐜𝐨𝐬𝐡 (
𝟑𝒙

𝟐
) ⋅ 𝐜𝐨𝐬𝐡 (

𝟏𝟑𝒙

𝟐
)𝒅𝒙 = 
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= ∫
𝒆𝟑𝒙 + 𝒆−𝟑𝒙

𝟐
⋅
𝒆
𝟑𝒙
𝟐 + 𝒆−

𝟑𝒙
𝟐

𝟐
⋅
𝒆
𝟏𝟑𝒙
𝟐 + 𝒆−

𝟏𝟑𝒙
𝟐

𝟐
𝒅𝒙 = 

=
𝟏

𝟖
∫(𝒆𝟏𝟏𝒙 + 𝒆−𝟐𝒙 + 𝒆𝟖𝒙 + 𝒆−𝟓𝒙 + 𝒆𝟓𝒙 + 𝒆−𝟖𝒙 + 𝒆𝟐𝒙 + 𝒆−𝟏𝟏𝒙) 𝒅𝒙 = 

=
𝟏

𝟒
∫(𝐜𝐨𝐬𝐡(𝟏𝟏𝒙) + 𝐜𝐨𝐬𝐡(𝟐𝒙) + 𝐜𝐨𝐬𝐡(𝟏𝟏𝒙) + 𝐜𝐨𝐬𝐡(𝟓𝒙))𝒅𝒙 = 

=
𝐬𝐢𝐧𝐡(𝟏𝟏𝒙)

𝟒𝟒
+
𝐬𝐢𝐧𝐡(𝟐𝒙)

𝟖
+
𝐬𝐢𝐧𝐡(𝟓𝒙)

𝟐𝟎
+
𝐬𝐢𝐧𝐡(𝟖𝒙)

𝟑𝟐
+ 𝑪 

Solution 4 by Hikmat Mammadov-Azerbaijan 

𝛀 = ∫𝐜𝐨𝐬𝐡(𝟑𝒙) ⋅ 𝐜𝐨𝐬𝐡 (
𝟑𝒙

𝟐
) ⋅ 𝐜𝐨𝐬𝐡 (

𝟏𝟑𝒙

𝟐
)𝒅𝒙 =

𝒙=𝟐𝒕
 

= 𝟐∫𝐜𝐨𝐬𝐡(𝟔𝒕) ⋅ 𝐜𝐨𝐬𝐡(𝟑𝒕) ⋅ 𝐜𝐨𝐬𝐡(𝟏𝟑𝒕) 𝒅𝒕 = 

= ∫
𝒆𝟔𝒕 + 𝒆−𝟔𝒕

𝟐
⋅
𝒆𝟑𝒕 + 𝒆−𝟑𝒕

𝟐
⋅
𝒆𝟏𝟑𝒕 + 𝒆−𝟏𝟑𝒕

𝟐
𝒅𝒕 = 

=
𝟏

𝟐
∫
𝒆𝟐𝟐𝒕 + 𝒆−𝟐𝟐𝒕 + 𝒆𝟏𝟔𝒕 + 𝒆−𝟏𝟔𝒕 + 𝒆𝟏𝟎𝒕 + 𝒆−𝟏𝟎𝒕 + 𝒆𝟒𝒕 + 𝒆−𝟒𝒕

𝟐
𝒅𝒕 = 

=
𝟏

𝟐
∫𝐜𝐨𝐬𝐡(𝟐𝟐𝒕) 𝒅𝒕 +

𝟏

𝟐
∫𝐜𝐨𝐬𝐡(𝟏𝟔𝒕)𝒅𝒕 +

𝟏

𝟐
∫𝐜𝐨𝐬𝐡(𝟏𝟎𝒕)𝒅𝒕 +

𝟏

𝟐
∫𝐜𝐨𝐬𝐡(𝟒𝒕)𝒅𝒕 = 

=
𝟏

𝟒𝟒
∫𝐜𝐨𝐬𝐡(𝟏𝟏𝒙)𝒅(𝟏𝟏𝒙) +

𝟏

𝟑𝟐
∫𝐜𝐨𝐬𝐡(𝟖𝒙)𝒅(𝟖𝒙) +

𝟏

𝟐𝟎
∫𝐜𝐨𝐬𝐡(𝟓𝒙)𝒅(𝟓𝒙)

+
𝟏

𝟖
∫𝐜𝐨𝐬𝐡(𝟒𝒕) 𝒅(𝟒𝒕) = 

=
𝐬𝐢𝐧𝐡(𝟏𝟏𝒙)

𝟒𝟒
+
𝐬𝐢𝐧𝐡(𝟐𝒙)

𝟖
+
𝐬𝐢𝐧𝐡(𝟓𝒙)

𝟐𝟎
+
𝐬𝐢𝐧𝐡(𝟖𝒙)

𝟑𝟐
+ 𝑪 

Solution 5 by Nelson Javier Villaherrera Lopez-El Salvador 

𝛀 = ∫𝐜𝐨𝐬𝐡(𝟑𝒙) ⋅ 𝐜𝐨𝐬𝐡 (
𝟑𝒙

𝟐
) ⋅ 𝐜𝐨𝐬𝐡 (

𝟏𝟑𝒙

𝟐
)𝒅𝒙 = 

= ∫
𝒆𝟑𝒙 + 𝒆−𝟑𝒙

𝟐
⋅
𝒆
𝟑𝒙
𝟐 + 𝒆−

𝟑𝒙
𝟐

𝟐
⋅
𝒆
𝟏𝟑𝒙
𝟐 + 𝒆−

𝟏𝟑𝒙
𝟐

𝟐
𝒅𝒙 = 

=
𝟏

𝟖
∫(𝒆𝟏𝟏𝒙 + 𝒆−𝟐𝒙 + 𝒆𝟖𝒙 + 𝒆−𝟓𝒙 + 𝒆𝟓𝒙 + 𝒆−𝟖𝒙 + 𝒆𝟐𝒙 + 𝒆−𝟏𝟏𝒙) 𝒅𝒙 = 
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=
𝟏

𝟒
∫(𝐜𝐨𝐬𝐡(𝟏𝟏𝒙) + 𝐜𝐨𝐬𝐡(𝟐𝒙) + 𝐜𝐨𝐬𝐡(𝟏𝟏𝒙) + 𝐜𝐨𝐬𝐡(𝟓𝒙))𝒅𝒙 = 

=
𝐬𝐢𝐧𝐡(𝟏𝟏𝒙)

𝟒𝟒
+
𝐬𝐢𝐧𝐡(𝟐𝒙)

𝟖
+
𝐬𝐢𝐧𝐡(𝟓𝒙)

𝟐𝟎
+
𝐬𝐢𝐧𝐡(𝟖𝒙)

𝟑𝟐
+ 𝑪 

1671. Find a closed form: 

𝛀 = ∫ √𝐭𝐚𝐧 𝒙 (𝟏 − 𝐭𝐚𝐧 𝒙)

𝝅
𝟒

𝟎

𝒅𝒙 

Proposed by Abdul Mukhtar-Nigeria 

Solution 1 by Ose Favour-Nigeria 

𝛀 = ∫ √𝐭𝐚𝐧 𝒙 (𝟏 − 𝐭𝐚𝐧 𝒙)

𝝅
𝟒

𝟎

𝒅𝒙 =
𝒖𝟐=𝐭𝐚𝐧 𝒙

𝟐∫
𝒖𝟐√𝟏 − 𝒖𝟐

𝟏 + 𝒖𝟒
𝒅𝒖

𝟏

𝟎

=
𝒖=𝐬𝐢𝐧𝒚

 

= 𝟐∫
𝐬𝐢𝐧𝟐 𝒚 𝐜𝐨𝐬𝟐 𝒚

𝟏 + 𝐬𝐢𝐧𝟒 𝒚
𝒅𝒚

𝝅
𝟐

𝟎

= 𝟐∫
𝐜𝐬𝐜𝟐 𝒚 𝐜𝐨𝐭𝟐 𝒚

𝐜𝐬𝐜𝟔 𝒚 + 𝐜𝐬𝐜𝟐 𝒚
𝒅𝒚

𝝅
𝟐

𝟎

= 

= 𝟐∫
𝐜𝐬𝐜𝟐 𝒚 𝐜𝐨𝐭𝟐 𝒚

(𝟏 + 𝐜𝐨𝐭𝟐 𝒚)((𝟏 + 𝐜𝐨𝐭𝟐 𝒚)𝟐 + 𝟏)
𝒅𝒚

𝝅
𝟐

𝟎

=
𝒖=𝐜𝐨𝐭 𝒚

𝟐∫
𝒖𝟐𝒅𝒖

((𝟏 + 𝒖𝟐)𝟐 + 𝟏)(𝟏 + 𝒖𝟐)

∞

𝟎

= 

=
𝑷.𝑭.
𝟐(∫

𝒖𝟐 + 𝟐

𝒖𝟒 + 𝟐𝒖𝟐 + 𝟐
𝒅𝒖

∞

𝟎

−∫
𝒅𝒖

𝟏 + 𝒖𝟐

∞

𝟎

) = 𝟐(𝚽−
𝝅

𝟐
) 

𝚽 = ∫
𝒖𝟐 + 𝟐

𝒖𝟒 + 𝟐𝒖𝟐 + 𝟐
𝒅𝒖

∞

𝟎

=
𝟏

𝟐
∫

𝒖𝟐 + 𝟐

𝒖𝟒 + 𝟐𝒖𝟐 + 𝟐
𝒅𝒖

∞

−∞

 

𝝋(𝒛) =
𝒛𝟐 + 𝟐

𝒛𝟒 + 𝟐𝒛𝟐 + 𝟐
 𝐩𝐨𝐥𝐞𝐬 𝐨𝐟 𝝋 

𝒛𝟒 + 𝟐𝒛𝟐 + 𝟐 = 𝟎 ⇒ 𝒕𝟐 + 𝟐𝒕 + 𝟐 = 𝟎; (𝒕 = 𝒙𝟐) 

𝒕𝟏 = −𝟏 + 𝒊 = √𝟐(−
𝟏

√𝟐
+

𝒊

√𝟐
) and 𝒕𝟐 = −𝟏 − 𝒊 = √𝟐𝒆

−
𝟑𝒊𝝅

𝟒  

𝝋(𝒛) =
𝒛𝟐 + 𝟐

(𝒛𝟐 − √𝟐𝒆
𝟑𝒊𝝅
𝟒 ) (𝒛𝟐 − √𝟐𝒆

−
𝟑𝒊𝝅
𝟒 )

=
𝜶= √𝟐

𝟒

 

=
𝒛𝟐 + 𝟐

(𝒛 − 𝜶𝒆
𝟑𝒊𝝅
𝟖 ) (𝒛 + 𝜶𝒆

𝟑𝒊𝝅
𝟖 )(𝒛 − 𝜶𝒆−

𝟑𝒊𝝅
𝟖 ) (𝒛 − 𝜶𝒆−

𝟑𝒊𝝅
𝟖 )
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⇒ ∫𝝋(𝒛)
𝑹

𝒅𝒛 = 𝟐𝒊𝝅 {𝑹𝒆𝒔 (𝝋,𝜶𝒆
𝟑𝒊𝝅
𝟖 ) + 𝑹𝒆𝒔 (𝝋,−𝜶𝒆−

𝟑𝒊𝝅
𝟖 )} 

𝑹𝒆𝒔 (𝝋,𝜶𝒆
𝟑𝒊𝝅
𝟖 ) =

𝜶𝟐𝒆
𝟑𝒊𝝅
𝟒

𝟐𝜶𝒆
𝟑𝒊𝝅
𝟖 √𝟐(𝟐𝒊 𝐬𝐢𝐧

𝟑𝝅
𝟒 )

=
𝜶𝟐𝒆

𝟑𝒊𝝅
𝟒 + 𝟐

𝟒𝒊𝜶
𝒆−
𝟑𝒊𝝅
𝟖  

𝑹𝒆𝒔(𝝋,−𝜶𝒆−
𝟑𝒊𝝅
𝟖 ) =

𝜶𝟐𝒆−
𝟑𝒊𝝅
𝟒

−𝟐𝜶𝒆
𝟑𝒊𝝅
𝟖 (−√𝟐) (𝟐𝒊 𝐬𝐢𝐧

𝟑𝝅
𝟒 )

=
𝜶𝟐𝒆−

𝟑𝒊𝝅
𝟒 + 𝟐

𝟒𝒊𝜶
𝒆
𝟑𝒊𝝅
𝟖  

⇒ ∫𝝋(𝒛)
𝑹

𝒅𝒛 = 𝟐𝒊𝝅{
𝜶𝟐𝒆

𝟑𝒊𝝅
𝟒 + 𝟐

𝟒𝒊𝜶
𝒆−
𝟑𝒊𝝅
𝟖 +

𝜶𝟐𝒆−
𝟑𝒊𝝅
𝟒 + 𝟐

𝟒𝒊𝜶
𝒆
𝟑𝒊𝝅
𝟖 } = 

=
𝝅

𝟐𝜶
{𝜶𝟐𝒆

𝟑𝒊𝝅
𝟖 + 𝟐𝒆−

𝟑𝒊𝝅
𝟖 + 𝜶𝟐𝒆−

𝟑𝒊𝝅
𝟖 + 𝟐𝒆

𝟑𝒊𝝅
𝟖 } =

𝝅

√𝟐
𝟒 (𝟐 + √𝟐) 𝐜𝐨𝐬

𝟑𝝅

𝟖
 

𝚽 =
𝟏

𝟐
∫𝝋(𝒛)
𝑹

𝒅𝒛 =
𝝅

𝟐√𝟐
𝟒 (𝟐 + √𝟐) 𝐜𝐨𝐬

𝟑𝝅

𝟖
 

𝛀 = 𝟐(
𝝅

𝟐√𝟐
𝟒 (𝟐 + √𝟐)𝐜𝐨𝐬

𝟑𝝅

𝟖
−
𝝅

𝟐
) = 𝝅(

𝟐 + √𝟐

√𝟐
𝟒 𝐜𝐨𝐬

𝟑𝝅

𝟖
− 𝟏) 

Solution 2 by Kartick Chandra Betal-India 

𝛀 = ∫ √𝐭𝐚𝐧 𝒙 (𝟏 − 𝐭𝐚𝐧 𝒙)

𝝅
𝟒

𝟎

𝒅𝒙 = ∫
√𝒙(𝟏 − 𝒙)

𝟏 + 𝒙𝟐
𝒅𝒙

𝟏

𝟎

= ∫
√𝒙− 𝟏

𝒙(𝟏 + 𝒙𝟐)
𝒅𝒙

∞

𝟎

= 

= ∫
√𝒙𝒅𝒙

(𝟏 + 𝒙)(𝒙𝟐 + 𝟐𝒙 + 𝟐)

∞

𝟎

= 𝟐∫
𝒙𝟐𝒅𝒙

(𝟏 + 𝒙𝟐)(𝒙𝟒 + 𝟐𝒙𝟐 + 𝟐)

∞

𝟎

= 

= 𝟐∫ {
𝟏

𝟏 + 𝒙𝟐
−

𝟏 + 𝒙𝟐

𝒙𝟒 + 𝟐𝒙𝟐 + 𝟐
}𝒅𝒙

∞

𝟎

= 𝟐 ⋅
𝝅

𝟐
− ∫

𝑨(𝟏+
√𝟐
𝒙𝟐
) + 𝑩(𝟏 −

√𝟐
𝒙𝟐
)

𝒙𝟐 +
𝟐
𝒙𝟐
+ 𝟐

𝒅𝒙
∞

𝟎

= 

= 𝝅 − 𝑨∫

𝒅(𝒙−
√𝟐
𝒙 )

(𝒙 −
√𝟐
𝒙 )

𝟐

+ (√𝟐 + 𝟐√𝟐)
𝟐

∞

𝟎

− 𝑩∫

𝒅(𝒙 +
√𝟐
𝒙 )

(𝒙 +
√𝟐
𝒙 )

𝟐

− (√𝟐− 𝟐√𝟐)
𝟐

∞

𝟎

= 

= 𝝅−
𝑨

√𝟐 + 𝟐√𝟐
⋅ 𝝅 −

𝑩

𝟐√𝟐√𝟐 − 𝟐
[𝐥𝐨𝐠(

𝒙𝟐 − 𝒙√𝟐√𝟐 − 𝟐 + √𝟐

𝒙𝟐 − 𝒙√𝟐√𝟐 − 𝟐 + √𝟐
)]

𝟎

∞

= 



 
www.ssmrmh.ro 

121 RMM-CALCULUS MARATHON 1601-1700 

 

= 𝝅(𝟏−
𝑨

√𝟐 + 𝟐√𝟐
) = 𝝅(𝟏 −

𝟐 + √𝟐

𝟐√𝟐 + 𝟐√𝟐
) = 𝝅(𝟏 −

√𝟏 + √𝟐

𝟐
) 

𝑨 +𝑩 = 𝟐,𝑨 − 𝑩 = √𝟐;𝑨 =
𝟐 + √𝟐

𝟐
 

1672. Find: 

𝛀 = ∫
𝒙 ⋅ 𝐥𝐨𝐠𝟐 𝒙

𝒙𝟖 + 𝒙𝟒 + 𝟏

𝟏

𝟎

𝒅𝒙 

Proposed by Hussain Reza Zadah-Afghanistan 

Solution 1 by Rana Ranino-Setif-Algerie 

𝛀 = ∫
𝒙 ⋅ 𝐥𝐨𝐠𝟐 𝒙

𝒙𝟖 + 𝒙𝟒 + 𝟏

𝟏

𝟎

𝒅𝒙 =
𝟏

𝟖
∫

𝐥𝐨𝐠𝟐 𝒙

𝒙𝟒 + 𝒙𝟐 + 𝟏
𝒅𝒙

𝟏

𝟎

=
𝟏

𝟖
∫
(𝟏 − 𝒙𝟐) 𝐥𝐨𝐠𝟐 𝒙

𝟏 − 𝒙𝟔
𝒅𝒙

𝟏

𝟎

=
𝒕=𝒙𝟔

 

=
𝟏

𝟏𝟕𝟐𝟖
∫
(𝒙
𝟏
𝟔
−𝟏 − 𝒙

𝟏
𝟐
−𝟏) 𝐥𝐨𝐠𝟐 𝒕

𝟏 − 𝒕
𝒅𝒕

𝟏

𝟎

=
𝟏

𝟏𝟕𝟐𝟖
∑{𝝍(𝟐) (

𝟏

𝟐
) − 𝝍(𝟐) (

𝟏

𝟔
)}

∞

𝒏=𝟎

= 

=
𝟏

𝟏𝟕𝟐𝟖
{𝟏𝟔𝟖𝜻(𝟑) + 𝟒√𝟑𝝅𝟑} 

Therefore, 

𝛀 = ∫
𝒙 ⋅ 𝐥𝐨𝐠𝟐 𝒙

𝒙𝟖 + 𝒙𝟒 + 𝟏

𝟏

𝟎

𝒅𝒙 =
𝟕𝜻(𝟑)

𝟕𝟐
+

𝝅𝟑

𝟏𝟒𝟒√𝟑
 

Solution 2 by Soumitra Mandal-Chandar Nagore-India 

𝛀 = ∫
𝒙 ⋅ 𝐥𝐨𝐠𝟐 𝒙

𝒙𝟖 + 𝒙𝟒 + 𝟏

𝟏

𝟎

𝒅𝒙 = ∫
(𝒙 − 𝒙𝟓) 𝐥𝐨𝐠𝟐 𝒙

𝟏 − 𝒙𝟏𝟐
𝒅𝒙

𝟏

𝟎

= 𝛀𝟏 −𝛀𝟐 

𝛀𝟏 = ∫
𝒙 𝐥𝐨𝐠𝟐 𝒙

𝟏 − 𝒙𝟏𝟐
𝒅𝒙

𝟏

𝟎

=
𝒙= √𝒚

𝟏𝟐

∫
√𝒚
𝟏𝟐

𝟏 − 𝒚
𝐥𝐨𝐠𝟐 √𝒚

𝟏𝟐
𝟏

𝟏𝟐 √𝒚𝟏𝟏
𝟏𝟐

𝒅𝒚
𝟏

𝟎

= 

=
𝟏

𝟏𝟕𝟐𝟖
∫

𝒚−
𝟓
𝟔

𝟏 − 𝒚
𝐥𝐨𝐠𝟐 𝒚𝒅𝒚

𝟏

𝟎

=
𝟏

𝟏𝟕𝟐𝟖
∑∫ 𝒚𝒌−

𝟓
𝟔 𝐥𝐨𝐠𝟐 𝒚𝒅𝒚

𝟏

𝟎

∞

𝒌=𝟎

 

∵ ∫ 𝒚𝒌−
𝟓
𝟔 𝐥𝐨𝐠𝟐 𝒚𝒅𝒚

𝟏

𝟎

=
𝟐

(𝒌 +
𝟏
𝟔)
𝟑 
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𝛀𝟏 =
𝟏

𝟖𝟔𝟒
∑

𝟏

(𝒌 +
𝟏
𝟔)
𝟑

∞

𝒌=𝟎

; (∵ 𝝍𝒏(𝒛) = (−𝟏)
𝒏+𝟏𝒏!∑

𝟏

(𝒛 + 𝒌)𝒏+𝟏

∞

𝒌=𝟎

 

𝝍𝟐 (
𝟏

𝟔
) = (−𝟏)𝟐+𝟏𝟐!∑

𝟏

(𝒌 +
𝟏
𝟔)
𝟑

∞

𝒌=𝟎

⇒∑
𝟏

(𝒌+
𝟏
𝟔)
𝟑

∞

𝒌=𝟎

= −
𝝍𝟐 (

𝟏
𝟔)

𝟐
 

𝛀𝟏 = −
𝝍𝟐 (

𝟏
𝟔)

𝟏𝟕𝟐𝟖
 

𝛀𝟐 = ∫
𝒙𝟓 𝐥𝐨𝐠𝟐 𝒙

𝟏 − 𝒙𝟏𝟐

𝟏

𝟎

𝒅𝒙 = ∫
√𝒚𝟓
𝟏𝟐

𝐥𝐨𝐠𝟐 √𝒚
𝟏𝟐

𝟏 − 𝒚
⋅

𝟏

𝟏𝟐 √𝒚𝟏𝟏
𝟏𝟐

𝒅𝒚
𝟏

𝟎

=
𝟏

𝟏𝟕𝟐𝟖
∫

𝐥𝐨𝐠𝟐 𝒚

(𝟏 − 𝒚)√𝒚
𝒅𝒚

𝟏

𝟎

= 

=
𝟏

𝟏𝟕𝟐𝟖
∑∫ 𝒚𝒌−

𝟏
𝟐 𝐥𝐨𝐠𝟐 𝒚𝒅𝒚

𝟏

𝟎

∞

𝒌=𝟎

 

∵ ∫ 𝒚𝒌−
𝟏
𝟐 𝐥𝐨𝐠𝟐 𝒚𝒅𝒚

𝟏

𝟎

=
𝟐

(𝒌 +
𝟏
𝟐)
𝟑 

𝛀𝟐 =
𝟏

𝟖𝟔𝟒
∑

𝟏

(𝒌 +
𝟏
𝟐)
𝟑

∞

𝒌=𝟎

= −
𝝍𝟐 (

𝟏
𝟐)

𝟏𝟕𝟐𝟖
; (∵ ∑

𝟏

(𝒌 +
𝟏
𝟐)
𝟑

∞

𝒌=𝟎

= −
𝝍𝟐 (

𝟏
𝟐)

𝟐
 

𝛀𝟐 = −
𝝍𝟐 (

𝟏
𝟐)

𝟏𝟕𝟐𝟖
 

𝛀 =
𝝍𝟐 (

𝟏
𝟐) − 𝝍𝟐 (

𝟏
𝟔)

𝟏𝟕𝟐𝟖
=
𝟏𝟔𝟖𝜻(𝟑) + 𝟒√𝟑𝝅𝟐

𝟏𝟕𝟐𝟖
 

Solution 3 by Ose Favour-Nigeria 

𝛀 = ∫
𝒙 ⋅ 𝐥𝐨𝐠𝟐 𝒙

𝒙𝟖 + 𝒙𝟒 + 𝟏

𝟏

𝟎

𝒅𝒙 =
𝒖=𝒙𝟐 𝟏

𝟖
∫

𝐥𝐨𝐠𝟐 𝒖

𝒖𝟒 + 𝒖𝟐 + 𝟏
𝒅𝒖

𝟏

𝟎

 

𝛀(𝒂) = ∫
𝒖𝒂

𝒖𝟒 + 𝒖𝟐 + 𝟏
𝒅𝒖

𝟏

𝟎

= ∫
𝒖𝒂(𝟏 − 𝒖𝟐)

𝟏 − 𝒖𝟔
𝒅𝒖

𝟏

𝟎

 

𝛀(𝒂) = 𝚽(𝒂) − 𝚿(𝒂) 

𝚽(𝒂) = ∫
𝒖𝒂

𝟏 − 𝒖𝟔

𝟏

𝟎

𝒅𝒖 = ∫
𝒖𝒂

𝟏 − 𝒖𝟔

𝟏

𝟎

𝒅𝒖 = ∑∫ 𝒖𝒂+𝟔𝒏
𝟏

𝟎

𝒅𝒖

∞

𝒏=𝟎

= ∑
𝟏

𝒂 + 𝟔𝒏 + 𝟏

∞

𝒏=𝟎
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𝚿(𝒂) = ∫
𝒖𝒂+𝟐

𝟏 − 𝒖𝟔
𝒅𝒖

𝟏

𝟎

= ∑∫ 𝒖𝒂+𝟐+𝟔𝒏
𝟏

𝟎

𝒅𝒖

∞

𝒏=𝟎

= ∑
𝟏

𝒂+ 𝟔𝒏 + 𝟑

∞

𝒏=𝟎

 

𝛀(𝒂) = −∑
𝟏

𝒂 + 𝟔𝒏 + 𝟑

∞

𝒏=𝟎

+∑
𝟏

𝒂 + 𝟔𝒏 + 𝟏

∞

𝒏=𝟎

 

∵ ∑
𝟏

𝒏+ 𝒂

∞

𝒏=𝟎

= −𝝍(𝟎)(𝒂) 

𝛀(𝒂) = −
𝟏

𝟔
∑

𝟏

𝒏+
𝒂 + 𝟑
𝟔

∞

𝒏=𝟎

+
𝟏

𝟔
∑

𝟏

𝒏 +
𝒂 + 𝟏
𝟔

∞

𝒏=𝟎

=
𝟏

𝟔
𝝍(𝟎) (

𝒂 + 𝟑

𝟔
) −

𝟏

𝟔
𝝍(𝟎) (

𝒂 + 𝟏

𝟔
) 

𝛀′(𝒂) =
𝟏

𝟑𝟔
(𝝍(𝟏) (

𝒂 + 𝟑

𝟔
) − 𝝍(𝟏) (

𝒂 + 𝟏

𝟔
)) 

𝛀′′(𝒂) =
𝟏

𝟐𝟏𝟔
(𝝍(𝟐) (

𝒂 + 𝟑

𝟔
) −𝝍(𝟐) (

𝒂 + 𝟏

𝟔
)) 

𝛀 =
𝟏

𝟖
𝛀′′(𝟎) =

𝝍𝟐 (
𝟏
𝟐) − 𝝍𝟐 (

𝟏
𝟔)

𝟏𝟕𝟐𝟖
=
𝟏𝟔𝟖𝜻(𝟑) + 𝟒√𝟑𝝅𝟐

𝟏𝟕𝟐𝟖
 

Solution 4 by Yen Tung Chung-Taichung-Taiwan 

𝛀 = ∫
𝒙 ⋅ 𝐥𝐨𝐠𝟐 𝒙

𝒙𝟖 + 𝒙𝟒 + 𝟏

𝟏

𝟎

𝒅𝒙 =
𝒚=𝒙𝟐

∫
𝐥𝐨𝐠𝟐(√𝒚)

𝒚𝟒 + 𝒚𝟐 + 𝟏
⋅
𝟏

𝟐
𝒅𝒚

𝟏

𝟎

=
𝟏

𝟖
∫

𝐥𝐨𝐠𝟐 𝒚

𝒚𝟒 + 𝒚𝟐 + 𝟏

𝟏

𝟎

𝒅𝒚 =
𝒚=𝒆−𝒛

 

=
𝟏

𝟖
∫

𝒛𝟐𝒆−𝒛

𝟏 + 𝒆−𝟐𝒛 + 𝒆−𝟒𝒛

∞

𝟎

𝒅𝒛 =
𝟏

𝟖
∫

𝒛𝟐(𝒆−𝒛 − 𝒆−𝟑𝒛)

𝟏 − 𝒆−𝟔𝒛
𝒅𝒛

∞

𝟎

= 

=
𝟏

𝟖
∫ 𝒛𝟐(𝒆−𝒛 + 𝒆−𝟕𝒛 + 𝒆−𝟏𝟑𝒛 +⋯)
∞

𝟎

𝒅𝒛 −
𝟏

𝟖
∫ 𝒛𝟐(𝒆−𝟑𝒛 + 𝒆−𝟗𝒛 + 𝒆−𝟏𝟓𝒛 +⋯)
∞

𝟎

𝒅𝒛 = 

=
𝟏

𝟖
(
𝚪(𝟑)

𝟏𝟑
+
𝚪(𝟑)

𝟕𝟑
+
𝚪(𝟑)

𝟏𝟑𝟑
+⋯) −

𝟏

𝟖
(
𝚪(𝟑)

𝟑𝟑
+
𝚪(𝟑)

𝟗𝟑
+
𝚪(𝟑)

𝟏𝟓𝟑
+⋯) = 

=
𝟏

𝟒
(
𝟏

𝟏𝟑
−
𝟏

𝟑𝟑
+
𝟏

𝟕𝟑
−
𝟏

𝟗𝟑
+
𝟏

𝟏𝟑𝟑
−
𝟏

𝟏𝟓𝟑
+⋯) ≅ 𝟎. 𝟐𝟒𝟏𝟏𝟕 

Solution 5 by Abdul Mukhtar-Nigeria 

𝒙𝟖 + 𝒙𝟒 + 𝟏 =
𝟏 − 𝒙𝟏𝟐

𝟏 − 𝒙𝟒
⇒ 𝛀 = ∫

𝒙 ⋅ 𝐥𝐨𝐠𝟐 𝒙

𝒙𝟖 + 𝒙𝟒 + 𝟏

𝟏

𝟎

𝒅𝒙 = ∫
𝒙 𝐥𝐨𝐠𝟐 𝒙

𝟏 − 𝒙𝟏𝟐
𝒅𝒙

𝟏

𝟎

−∫
𝒙𝟓 𝐥𝐨𝐠𝟐 𝒙

𝟏 − 𝒙𝟏𝟐
𝒅𝒙

𝟏

𝟎

= 

= 𝑯− 𝑱 

∫
𝒙𝒑−𝟏 𝐥𝐨𝐠𝟐 𝒙

𝟏 − 𝒙𝟏𝟐
𝒅𝒙

𝟏

𝟎

=
𝒙=𝒆−𝒕

∫
𝒆−𝒕𝒑𝒕𝟐

𝟏 − 𝒆𝟏𝟐𝒕
𝒅𝒕

∞

𝟎

= ∫ 𝒕𝟐𝒆−𝒕𝒑∑𝒆−𝟏𝟐𝒌𝒕

𝒌≥𝟎

𝒅𝒕
∞

𝟎

= 
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=∑[∫ 𝒕𝟐𝒆−𝒕(𝒑+𝟏𝟐𝒌)
∞

𝟎

𝒅𝒕]

𝒌≥𝟎

=∑[
𝟏

(𝒑 + 𝟏𝟐𝒌)𝟑
∫ 𝒕𝟐𝒆−𝒕
∞

𝟎

𝒅𝒕]

𝒌≥𝟎

= 𝚪(𝟑) = 𝟐 

⇒ 𝟐∑
𝟏

(𝒑 + 𝟏𝟐𝒌)𝟑
𝒌≥𝟎

=
𝟏

𝟖𝟔𝟒
∑

𝟏

(𝒌 +
𝒑
𝟏𝟐)

𝟑

𝒌≥𝟎

 

𝜻(𝒔, 𝒑) = ∑
𝟏

(𝒏 + 𝒑)𝒔
𝒏>0

 

𝛀 =
𝟏

𝟖𝟔𝟒
[𝜻 (𝟑,

𝟏

𝟔
) − 𝜻 (𝟑,

𝟏

𝟐
)] =

𝟏

𝟒𝟑𝟐
(𝟒𝟐𝜻(𝟑) − 𝟓𝟑𝝅𝟑) 

1673. 𝐈𝐟 𝐰𝐞 𝐡𝐚𝐯𝐞 ∫
𝐜𝐨𝐬𝟐 𝟐𝒙+𝟏

𝒂 𝐜𝐨𝐬𝟐 𝟐𝒙+𝟏
𝒅𝒙

𝝅

−𝝅
= 𝝅𝒂, 𝐭𝐡𝐞𝐧 𝐟𝐢𝐧𝐝 𝐭𝐡𝐞 𝐯𝐚𝐥𝐮𝐞 𝐨𝐟 

𝚽 = 𝒂𝟓 + 𝒂𝟒 + 𝟖𝒂𝟑 + 𝟖𝒂𝟐 − 𝟑𝟐𝒂. 

Proposed by Srinivasa Raghava-AIRMC-India 

Solution by Rana Ranino-Setif-Algerie 

𝛀 = ∫
𝐜𝐨𝐬𝟐 𝟐𝒙 + 𝟏

𝒂𝐜𝐨𝐬𝟐 𝟐𝒙 + 𝟏
𝒅𝒙

𝝅

−𝝅

= 𝟒∫
𝐜𝐨𝐬𝟐 𝟐𝒙 + 𝟏

𝒂𝐜𝐨𝐬𝟐 𝟐𝒙 + 𝟏
𝒅𝒙

𝝅
𝟐

𝟎

=
𝒕=𝐭𝐚𝐧 𝒙;𝒂+𝟏=𝒃𝟐

 

= 𝟖∫
𝟏 + 𝒕𝟒

(𝒃𝟐 + 𝒕𝟐)(𝟏 + 𝒕𝟐)𝟐
𝒅𝒕

∞

𝟎

= 

=
𝟖(𝒃𝟒 + 𝟏)

(𝒃𝟐 − 𝟏)𝟐
∫

𝒅𝒕

𝒃𝟐 + 𝒕𝟐

∞

𝟎

+
𝟏𝟔

𝒃𝟐 − 𝟏
∫

𝒅𝒕

(𝟏 + 𝒕𝟐)𝟐

∞

𝟎

−
𝟏𝟔𝒃𝟐

(𝒃𝟐 − 𝟏)𝟐
∫

𝒅𝒕

𝟏 + 𝒕𝟐

∞

𝟎

= 

=
𝟒𝝅(𝒃𝟒 + 𝟏)

𝒃(𝒃𝟐 − 𝟏)𝟐
+

𝟒𝝅

𝒃𝟐 − 𝟏
−

𝟖𝝅𝟐

(𝒃𝟐 − 𝟏)𝟐
=
𝟒𝝅(𝒃𝟐 + 𝒃+ 𝟏)

𝒃(𝒃 + 𝟏)𝟐
 

𝟒𝝅(𝒃𝟐 + 𝒃 + 𝟏)

𝒃(𝒃 + 𝟏)𝟐
= 𝝅(𝒃𝟐 − 𝟏) ⇒ 𝟒𝒃𝟐 + 𝟒𝒃 + 𝟒 = 𝒃𝟓 + 𝟐𝒃𝟒 − 𝟔𝒃𝟐 − 𝟓𝒃 − 𝟒 = 𝟎 

𝒃 =
𝟐𝒃𝟒 − 𝟔𝒃𝟐 − 𝟒

𝟓 − 𝒃𝟒
; √𝒂 + 𝟏 =

𝟐𝒂𝟐 − 𝟐𝒂 − 𝟖

𝟒 − 𝒂𝟐 − 𝟐𝒂
 

𝒂 + 𝟏 =
𝟒𝒂𝟒 − 𝟖𝒂𝟑 − 𝟐𝟖𝒂𝟐 + 𝟑𝟐𝒂 + 𝟔𝟒

𝒂𝟒 + 𝟒𝒂𝟑 − 𝟒𝒂𝟐 − 𝟏𝟔𝒂 + 𝟏𝟔
 

𝚽 = 𝒂𝟓 + 𝒂𝟒 + 𝟖𝒂𝟑 + 𝟖𝒂𝟐 − 𝟑𝟐𝒂 = 𝟒𝟖 

1674. If 𝟎 < 𝑎 ≤ 𝑏 <
𝝅

𝟐
 then: 

𝟑∫ 𝐬𝐢𝐧 𝒙 ⋅ 𝐬𝐢𝐧𝐡 𝒙
𝒃

𝒂

𝒅𝒙 ≤ 𝒃𝟑 − 𝒂𝟑 

Proposed by Daniel Sitaru-Romania 
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Solution by Adrian Popa-Romania 

𝒃𝟑 − 𝒂𝟑 = 𝒙𝟑|
𝒂

𝒃
= ∫ 𝟑𝒙𝟐

𝒃

𝒂

𝒅𝒙 

We must to prove: 

𝟑∫ 𝐬𝐢𝐧𝒙 ⋅ 𝐬𝐢𝐧𝐡 𝒙
𝒃

𝒂

𝒅𝒙 ≤ 𝟑∫ 𝒙𝟐
𝒃

𝒂

𝒅𝒙 

𝐬𝐢𝐧 𝒙 ⋅ 𝐬𝐢𝐧𝐡 𝒙 ≤ 𝒙𝟐, 𝒙 ∈ [𝒂, 𝒃] 

Let 𝒇(𝒙) = 𝐬𝐢𝐧𝒙 ⋅ 𝐬𝐢𝐧𝐡 𝒙 − 𝒙𝟐; 𝒇(𝟎) = 𝟎, then  

𝒇′(𝒙) = 𝐜𝐨𝐬 𝒙 ⋅ 𝐬𝐢𝐧𝐡 𝒙 + 𝐬𝐢𝐧𝒙 ⋅ 𝐜𝐨𝐬𝐡 𝒙 − 𝟐𝒙; 𝒇′(𝟎) = 𝟎 

𝒇′′(𝒙) = 𝟐𝐜𝐨𝐬 𝒙 ⋅ 𝐜𝐨𝐬𝐡 𝒙 − 𝟐; 𝒇′′(𝟎) = 𝟎 

𝒇′′′(𝒙) = 𝟐(−𝐬𝐢𝐧 𝒙 ⋅ 𝐜𝐨𝐬𝐡 𝒙 + 𝐜𝐨𝐬 𝒙 ⋅ 𝐬𝐢𝐧𝐡 𝒙); 𝒇′′′(𝒙) = 𝟎 

𝒇(𝒊𝒗)(𝒙) = −𝟐 𝐬𝐢𝐧𝒙 ⋅ 𝐬𝐢𝐧𝐡 𝒙 ≤ 𝟎; 𝒇(𝒊𝒗)(𝟎) = 𝟎 

 

Thus, 𝒇(𝒙) ≤ 𝟎, ∀𝒙 ∈ (𝟎,
𝝅

𝟐
) ⇒ 𝐬𝐢𝐧𝒙 ⋅ 𝐬𝐢𝐧𝐡 𝒙 ≤ 𝒙𝟐, 𝒙 ∈ [𝒂, 𝒃] 

𝟑∫ 𝐬𝐢𝐧𝒙 ⋅ 𝐬𝐢𝐧𝐡 𝒙
𝒃

𝒂

𝒅𝒙 ≤ 𝟑∫ 𝒙𝟐
𝒃

𝒂

𝒅𝒙 

1675.𝒇 ∈ 𝑪𝟐([𝒂, 𝒃]), 𝟎 < 𝑎 ≤ 𝑏, ∫ 𝒇(𝒙)
𝒃

𝒂
𝒅𝒙 = 𝟎 

Prove that: 
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(𝒇(𝒃) + 𝒇(𝒂))
𝟐
≤
𝒃 − 𝒂

𝟑
∫ (𝒇′(𝒙))

𝟐
𝒃

𝒂

𝒅𝒙 

Proposed by Seyran Ibrahimov-Maasilli-Azerbaijan 

Solution by Chris Kyriazis-Greece 

∫ (𝒙−
𝒂 + 𝒃

𝟐
)
𝟐𝒃

𝒂

𝒅𝒙 = [
𝟏

𝟑
(𝒙 −

𝒂 + 𝒃

𝟐
)
𝟑

]
𝒂

𝒃

=
(𝒃 − 𝒂)𝟑

𝟐𝟒
−
(𝒂 − 𝒃)𝟑

𝟐𝟒
=
(𝒃 − 𝒂)𝟑

𝟏𝟐
; (𝟏) 

∫ (𝒇′(𝒙))
𝟐

𝒃

𝒂

𝒅𝒙 ⋅ ∫ (𝒙 −
𝒂 + 𝒃

𝟐
)
𝟐𝒃

𝒂

𝒅𝒙 ≥
𝑪𝑩𝑺

[∫ 𝒇′(𝒙) (𝒙 −
𝒂 + 𝒃

𝟐
)𝒅𝒙

𝒃

𝒂

]

𝟐
(𝟏)
⇒  

(𝒃 − 𝒂)𝟑

𝟏𝟐
∫ (𝒇′(𝒙))

𝟐
𝒃

𝒂

𝒅𝒙 ≥ [(𝒙 −
𝒂 + 𝒃

𝟐
)𝒇(𝒙)|

𝒂

𝒃

− ∫ 𝒇(𝒙)
𝒃

𝒂

𝒅𝒙
⏟      

𝟎

]

𝟐

 

(𝒃 − 𝒂)𝟑

𝟏𝟐
∫ (𝒇′(𝒙))

𝟐
𝒃

𝒂

𝒅𝒙 ≥ [
𝒃 − 𝒂

𝟐
𝒇(𝒃) +

𝒃 − 𝒂

𝟐
𝒇(𝒂)]

𝟐

 

(𝒃 − 𝒂)𝟑

𝟏𝟐
∫ (𝒇′(𝒙))

𝟐
𝒃

𝒂

𝒅𝒙 ≥
(𝒃 − 𝒂)𝟐

𝟒
(𝒇(𝒂) + 𝒇(𝒃))

𝟐
 

(𝒇(𝒃) + 𝒇(𝒂))
𝟐
≤
𝒃 − 𝒂

𝟑
∫ (𝒇′(𝒙))

𝟐
𝒃

𝒂

𝒅𝒙 

1676. If 𝒇 ∈ 𝑪𝟐([𝒂, 𝒃]), 𝟎 < 𝒂 < 𝒃, 𝒇(𝒂) = 𝒇(𝒃) then: 

(𝒇′(𝒃))
𝟐
≤
𝒃 − 𝒂

𝟑
∫ (𝒇′′(𝒙))

𝟐
𝒃

𝒂

𝒅𝒙 

Proposed by Seyran Ibrahimov-Maasilli-Azerbaijan 

Solution by proposer 

∫ (𝒙 − 𝒂)𝒇′′(𝒙)
𝒃

𝒂

𝒅𝒙 = ∫ (𝒙 − 𝒂)𝒅(𝒇′(𝒙))
𝒃

𝒂

= 

= (𝒙 − 𝒂)𝒇′(𝒙)|𝒂
𝒃 −∫ 𝒇′(𝒙)𝒅(𝒙 − 𝒂)

𝒃

𝒂

= 

= (𝒃 − 𝒂)𝒇′(𝒃) − ∫ 𝒇′(𝒙)
𝒃

𝒂

𝒅𝒙 = (𝒃 − 𝒂)𝒇′(𝒃) − 𝒇(𝒙)|𝒂
𝒃 = 
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= (𝒃 − 𝒂)𝒇′(𝒃) − 𝒇(𝒃) + 𝒇(𝒂) = (𝒃 − 𝒂)𝒇′(𝒃); (𝟏) 

(∫ (𝒙 − 𝒂)𝒇′′(𝒙)
𝒃

𝒂

𝒅𝒙)

𝟐

≤
𝑪𝑩𝑺

∫ (𝒙 − 𝒂)𝟐
𝒃

𝒂

𝒅𝒙 ⋅ ∫ (𝒇′′(𝒙))
𝟐

𝒃

𝒂

𝒅𝒙 = 

=
(𝒙 − 𝒂)𝟑

𝟑
|
𝒂

𝒃

⋅ ∫ (𝒇′′(𝒙))
𝟐

𝒃

𝒂

𝒅𝒙 =
(𝒃 − 𝒂)𝟑

𝟑
⋅ ∫ (𝒇′′(𝒙))

𝟐
𝒃

𝒂

𝒅𝒙; (𝟐) 

From (1) and (2), we get: 

(𝒃 − 𝒂)𝟐(𝒇′(𝒃))
𝟐
≤
(𝒃 − 𝒂)𝟑

𝟑
⋅ ∫ (𝒇′′(𝒙))

𝟐
𝒃

𝒂

𝒅𝒙 

Therefore, 

(𝒇′(𝒃))
𝟐
≤
𝒃 − 𝒂

𝟑
∫ (𝒇′′(𝒙))

𝟐
𝒃

𝒂

𝒅𝒙 

1677. 𝒇 ∈ 𝑪𝟐([𝒂, 𝒃]), 𝒂 < 𝑏, 𝑓(𝒂) = 𝒇(𝒃). Prove that: 

𝟑 ⋅ 𝐦𝐚𝐱 ((𝒇′(𝒂))
𝟐
, (𝒇′(𝒃))

𝟐
) ≤ (𝒃 − 𝒂)∫ (𝒇′′(𝒙))

𝟐
𝒃

𝒂

𝒅𝒙 

Proposed by Seyran Ibrahimov-Maasilli-Azerbaijan 

Solution by Kamel Gandouli Rezgui-Tunisia 

∫ (𝒙 − 𝒂)𝒇′′(𝒙)
𝒃

𝒂

𝒅𝒙 = [(𝒙 − 𝒂)𝒇′(𝒙)]𝒂
𝒃 −∫ 𝒇′(𝒙)

𝒃

𝒂

𝒅𝒙 = 

= (𝒃 − 𝒂)𝒇′(𝒃) − 𝒇(𝒃) + 𝒇(𝒂) = (𝒃 − 𝒂)𝒇′(𝒃) 

(∫ (𝒙 − 𝒂)𝒇′′(𝒙)𝒅𝒙
𝒃

𝒂

)

𝟐

≤
𝑪𝑩𝑺

∫ (𝒙 − 𝒂)𝟐
𝒃

𝒂

𝒅𝒙 ⋅ ∫ (𝒇′′(𝒙))
𝟐

𝒃

𝒂

𝒅𝒙 

(∫ (𝒙 − 𝒂)𝒇′′(𝒙)𝒅𝒙
𝒃

𝒂

)

𝟐

≤
(𝒃 − 𝒂)𝟑

𝟑
∫ (𝒇′′(𝒙))

𝟐
𝒃

𝒂

𝒅𝒙 

(𝒃 − 𝒂)𝟐(𝒇′(𝒃))
𝟐
≤
(𝒃 − 𝒂)𝟑

𝟑
∫ (𝒇′′(𝒙))

𝟐
𝒃

𝒂

𝒅𝒙 

(𝒇′(𝒃))
𝟐
≤
𝒃 − 𝒂

𝟑
∫ (𝒇′′(𝒙))

𝟐
𝒃

𝒂

𝒅𝒙; (𝟏) 

∫ (𝒃 − 𝒙)𝒇′′(𝒙)
𝒃

𝒂

𝒅𝒙 = [(𝒃 − 𝒙)𝒇′(𝒙)]𝒂
𝒃 +∫ 𝒇′(𝒙)

𝒃

𝒂

𝒅𝒙 = 
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= −(𝒃 − 𝒂)𝒇′(𝒙) + 𝒇(𝒃) − 𝒇(𝒂) = −(𝒃 − 𝒂)𝒇′(𝒂) 

(∫ (𝒃 − 𝒙)𝒇′′(𝒙)𝒅𝒙
𝒃

𝒂

)

𝟐

≤
𝑪𝑩𝑺

∫ (𝒃 − 𝒙)𝟐
𝒃

𝒂

𝒅𝒙 ⋅ ∫ (𝒇′′(𝒙))
𝟐

𝒃

𝒂

𝒅𝒙 

(𝒃 − 𝒂)𝟐(𝒇′(𝒂))
𝟐
≤ ∫ (𝒃 − 𝒙)𝟐𝒅𝒙

𝒃

𝒂

⋅ ∫ (𝒇′′(𝒙))
𝟐

𝒃

𝒂

𝒅𝒙 

(𝒃 − 𝒂)(𝒇′(𝒂))
𝟐
≤
(𝒃 − 𝒂)𝟑

𝟑
∫ (𝒇′′(𝒙))

𝟐
𝒃

𝒂

𝒅𝒙 

(𝒇′(𝒂))
𝟐
≤
𝒃 − 𝒂

𝟑
∫ (𝒇′′(𝒙))

𝟐
𝒃

𝒂

𝒅𝒙; (𝟐) 

From (1) and (2), we get: 

𝟑 ⋅ 𝐦𝐚𝐱 ((𝒇′(𝒂))
𝟐
, (𝒇′(𝒃))

𝟐
) ≤ (𝒃 − 𝒂)∫ (𝒇′′(𝒙))

𝟐
𝒃

𝒂

𝒅𝒙 

1678. Prove that the following equality holds: 

∑
𝑯𝟐𝒏
𝒏𝟐𝟒𝒏

(
𝟒𝒏

𝟐𝒏
)

∞

𝒏=𝟏

=
𝟓𝝅𝟐

𝟏𝟐
−
𝐥𝐨𝐠𝟐 𝟐

𝟐
− 𝟒𝑳𝒊𝟐 (

𝟏

√𝟐
) + 𝟐 𝐥𝐨𝐠𝟐(𝜹𝑺) +

𝟏

𝟐
𝐥𝐨𝐠 (

𝟏

𝟐
) 𝐥𝐨𝐠(𝟏𝟕 + 𝟏𝟐√𝟐) 

where 𝑯𝒏 is Skew Harmonic sum, 𝑳𝒊𝟐(𝒙) is dilogarithm function and 𝜹𝑺 is Silver ratio. 

Proposed by Naren Bhandari-Bajura-Nepal 

Solution by Rana Ranino-Setif-Algerie 

𝛀 = ∑
𝑯𝟐𝒏
𝒏𝟐𝟒𝒏

(
𝟒𝒏

𝟐𝒏
)

∞

𝒏=𝟏

 

(∵) 𝑯𝟐𝒏 = 𝐥𝐨𝐠𝟐 − ∫
𝒙𝟐𝒏

𝟏 + 𝒙
𝒅𝒙

𝟏

𝟎

;
𝟏

𝟐𝟒𝒏
(
𝟒𝒏

𝟐𝒏
) =

𝑩 (𝟐𝒏 +
𝟏
𝟐 ,
𝟏
𝟐)

𝝅
=
𝟐

𝝅
∫ 𝐬𝐢𝐧𝟒𝒏 𝒙𝒅𝒙

𝝅
𝟐

𝟎

 

𝛀 = 𝐥𝐨𝐠𝟐∑
(𝟒𝒏
𝟐𝒏
)

𝒏𝟐𝟒𝒏

∞

𝒏=𝟏

⏞        
𝑨

−∑
(𝟒𝒏
𝟐𝒏
)

𝒏𝟐𝟒𝒏

∞

𝒏=𝟏

∫
𝒙𝟐𝒏

𝟏 + 𝒙

𝟏

𝟎

𝒅𝒙

⏞              
𝑩

 

𝑨 =
𝟐 𝐥𝐨𝐠 𝟐

𝝅
∑
𝟏

𝒏
∫ 𝐬𝐢𝐧𝟒𝒏 𝒙𝒅𝒙

𝝅
𝟐

𝟎

∞

𝒏=𝟏

= −
𝟐 𝐥𝐨𝐠𝟐

𝝅
∫ 𝐥𝐨𝐠(𝟏 − 𝐬𝐢𝐧𝟒 𝒙)𝒅𝒙

𝝅
𝟐

𝟎

= 
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= −
𝟐 𝐥𝐨𝐠 𝟐

𝝅
∫ 𝐥𝐨𝐠(𝐜𝐨𝐬 𝒙)𝒅𝒙

𝝅
𝟐

𝟎

−
𝟐 𝐥𝐨𝐠𝟐

𝝅
∫ 𝐥𝐨𝐠(𝟏 + 𝐬𝐢𝐧𝟐 𝒙)𝒅𝒙

𝝅
𝟐

𝟎

= 

= 𝟐 𝐥𝐨𝐠𝟐 𝟐 −
𝟐 𝐥𝐨𝐠𝟐

𝝅
∫ 𝐥𝐨𝐠(𝐜𝐨𝐬𝟐 𝒙 + 𝟐𝐬𝐢𝐧𝟐 𝒙)

𝝅
𝟐

𝟎

𝒅𝒙 = 𝟐 𝐥𝐨𝐠𝟐 𝟐 − 𝟐 𝐥𝐨𝐠 𝟐 𝐥𝐨𝐠(
𝟏 + √𝟐

𝟐
) = 

= 𝟒 𝐥𝐨𝐠𝟐 𝟐 +
𝟏

𝟐
𝐥𝐨𝐠 (

𝟏

𝟐
) 𝐥𝐨𝐠[(𝟏 + √𝟐)]

𝟒
= 𝟒 𝐥𝐨𝐠𝟐 𝟐 +

𝟏

𝟐
𝐥𝐨𝐠 (

𝟏

𝟐
) 𝐥𝐨𝐠(𝟏𝟕 + 𝟏𝟐√𝟐) 

∑(
𝟒𝒏

𝟐𝒏
)𝒙𝟐𝒏

∞

𝒏=𝟏

=
𝟏

𝟐
(

𝟏

√𝟏+ 𝟒𝒙
+

𝟏

√𝟏 − 𝟒𝒙
) − 𝟏; (|𝒙| <

𝟏

𝟒
) . 𝐓𝐚𝐤𝐞 𝟒𝒙 = 𝒕, 

∑(
𝟒𝒏

𝟐𝒏
)
𝒕𝟐𝒏−𝟏

𝟐𝟒𝒏

∞

𝒏=𝟏

=
𝟏

𝟐𝒕
(

𝟏

√𝟏 + 𝒕
+

𝟏

√𝟏 − 𝒕
) −

𝟏

𝒕
 

Integrating both sides, we have: 

∑(
𝟒𝒏

𝟐𝒏
)
𝒙𝟐𝒏

𝒏𝟐𝟒𝒏

∞

𝒏=𝟏

= ∫
𝟏

𝒕
(

𝟏

√𝟏 + 𝒕
+

𝟏

√𝟏− 𝒕
− 𝟐)𝒅𝒕

𝒙

𝟎

= 

= [𝐥𝐨𝐠 |
√𝒕 + 𝟏 − 𝟏

√𝒕 + 𝟏 + 𝟏
| + 𝐥𝐨𝐠 |

√𝟏 − 𝒕 − 𝟏

√𝟏− 𝒕 + 𝟏
| − 𝟐 𝐥𝐨𝐠 𝒕]

𝟎

𝒙

 

∑(
𝟒𝒏

𝟐𝒏
)
𝒙𝟐𝒏

𝒏𝟐𝟒𝒏

∞

𝒏=𝟏

= 𝐥𝐨𝐠 |
√𝒙 + 𝟏 − 𝟏

√𝒙+ 𝟏 + 𝟏
| + 𝐥𝐨𝐠 |

√𝟏 − 𝒙 − 𝟏

√𝟏 − 𝒙 + 𝟏
| − 𝟐 𝐥𝐨𝐠 𝒙 + 𝟒 𝐥𝐨𝐠𝟐 

𝑩 = ∫
𝟏

𝒙 + 𝟏
⋅ 𝐥𝐨𝐠 (

√𝒙 + 𝟏 − 𝟏

√𝒙+ 𝟏 + 𝟏
)𝒅𝒙

𝟏

𝟎

+∫
𝟏

𝒙 + 𝟏
⋅ 𝐥𝐨𝐠 (

𝟏 − √𝟏 − 𝒙

𝟏+ √𝟏 − 𝒙
)𝒅𝒙

𝟏

𝟎

− 

−𝟐∫
𝐥𝐨𝐠 𝒙 − 𝟐 𝐥𝐨𝐠𝟐

𝒙 + 𝟏
𝒅𝒙

𝟏

𝟎

= 𝑩𝟏 + 𝑩𝟐 + 𝑩𝟑 

𝑩𝟏 = ∫
𝟏

𝒙 + 𝟏
⋅ 𝐥𝐨𝐠 (

√𝒙 + 𝟏 − 𝟏

√𝒙+ 𝟏 + 𝟏
)𝒅𝒙

𝟏

𝟎

=
𝒚𝟐=

𝟏
𝒙+𝟏

𝟐∫
𝟏

𝒚
𝐥𝐨𝐠 (

𝟏 − 𝒚

𝟏 + 𝒚
)𝒅𝒚

𝟏

𝟏

√𝟐

= 

= 𝟐 [−𝟐𝑳𝒊𝟐(𝒚) +
𝟏

𝟐
𝑳𝒊𝟐(𝒚

𝟐)]
𝟏

√𝟐

𝟏

= −𝟑𝑳𝒊𝟐(𝟏) + 𝟒𝑳𝒊𝟐 (
𝟏

√𝟐
) − 𝑳𝒊𝟐 (

𝟏

𝟐
) 

𝑩𝟐 = ∫
𝟏

𝒙 + 𝟏
⋅ 𝐥𝐨𝐠 (

𝟏 − √𝟏 − 𝒙

𝟏 + √𝟏 − 𝒙
)𝒅𝒙

𝟏

𝟎

=
𝑰𝑩𝑷
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= [𝐥𝐨𝐠 (
𝟏 − √𝟏 − 𝒙

𝟏 + √𝟏 − 𝒙
) 𝐥𝐨𝐠(𝟏 + 𝒙)]

𝟎

𝟏

− ∫
𝐥𝐨𝐠(𝟏 + 𝒙)

𝒙√𝟏 − 𝒙

𝟏

𝟎

𝒅𝒙 = −∫
𝐥𝐨𝐠(𝟏 + 𝒙)

𝒙√𝟏 − 𝒙
𝒅𝒙

𝟏

𝟎

=
𝒙=𝐬𝐢𝐧𝟐 𝒙

 

= −𝟐∫
𝐥𝐨𝐠(𝟏 + 𝐬𝐢𝐧𝟐 𝒙)

𝐬𝐢𝐧𝒙
𝒅𝒙

𝟏

𝟎

= 𝟐∑
(−𝟏)𝒌

𝒌

∞

𝒌=𝟏

∫ 𝐬𝐢𝐧𝟐𝒌−𝟏 𝒙𝒅𝒙

𝝅
𝟐

𝟎

= 

= √𝝅∑
(−𝟏)𝒌𝚪(𝒌)

𝒌𝚪(𝒌 +
𝟏
𝟐)

∞

𝒌=𝟏

=∑
(−𝟒)𝒌𝚪𝟐(𝒌)

𝟐𝒌𝚪(𝟐𝒌)

∞

𝒌=𝟏

= −𝟐∑
(−𝟒)𝒌(𝒌!)𝟐

(𝒌 + 𝟏)(𝟐𝒌 + 𝟏)!

∞

𝒌=𝟎

= −𝟐(𝐬𝐢𝐧𝐡−𝟏(𝟏))𝟐 

𝑩𝟐 = −𝟐 𝐥𝐨𝐠
𝟐(𝜹𝑺) 

𝑩𝟑 = −𝟐∫
𝐥𝐨𝐠𝒙 − 𝟐 𝐥𝐨𝐠 𝟐

𝒙 + 𝟏
𝒅𝒙

𝟏

𝟎

=
𝝅𝟐

𝟔
+ 𝟒 𝐥𝐨𝐠𝟐 𝟐 

𝑩 = 𝟒𝑳𝒊𝟐 (
𝟏

√𝟐
) +

𝟏

𝟐
𝐥𝐨𝐠𝟐 𝟐 −

𝟕𝝅𝟐

𝟏𝟐
− 𝟐 𝐥𝐨𝐠𝟐(𝜹𝑺) +

𝝅𝟐

𝟔
+ 𝟒 𝐥𝐨𝐠𝟐 𝟐 

Therefore, 

∑
𝑯𝟐𝒏
𝒏𝟐𝟒𝒏

(
𝟒𝒏

𝟐𝒏
)

∞

𝒏=𝟏

=
𝟓𝝅𝟐

𝟏𝟐
−
𝐥𝐨𝐠𝟐 𝟐

𝟐
− 𝟒𝑳𝒊𝟐 (

𝟏

√𝟐
) + 𝟐 𝐥𝐨𝐠𝟐(𝜹𝑺) +

𝟏

𝟐
𝐥𝐨𝐠 (

𝟏

𝟐
) 𝐥𝐨𝐠(𝟏𝟕 + 𝟏𝟐√𝟐) 

 

1679. If 𝒇:ℝ+
∗ → ℝ+

∗  is continuous function, (𝒙𝒏)𝒏≥𝟏, 𝒙𝒏 = ∑
𝟏

𝒌

𝒏
𝒌=𝟏 , then prove: 

𝐥𝐢𝐦
𝒏→∞

∫
𝒇(𝒙 − 𝒆𝒙𝒏)

𝒇(𝒆𝒙𝒏+𝟏 − 𝒙) + 𝒇(𝒙 − 𝒆𝒙𝒏)

𝒆𝒙𝒏+𝟏

𝒆𝒙𝒏
𝒅𝒙 = 𝐥𝐢𝐦

𝒏→∞ 
(𝒆𝒙𝒏 − 𝒏𝒆𝜸) 

Proposed by D.M. Bătinețu-Giurgiu, Neculai Stanciu-Romania 

Solution 1 by Kamel Gandouli Rezgui-Tunisia 

𝑰𝒏 = ∫
𝒇(𝒙 − 𝒆𝒙𝒏)

𝒇(𝒆𝒙𝒏+𝟏 − 𝒙) + 𝒇(𝒙 − 𝒆𝒙𝒏)

𝒆𝒙𝒏+𝟏

𝒆𝒙𝒏
𝒅𝒙 =

𝒙=𝒆𝒙𝒏+𝒆𝒙𝒏+𝟏−𝒚
 

= ∫
𝒇((𝒆𝒙𝒏 + 𝒆𝒙𝒏+𝟏 − 𝒚) − 𝒆𝒙𝒏)

𝒇(𝒆𝒙𝒏+𝟏 − (𝒆𝒙𝒏 + 𝒆𝒙𝒏+𝟏 − 𝒚)) + 𝒇((𝒆𝒙𝒏 + 𝒆𝒙𝒏+𝟏 − 𝒚) − 𝒆𝒙𝒏)

𝒆𝒙𝒏+𝟏

𝒆𝒙𝒏
𝒅𝒚 = 

= ∫
𝒇(𝒚 − 𝒆𝒙𝒏)

𝒇(𝒆𝒙𝒏+𝟏 − 𝒚) + 𝒇(𝒚 − 𝒆𝒙𝒏)

𝒆𝒙𝒏+𝟏

𝒆𝒙𝒏
𝒅𝒚 
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𝟐𝑰𝒏 = ∫
𝒇(𝒚 − 𝒆𝒙𝒏) + 𝒇(𝒆𝒙𝒏+𝟏 − 𝒚)

𝒇(𝒆𝒙𝒏+𝟏 − 𝒚) + 𝒇(𝒚 − 𝒆𝒙𝒏)

𝒆𝒙𝒏+𝟏

𝒆𝒙𝒏
𝒅𝒚 = ∫ 𝒅𝒚

𝒆𝒙𝒏+𝟏

𝒆𝒙𝒏
 

⇒ 𝑰𝒏 =
𝒆𝒙𝒏+𝟏 − 𝒆𝒙𝒏

𝟐
= 𝒆𝒙𝒏 −

𝟑𝒆𝒙𝒏 − 𝒆𝒙𝒏+𝟏

𝟐
 

𝒙𝒏 ≅ 𝐥𝐨𝐠 𝒏 + 𝜸 

𝐥𝐢𝐦
𝒏→∞

𝑰𝒏 = 𝐥𝐢𝐦
𝒏→∞

(𝒆𝒙𝒏 −
𝟑𝒆𝒙𝒏 − 𝒆𝒙𝒏+𝟏

𝟐
) = 𝐥𝐢𝐦

𝒏→∞

𝟑𝒆𝒙𝒏 − 𝒆𝒙𝒏+𝟏

𝟐
= 

= 𝐥𝐢𝐦
𝒏→∞

𝒏𝒆𝜸 = 𝐥𝐢𝐦
𝒏→∞ 

(𝒆𝒙𝒏 − 𝒏𝒆𝜸) 

Solution 2 by Marian Ursărescu-Romania 

𝐋𝐞𝐭 𝑰 = ∫
𝒇(𝒙 − 𝒂)

𝒇(𝒃 − 𝒙) + 𝒇(𝒙 − 𝒂)

𝒃

𝒂

𝒅𝒙 =
𝒙=𝒂+𝒃−𝒕

∫
𝒇(𝒃 − 𝒕)

𝒇(𝒃 − 𝒕) + 𝒇(𝒕 − 𝒂)
𝒅𝒕

𝒃

𝒂

; (𝟏) 

𝐋𝐞𝐭 𝑱 = ∫
𝒇(𝒃 − 𝒙)

𝒇(𝒃 − 𝒙) + 𝒇(𝒙 − 𝒂)
𝒅𝒙

𝒃

𝒂

=
(𝟏)
𝑰 

𝑰 + 𝑱 = ∫ 𝒅𝒙
𝒃

𝒂

= 𝒃 − 𝒂 ⇒ 𝑰 = 𝑱 =
𝒃 − 𝒂

𝟐
 

∫
𝒇(𝒙 − 𝒆𝒙𝒏)

𝒇(𝒆𝒙𝒏+𝟏 − 𝒙) + 𝒇(𝒙 − 𝒆𝒙𝒏)

𝒆𝒙𝒏+𝟏

𝒆𝒙𝒏
𝒅𝒙 =

𝒆𝒙𝒏+𝟏 − 𝒆𝒙𝒏

𝟐
 

𝐥𝐢𝐦
𝒏→∞

∫
𝒇(𝒙 − 𝒆𝒙𝒏)

𝒇(𝒆𝒙𝒏+𝟏 − 𝒙) + 𝒇(𝒙 − 𝒆𝒙𝒏)

𝒆𝒙𝒏+𝟏

𝒆𝒙𝒏
𝒅𝒙 = 𝐥𝐢𝐦

𝒏→∞

𝒆𝒙𝒏+𝟏 − 𝒆𝒙𝒏

𝟐
= 

=
𝟏

𝟐
𝐥𝐢𝐦
𝒏→∞

𝒆𝒙𝒏(𝒆𝒙𝒏+𝟏−𝒙𝒏 − 𝟏) =
𝟏

𝟐
𝐥𝐢𝐦
𝒏→∞

𝒆𝒙𝒏 (𝒆
𝟏
𝒏+𝟏 − 𝟏)

𝟏
𝒏 + 𝟏 ⋅

(𝒏 + 𝟏)
=
𝟏

𝟐
𝐥𝐢𝐦
𝒏→∞

𝒆𝒙𝒏

𝒏 + 𝟏
= 

=
𝟏

𝟐
𝐥𝐢𝐦
𝒏→∞

𝒏

𝒏 + 𝟏
⋅
𝒆𝒙𝒏

𝒏
=
𝟏

𝟐
𝐥𝐢𝐦
𝒏→∞

𝒆𝒙𝒏

𝒆𝐥𝐨𝐠 𝒏
=
𝟏

𝟐
𝐥𝐢𝐦
𝒏→∞

𝒆𝒙𝒏−𝐥𝐨𝐠 𝒏 =
𝟏

𝟐
𝒆𝜸; (𝟑) 

Now, we have: 

𝐥𝐢𝐦
𝒏→∞ 

(𝒆𝒙𝒏 − 𝒏𝒆𝜸) = 𝐥𝐢𝐦
𝒏→∞ 

(𝒆𝒙𝒏 − 𝒆𝐥𝐨𝐠 𝒏𝒆𝜸) = 𝐥𝐢𝐦
𝒏→∞

𝒆𝐥𝐨𝐠 𝒏(𝒆𝒙𝒏−𝐥𝐨𝐠 𝒏 − 𝒆𝜸) = 

= 𝐥𝐢𝐦
𝒏→∞

𝒏(𝒆𝒙𝒏−𝐥𝐨𝐠 𝒏 − 𝒆𝜸) = 𝐥𝐢𝐦
𝒏→∞

𝒆𝒙𝒏−𝐥𝐨𝐠 𝒏 − 𝒆𝜸

𝟏
𝒏

=
𝑪−𝑺

 

= 𝐥𝐢𝐦
𝒏→∞

𝒆𝒙𝒏+𝟏−𝐥𝐨𝐠(𝒏+𝟏) − 𝒆𝒙𝒏−𝐥𝐨𝐠 𝒏

𝟏
𝒏 + 𝟏 −

𝟏
𝒏

= 𝐥𝐢𝐦
𝒏→∞

𝒆𝒙𝒏−𝐥𝐨𝐠 𝒏(𝒆𝒙𝒏+𝟏−𝐥𝐨𝐠(𝒏+𝟏)−𝒙𝒏+𝐥𝐨𝐠 𝒏 − 𝟏)

−
𝟏

𝒏(𝒏 + 𝟏)

= 



 
www.ssmrmh.ro 

132 RMM-CALCULUS MARATHON 1601-1700 

 

= 𝐥𝐢𝐦
𝒏→∞

𝒆𝒙𝒏

𝒏
⋅
𝒆
𝟏
𝒏+𝟏

−𝐥𝐨𝐠(𝒏+𝟏)+𝐥𝐨𝐠 𝒏 − 𝟏

−
𝟏

𝒏(𝒏 + 𝟏)

= 

= − 𝐥𝐢𝐦
𝒏→∞

𝒆𝒙𝒏 ⋅
𝒆
𝟏
𝒏+𝟏

−𝐥𝐨𝐠(𝒏+𝟏)+𝐥𝐨𝐠 𝒏 − 𝟏

𝟏
𝒏 + 𝟏 ⋅ (

𝟏
𝒏 + 𝟏 − 𝐥𝐨𝐠

(𝒏 + 𝟏) + 𝐥𝐨𝐠𝒏)
⋅ (

𝟏

𝒏 + 𝟏
− 𝐥𝐨𝐠(𝒏 + 𝟏) + 𝐥𝐨𝐠𝒏) = 

= − 𝐥𝐢𝐦
𝒏→∞

(𝒏 + 𝟏)𝒆𝒙𝒏 ⋅
𝟏 − (𝒏 + 𝟏) 𝐥𝐨𝐠 (

𝒏 + 𝟏
𝒏 )

𝒏 + 𝟏
= − 𝐥𝐢𝐦

𝒏→∞

𝒆𝒙𝒏

𝒆𝐥𝐨𝐠 𝒏
⋅
𝟏 − (𝒏 + 𝟏) 𝐥𝐨𝐠 (𝟏 +

𝟏
𝒏)

𝟏
𝒏

 

= − 𝐥𝐢𝐦
𝒏→∞

𝒆𝒙𝒏−𝐥𝐨𝐠 𝒏 ⋅
𝟏 − (𝒏 + 𝟏) 𝐥𝐨𝐠 (𝟏 +

𝟏
𝒏)

𝟏
𝒏

= −𝒆𝜸 ⋅ 𝐥𝐢𝐦
𝒙→𝟎

𝒙 + (𝒙 + 𝟏) 𝐥𝐨𝐠(𝟏 + 𝒙)

𝒙𝟐
=
𝑳′𝑯

 

= −𝒆𝜸 𝐥𝐢𝐦
𝒙→𝟎

𝟏 − 𝐥𝐨𝐠(𝟏 + 𝒙) − 𝟏

𝟐𝒙
= −𝒆𝜸 𝐥𝐢𝐦

𝒙→𝟎

− 𝐥𝐨𝐠(𝟏 + 𝒙)

𝟐𝒙
=
𝒆𝜸

𝟐
; (𝟒) 

From (3) and (4), we get: 

𝐥𝐢𝐦
𝒏→∞

∫
𝒇(𝒙 − 𝒆𝒙𝒏)

𝒇(𝒆𝒙𝒏+𝟏 − 𝒙) + 𝒇(𝒙 − 𝒆𝒙𝒏)

𝒆𝒙𝒏+𝟏

𝒆𝒙𝒏
𝒅𝒙 = 𝐥𝐢𝐦

𝒏→∞ 
(𝒆𝒙𝒏 − 𝒏𝒆𝜸) 

1680. Find: 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

√(𝟐𝒏 − 𝟏)‼
𝒏

(𝐬𝐢𝐧 (
𝝅 √(𝒏 + 𝟏)!
𝒏+𝟏

𝟐√𝒏!
𝒏 ) − 𝟏) 

Proposed by Shivam Sharma, Anisha Garg-India 

Solution 1 by Asmat Qatea-Afghanistan 

(𝟐𝒏 − 𝟏)‼ =
(𝟐𝒏)!

𝟐𝒏𝒏!
, 𝐥𝐢𝐦
𝒏→∞

√𝒏!
𝒏

𝒏
=
𝟏

𝒆
 𝐚𝐧𝐝 𝐥𝐢𝐦

𝒏→∞
𝒏! = √𝟐𝝅𝒏 (

𝒏

𝒆
)
𝒏

 

𝛀 =
𝟏

𝟐
𝐥𝐢𝐦
𝒏→∞

√(𝟐𝒏)!
𝒏

√𝒏!
𝒏 (𝐬𝐢𝐧(

𝝅 √𝒏 + 𝟏
𝒏+𝟏

𝒏 + 𝟏 ⋅ (𝒏 + 𝟏)

𝟐 ⋅ √
𝒏𝒏

𝒏 ⋅ 𝒏

) − 𝟏) = 
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=
𝟏

𝟐
𝐥𝐢𝐦
𝒏→∞

(√𝟒𝝅𝒏(
𝟐𝒏
𝒆 )

𝟐𝒏

)

𝟏
𝒏

(√𝟐𝒏𝝅(
𝒏
𝒆)
𝒏

)

𝟏
𝒏

(𝐬𝐢𝐧 (
𝝅(𝒏 + 𝟏)

𝟐𝒏
) − 𝟏) = 

=
𝟏

𝟐
𝐥𝐢𝐦
𝒏→∞

𝟒𝒏𝟐

𝒆𝟐
𝒏
𝒆

(𝐬𝐢𝐧 (
𝝅(𝒏 + 𝟏)

𝟐𝒏
) − 𝟏) =

𝟐

𝒆
𝐥𝐢𝐦
𝒏→∞

𝒏(𝐬𝐢𝐧 (
𝝅

𝟐
+
𝝅

𝟐𝒏
) − 𝟏) = 

=
𝟐

𝒆
𝐥𝐢𝐦
𝒏→∞

𝒏 (𝐜𝐨𝐬(
𝝅

𝟐𝒏
) − 𝟏) =

𝟐

𝒆
𝐥𝐢𝐦
𝒏→∞

𝒏(𝟏 −
(
𝝅
𝟐𝒏)

𝟐

𝟐!
+
(
𝝅
𝟐𝒏)

𝟒

𝟒!
−⋯− 𝟏) = 

=
𝟐

𝒆
𝐥𝐢𝐦
𝒏→∞

(−
𝝅𝟐

𝟐! ⋅ 𝟒𝒏
+

𝝅𝟒

𝟒! ⋅ 𝟐𝟒𝒏𝟑
−⋯) = 𝟎 

Therefore, 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

√(𝟐𝒏 − 𝟏)‼
𝒏

(𝐬𝐢𝐧(
𝝅 √(𝒏 + 𝟏)!
𝒏+𝟏

𝟐√𝒏!
𝒏

) − 𝟏) = 𝟎 

 Solution 2 by Kamel Gandouli Rezgui-Tunisia 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

√(𝟐𝒏 − 𝟏)‼
𝒏

(𝐬𝐢𝐧(
𝝅 √(𝒏 + 𝟏)!
𝒏+𝟏

𝟐√𝒏!
𝒏

) − 𝟏) = 

= 𝐥𝐢𝐦
𝒏→∞

√
(𝟐𝒏)!

𝟐𝒏𝒏!

𝒏

(𝐬𝐢𝐧 (
𝝅

𝟐

√(𝒏 + 𝟏)!
𝒏+𝟏

√𝒏!
𝒏

) − 𝟏) = 

= 𝐥𝐢𝐦
𝒏→∞

√
(𝟐𝒏)!

𝟐𝒏𝒏!

𝒏
(𝐬𝐢𝐧(

𝝅
𝟐

√(𝒏 + 𝟏)!
𝒏+𝟏

√𝒏!
𝒏 ) − 𝟏)

√(𝒏 + 𝟏)!
𝒏+𝟏

√𝒏!
𝒏 − 𝟏

(
√(𝒏 + 𝟏)!

𝒏+𝟏

√𝒏!
𝒏 − 𝟏) 

𝒏! ≅ √𝟐𝒏𝝅(
𝒏

𝒆
)
𝒏

; 𝐥𝐢𝐦
𝒙→𝟏

𝐬𝐢𝐧
𝝅
𝟐 𝒙 − 𝟏

(𝒙 − 𝟏)𝟐
= −𝟏 ⇒ 𝐥𝐢𝐦

𝒏→∞

𝐬𝐢𝐧 (
𝝅
𝟐

√(𝒏 + 𝟏)!
𝒏+𝟏

√𝒏!
𝒏 ) − 𝟏

√(𝒏 + 𝟏)!
𝒏+𝟏

√𝒏!
𝒏 − 𝟏

= −𝟏 

√
(𝟐𝒏)!

𝟐𝒏𝒏!

𝒏

≅
√𝟐𝝅(𝒏 + 𝟏) (

𝒏 + 𝟏
𝒆 )

√𝟐𝒏𝝅 (
𝒏
𝒆)

= (
𝒏 + 𝟏

𝒏
)

𝟑
𝟐
= (𝟏 +

𝟏

𝒏
)

𝟑
𝟐
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(
√(𝒏 + 𝟏)!

𝒏+𝟏

√𝒏!
𝒏 − 𝟏)

𝟐

≅

((𝟏 +
𝟏
𝒏)

𝟑
𝟐
− 𝟏)

𝟏
𝒏

⋅

((𝟏 +
𝟏
𝒏)

𝟑
𝟐
− 𝟏)

𝟏
𝒏

⋅
𝟏

𝒏𝟐
 

√
(𝟐𝒏)!

𝟐𝒏𝒏!

𝒏

(
√(𝒏 + 𝟏)!

𝒏+𝟏

√𝒏!
𝒏 − 𝟏)

𝟐

≅
𝟐𝒏

𝒆

((𝟏 +
𝟏
𝒏)

𝟑
𝟐
− 𝟏)

𝟏
𝒏

⋅

((𝟏 +
𝟏
𝒏)

𝟑
𝟐
− 𝟏)

𝟏
𝒏

⋅
𝟏

𝒏𝟐
= 

=
𝟐𝒏

𝒆

((𝟏 +
𝟏
𝒏)

𝟑
𝟐
− 𝟏)

𝟏
𝒏

⋅

((𝟏 +
𝟏
𝒏)

𝟑
𝟐
− 𝟏)

𝟏
𝒏

⋅
𝟐

𝒏𝒆
→ 𝟎 

Because: 

𝐥𝐢𝐦
𝒏→∞

((𝟏 +
𝟏
𝒏)

𝟑
𝟐
− 𝟏)

𝟏
𝒏

= 𝐥𝐢𝐦
𝒙→𝟎

(𝟏 + 𝒙)
𝟑
𝟐 − 𝟏

𝒙
=
𝑳′𝑯
𝟏 

Therefore, 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

√(𝟐𝒏 − 𝟏)‼
𝒏

(𝐬𝐢𝐧(
𝝅 √(𝒏 + 𝟏)!
𝒏+𝟏

𝟐√𝒏!
𝒏

) − 𝟏) = 𝟎 

1681. Find: 

𝛀 = 𝐥𝐢𝐦
𝒙→𝟎+

𝐥𝐨𝐠(𝐬𝐢𝐧 𝒙) + 𝐥𝐨𝐠(𝐜𝐨𝐬 𝒙) + 𝐥𝐨𝐠(𝐭𝐚𝐧 𝒙) + 𝐥𝐨𝐠(𝐜𝐨𝐭 𝒙)

𝐥𝐨𝐠(𝐬𝐢𝐧 𝟐𝒙) + 𝐥𝐨𝐠(𝐜𝐨𝐬 𝟑𝒙) + 𝐥𝐨𝐠(𝐭𝐚𝐧 𝟒𝒙) + 𝐥𝐨𝐠(𝐜𝐨𝐭 𝟓𝒙)
 

Proposed by Hikmat Mammadov-Azerbaijan 

Solution by Kamel Gandouli Rezgui-Tunisia 

𝛀 = 𝐥𝐢𝐦
𝒙→𝟎+

𝐥𝐨𝐠(𝐬𝐢𝐧 𝒙) + 𝐥𝐨𝐠(𝐜𝐨𝐬 𝒙) + 𝐥𝐨𝐠(𝐭𝐚𝐧 𝒙) + 𝐥𝐨𝐠(𝐜𝐨𝐭 𝒙)

𝐥𝐨𝐠(𝐬𝐢𝐧 𝟐𝒙) + 𝐥𝐨𝐠(𝐜𝐨𝐬 𝟑𝒙) + 𝐥𝐨𝐠(𝐭𝐚𝐧 𝟒𝒙) + 𝐥𝐨𝐠(𝐜𝐨𝐭 𝟓𝒙)
= 

= 𝐥𝐢𝐦
𝒙→𝟎+

𝐥𝐨𝐠(𝐜𝐨𝐬 𝒙 ⋅ 𝐬𝐢𝐧 𝒙)

𝐥𝐨𝐠(𝐜𝐨𝐬 𝟑𝒙 ⋅ 𝐬𝐢𝐧𝟐𝒙 ⋅ 𝐭𝐚𝐧 𝟒𝒙 ⋅ 𝐜𝐨𝐭 𝟓𝒙)
= 

= 𝐥𝐢𝐦
𝒙→𝟎+

𝐥𝐨𝐠 (
𝐬𝐢𝐧𝒙 ⋅ 𝐜𝐨𝐬 𝒙

𝒙 ) + 𝐥𝐨𝐠 𝒙

𝐥𝐨𝐠 (
𝐬𝐢𝐧𝟐𝒙 ⋅ 𝐜𝐨𝐬 𝟑𝒙 ⋅ 𝐭𝐚𝐧𝟒𝒙 ⋅ 𝐜𝐨𝐭 𝟓𝒙

𝟐𝒙 ⋅ 𝟒𝒙 ) + 𝐥𝐨𝐠 𝟖 + 𝟐 𝐥𝐨𝐠 𝒙
= 
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= 𝐥𝐢𝐦
𝒙→𝟎+

𝐥𝐨𝐠𝒙

𝐥𝐨𝐠(𝐜𝐨𝐭 𝟓𝒙) + 𝐥𝐨𝐠 𝟖 + 𝟐 𝐥𝐨𝐠 𝒙
= 𝐥𝐢𝐦
𝒙→𝟎+

𝟏

𝐥𝐨𝐠(𝐜𝐨𝐭 𝟓𝒙)
𝐥𝐨𝐠𝒙 + 𝟐

= 

= 𝐥𝐢𝐦
𝒙→𝟎+

𝟏

𝐥𝐨𝐠(𝐜𝐨𝐭 𝟓𝒙) − 𝐥𝐨𝐠(𝐬𝐢𝐧𝟓𝒙)
𝐥𝐨𝐠𝒙 + 𝟐

= 𝐥𝐢𝐦
𝒙→𝟎+

𝟏

− 𝐥𝐨𝐠 (
𝐬𝐢𝐧𝟓𝒙
𝟓𝒙 ) − 𝐥𝐨𝐠 𝟓𝒙

𝐥𝐨𝐠 𝒙
+ 𝟐

= 

= 𝐥𝐢𝐦
𝒙→𝟎+

𝟏

−
𝐥𝐨𝐠 𝟓𝒙
𝐥𝐨𝐠 𝒙

+ 𝟐
= 𝐥𝐢𝐦
𝒙→𝟎+

𝟏

− 𝐥𝐨𝐠 𝟓 − 𝐥𝐨𝐠𝒙
𝐥𝐨𝐠𝒙

+ 𝟐
= 𝟏 

1682. If 𝒙, 𝒚, 𝒛 ∈ ℝ;𝒎,𝒏 ∈ ℕ ∪ {𝟎} and 𝝓(𝒙, 𝒚, 𝒛;𝒎, 𝒏) =

𝟏

𝒚

𝝏𝒎

𝝏𝒙𝒎
𝝏𝒏

𝝏𝒙𝒏
(
𝚪(
𝒙

𝒚
)𝚪(𝒛−

𝒙

𝒚
)

𝚪(𝒛)
) then find the conditions imposed on 𝒙, 𝒚 and 𝒛 such that 

the following relationship holds: 

∑(
𝒏

𝒌
) (−𝒚)𝒌𝝓(𝒚𝒛 − 𝒙, 𝒚, 𝒛;𝒎 + 𝒌, 𝒏 − 𝒌)

𝒏

𝒌=𝟎

= (−𝟏)𝒎𝝓(𝒙, 𝒚, 𝒛;𝒎,𝒏) 

Proposed by Angad Singh-India 

Solution by proposer 

It is known from the properties of Beta and Gamma function that, 

𝑰 = ∫
𝒕𝒙−𝟏

(𝟏 + 𝒕𝒚)𝒛

∞

𝟎

𝒅𝒕 =
𝚪 (
𝒙
𝒚)𝚪 (𝒛 −

𝒙
𝒚)

𝐲𝚪(𝒛)
 𝐭𝐡𝐮𝐬, 

𝝓(𝒙, 𝒚, 𝒛;𝒎, 𝒏) = (−𝟏)𝒏∫
𝒕𝒙−𝟏 𝐥𝐨𝐠𝒎(𝒕) 𝐥𝐨𝐠𝒏(𝟏 + 𝒕𝒚)

(𝟏 + 𝒕𝒚)𝒛
𝒅𝒕

∞

𝟎

 

Substituting 𝒕 =
𝟏

𝒙
 in the above integral and then expanding (𝐥𝐨𝐠(𝟏 + 𝒕𝒚) − 𝐥𝐨𝐠(𝒕𝒚))𝒏, 

using binomial theorem and simplifying in further, we obtain the desired series in L.H.S..  

Notice that 𝝓 will exists iff the above integral converges. Observe that, converges of 

∫
𝒕𝒙−𝟏

(𝟏 + 𝒕𝒚)𝒛
𝒅𝒕

∞

𝟎

⇒ ∫ (−𝟏)𝒏
𝒕𝒙−𝟏 𝐥𝐨𝐠𝒎(𝒕) 𝐥𝐨𝐠𝒏(𝟏 + 𝒕𝒚)

(𝟏 + 𝒕𝒚)𝒛
𝒅𝒕

∞

𝟎

, 𝐜𝐨𝐧𝐯𝐞𝐫𝐠𝐞𝐬. 𝐍𝐨𝐰, 

𝒕𝒙−𝟏

(𝟏 + 𝒕𝒚)𝒛
= 𝑶(

𝟏

𝒕𝒚𝒛−𝒙+𝟏
) ⇒ ∫

𝒕𝒙−𝟏

(𝟏 + 𝒕𝒚)𝒛
𝒅𝒕

∞

𝟎

= 𝑶(∫
𝟏

𝒕𝒚𝒛−𝒙+𝟏
𝒅𝒕

∞

𝟎

) 



 
www.ssmrmh.ro 

136 RMM-CALCULUS MARATHON 1601-1700 

 

Thus, integral 𝑰 will converge if 𝒚𝒛 − 𝒙+ 𝟏 > 1 ⇒ 𝑥 < 𝑦𝑧. 
Observe again that, 

𝑰 = ∫
𝒕𝒙−𝟏

(𝟏 + 𝒕𝒚)𝒛
𝒅𝒕

∞

𝟎

= ∫
𝒕𝒚𝒛−𝒙−𝟏

(𝟏 + 𝒕𝒚)𝒛
𝒅𝒕

∞

𝟎

= 𝑶(∫
𝟏

𝒕𝒙+𝟏
𝒅𝒕

∞

𝟎

) 

Thus, integral 𝑰 will converge if 𝒙 + 𝟏 > 1 ⇒ 𝑥 > 0. 
Now, 𝒚 and 𝒛 cannot be less than zero since that will lead to a contradiction. 

Let 𝒚 = −𝒖 and 𝒛 = −𝒗, where 𝒖 and 𝒗 are positive real numbers, following the same line 
of proof we obtain, 𝒙 < 0 and 𝒙 > 𝑢𝑣, which is not possible. Therefore, the integral 𝑰 

converges and the series exists if 𝟎 < 𝑥 < 𝑦𝑧; 𝑦 > 0, 𝑧 > 0. 

1683. Prove that : 

 ∫(𝟐 𝐬𝐢𝐧 𝒙 + 𝟐𝐜𝐨𝐬 𝒙 + √𝟐)
𝟓
𝒅𝒙

𝝅
𝟑

𝝅
𝟒

> 𝟐𝟒𝟑√𝟐   

Proposed by Pavlos Trifon-Greece 
Solution 1 by Mohamed Amine Ben Ajiba-Tanger-Morocco 

𝑳𝒆𝒎𝒎𝒂 ∶  ∀𝒂, 𝒃, 𝒄 > 𝟎, (𝒂 + 𝒃 + 𝒄)𝟓 ≥ 𝟖𝟏𝒂𝒃𝒄(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐). 

𝑷𝒓𝒐𝒐𝒇 ∶   (𝒂 + 𝒃 + 𝒄)𝟓 =
(𝒂 + 𝒃 + 𝒄)𝟔

𝒂 + 𝒃 + 𝒄

=
[(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) + (𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂) + (𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)]𝟑

𝒂 + 𝒃 + 𝒄
≥ 

≥⏞
𝑨𝑴−𝑮𝑴

 
𝟑𝟑. (𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐). (𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂). (𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)

𝒂 + 𝒃 + 𝒄

=
𝟑𝟑. (𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐). (𝒂𝒃 + 𝒃𝒄 + 𝒄𝒂)𝟐

𝒂 + 𝒃 + 𝒄
≥ 

≥
𝟑𝟑. (𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐). 𝟑(𝒂𝒃. 𝒃𝒄 + 𝒃𝒄. 𝒄𝒂 + 𝒄𝒂. 𝒂𝒃)

𝒂 + 𝒃 + 𝒄
= 𝟖𝟏𝒂𝒃𝒄(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐) 

→ (𝒂 + 𝒃 + 𝒄)𝟓 ≥ 𝟖𝟏𝒂𝒃𝒄(𝒂𝟐 + 𝒃𝟐 + 𝒄𝟐), ∀𝒂, 𝒃, 𝒄 > 𝟎 𝒘𝒊𝒕𝒉 𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒊𝒇𝒇 𝒂 = 𝒃 = 𝒄. 

𝑭𝒐𝒓 𝒂 = 𝟐𝐬𝐢𝐧 𝒙 , 𝒃 = 𝟐𝐜𝐨𝐬 𝒙 , 𝒄 = √𝟐,𝒘𝒉𝒆𝒓𝒆 𝒙 ∈ [
𝝅

𝟒
,
𝝅

𝟑
] ,𝒘𝒆 𝒉𝒂𝒗𝒆 ∶ 

(𝟐 𝐬𝐢𝐧𝒙 + 𝟐𝐜𝐨𝐬 𝒙 + √𝟐)
𝟓
≥ 𝟖𝟏. 𝟐 𝐬𝐢𝐧𝒙 . 𝟐 𝐜𝐨𝐬 𝒙 . √𝟐. (𝟒 𝐬𝐢𝐧𝟐 𝒙 + 𝟒𝐜𝐨𝐬𝟐 𝒙 + 𝟐)

= 𝟗𝟕𝟐√𝟐. 𝐬𝐢𝐧𝟐𝒙 

𝑾𝒊𝒕𝒉 𝒆𝒒𝒖𝒂𝒍𝒊𝒕𝒚 𝒊𝒇𝒇 𝟐𝐬𝐢𝐧 𝒙 = 𝟐 𝐜𝐨𝐬 𝒙 = √𝟐 𝒐𝒓 𝒙 =
𝝅

𝟒
. 
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𝑵𝒐𝒘, ∫(𝟐 𝐬𝐢𝐧 𝒙 + 𝟐𝐜𝐨𝐬 𝒙 + √𝟐)
𝟓
𝒅𝒙

𝝅
𝟑

𝝅
𝟒

> 𝟗𝟕𝟐√𝟐∫ 𝐬𝐢𝐧 𝟐𝒙𝒅𝒙

𝝅
𝟑

𝝅
𝟒

= 

= 𝟗𝟕𝟐√𝟐(
−𝐜𝐨𝐬 (𝟐.

𝝅
𝟑)

𝟐
−
−𝐜𝐨𝐬 (𝟐.

𝝅
𝟒)

𝟐
) = 𝟗𝟕𝟐√𝟐.

𝟏

𝟒
= 𝟐𝟒𝟑√𝟐. 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆, ∫(𝟐 𝐬𝐢𝐧 𝒙 + 𝟐 𝐜𝐨𝐬 𝒙 + √𝟐)
𝟓
𝒅𝒙

𝝅
𝟑

𝝅
𝟒

> 𝟐𝟒𝟑√𝟐. 

Solution 2 by proposer 

Lemma. If 𝒙, 𝒚, 𝒛 > 𝟎, then √𝟖𝟏𝒙𝒚𝒛(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐)
𝟓

≤ 𝒙 + 𝒚 + 𝒛 

𝐏𝐫𝐨𝐨𝐟.  (𝒙 + 𝒚 + 𝒛)𝟓 =
(𝒙 + 𝒚 + 𝒛)𝟔

𝒙 + 𝒚 + 𝒛
=
((𝒙 + 𝒚 + 𝒛)𝟐)𝟑

𝒙 + 𝒚 + 𝒛
= 

=
(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 + 𝟐(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙))

𝟑

𝒙 + 𝒚 + 𝒛
≥
𝑨𝑮𝑴 (𝟑 ⋅ √(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐)(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙)𝟐 

𝟑
)
𝟑

𝒙 + 𝒚 + 𝒛
= 

=
𝟐𝟕(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐)(𝒙𝒚 + 𝒚𝒛 + 𝒛𝒙)𝟐

𝒙 + 𝒚 + 𝒛
=
𝟐𝟕(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐) ⋅ 𝟑(𝒙𝒚𝟐𝒛 + 𝒚𝒛𝟐𝒙 + 𝒙𝟐𝒚𝒛)

𝒙 + 𝒚 + 𝒛
= 

=
𝟖𝟏𝒙𝒚𝒛(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐)(𝒙 + 𝒚 + 𝒛)

𝒙 + 𝒚 + 𝒛
= 𝟖𝟏𝒙𝒚𝒛(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐) 

√𝟖𝟏𝒙𝒚𝒛(𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐)
𝟓

≤ 𝒙 + 𝒚 + 𝒛 

Equality holds for 𝒙 = 𝒚 = 𝒛. 

𝒙 → 𝐬𝐢𝐧𝒙 ; 𝒚 → 𝐜𝐨𝐬 𝒙 ; 𝒛 →
√𝟐

𝟐
; 𝒙 ∈ [𝟎,

𝝅

𝟐
] ⇒ 

𝟖𝟏 𝐬𝐢𝐧𝒙 𝐜𝐨𝐬 𝒙 −
√𝟐

𝟐
(𝐬𝐢𝐧𝟐 𝒙 + 𝐜𝐨𝐬𝟐 𝒙 + (

√𝟐

𝟐
)

𝟐

) ≤ (𝐬𝐢𝐧𝒙 + 𝐜𝐨𝐬 𝒙 +
√𝟐

𝟐
)

𝟓

 

(𝐬𝐢𝐧 𝒙 + 𝐜𝐨𝐬 𝒙 +
√𝟐

𝟐
)

𝟓

≥ 𝟔𝟎, 𝟕𝟓 ⋅ √𝟐 ⋅ 𝐬𝐢𝐧 𝒙 ⋅ 𝐜𝐨𝐬 𝒙 ⇒ 

(𝟐 𝐬𝐢𝐧𝒙 + 𝟐𝐜𝐨𝐬 𝒙 + √𝟐)
𝟓
≥ 𝟏𝟗𝟒𝟒 ⋅ √𝟐 ⋅ 𝐬𝐢𝐧 𝒙 ⋅ 𝐜𝐨𝐬 𝒙 

Equality holds for 𝒙 =
𝝅

𝟒
. Now, 
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∫(𝟐 𝐬𝐢𝐧𝒙 + 𝟐 𝐜𝐨𝐬 𝒙 + √𝟐)
𝟓
𝒅𝒙

𝝅
𝟑

𝝅
𝟒

> 𝟏𝟗𝟒𝟒√𝟐 ⋅ ∫ (𝐬𝐢𝐧 𝒙 ⋅ 𝐜𝐨𝐬 𝒙)𝒅𝒙

𝝅
𝟑

𝝅
𝟒

 

𝟗𝟕𝟐 ⋅ √𝟐 ⋅ ∫ 𝐬𝐢𝐧𝟐𝒙

𝝅
𝟑

𝝅
𝟒

𝒅𝒙 = −𝟒𝟖𝟔 ⋅ √𝟐𝐜𝐨𝐬𝟐𝒙|𝝅
𝟒

𝝅
𝟑 = 𝟐𝟒𝟑√𝟐 

Therefore, 

∫(𝟐 𝐬𝐢𝐧𝒙 + 𝟐 𝐜𝐨𝐬 𝒙 + √𝟐)
𝟓
𝒅𝒙

𝝅
𝟑

𝝅
𝟒

> 𝟐𝟒𝟑√𝟐 

1684. Let (𝒚𝒏)𝒏≥𝟏 be the sequence such that 𝒚𝒏 = ∑ [√𝒌 +
𝟏

𝟐
]𝒏𝟐+𝒏

𝒌=𝟏 , then 

prove the following holds 

∑
𝟏

𝒎𝟐

∞

𝒎=𝟏

∑
𝟏

𝟑𝒚𝒏

∞

𝒏=𝒎

= 𝟒𝜻(𝟑) −
𝟐𝝅𝟐

𝟑
𝐥𝐨𝐠 𝟐 

∑
(−𝟏)𝒎+𝟏

𝒎𝟐

∞

𝒎=𝟏

∑
𝟏

𝟑𝒚𝒏

∞

𝒏=𝒎

= 𝟒𝑮𝝅 −
𝟏𝟓

𝟐
𝜻(𝟑) −

𝝅𝟐

𝟑
𝐥𝐨𝐠 𝟐 

where 𝜻(𝒛) is Riemann zeta function, 𝑮 is Catalan’s Constant and [⋅] is 
greatest integer function. 

Proposed by Naren Bhandari-Bajura-Nepal 
Inspired by Florică Anastase’s limit 

Solution by Rana Ranino-Setif-Algerie 

𝒚𝒏 = ∑ [√𝒌 +
𝟏

𝟐
]

𝒏𝟐+𝒏

𝒌=𝟏

=
𝟏

𝟑𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏)
 

𝛀 = ∑
𝟏

𝒎𝟐

∞

𝒎=𝟏

∑
𝟏

𝟑𝒚𝒏

∞

𝒏=𝒎

= ∑
𝟏

𝒎𝟐

∞

𝒎=𝟏

∑
𝟏

𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏)

∞

𝒏=𝒎

= 

= ∑
𝟏

𝒎𝟐

∞

𝒎=𝟏

∑ (
𝟏

𝒏
+

𝟏

𝒏 + 𝟏
−

𝟒

𝟐𝒏 + 𝟏
)

∞

𝒏=𝒎

= ∑
𝟐𝝍(𝒎+

𝟏
𝟐) − 𝝍

(𝒎) −𝝍(𝒎+ 𝟏)

𝒎𝟐

∞

𝒎=𝟏

= 

= ∑
𝟐𝝍(𝒎+

𝟏
𝟐) − 𝟐𝝍

(𝒎) −
𝟏
𝒎

𝒎𝟐

∞

𝒎=𝟏

= −𝜻(𝟑) + 𝟐 ∑
𝟏

𝒎𝟐
∫
𝒕𝒎−𝟏 − 𝒕𝒎−

𝟏
𝟐

𝟏 − 𝒕
𝒅𝒕

𝟏

𝟎

∞

𝒎=𝟏

= 
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= −𝜻(𝟑) + 𝟐∫
(𝒕−𝟏 − 𝒕−

𝟑
𝟐) 𝑳𝒊𝟐(𝒕)

𝟏 − 𝒕
𝒅𝒕

𝟏

𝟎

=
𝒕=𝒙𝟐

− 𝜻(𝟑) + 𝟒∫
𝑳𝒊𝟐(𝒙

𝟐)

𝒙(𝟏 + 𝒙)
𝒅𝒙

𝟏

𝟎

− 𝟒∫
𝑳𝒊𝟐(𝒙

𝟐)

𝟏 + 𝒙
𝒅𝒙

𝟏

𝟎

 

= −𝜻(𝟑) + 𝟐𝑳𝒊𝟑(𝟏) − 𝟒[𝐥𝐨𝐠(𝟏 + 𝒙)𝑳𝒊(𝒙
𝟐)]𝟎

𝟏 − 𝟖∫
𝐥𝐨𝐠(𝟏 − 𝒙𝟐) 𝐥𝐨𝐠(𝟏 + 𝒙)

𝒙
𝒅𝒙

𝟏

𝟎

= 

= 𝜻(𝟑) −
𝟐𝝅𝟐

𝟑
𝐥𝐨𝐠 𝟐 − 𝟒∫

𝟐 𝐥𝐨𝐠(𝟏 − 𝒙𝟐) 𝐥𝐨𝐠(𝟏 + 𝒙)

𝒙
𝒅𝒙

𝟏

𝟎⏟                    
𝑰

 

𝑰 = ∫
𝐥𝐨𝐠𝟐(𝟏 + 𝒙)

𝒙
𝒅𝒙

𝟏

𝟎

+∫
𝐥𝐨𝐠𝟐(𝟏 − 𝒙𝟐)

𝒙
𝒅𝒙

𝟏

𝟎

−∫
𝐥𝐨𝐠𝟐(𝟏 − 𝒙)

𝒙
𝒅𝒙

𝟏

𝟎

= 

= ∫
𝐥𝐨𝐠𝟐(𝟏 + 𝒙)

𝒙
𝒅𝒙

𝟏

𝟎

−
𝟏

𝟐
∫
𝐥𝐨𝐠𝟐(𝟏 − 𝒙)

𝒙
𝒅𝒙

𝟏

𝟎

 

∫
𝐥𝐨𝐠𝟐(𝟏 + 𝒙)

𝒙
𝒅𝒙

𝟏

𝟎

= 𝟐∑
(−𝟏)𝒏+𝟏𝑯𝒏
𝒏 + 𝟏

∫ 𝒙𝒏
𝟏

𝟎

𝒅𝒙

∞

𝒏=𝟏

= 𝟐∑
(−𝟏)𝒏𝑯𝒏−𝟏

𝒏𝟐

∞

𝒏=𝟏

= 

= 𝟐∑
(−𝟏)𝒏𝑯𝒏
𝒏𝟐

∞

𝒏=𝟏

−
(−𝟏)𝒏

𝒏𝟑
=
𝜻(𝟑)

𝟒
 

∫
𝐥𝐨𝐠𝟐(𝟏 − 𝒙)

𝒙
𝒅𝒙

𝟏

𝟎

= ∫
𝐥𝐨𝐠𝟐 𝒙

𝟏 − 𝒙
𝒅𝒙

𝟏

𝟎

= ∑∫ 𝒙𝒏−𝟏 𝐥𝐨𝐠𝟐 𝒙
𝟏

𝟎

𝒅𝒙

∞

𝒏=𝟏

= 𝟐∑
𝟏

𝒏𝟑

∞

𝒏=𝟏

= 𝟐𝜻(𝟑) 

𝑰 =
𝜻(𝟑)

𝟒
− 𝜻(𝟑) = −

𝟑𝜻(𝟑)

𝟒
 

Hence, 

𝛀 = ∑
𝟏

𝒎𝟐

∞

𝒎=𝟏

∑
𝟏

𝟑𝒚𝒏

∞

𝒏=𝒎

= 𝟒𝜻(𝟑) −
𝟐𝝅𝟐

𝟑
𝐥𝐨𝐠 𝟐 

Now, 

𝚲 = ∑
(−𝟏)𝒎+𝟏

𝒎𝟐

∞

𝒎=𝟏

∑
𝟏

𝟑𝒚𝒏

∞

𝒏=𝒎

= − ∑
(−𝟏)𝒎

𝒎𝟐

∞

𝒎=𝟏

∑
𝟏

𝒏(𝒏 + 𝟏)(𝟐𝒏+ 𝟏)

∞

𝒏=𝒎

= 

= − ∑
(−𝟏)𝒎

𝒎𝟐

∞

𝒎=𝟏

∑ (
𝟏

𝒏
+

𝟏

𝒏 + 𝟏
−

𝟒

𝟐𝒏 + 𝟏
)

∞

𝒏=𝒎

= 
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= − ∑
(−𝟏)𝒎 [𝟐𝝍(𝒎+

𝟏
𝟐) − 𝝍

(𝒎) −𝝍(𝒎+ 𝟏)]

𝒎𝟐

∞

𝒎=𝟏

= 

= − ∑
(−𝟏)𝒎 [𝟐𝝍(𝒎+

𝟏
𝟐) − 𝟐𝝍

(𝒎) −
𝟏
𝒎
]

𝒎𝟐

∞

𝒎=𝟏

= 

= −
𝟑

𝟒
𝜻(𝟑) − 𝟐 ∑

(−𝟏)𝒎

𝒎𝟐

∞

𝒎=𝟏

∫
𝒕𝒎−𝟏 − 𝒕𝒎−

𝟏
𝟐

𝟏 − 𝒕
𝒅𝒕

𝟏

𝟎

= 

= −
𝟑

𝟒
𝜻(𝟑) − 𝟐∫

(
𝟏
𝒕 −

𝟏

√𝒕
) 𝑳𝒊𝟐(−𝒕)

𝟏 − 𝒕

𝟏

𝟎

𝒅𝒕 =
𝒕=𝒙𝟐

−
𝟑

𝟒
𝜻(𝟑) − 𝟒∫

𝑳𝒊𝟐(−𝒙
𝟐)

𝒙(𝟏 + 𝒙)
𝒅𝒙

𝟏

𝟎

= 

= −
𝟑

𝟒
𝜻(𝟑) − 𝟒∫

𝑳𝒊𝟐(−𝒙
𝟐)

𝒙
𝒅𝒙

𝟏

𝟎

+ 𝟒∫
𝑳𝒊𝟐(−𝒙

𝟐)

𝟏 + 𝒙
𝒅𝒙

𝟏

𝟎

 

𝚲 = −
𝟑

𝟒
𝜻(𝟑) − 𝟐𝑳𝒊𝟑(−𝟏) + 𝟒∫

𝑳𝒊𝟐(−𝒙
𝟐)

𝟏 + 𝒙
𝒅𝒙

𝟏

𝟎

=
𝟑

𝟒
𝜻(𝟑) + 𝟒∫

𝑳𝒊𝟐(−𝒙𝟐)

𝟏 + 𝒙
𝒅𝒙

𝟏

𝟎

⏞          
𝑨

 

𝑨 = ∫ ∫
𝒙𝟐 𝐥𝐨𝐠 𝒚

(𝟏 + 𝒙𝟐𝒚)(𝟏 + 𝒙)
𝒅𝒚

𝟏

𝟎

𝒅𝒙
𝟏

𝟎

= ∫
𝐥𝐨𝐠 𝒚

𝟏 + 𝒚

𝟏

𝟎

∫ (
𝟏

𝟏 + 𝒙
−
𝟏 − 𝒙

𝟏 + 𝒙𝟐𝒚
)

𝟏

𝟎

𝒅𝒙𝒅𝒚 = 

= ∫
𝐥𝐨𝐠 𝒚

𝟏 + 𝒚

𝟏

𝟎

[𝐥𝐨𝐠(𝟏 + 𝒙) +
𝟏

𝟐𝒚
𝐥𝐨𝐠(𝟏 + 𝒙𝟐𝒚) −

𝐭𝐚𝐧−𝟏(𝒙√𝒚)

√𝒚
]

𝟎

𝟏

𝒅𝒚 = 

= 𝐥𝐨𝐠 𝟐∫
𝐥𝐨𝐠 𝒚

𝒚 + 𝟏
𝒅𝒚

𝟏

𝟎

+
𝟏

𝟐
∫
𝐥𝐨𝐠 𝒚 𝐥𝐨𝐠(𝟏 + 𝒚)

𝒚(𝒚 + 𝟏)
𝒅𝒚

𝟏

𝟎

−∫
𝐥𝐨𝐠 𝒚 𝐭𝐚𝐧−𝟏(√𝒚)

(𝒚 + 𝟏)√𝒚
𝒅𝒚

𝟏

𝟎

⏞              
𝑩

 

∫
𝐥𝐨𝐠 𝒚

𝒚 + 𝟏
𝒅𝒚

𝟏

𝟎

= −∑(−𝟏)𝒏
∞

𝒏=𝟏

∫ 𝒚𝒏−𝟏 𝐥𝐨𝐠 𝒚
𝟏

𝟎

𝒅𝒚 = ∑
(−𝟏)𝒏

𝒏𝟐

∞

𝒏=𝟏

= −
𝝅𝟐

𝟏𝟐
 

∫
𝐥𝐨𝐠 𝒚 𝐥𝐨𝐠(𝟏 + 𝒚)

𝒚(𝒚 + 𝟏)
𝒅𝒚

𝟏

𝟎

= ∫
𝐥𝐨𝐠 𝒚 𝐥𝐨𝐠(𝒚 + 𝟏)

𝒚

𝟏

𝟎

𝒅𝒚 − ∫
𝐥𝐨𝐠𝒚 𝐥𝐨𝐠(𝟏 + 𝒚)

𝒚 + 𝟏
𝒅𝒚

𝟏

𝟎

 

∫
𝐥𝐨𝐠𝒚 𝐥𝐨𝐠(𝟏 + 𝒚)

𝒚
𝒅𝒚

𝟏

𝟎

= −∑
(−𝟏)𝒏

𝒏

∞

𝒏=𝟏

∫ 𝒚𝒏−𝟏 𝐥𝐨𝐠 𝒚
𝟏

𝟎

𝒅𝒚 = ∑
(−𝟏)𝒏

𝒏𝟑

∞

𝒏=𝟏

= −
𝟑𝜻(𝟑)

𝟒
 

∫
𝐥𝐨𝐠 𝒚 𝐥𝐨𝐠(𝟏 + 𝒚)

𝒚 + 𝟏
𝒅𝒚

𝟏

𝟎

= [
𝟏

𝟐
𝐥𝐨𝐠𝒚 𝐥𝐨𝐠𝟐(𝟏 + 𝒚)]

𝟎

𝟏

−
𝟏

𝟐
∫
𝐥𝐨𝐠𝟐(𝟏 + 𝒚)

𝒚
𝒅𝒚

𝟏

𝟎

= −
𝜻(𝟑)

𝟖
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Hence, we get: 

∫
𝐥𝐨𝐠𝒚 𝐥𝐨𝐠(𝟏 + 𝒚)

𝒚(𝒚 + 𝟏)
𝒅𝒚

𝟏

𝟎

= −
𝟑𝜻(𝟑)

𝟒
+
𝜻(𝟑)

𝟖
= −

𝟓𝜻(𝟑)

𝟖
 

𝑩 = ∫
𝐥𝐨𝐠 𝒚 𝐭𝐚𝐧−𝟏(√𝒚)

(𝒚 + 𝟏)√𝒚
𝒅𝒚

𝟏

𝟎

=
𝒚=𝐭𝐚𝐧𝟐 𝜽

𝟒∫ 𝜽 𝐥𝐨𝐠(𝐭𝐚𝐧 𝜽)𝒅𝜽

𝝅
𝟒

𝟎

 

𝑩 = −𝟖∑
𝟏

𝟐𝒏 − 𝟏

∞

𝒏=𝟏

∫ 𝜽𝐜𝐨𝐬((𝟒𝒏 − 𝟐)𝜽)𝒅𝜽

𝝅
𝟒

𝟎

= 

= −𝟖∑
𝟏

𝟐𝒏 − 𝟏
[
𝜽𝐬𝐢𝐧((𝟒𝒏 − 𝟐)𝜽)

𝟐(𝟐𝒏 − 𝟏)
+
𝐜𝐨𝐬((𝟒𝒏 − 𝟐)𝜽)

𝟒(𝟐𝒏 − 𝟏)𝟐
]
𝟎

𝝅
𝟒

∞

𝒏=𝟏

 

𝑩 = −𝝅∑
(−𝟏)𝒏−𝟏

(𝟐𝒏 − 𝟏)𝟐

∞

𝒏=𝟏

+ 𝟐∑
𝟏

(𝟐𝒏 − 𝟏)𝟑

∞

𝒏=𝟏

= −𝝅𝑮 +
𝟕𝜻(𝟑)

𝟒
 

𝑨 = −
𝝅𝟐

𝟏𝟐
𝐥𝐨𝐠𝟐 −

𝟓𝜻(𝟑)

𝟏𝟔
+ 𝝅𝑮 −

𝟕𝜻(𝟑)

𝟒
= 𝝅𝑮 −

𝝅𝟐

𝟏𝟐
𝐥𝐨𝐠 𝟐 −

𝟑𝟑𝜻(𝟑)

𝟏𝟔
 

𝚲 =
𝟑

𝟒
𝜻(𝟑) + 𝟒𝝅𝑮 −

𝝅𝟐

𝟑
𝐥𝐨𝐠 𝟐 −

𝟑𝟑𝜻(𝟑)

𝟏𝟔
= 𝟒𝝅𝑮−

𝝅𝟐

𝟑
𝐥𝐨𝐠𝟐 −

𝟏𝟓𝜻(𝟑)

𝟐
 

Therefore, 

∑
(−𝟏)𝒎+𝟏

𝒎𝟐

∞

𝒎=𝟏

∑
𝟏

𝟑𝒚𝒏

∞

𝒏=𝒎

= 𝟒𝑮𝝅 −
𝟏𝟓

𝟐
𝜻(𝟑) −

𝝅𝟐

𝟑
𝐥𝐨𝐠𝟐 

𝒚𝒏 = ∑ [√𝒌+
𝟏

𝟐
]

𝒏𝟐+𝒏

𝒌=𝟏

= ∑[√𝒌 +
𝟏

𝟐
]

𝟐

𝒌=𝟏

+∑[√𝒌 +
𝟏

𝟐
]

𝟔

𝒌=𝟑

+∑[√𝒌 +
𝟏

𝟐
]

𝟏𝟐

𝒌=𝟕

+⋯ = 

=∑ ∑ [√𝒌 +
𝟏

𝟐
]

𝒊𝟐+𝒊

𝒌=𝒊𝟐−𝒊+𝟏

𝒏

𝒊=𝟏

=∑ ∑ 𝒊

𝒊𝟐+𝒊

𝒌=𝒊𝟐−𝒊+𝟏

𝒏

𝒊=𝟏

=∑𝟐𝒊𝟐
𝒏

𝒊=𝟏

=
𝟏

𝟑𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏)
 

 

1685. Find: 

𝛀 = ∫
𝒙 ⋅ 𝐥𝐨𝐠𝟐 𝒙

𝒙𝟖 + 𝒙𝟒 + 𝟏

𝟏

𝟎

𝒅𝒙 

Proposed by Hussain Reza Zadah-Afghanistan 
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Solution 1 by Rana Ranino-Setif-Algerie 

𝛀 = ∫
𝒙 ⋅ 𝐥𝐨𝐠𝟐 𝒙

𝒙𝟖 + 𝒙𝟒 + 𝟏

𝟏

𝟎

𝒅𝒙 =
𝟏

𝟖
∫

𝐥𝐨𝐠𝟐 𝒙

𝒙𝟒 + 𝒙𝟐 + 𝟏
𝒅𝒙

𝟏

𝟎

=
𝟏

𝟖
∫
(𝟏 − 𝒙𝟐) 𝐥𝐨𝐠𝟐 𝒙

𝟏 − 𝒙𝟔
𝒅𝒙

𝟏

𝟎

=
𝒕=𝒙𝟔

 

=
𝟏

𝟏𝟕𝟐𝟖
∫
(𝒙
𝟏
𝟔
−𝟏 − 𝒙

𝟏
𝟐
−𝟏) 𝐥𝐨𝐠𝟐 𝒕

𝟏 − 𝒕
𝒅𝒕

𝟏

𝟎

=
𝟏

𝟏𝟕𝟐𝟖
∑{𝝍(𝟐) (

𝟏

𝟐
) − 𝝍(𝟐) (

𝟏

𝟔
)}

∞

𝒏=𝟎

= 

=
𝟏

𝟏𝟕𝟐𝟖
{𝟏𝟔𝟖𝜻(𝟑) + 𝟒√𝟑𝝅𝟑} 

Therefore, 

𝛀 = ∫
𝒙 ⋅ 𝐥𝐨𝐠𝟐 𝒙

𝒙𝟖 + 𝒙𝟒 + 𝟏

𝟏

𝟎

𝒅𝒙 =
𝟕𝜻(𝟑)

𝟕𝟐
+

𝝅𝟑

𝟏𝟒𝟒√𝟑
 

Solution 2 by Soumitra Mandal-Chandar Nagore-India 

𝛀 = ∫
𝒙 ⋅ 𝐥𝐨𝐠𝟐 𝒙

𝒙𝟖 + 𝒙𝟒 + 𝟏

𝟏

𝟎

𝒅𝒙 = ∫
(𝒙 − 𝒙𝟓) 𝐥𝐨𝐠𝟐 𝒙

𝟏 − 𝒙𝟏𝟐
𝒅𝒙

𝟏

𝟎

= 𝛀𝟏 −𝛀𝟐 

𝛀𝟏 = ∫
𝒙 𝐥𝐨𝐠𝟐 𝒙

𝟏 − 𝒙𝟏𝟐
𝒅𝒙

𝟏

𝟎

=
𝒙= √𝒚

𝟏𝟐

∫
√𝒚
𝟏𝟐

𝟏 − 𝒚
𝐥𝐨𝐠𝟐 √𝒚

𝟏𝟐
𝟏

𝟏𝟐 √𝒚𝟏𝟏
𝟏𝟐

𝒅𝒚
𝟏

𝟎

= 

=
𝟏

𝟏𝟕𝟐𝟖
∫

𝒚−
𝟓
𝟔

𝟏 − 𝒚
𝐥𝐨𝐠𝟐 𝒚𝒅𝒚

𝟏

𝟎

=
𝟏

𝟏𝟕𝟐𝟖
∑∫ 𝒚𝒌−

𝟓
𝟔 𝐥𝐨𝐠𝟐 𝒚𝒅𝒚

𝟏

𝟎

∞

𝒌=𝟎

 

∵ ∫ 𝒚𝒌−
𝟓
𝟔 𝐥𝐨𝐠𝟐 𝒚𝒅𝒚

𝟏

𝟎

=
𝟐

(𝒌 +
𝟏
𝟔)
𝟑 

𝛀𝟏 =
𝟏

𝟖𝟔𝟒
∑

𝟏

(𝒌 +
𝟏
𝟔)
𝟑

∞

𝒌=𝟎

; (∵ 𝝍𝒏(𝒛) = (−𝟏)
𝒏+𝟏𝒏!∑

𝟏

(𝒛 + 𝒌)𝒏+𝟏

∞

𝒌=𝟎

 

𝝍𝟐 (
𝟏

𝟔
) = (−𝟏)𝟐+𝟏𝟐!∑

𝟏

(𝒌 +
𝟏
𝟔)
𝟑

∞

𝒌=𝟎

⇒∑
𝟏

(𝒌+
𝟏
𝟔)
𝟑

∞

𝒌=𝟎

= −
𝝍𝟐 (

𝟏
𝟔)

𝟐
 

𝛀𝟏 = −
𝝍𝟐 (

𝟏
𝟔)

𝟏𝟕𝟐𝟖
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𝛀𝟐 = ∫
𝒙𝟓 𝐥𝐨𝐠𝟐 𝒙

𝟏 − 𝒙𝟏𝟐

𝟏

𝟎

𝒅𝒙 = ∫
√𝒚𝟓
𝟏𝟐

𝐥𝐨𝐠𝟐 √𝒚
𝟏𝟐

𝟏 − 𝒚
⋅

𝟏

𝟏𝟐 √𝒚𝟏𝟏
𝟏𝟐

𝒅𝒚
𝟏

𝟎

=
𝟏

𝟏𝟕𝟐𝟖
∫

𝐥𝐨𝐠𝟐 𝒚

(𝟏 − 𝒚)√𝒚
𝒅𝒚

𝟏

𝟎

= 

=
𝟏

𝟏𝟕𝟐𝟖
∑∫ 𝒚𝒌−

𝟏
𝟐 𝐥𝐨𝐠𝟐 𝒚𝒅𝒚

𝟏

𝟎

∞

𝒌=𝟎

 

∵ ∫ 𝒚𝒌−
𝟏
𝟐 𝐥𝐨𝐠𝟐 𝒚𝒅𝒚

𝟏

𝟎

=
𝟐

(𝒌 +
𝟏
𝟐)
𝟑 

𝛀𝟐 =
𝟏

𝟖𝟔𝟒
∑

𝟏

(𝒌 +
𝟏
𝟐)
𝟑

∞

𝒌=𝟎

= −
𝝍𝟐 (

𝟏
𝟐)

𝟏𝟕𝟐𝟖
; (∵ ∑

𝟏

(𝒌 +
𝟏
𝟐)
𝟑

∞

𝒌=𝟎

= −
𝝍𝟐 (

𝟏
𝟐)

𝟐
 

𝛀𝟐 = −
𝝍𝟐 (

𝟏
𝟐)

𝟏𝟕𝟐𝟖
 

𝛀 =
𝝍𝟐 (

𝟏
𝟐) − 𝝍𝟐 (

𝟏
𝟔)

𝟏𝟕𝟐𝟖
=
𝟏𝟔𝟖𝜻(𝟑) + 𝟒√𝟑𝝅𝟐

𝟏𝟕𝟐𝟖
 

Solution 3 by Ose Favour-Nigeria 

𝛀 = ∫
𝒙 ⋅ 𝐥𝐨𝐠𝟐 𝒙

𝒙𝟖 + 𝒙𝟒 + 𝟏

𝟏

𝟎

𝒅𝒙 =
𝒖=𝒙𝟐 𝟏

𝟖
∫

𝐥𝐨𝐠𝟐 𝒖

𝒖𝟒 + 𝒖𝟐 + 𝟏
𝒅𝒖

𝟏

𝟎

 

𝛀(𝒂) = ∫
𝒖𝒂

𝒖𝟒 + 𝒖𝟐 + 𝟏
𝒅𝒖

𝟏

𝟎

= ∫
𝒖𝒂(𝟏 − 𝒖𝟐)

𝟏 − 𝒖𝟔
𝒅𝒖

𝟏

𝟎

 

𝛀(𝒂) = 𝚽(𝒂) − 𝚿(𝒂) 

𝚽(𝒂) = ∫
𝒖𝒂

𝟏 − 𝒖𝟔

𝟏

𝟎

𝒅𝒖 = ∫
𝒖𝒂

𝟏 − 𝒖𝟔

𝟏

𝟎

𝒅𝒖 = ∑∫ 𝒖𝒂+𝟔𝒏
𝟏

𝟎

𝒅𝒖

∞

𝒏=𝟎

= ∑
𝟏

𝒂 + 𝟔𝒏 + 𝟏

∞

𝒏=𝟎

 

𝚿(𝒂) = ∫
𝒖𝒂+𝟐

𝟏 − 𝒖𝟔
𝒅𝒖

𝟏

𝟎

= ∑∫ 𝒖𝒂+𝟐+𝟔𝒏
𝟏

𝟎

𝒅𝒖

∞

𝒏=𝟎

= ∑
𝟏

𝒂+ 𝟔𝒏 + 𝟑

∞

𝒏=𝟎

 

𝛀(𝒂) = −∑
𝟏

𝒂 + 𝟔𝒏 + 𝟑

∞

𝒏=𝟎

+∑
𝟏

𝒂 + 𝟔𝒏 + 𝟏

∞

𝒏=𝟎

 

∵ ∑
𝟏

𝒏+ 𝒂

∞

𝒏=𝟎

= −𝝍(𝟎)(𝒂) 
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𝛀(𝒂) = −
𝟏

𝟔
∑

𝟏

𝒏+
𝒂 + 𝟑
𝟔

∞

𝒏=𝟎

+
𝟏

𝟔
∑

𝟏

𝒏 +
𝒂 + 𝟏
𝟔

∞

𝒏=𝟎

=
𝟏

𝟔
𝝍(𝟎) (

𝒂 + 𝟑

𝟔
) −

𝟏

𝟔
𝝍(𝟎) (

𝒂 + 𝟏

𝟔
) 

𝛀′(𝒂) =
𝟏

𝟑𝟔
(𝝍(𝟏) (

𝒂 + 𝟑

𝟔
) − 𝝍(𝟏) (

𝒂 + 𝟏

𝟔
)) 

𝛀′′(𝒂) =
𝟏

𝟐𝟏𝟔
(𝝍(𝟐) (

𝒂 + 𝟑

𝟔
) −𝝍(𝟐) (

𝒂 + 𝟏

𝟔
)) 

𝛀 =
𝟏

𝟖
𝛀′′(𝟎) =

𝝍𝟐 (
𝟏
𝟐) − 𝝍𝟐 (

𝟏
𝟔)

𝟏𝟕𝟐𝟖
=
𝟏𝟔𝟖𝜻(𝟑) + 𝟒√𝟑𝝅𝟐

𝟏𝟕𝟐𝟖
 

Solution 4 by Yen Tung Chung-Taichung-Taiwan 

𝛀 = ∫
𝒙 ⋅ 𝐥𝐨𝐠𝟐 𝒙

𝒙𝟖 + 𝒙𝟒 + 𝟏

𝟏

𝟎

𝒅𝒙 =
𝒚=𝒙𝟐

∫
𝐥𝐨𝐠𝟐(√𝒚)

𝒚𝟒 + 𝒚𝟐 + 𝟏
⋅
𝟏

𝟐
𝒅𝒚

𝟏

𝟎

=
𝟏

𝟖
∫

𝐥𝐨𝐠𝟐 𝒚

𝒚𝟒 + 𝒚𝟐 + 𝟏

𝟏

𝟎

𝒅𝒚 =
𝒚=𝒆−𝒛

 

=
𝟏

𝟖
∫

𝒛𝟐𝒆−𝒛

𝟏 + 𝒆−𝟐𝒛 + 𝒆−𝟒𝒛

∞

𝟎

𝒅𝒛 =
𝟏

𝟖
∫

𝒛𝟐(𝒆−𝒛 − 𝒆−𝟑𝒛)

𝟏 − 𝒆−𝟔𝒛
𝒅𝒛

∞

𝟎

= 

=
𝟏

𝟖
∫ 𝒛𝟐(𝒆−𝒛 + 𝒆−𝟕𝒛 + 𝒆−𝟏𝟑𝒛 +⋯)
∞

𝟎

𝒅𝒛 −
𝟏

𝟖
∫ 𝒛𝟐(𝒆−𝟑𝒛 + 𝒆−𝟗𝒛 + 𝒆−𝟏𝟓𝒛 +⋯)
∞

𝟎

𝒅𝒛 = 

=
𝟏

𝟖
(
𝚪(𝟑)

𝟏𝟑
+
𝚪(𝟑)

𝟕𝟑
+
𝚪(𝟑)

𝟏𝟑𝟑
+⋯) −

𝟏

𝟖
(
𝚪(𝟑)

𝟑𝟑
+
𝚪(𝟑)

𝟗𝟑
+
𝚪(𝟑)

𝟏𝟓𝟑
+⋯) = 

=
𝟏

𝟒
(
𝟏

𝟏𝟑
−
𝟏

𝟑𝟑
+
𝟏

𝟕𝟑
−
𝟏

𝟗𝟑
+
𝟏

𝟏𝟑𝟑
−
𝟏

𝟏𝟓𝟑
+⋯) ≅ 𝟎. 𝟐𝟒𝟏𝟏𝟕 

Solution 5 by Abdul Mukhtar-Nigeria 

𝒙𝟖 + 𝒙𝟒 + 𝟏 =
𝟏 − 𝒙𝟏𝟐

𝟏 − 𝒙𝟒
⇒ 𝛀 = ∫

𝒙 ⋅ 𝐥𝐨𝐠𝟐 𝒙

𝒙𝟖 + 𝒙𝟒 + 𝟏

𝟏

𝟎

𝒅𝒙 = ∫
𝒙 𝐥𝐨𝐠𝟐 𝒙

𝟏 − 𝒙𝟏𝟐
𝒅𝒙

𝟏

𝟎

−∫
𝒙𝟓 𝐥𝐨𝐠𝟐 𝒙

𝟏 − 𝒙𝟏𝟐
𝒅𝒙

𝟏

𝟎

= 

= 𝑯− 𝑱 

∫
𝒙𝒑−𝟏 𝐥𝐨𝐠𝟐 𝒙

𝟏 − 𝒙𝟏𝟐
𝒅𝒙

𝟏

𝟎

=
𝒙=𝒆−𝒕

∫
𝒆−𝒕𝒑𝒕𝟐

𝟏 − 𝒆𝟏𝟐𝒕
𝒅𝒕

∞

𝟎

= ∫ 𝒕𝟐𝒆−𝒕𝒑∑𝒆−𝟏𝟐𝒌𝒕

𝒌≥𝟎

𝒅𝒕
∞

𝟎

= 

=∑[∫ 𝒕𝟐𝒆−𝒕(𝒑+𝟏𝟐𝒌)
∞

𝟎

𝒅𝒕]

𝒌≥𝟎

=∑[
𝟏

(𝒑 + 𝟏𝟐𝒌)𝟑
∫ 𝒕𝟐𝒆−𝒕
∞

𝟎

𝒅𝒕]

𝒌≥𝟎

= 𝚪(𝟑) = 𝟐 

⇒ 𝟐∑
𝟏

(𝒑 + 𝟏𝟐𝒌)𝟑
𝒌≥𝟎

=
𝟏

𝟖𝟔𝟒
∑

𝟏

(𝒌 +
𝒑
𝟏𝟐)

𝟑

𝒌≥𝟎

 

𝜻(𝒔, 𝒑) = ∑
𝟏

(𝒏 + 𝒑)𝒔
𝒏>0
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𝛀 =
𝟏

𝟖𝟔𝟒
[𝜻 (𝟑,

𝟏

𝟔
) − 𝜻 (𝟑,

𝟏

𝟐
)] =

𝟏

𝟒𝟑𝟐
(𝟒𝟐𝜻(𝟑) − 𝟓𝟑𝝅𝟑) 

1686. 

𝐈𝐟 𝐰𝐞 𝐡𝐚𝐯𝐞 ∫
𝐜𝐨𝐬𝟐 𝟐𝒙 + 𝟏

𝒂 𝐜𝐨𝐬𝟐 𝟐𝒙 + 𝟏
𝒅𝒙

𝝅

−𝝅

= 𝝅𝒂, 𝐭𝐡𝐞𝐧 𝐟𝐢𝐧𝐝 𝐭𝐡𝐞 𝐯𝐚𝐥𝐮𝐞 𝐨𝐟 

𝚽 = 𝒂𝟓 + 𝒂𝟒 + 𝟖𝒂𝟑 + 𝟖𝒂𝟐 − 𝟑𝟐𝒂. 

Proposed by Srinivasa Raghava-AIRMC-India 

Solution by Rana Ranino-Setif-Algerie 

𝛀 = ∫
𝐜𝐨𝐬𝟐 𝟐𝒙 + 𝟏

𝒂𝐜𝐨𝐬𝟐 𝟐𝒙 + 𝟏
𝒅𝒙

𝝅

−𝝅

= 𝟒∫
𝐜𝐨𝐬𝟐 𝟐𝒙 + 𝟏

𝒂𝐜𝐨𝐬𝟐 𝟐𝒙 + 𝟏
𝒅𝒙

𝝅
𝟐

𝟎

=
𝒕=𝐭𝐚𝐧 𝒙;𝒂+𝟏=𝒃𝟐

 

= 𝟖∫
𝟏 + 𝒕𝟒

(𝒃𝟐 + 𝒕𝟐)(𝟏 + 𝒕𝟐)𝟐
𝒅𝒕

∞

𝟎

= 

=
𝟖(𝒃𝟒 + 𝟏)

(𝒃𝟐 − 𝟏)𝟐
∫

𝒅𝒕

𝒃𝟐 + 𝒕𝟐

∞

𝟎

+
𝟏𝟔

𝒃𝟐 − 𝟏
∫

𝒅𝒕

(𝟏 + 𝒕𝟐)𝟐

∞

𝟎

−
𝟏𝟔𝒃𝟐

(𝒃𝟐 − 𝟏)𝟐
∫

𝒅𝒕

𝟏 + 𝒕𝟐

∞

𝟎

= 

=
𝟒𝝅(𝒃𝟒 + 𝟏)

𝒃(𝒃𝟐 − 𝟏)𝟐
+

𝟒𝝅

𝒃𝟐 − 𝟏
−

𝟖𝝅𝟐

(𝒃𝟐 − 𝟏)𝟐
=
𝟒𝝅(𝒃𝟐 + 𝒃+ 𝟏)

𝒃(𝒃 + 𝟏)𝟐
 

𝟒𝝅(𝒃𝟐 + 𝒃 + 𝟏)

𝒃(𝒃 + 𝟏)𝟐
= 𝝅(𝒃𝟐 − 𝟏) ⇒ 𝟒𝒃𝟐 + 𝟒𝒃 + 𝟒 = 𝒃𝟓 + 𝟐𝒃𝟒 − 𝟔𝒃𝟐 − 𝟓𝒃 − 𝟒 = 𝟎 

𝒃 =
𝟐𝒃𝟒 − 𝟔𝒃𝟐 − 𝟒

𝟓 − 𝒃𝟒
; √𝒂 + 𝟏 =

𝟐𝒂𝟐 − 𝟐𝒂 − 𝟖

𝟒 − 𝒂𝟐 − 𝟐𝒂
 

𝒂 + 𝟏 =
𝟒𝒂𝟒 − 𝟖𝒂𝟑 − 𝟐𝟖𝒂𝟐 + 𝟑𝟐𝒂 + 𝟔𝟒

𝒂𝟒 + 𝟒𝒂𝟑 − 𝟒𝒂𝟐 − 𝟏𝟔𝒂 + 𝟏𝟔
 

𝚽 = 𝒂𝟓 + 𝒂𝟒 + 𝟖𝒂𝟑 + 𝟖𝒂𝟐 − 𝟑𝟐𝒂 = 𝟒𝟖 

1687. 

𝑹(𝒕) =

(

 
 
 
 
 

𝟎 𝒕 𝟎
𝒕 𝟎 𝒕
𝟎 𝒕 𝟎
𝟎 𝟎 𝒕
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎

   

𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎
𝒕 𝟎 𝟎 𝟎 𝟎
𝟎 𝒕 𝟎 𝟎 𝟎
𝒕 𝟎 𝒕 𝟎 𝟎
𝟎 𝒕 𝟎 𝒕 𝟎
𝟎 𝟎 𝒕 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎)
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Prove the relation for 𝒏 > 1 

∫ 𝑻𝒓[𝒆𝑹(𝒕)]𝒆−𝒏𝒕
∞

𝟎

𝒅𝒕 =
𝟖𝒏𝟕 − 𝟒𝟐𝒏𝟓 + 𝟓𝟔𝒏𝟑 − 𝟏𝟔𝒏

𝒏𝟖 − 𝟕𝒏𝟔 + 𝟏𝟒𝒏𝟒 − 𝟖𝒏𝟐 + 𝟏
 

𝑻𝒓(∗) − is the Trace of matrix and 𝒆𝑹(𝒕) −is matrix exponential. 

Proposed by Srinivasa Raghava-AIRMC-India 

Solution by Farid Khelili-Algerie 

Let 𝑷(𝒛) = 𝒛𝟒 − 𝟕𝒛𝟑 + 𝟏𝟒𝒛𝟐 − 𝟖𝒛 + 𝟏 and {𝝀𝒌
±(𝒕), 𝒌 = 𝟏, 𝟐, … , 𝟒} be the eigenvalues of 

the matrix 𝑹(𝒕), we claim that 

𝑨.  𝐝𝐞𝐭(𝑹(𝒕) − 𝝀𝑰𝟖) = [(𝒚 − 𝟑)(𝒚 − 𝟏)𝒚 + 𝟏]𝒕
𝟖; 𝝀𝟐 = (𝒚 + 𝟏)𝒕𝟐 

𝑩.  𝝀𝒌
±(𝒕) = ±𝜶𝒌𝒕; 𝟎 < 𝜶𝒌 < 2;𝑃(𝜶𝒌

𝟐) = 𝟎;𝒌 = 𝟏, 𝟐, . . , 𝟒 

𝑪.   ∫ 𝑻𝒓(𝒆𝑹(𝒕))𝒆−𝒏𝒕𝒅𝒕
∞

𝟎

=∑
𝟐𝒏

𝒏𝟐 − 𝜶𝒌
𝟐

𝟒

𝒌=𝟏

=
𝟖𝒏𝟕 − 𝟒𝟐𝒏𝟓 + 𝟓𝟔𝒏𝟑 − 𝟏𝟔𝒏

𝒏𝟖 − 𝟕𝒏𝟔 + 𝟏𝟒𝒏𝟒 − 𝟖𝒏𝟐 + 𝟏
 

We first prove claim 𝑪 then we prove claim 𝑩 and at the end we prove claim 𝑨. 

Proof of claim 𝑪: It follows from claim (𝑩) thet 

𝑱𝒏 = ∫ 𝑻𝒓(𝒆𝑹(𝒕))𝒆−𝒏𝒕𝒅𝒕
∞

𝟎

=∑∫ 𝒆−𝝀𝒌
+(𝒕)𝒆−𝒏𝒕𝒅𝒕

∞

𝟎

+

𝟒

𝒌=𝟏

∑∫ 𝒆−𝝀𝒌
−(𝒕)𝒆−𝒏𝒕𝒅𝒕

∞

𝟎

𝟒

𝒌=𝟏

 

𝑱𝒏 = ∑∫ 𝒆−𝜶𝒌𝒕𝒆−𝒏𝒕
∞

𝟎

𝒅𝒕

𝟒

𝒌=𝟏

+∑∫ 𝒆𝜶𝒌𝒕𝒆−𝒏𝒕
∞

𝟎

𝒅𝒕

𝟒

𝒌=𝟏

= 

=∑∫ 𝒆−(𝜶𝒌+𝒏)𝒕
∞

𝟎

𝒅𝒕

𝟒

𝒌=𝟏

+∑∫ 𝒆(𝜶𝒌+𝒏)𝒕
∞

𝟎

𝒅𝒕

𝟒

𝒌=𝟏

 

𝑱𝒏 =∑(
𝟏

𝒏 + 𝜶𝒌
+

𝟏

𝒏 − 𝜶𝒌
)

𝟒

𝒌=𝟏

=∑
𝟐𝒏

𝒏𝟐 − 𝜶𝒌
𝟐

𝟒

𝒌=𝟏

 

Since, by claim 𝑩, 𝑷(𝜶𝒌
𝟐) = 𝟎, 𝒌 = 𝟏, 𝟐, … , 𝟒, then 

𝑷(𝒛) = 𝒛𝟒 − 𝟕𝒛𝟑 + 𝟏𝟒𝒛𝟐 − 𝟖𝒛 + 𝟏 = (𝒛 − 𝜶𝟏
𝟐)(𝒛 − 𝜶𝟐

𝟐)(𝒛 − 𝜶𝟑
𝟐)(𝒛 − 𝜶𝟒

𝟐) 

and 
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∑
𝟏

𝒛 − 𝜶𝒌
𝟐

𝟒

𝒌=𝟏

=
𝑷′(𝒛)

𝑷(𝒛)
=

𝟒𝒛𝟑 − 𝟐𝟏𝒛𝟐 + 𝟐𝟖𝒛 − 𝟖

𝒛𝟒 − 𝟕𝒛𝟑 + 𝟏𝟒𝒛𝟐 − 𝟖𝒛 + 𝟏
 

It follows that 

𝑱𝒏 = ∑
𝟐𝒏

𝒏𝟐 − 𝜶𝒌
𝟐

𝟒

𝒌=𝟏

= 𝟐𝒏
𝑷′(𝒏𝟐)

𝑷(𝒏𝟐)
=
𝟖𝒏𝟕 − 𝟒𝟐𝒏𝟓 + 𝟓𝟔𝒏𝟑 − 𝟏𝟔𝒏

𝒏𝟖 − 𝟕𝒏𝟔 + 𝟏𝟒𝒏𝟒 − 𝟖𝒏𝟐 + 𝟏
 

The claim 𝑪 is then demonstrated. 

∫ 𝑻𝒓[𝒆𝑹(𝒕)]𝒆−𝒏𝒕
∞

𝟎

𝒅𝒕 =
𝟖𝒏𝟕 − 𝟒𝟐𝒏𝟓 + 𝟓𝟔𝒏𝟑 − 𝟏𝟔𝒏

𝒏𝟖 − 𝟕𝒏𝟔 + 𝟏𝟒𝒏𝟒 − 𝟖𝒏𝟐 + 𝟏
 

Proof of claim 𝑩: If follows from claim (𝑨) that the eigenvalues {𝝀𝒌
±(𝒕), 𝒌 = 𝟏, 𝟐, … , 𝟒} of 

the matrix 𝑹(𝒕) are given by 𝝀𝒌
±(𝒕) = ±√𝒚𝒌 + 𝟏𝒕, where the real numbers  

{𝒚𝒌, 𝒌 = 𝟏, 𝟐,… , 𝟒} are the roots of the equation 

(𝒚 − 𝟑)(𝒚 − 𝟏)(𝒚 + 𝟏) + 𝟏 = 𝟎. 

Let 𝜶𝒌 = √𝒚𝒌 + 𝟏, then the real numbers {𝜶𝒌
𝟐, 𝒌 = 𝟏, 𝟐,… , 𝟒} are the roots of the 

equation 

(𝒛 − 𝟒)(𝒛 − 𝟐)(𝒛 − 𝟏)𝒛 + 𝟏 = 𝟎. 

Let 𝑷(𝒛) = (𝒛 − 𝟒)(𝒛 − 𝟐)(𝒛 − 𝟏)𝒛 + 𝟏, then 

𝑷(𝒛) = 𝒛𝟒 − 𝟕𝒛𝟑 + 𝟏𝟒𝒛𝟐 − 𝟖𝒛 + 𝟏;𝑷(𝜶𝒌
𝟐) = 𝟎, 𝒌 = 𝟏, 𝟐,… , 𝟒 

Let 𝜸 be a root of 𝑷(𝒛), it is easy to see that 𝑷(𝜸) ≥ 𝟏 if 𝜸 ≥ 𝟒, then 𝟎 < 𝛾 < 4, 

and 𝟎 < 𝜶𝒌 < 2. The claim of 𝑩 is then demonstrated. 

𝑩. 𝜶𝒌
±(𝒕) = ±𝜶𝒌𝒕; 𝟎 < 𝜶𝒌 < 2; 𝑃(𝜶𝒌

𝟐) = 𝟎; 𝒌 = 𝟏, 𝟐,… , 𝟒 

Proof of claim 𝑨: Let 𝑨(𝝁) and 𝑩𝒏(𝝁) the 𝟖 × 𝟖 real matrix and 𝒏 × 𝒏 real matrix, 

respectively. 

𝑨(𝝁) =

(

 
 
 
 
 

𝝁 𝟏 𝟎
𝟏 𝝁 𝟏
𝟎 𝟏 𝝁
𝟎 𝟎 𝟏
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎

   

𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎
𝟏 𝟎 𝟎 𝟎 𝟎
𝝁 𝟏 𝟎 𝟎 𝟎
𝟏 𝝁 𝟏 𝟎 𝟎
𝟎 𝟏 𝝁 𝟏 𝟎
𝟎 𝟎 𝟏 𝝁 𝟎
𝟎 𝟏 𝟎 𝟎 𝝁)

 
 
 
 
 

;𝑩𝒏(𝝁) =

(

  
 

𝝁 𝟏 𝟎 … 𝟎 𝟎
𝟏 ⋱ ⋱ ⋱ ⋱ 𝟎
𝟎
⋮
𝟎
𝟎

⋱
⋱
⋱
𝟎

⋱ ⋱ ⋱ ⋮
⋱ ⋱ ⋱ 𝟎
⋱
…

⋱
𝟎

⋱
𝟏

𝟏
𝝁)
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Let 𝝁 = −
𝝀

𝒕
, then 𝐝𝐞𝐭(𝑹(𝒕) − 𝝀𝑰𝟖) = 𝒕

𝟖 𝐝𝐞𝐭 𝑨(𝝁) and  

𝐝𝐞𝐭𝑨(𝝁) = 𝝁𝑫𝟕 − (𝝁
𝟐 − 𝟏)𝑫𝟒, where 𝑫𝒏 −is the determinant of the 𝒏 × 𝒏 matrix 𝑩𝒏(𝝁). 

It is easy to show that 𝑫𝒏 satisfies the recurrence relations. 

𝑫𝒏 = 𝝁𝑫𝒏−𝟏 −𝑫𝒏−𝟐 = (𝝁
𝟐 − 𝟏)𝑫𝒏−𝟐 − 𝝁𝑫𝒏−𝟑 

𝑫𝒏 = [(𝝁
𝟐 − 𝟏)𝟐 − 𝝁𝟐)𝑫𝒏−𝟒 − 𝝁(𝝁

𝟐 − 𝟐)𝑫𝒏−𝟓 

Since, 𝑫𝟏 = 𝝁;𝑫𝟐 = 𝝁
𝟐 − 𝟏;𝑫𝟑 = 𝝁(𝝁

𝟐 − 𝟐), then 𝑫𝟒 = (𝝁
𝟐 − 𝟏)𝟐 − 𝝁𝟐; 

𝑫𝟕 = 𝝁(𝝁
𝟐 − 𝟐)((𝝁𝟐 − 𝟏)𝟐 − 𝟐𝝁𝟐 + 𝟏) and  

𝐝𝐞𝐭𝑨(𝝁) = 𝝁𝑫𝟕 − (𝝁
𝟐 − 𝟏)𝑫𝟒 = (𝒚 − 𝟑)(𝒚 − 𝟏)(𝒚 + 𝟏)𝒚 + 𝟏, where 𝒚 = 𝝁𝟐 − 𝟏. 

It follows that: 

𝐝𝐞𝐭(𝑹(𝒕) − 𝝀𝑰𝟖) = 𝒕
𝟖 𝐝𝐞𝐭𝑨(𝝁) = [(𝒚 − 𝟑)(𝒚 − 𝟏)(𝒚 + 𝟏)𝒚 + 𝟏]𝒕𝟖, where 

𝝀𝟐 = 𝝁𝟐𝒕𝟐(𝒚 + 𝟏)𝒕𝟐. The claim 𝑨 is then demonstrated. 

𝑨. 𝐝𝐞𝐭(𝑹(𝒕) − 𝝀𝑰𝟖) = [(𝒚 − 𝟑)(𝒚 − 𝟏)𝒚 + 𝟏]𝒕
𝟖; 𝝀𝟐 = (𝒚 + 𝟏)𝒕𝟐 

1688. Find a closed form: 

𝛀 = ∫
𝐥𝐨𝐠(𝟏 + 𝒙)

𝒙𝟐 − 𝒙 + 𝟏

∞

𝟎

𝒅𝒙 

Proposed by Vasile Mircea Popa-Romania 

Solution by Rana Ranino-Setif-Algerie 

𝛀 = ∫
𝐥𝐨𝐠(𝟏 + 𝒙)

𝒙𝟐 − 𝒙 + 𝟏

∞

𝟎

𝒅𝒙 = ∫ ∫
𝒙

(𝟏 + 𝒙𝒚)(𝟏 − 𝒙 + 𝒙𝟐)

∞

𝟎

𝒅𝒙
𝟏

𝟎

𝒅𝒚 = 

∫
𝟏

𝟏 + 𝒚 + 𝒚𝟐
∫ (

𝒙 + 𝒚

𝟏 − 𝒙 + 𝒙𝟐
−

𝒚

𝟏 + 𝒙𝒚
)

∞

𝟎

𝒅𝒙
𝟏

𝟎

𝒅𝒚 = 

= ∫
𝟏

𝟏 + 𝒚 + 𝒚𝟐
[
𝟏

𝟐
𝐥𝐨𝐠(𝟏 − 𝒙 + 𝒙𝟐) − 𝐥𝐨𝐠(𝟏 + 𝒙𝒚) +

𝟐𝒚+ 𝟏

√𝟑
𝐭𝐚𝐧−𝟏 (

𝟐𝒙 − 𝟏

√𝟑
)]

𝟏

𝟎 𝟎

∞

𝒅𝒚 = 

=
𝟐𝝅

𝟑√𝟑
∫

𝟐𝒚 + 𝟏

𝟏 + 𝒚 + 𝒚𝟐
𝒅𝒚

𝟏

𝟎

−∫
𝐥𝐨𝐠 𝒚

𝟏 + 𝒚 + 𝒚𝟐
𝒅𝒚

𝟏

𝟎

= 

=
𝟐𝝅 𝐥𝐨𝐠𝟑

𝟑√𝟑
− ∫

(𝟏 − 𝒚) 𝐥𝐨𝐠 𝒚

𝟏 − 𝒚𝟑
𝒅𝒚

𝟏

𝟎

=
𝟐𝝅 𝐥𝐨𝐠𝟑

𝟑√𝟑
−
𝟏

𝟗
∫
(𝒕
𝟏
𝟑
−𝟏 − 𝒕

𝟐
𝟑
−𝟏) 𝐥𝐨𝐠 𝒕

𝟏 − 𝒕
𝒅𝒚

𝟏

𝟎

= 
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=
𝟐𝝅 𝐥𝐨𝐠 𝟑

𝟑√𝟑
−
𝟏

𝟗
{𝝍(𝟏) (

𝟐

𝟑
) − 𝝍(𝟏) (

𝟏

𝟑
)} = 

=
𝟐𝝅 𝐥𝐨𝐠 𝟑

𝟑√𝟑
−
𝟏

𝟗
{𝝍(𝟏) (

𝟐

𝟑
) + 𝝍(𝟏) (

𝟏

𝟑
)} +

𝟐

𝟗
𝝍(𝟏) (

𝟏

𝟑
) 

Therefore, 

𝛀 = ∫
𝐥𝐨𝐠(𝟏 + 𝒙)

𝒙𝟐 − 𝒙 + 𝟏

∞

𝟎

𝒅𝒙 =
𝟐𝝅 𝐥𝐨𝐠 𝟑

𝟑√𝟑
−
𝟒𝝅𝟐

𝟐𝟕
+
𝟐

𝟗
𝝍(𝟏) (

𝟏

𝟑
) 

1689. Show that: 

∫ 𝐥𝐨𝐠 (
(√𝟏 − 𝒙 − 𝟏)(√𝟏 − 𝒙𝟐 + 𝟏)

(√𝟏 − 𝒙 + 𝟏)(√𝟏 − 𝒙𝟐 − 𝟏)
) 𝐬𝐢𝐧−𝟏(𝒙)𝟐 𝒅𝒙

𝟏

𝟎

= 

=
𝝅𝟑

𝟏𝟐
− 𝝅 (𝟔√𝟐 + 𝟐 + 𝐥𝐨𝐠 (

𝟑

𝟒
−
𝟏

√𝟐
)) − 𝟒(𝟐𝑪 − 𝟕) 

𝑪 −Catalan’s constant. 

Proposed by Srinivasa Raghava-AIRMC-India 

Solution by Rana Ranino-Setif-Algerie 

𝛀 = ∫ 𝐥𝐨𝐠(
(√𝟏 − 𝒙 − 𝟏)(√𝟏 − 𝒙𝟐 + 𝟏)

(√𝟏 − 𝒙 + 𝟏)(√𝟏 − 𝒙𝟐 − 𝟏)
) 𝐬𝐢𝐧−𝟏(𝒙)𝟐 𝒅𝒙

𝟏

𝟎

= 

= ∫ 𝐥𝐨𝐠 (
(𝟏 − √𝟏 − 𝒙)(𝟏 + √𝟏 − 𝒙𝟐)

(𝟏 + √𝟏 − 𝒙)(𝟏 − √𝟏 − 𝒙𝟐)
) 𝐬𝐢𝐧−𝟏(𝒙)𝟐 𝒅𝒙

𝟏

𝟎

 

= ∫ 𝐥𝐨𝐠 (
𝟏 − √𝟏 − 𝒙

𝟏+ √𝟏 − 𝒙
)𝐬𝐢𝐧−𝟏(𝒙)𝟐 𝒅𝒙

𝟏

𝟎

⏞                      
𝑨

+∫ 𝐥𝐨𝐠 (
𝟏 + √𝟏 − 𝒙^𝟐 

𝟏 + √𝟏 − 𝒙𝟐
) 𝐬𝐢𝐧−𝟏(𝒙)𝟐 𝒅𝒙

𝟏

𝟎

⏞                        
𝑩

 

𝑩 =
𝒙=𝐬𝐢𝐧 𝒕

− 𝟐∫ 𝒕𝟐 𝐥𝐨𝐠 (𝐭𝐚𝐧
𝒕

𝟐
) 𝐜𝐨𝐬 𝒕

𝝅
𝟐

𝟎

𝒅𝒕 = −𝟏𝟔∫ 𝒕𝟐 𝐥𝐨𝐠(𝐭𝐚𝐧 𝒕) 𝐜𝐨𝐬 𝟐𝒕

𝝅
𝟒

𝟎

𝒅𝒕 = 

= −𝟏𝟔 [(
𝟏

𝟐
𝒕𝟐 𝐬𝐢𝐧𝟐𝒕 +

𝟏

𝟐
𝒕 𝐬𝐢𝐧 𝟐𝒕 −

𝟏

𝟒
𝐬𝐢𝐧 𝟐𝒕) 𝐥𝐨𝐠(𝐭𝐚𝐧 𝒕)]

𝟎

𝝅
𝟐
+ 𝟖∫ (𝟐𝒕𝟐 + 𝟐𝒕 𝐜𝐨𝐬 𝟐𝒕 − 𝟏)𝒅𝒕

𝝅
𝟒

𝟎

 

=
𝝅𝟑

𝟏𝟐
+ 𝟐𝝅 𝐥𝐨𝐠𝟐 − 𝟐𝝅 
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𝑨 = [(𝟐√𝟏 − 𝒙𝟐 𝐬𝐢𝐧−𝟏 𝒙 − 𝟐𝒙 + 𝒙𝐬𝐢𝐧−𝟏(𝒙)𝟐) 𝐥𝐨𝐠 (
𝟏 − √𝟏 − 𝒙

𝟏 + √𝟏 − 𝒙
)]
𝟎

𝟏

− 

−∫
𝟐√𝟏− 𝒙𝟐 𝐬𝐢𝐧−𝟏 𝒙 − 𝟐𝒙 + 𝒙𝐬𝐢𝐧−𝟏(𝒙)𝟐

𝒙√𝟏 − 𝒙
𝒅𝒙

𝟏

𝟎

= 

= 𝟐∫
𝒅𝒙

√𝟏− 𝒙

𝟏

𝟎

−∫
𝐬𝐢𝐧−𝟏(𝒙)𝟐

√𝟏 − 𝒙
𝒅𝒙

𝟏

𝟎

− 𝟐∫
√𝟏 + 𝒙𝐬𝐢𝐧−𝟏 𝒙

𝒙
𝒅𝒙

𝟏

𝟎

−∫
𝐬𝐢𝐧−𝟏(𝒙)𝟐

√𝟏− 𝒙
𝒅𝒙

𝟏

𝟎

= 

= [𝐬𝐢𝐧−𝟏(𝒙)𝟐 √𝟏 − 𝒙]
𝟎

𝟏
− 𝟒∫

𝐬𝐢𝐧−𝟏 𝒙

√𝟏 + 𝒙
𝒅𝒙

𝟏

𝟎

= −𝟖[√𝟏 + 𝒙𝐬𝐢𝐧−𝟏 𝒙]
𝟎

𝟏
+ 𝟖∫

𝒅𝒙

√𝟏 − 𝒙
𝒅𝒙

𝟏

𝟎

= 

= 𝟏𝟔 − 𝟒𝝅√𝟐 − 𝟐∫
√𝟏 + 𝒙𝐬𝐢𝐧−𝟏 𝒙

𝒙
𝒅𝒙

𝟏

𝟎

= 

= −𝟐[√𝟏 + 𝒙𝐬𝐢𝐧−𝟏 𝒙 𝐥𝐨𝐠𝒙]
𝟎

𝟏
+ 𝟐∫

𝐥𝐨𝐠𝒙

√𝟏 − 𝒙
𝒅𝒙

𝟏

𝟎

+∫
𝐥𝐨𝐠 𝒙 𝐬𝐢𝐧−𝟏 𝒙

√𝟏 + 𝒙
𝒅𝒙

𝟏

𝟎

 

Now, we have: 

𝟐∫
𝐥𝐨𝐠𝒙

√𝟏 − 𝒙
𝒅𝒙

𝟏

𝟎

= 𝟐∫ 𝒙
𝟏
𝟐
−𝟏 𝐥𝐨𝐠(𝟏 − 𝒙)𝒅𝒙

𝟏

𝟎

= −𝟒𝑯𝟏
𝟐

= 𝟖 𝐥𝐨𝐠 𝟐 − 𝟖 

∫
𝐥𝐨𝐠 𝒙 𝐬𝐢𝐧−𝟏 𝒙

√𝟏 + 𝒙
𝒅𝒙

𝟏

𝟎

=
𝒙=𝐜𝐨𝐬 𝒕

√𝟐∫ (
𝝅

𝟐
− 𝒕) 𝐥𝐨𝐠(𝐜𝐨𝐬 𝒕) 𝐬𝐢𝐧 (

𝒕

𝟐
)𝒅𝒕

𝝅
𝟐

𝟎

= 

=
𝝅

√𝟐
∫ 𝐥𝐨𝐠(𝐜𝐨𝐬 𝒕) 𝐬𝐢𝐧 (

𝒕

𝟐
)𝒅𝒕

𝝅
𝟐

𝟎

⏞                  
𝑰

− √𝟐∫ 𝒕 𝐥𝐨𝐠(𝐜𝐨𝐬 𝒕) 𝐬𝐢𝐧 (
𝒕

𝟐
)𝒅𝒕

𝝅
𝟐

𝟎

⏞                  
𝑱

 

Where, 

𝑰 =
𝝅

√𝟐
∫ 𝐥𝐨𝐠 (𝟐 𝐜𝐨𝐬𝟐 (

𝒕

𝟐
) − 𝟏) 𝐬𝐢𝐧 (

𝒕

𝟐
)𝒅𝒕

𝝅
𝟐

𝟎

=
𝒚=√𝟐 𝐜𝐨𝐬(

𝒕
𝟐
)

𝝅∫ 𝐥𝐨𝐠(𝒚𝟐 − 𝟏)𝒅𝒚
√𝟐

𝟏

= 

= 𝝅[(𝒚 + 𝟏) 𝐥𝐨𝐠(𝒚 + 𝟏) + (𝒚 − 𝟏) 𝐥𝐨𝐠(𝒚 − 𝟏) − 𝟐𝒚]𝟏
√𝟐 = 𝟐𝝅 − 𝟐𝝅√𝟐 + 𝟐𝝅 𝐥𝐨𝐠 (

𝟏

𝟐
+
𝟏

√𝟐
) 

and 

𝑱 = 𝟒 𝐥𝐨𝐠𝟐∫ 𝒕(𝐥𝐨𝐠 𝟐 +∑
(−𝟏)𝒏

𝒏
𝐜𝐨𝐬(𝟒𝒏𝒕)

∞

𝒏=𝟏

)𝐬𝐢𝐧 𝒕

𝝅
𝟒

𝟎

𝒅𝒕 = 
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= 𝟒√𝟐 𝐥𝐨𝐠 𝟐∫ 𝒕 𝐬𝐢𝐧 𝒕

𝝅
𝟒

𝟎

𝒅𝒕 + 𝟒√𝟐∑
(−𝟏)𝒏

𝒏

∞

𝒏=𝟏

∫ 𝒕 𝐬𝐢𝐧 𝒕 𝐜𝐨𝐬(𝟒𝒏𝒕)

𝝅
𝟒

𝟎

𝒅𝒕 = 

= 𝟒 𝐥𝐨𝐠 𝟐 − 𝝅 𝐥𝐨𝐠 𝟐 + 

+𝟐√𝟐∑
(−𝟏)𝒏

𝒏
[
𝐬𝐢𝐧(𝟒𝒏𝒕 + 𝒕)

(𝟒𝒏 + 𝟏)𝟐
−
𝐬𝐢𝐧(𝟒𝒏𝒕 − 𝒕)

(𝟒𝒏 − 𝟏)𝟐
+
𝒕 𝐜𝐨𝐬(𝟒𝒏𝒕 − 𝒕)

𝟒𝒏 − 𝟏
−
𝒕 𝐜𝐨𝐬(𝟒𝒏𝒕 + 𝒕)

𝟒𝒏 + 𝟏
]
𝟎

𝝅
𝟒

∞

𝒏=𝟏

= 

= 𝟒 𝐥𝐨𝐠 𝟐 − 𝝅 𝐥𝐨𝐠 𝟐 + 

+𝟐√𝟐∑
(−𝟏)𝒏

𝒏
(

(−𝟏)𝒏

√𝟐(𝟒𝒏+ 𝟏)𝟐
+

(−𝟏)𝒏

√𝟐(𝟒𝒏 − 𝟏)𝟐
+

(−𝟏)𝒏𝝅

𝟒√𝟐(𝟒𝒏 − 𝟏)
−

(−𝟏)𝒏𝝅

𝟒√𝟐(𝟒𝒏+ 𝟏)
)

∞

𝒏=𝟏

= 

= 𝟒 𝐥𝐨𝐠 𝟐 − 𝝅 𝐥𝐨𝐠 𝟐 + 𝟐∑(
𝟏

𝒏(𝟒𝒏 + 𝟏)𝟐
+

𝟏

𝒏(𝟒𝒏 − 𝟏)𝟐
)

∞

𝒏=𝟏

⏞                    
𝑺𝟏

+
𝝅

𝟐
∑(

𝟏

𝒏(𝟒𝒏 − 𝟏)
−

𝟏

𝒏(𝟒𝒏 + 𝟏)
)

∞

𝒏=𝟏

⏞                    
𝑺𝟐

 

Where, 

𝑺𝟏 = ∑(
𝟐

𝒏
+

𝟒

(𝟒𝒏 − 𝟏)𝟐
−

𝟒

(𝟒𝒏 + 𝟏)𝟐
−

𝟒

𝟒𝒏 − 𝟏
−

𝟒

𝟒𝒏 + 𝟏
)

∞

𝒏=𝟏

= 

= ∑(
𝟐

𝒏+ 𝟏
+

𝟏

𝟒(𝒏 +
𝟑
𝟐)
𝟐 −

𝟏

𝟒(𝒏 +
𝟓
𝟒)
𝟐 −

𝟏

𝒏 +
𝟑
𝟒

−
𝟏

𝒏 +
𝟓
𝟒

)

∞

𝒏=𝟏

= 

= −𝟐𝝍(𝟏) + 𝝍(
𝟓

𝟒
) + 𝝍(

𝟑

𝟒
) +

𝟏

𝟒
𝝍(𝟏) (

𝟑

𝟒
) −

𝟏

𝟒
𝝍(𝟏) (

𝟓

𝟒
) = 

= 𝟐𝜸 − 𝜸 +
𝝅

𝟐
− 𝟑 𝐥𝐨𝐠 𝟐 + 𝟒 − 𝜸 −

𝝅

𝟐
− 𝟑 𝐥𝐨𝐠𝟐 +

𝝅𝟐

𝟒
− 𝟐𝑪 − 𝟐𝑪 + 𝟒 −

𝝅𝟐

𝟒
= 

= 𝟖 − 𝟔 𝐥𝐨𝐠 𝟐 − 𝟒𝑪 

and 

𝑺𝟐 = ∑(
𝟏

𝒏 +
𝟑
𝟒

+
𝟏

𝒏 +
𝟓
𝟒

−
𝟐

𝒏
)

∞

𝒏=𝟎

= 𝟐𝝍(𝟏) − 𝝍(
𝟑

𝟒
) −𝝍(

𝟓

𝟒
) = 
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= −𝟐𝜸 − 𝟒 + 𝜸 +
𝝅

𝟐
+ 𝟑 𝐥𝐨𝐠 𝟐 + 𝜸 −

𝝅

𝟐
+ 𝟑 𝐥𝐨𝐠 𝟐 = 𝟔 𝐥𝐨𝐠 𝟐 − 𝟒 

𝑱 = 𝟒 𝐥𝐨𝐠 𝟐 − 𝝅 𝐥𝐨𝐠𝟐 + 𝟏𝟔 − 𝟏𝟐 𝐥𝐨𝐠 𝟐 − 𝟖𝑪 + 𝟑𝝅 𝐥𝐨𝐠𝟐 − 𝟐𝝅 = 

= 𝟏𝟔 + 𝟐𝝅 𝐥𝐨𝐠 𝟐 − 𝟖 𝐥𝐨𝐠𝟐 − 𝟐𝝅 − 𝟖𝑪 

∫
𝐥𝐨𝐠 𝒙 𝐬𝐢𝐧−𝟏 𝒙

√𝟏 + 𝒙
𝒅𝒙

𝟏

𝟎

= 𝟏𝟔− 𝟐𝝅√𝟐 + 𝟐𝝅 𝐥𝐨𝐠(𝟏 + √𝟐) − 𝟖 𝐥𝐨𝐠 𝟐 − 𝟖𝑪 

𝑨 = 𝟒 + 𝟏𝟔 − 𝟒𝝅√𝟐 + 𝟖 𝐥𝐨𝐠 𝟐 − 𝟖 + 𝟏𝟔− 𝟐𝝅√𝟐 + 𝟐𝝅 𝐥𝐨𝐠(𝟏 + √𝟐) − 𝟖 𝐥𝐨𝐠 𝟐 − 𝟖𝑪 

= 𝟐𝟖 − 𝟔𝝅√𝟐 + 𝟐𝝅 𝐥𝐨𝐠(𝟏 + √𝟐) − 𝟖𝑪 

𝛀 = 𝟐𝟖 − 𝟔𝝅√𝟐+ 𝟐𝝅 𝐥𝐨𝐠(𝟏 + √𝟐) − 𝟖𝑪 +
𝝅𝟑

𝟏𝟐
+ 𝟐𝝅 𝐥𝐨𝐠 𝟐 − 𝟐𝝅 

=
𝝅𝟑

𝟏𝟐
− 𝝅(𝟔√𝟐 + 𝟐 + 𝐥𝐨𝐠 (

𝟑

𝟒
−
𝟏

√𝟐
)) − 𝟒(𝟐𝑪 − 𝟕) 

Therefore, 

∫ 𝐥𝐨𝐠(
(√𝟏 − 𝒙 − 𝟏)(√𝟏 − 𝒙𝟐 + 𝟏)

(√𝟏 − 𝒙 + 𝟏)(√𝟏 − 𝒙𝟐 − 𝟏)
) 𝐬𝐢𝐧−𝟏(𝒙)𝟐 𝒅𝒙

𝟏

𝟎

= 

=
𝝅𝟑

𝟏𝟐
− 𝝅(𝟔√𝟐 + 𝟐 + 𝐥𝐨𝐠 (

𝟑

𝟒
−
𝟏

√𝟐
)) − 𝟒(𝟐𝑪 − 𝟕) 

1690. Prove that: 

𝛀 = ∫
(𝐬𝐢𝐧(𝟐𝝅 − 𝒛)𝟐𝒍 ⋅ (𝟐𝝅 − 𝒛)

(𝐬𝐢𝐧(𝟐𝝅 − 𝒛))𝟐𝒍 + (𝐜𝐨𝐬(𝟐𝝅 − 𝒛))𝟐𝒍
𝒅𝒛

𝟐𝝅

𝟎

= 𝝅𝟐 

Proposed by Hikmat Mammadov-Azerbaijan 

Solution 1 by Togrul Ehmedov-Azerbaijan 

𝛀 = ∫
(𝐬𝐢𝐧(𝟐𝝅 − 𝒛)𝟐𝒍 ⋅ (𝟐𝝅 − 𝒛)

(𝐬𝐢𝐧(𝟐𝝅 − 𝒛))𝟐𝒍 + (𝐜𝐨𝐬(𝟐𝝅 − 𝒛))𝟐𝒍
𝒅𝒛

𝟐𝝅

𝟎

= 

= ∫
𝐬𝐢𝐧𝟐𝒍 𝒛 (𝟐𝝅 − 𝒛)

𝐬𝐢𝐧𝟐𝒍 𝒛 + 𝐜𝐨𝐬𝟐𝒍 𝒛
𝒅𝒛

𝟐𝝅

𝟎

= ∫
𝒛 ⋅ 𝐬𝐢𝐧𝟐𝒍 𝒛

𝐬𝐢𝐧𝟐𝒍 𝒛 + 𝐜𝐨𝐬𝟐𝒍 𝒛
𝒅𝒛

𝟐𝝅

𝟎

 

𝟐𝛀 = 𝟐𝝅∫
𝐬𝐢𝐧𝟐𝒍 𝒛

𝐬𝐢𝐧𝟐𝒍 𝒛 + 𝐜𝐨𝐬𝟐𝒍 𝒛
𝒅𝒛

𝟐𝝅

𝟎
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𝛀 = 𝝅∫
𝐬𝐢𝐧𝟐𝒍 𝒛

𝐬𝐢𝐧𝟐𝒍 𝒛 + 𝐜𝐨𝐬𝟐𝒍 𝒛
𝒅𝒛

𝟐𝝅

𝟎

= 𝟒𝝅∫
𝐬𝐢𝐧𝟐𝒍 𝒛

𝐬𝐢𝐧𝟐𝒍 𝒛 + 𝐜𝐨𝐬𝟐𝒍 𝒛
𝒅𝒛

𝝅
𝟐

𝟎

= 

= 𝟒𝝅∫
𝐜𝐨𝐬𝟐𝒍 𝒛

𝐬𝐢𝐧𝟐𝒍 𝒛 + 𝐜𝐨𝐬𝟐𝒍 𝒛
𝒅𝒛

𝝅
𝟐

𝟎

 

Therefore, 

𝟐𝛀 = 𝟒𝝅∫ 𝒅𝒛

𝝅
𝟐

𝟎

⇒ 𝛀 = 𝝅𝟐 

Solution 2 by Kamel Gandouli Rezgui-Tunisia 

𝛀 = ∫
(𝐬𝐢𝐧(𝟐𝝅 − 𝒛)𝟐𝒍 ⋅ (𝟐𝝅 − 𝒛)

(𝐬𝐢𝐧(𝟐𝝅 − 𝒛))𝟐𝒍 + (𝐜𝐨𝐬(𝟐𝝅 − 𝒛))𝟐𝒍
𝒅𝒛

𝟐𝝅

𝟎

= ∫
(𝐬𝐢𝐧 𝒛)𝟐𝒍 ⋅ (𝟐𝝅 − 𝒛)

(𝐬𝐢𝐧 𝒛)𝟐𝒍 + (𝐜𝐨𝐬 𝒛)𝟐𝒍
𝒅𝒛

𝟐𝝅

𝟎

⇒ 

𝟐𝛀 = 𝟐𝝅∫
𝐬𝐢𝐧𝟐𝒍 𝒕

𝐬𝐢𝐧𝟐𝒍 𝒕 + 𝐜𝐨𝐬𝟐𝒍 𝒕

𝟐𝝅

𝟎

𝒅𝒕 = ∫
𝐬𝐢𝐧𝟐𝒍 𝒕

𝐬𝐢𝐧𝟐𝒍 𝒕 + 𝐜𝐨𝐬𝟐𝒍 𝒕

𝝅
𝟐

𝟎

𝒅𝒕 + ∫
𝐬𝐢𝐧𝟐𝒍 𝒕

𝐬𝐢𝐧𝟐𝒍 𝒕 + 𝐜𝐨𝐬𝟐𝒍 𝒕

𝝅

𝝅
𝟐

𝒅𝒕 + 

+∫
𝐬𝐢𝐧𝟐𝒍 𝒕

𝐬𝐢𝐧𝟐𝒍 𝒕 + 𝐜𝐨𝐬𝟐𝒍 𝒕

𝟑𝝅
𝟐

𝝅

𝒅𝒕 +∫
𝐬𝐢𝐧𝟐𝒍 𝒕

𝐬𝐢𝐧𝟐𝒍 𝒕 + 𝐜𝐨𝐬𝟐𝒍 𝒕

𝟐𝝅

𝟑𝝅
𝟐

𝒅𝒕 = 𝛀𝟏 + 𝛀𝟐 + 𝛀𝟑 +𝛀𝟒 

𝛀𝟐 =
𝒕→𝒕−

𝝅
𝟐
∫

𝐬𝐢𝐧𝟐𝒍 𝒕

𝐬𝐢𝐧𝟐𝒍 𝒕 + 𝐜𝐨𝐬𝟐𝒍 𝒕

𝝅
𝟐

𝟎

𝒅𝒕 

𝛀𝟑 =
𝒕→𝒕−𝝅

∫
𝐬𝐢𝐧𝟐𝒍 𝒕

𝐬𝐢𝐧𝟐𝒍 𝒕 + 𝐜𝐨𝐬𝟐𝒍 𝒕

𝝅
𝟐

𝟎

𝒅𝒕 

𝛀𝟒 =
𝒕=𝒕−

𝟑𝝅
𝟐
∫

𝐬𝐢𝐧𝟐𝒍 𝒕

𝐬𝐢𝐧𝟐𝒍 𝒕 + 𝐜𝐨𝐬𝟐𝒍 𝒕

𝝅
𝟐

𝟎

𝒅𝒕 

Therefore, 

𝟐𝛀 = 𝟐𝝅(𝛀𝟏 + 𝛀𝟐 +𝛀𝟑 + 𝛀𝟒) = 𝟐𝝅 ⋅ (𝟐∫ 𝒅𝒕

𝝅
𝟐

𝟎

) = 𝟐𝝅𝟐 ⇒ 𝛀 = 𝝅𝟐 

1691. Find: 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

𝒏(𝟏 ⋅ 𝒏 + 𝟐 ⋅ (𝒏 − 𝟏) + 𝟑 ⋅ (𝒏 − 𝟐) + ⋯+ 𝒏 ⋅ 𝟏)

𝟏 ⋅ 𝒏𝟐 + 𝟐 ⋅ (𝒏 − 𝟏)𝟐 + 𝟑 ⋅ (𝒏 − 𝟐)𝟐 +⋯+ 𝒏 ⋅ 𝟏𝟐
 

Proposed by Daniel Sitaru-Romania 
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Solution 1 by Sergio Esteban-Buenos Aires-Argentina 

𝑺𝟏 =∑𝒌(𝒏 − 𝒌+ 𝟏)

𝒏

𝒌=𝟏

=∑(𝒏𝒌 − 𝒌𝟐 + 𝒌)

𝒏

𝒌=𝟏

= 𝒏∑𝒌

𝒏

𝒌=𝟏

−∑𝒌𝟐
𝒏

𝒌=𝟏

+∑𝒌

𝒏

𝒌=𝟏

= 

= 𝒏 ⋅
𝒏(𝒏 + 𝟏)

𝟐
−
𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏)

𝟔
+
𝒏(𝒏 + 𝟏)

𝟐
=
𝒏(𝒏 + 𝟏)(𝒏 + 𝟐)

𝟔
 

𝑺𝟐 = ∑𝒌(𝒏 + 𝟏)𝟐
𝒏

𝒌=𝟏

=∑𝒌[(𝒏+ 𝟏)𝟐 + 𝒌𝟐 − 𝟐(𝒏 + 𝟏)𝒌]

𝒏

𝒌=𝟏

= 

=∑𝒌(𝒏 + 𝟏)𝟐
𝒏

𝒌=𝟏

+∑𝒌𝟑
𝒏

𝒌=𝟏

−∑𝟐(𝒏 + 𝟏)𝒌𝟐
𝒏

𝒌=𝟏

= 

=
𝒏(𝒏 + 𝟏)

𝟐
⋅ (𝒏 + 𝟏)𝟐 + (

𝒏(𝒏 + 𝟏)

𝟐
)

𝟐

− 𝟐(𝒏 + 𝟏) ⋅
𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏)

𝟔
 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

𝒏𝑺𝟏
𝑺𝟐

= 𝟐 

 Solution 2 by Adrian Popa-Romania 

𝑺𝟏 =∑𝒌(𝒏 − 𝒌+ 𝟏)

𝒏

𝒌=𝟏

=∑(𝒏𝒌 − 𝒌𝟐 + 𝒌)

𝒏

𝒌=𝟏

= 𝒏∑𝒌

𝒏

𝒌=𝟏

−∑𝒌𝟐
𝒏

𝒌=𝟏

+∑𝒌

𝒏

𝒌=𝟏

= 

= 𝒏 ⋅
𝒏(𝒏 + 𝟏)

𝟐
−
𝒏(𝒏 + 𝟏)(𝟐𝒏+ 𝟏)

𝟔
+ 𝒏 

𝑺𝟐 = ∑𝒌(𝒏 + 𝟏)𝟐
𝒏

𝒌=𝟏

=∑𝒌[(𝒏+ 𝟏)𝟐 + 𝒌𝟐 − 𝟐(𝒏 + 𝟏)𝒌]

𝒏

𝒌=𝟏

= 

= 𝒏𝟐∑𝒌

𝒏

𝒌=𝟏

+∑𝒌𝟑
𝒏

𝒌=𝟏

+∑𝒌

𝒏

𝒌=𝟏

− 𝟐𝒏∑𝒌𝟐
𝒏

𝒌=𝟏

+ 𝟐𝒏∑𝒌

𝒏

𝒌=𝟏

− 𝟐∑𝒌𝟐
𝒏

𝒌=𝟏

 

= 𝒏𝟐 ⋅
𝒏(𝒏 + 𝟏)

𝟐
+ (
𝒏(𝒏 + 𝟏)

𝟐
)

𝟐

+
𝒏(𝒏 + 𝟏)

𝟐
− 𝟐𝒏 ⋅

𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏)

𝟔
+ 𝟐𝒏 ⋅

𝒏(𝒏 + 𝟏)

𝟐

−
𝟐𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏)

𝟔
, 𝛀 =

𝟏
𝟐−

𝟐
𝟔

𝟏
𝟐 +

𝟏
𝟒 −

𝟒
𝟔

= 𝟐 

Solution 3 by Ravi Prakash-New Delhi-India 

𝑺𝟏 = 𝒏∑𝒌(𝒏 − 𝒌 + 𝟏)

𝒏

𝒌=𝟏

= 𝒏∑𝒌(𝒏 + 𝟏 − 𝒌)

𝒏

𝒌=𝟏

= 𝒏(𝒏 + 𝟏)∑𝒌

𝒏

𝒌=𝟏

−∑𝒌𝟐
𝒏

𝒌=𝟏

= 
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= 𝒏(𝒏 + 𝟏) ⋅
𝒏(𝒏 + 𝟏)

𝟐
−
𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏)

𝟔
=
𝒏𝟐(𝒏 + 𝟏)(𝒏 + 𝟐)

𝟔
 

𝑺𝟐 =∑𝒌𝟐(𝒏 + 𝟏 − 𝒌)

𝒏

𝒌=𝟏

= (𝒏 + 𝟏)
𝟏

𝟔
𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏) −

𝟏

𝟒
𝒏𝟐(𝒏 + 𝟏)𝟐 = 

=
𝟏

𝟏𝟐
𝒏(𝒏 + 𝟏)𝟐(𝟒𝒏 + 𝟐 − 𝟑𝒏) =

𝟏

𝟏𝟐
𝒏(𝒏 + 𝟏)𝟐(𝒏 + 𝟐) 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

𝒏𝟐(𝒏 + 𝟏)(𝒏 + 𝟐)
𝟔

𝒏(𝒏 + 𝟏)𝟐(𝒏 + 𝟐)
𝟏𝟐

= 𝟐 𝐥𝐢𝐦
𝒏→∞

𝒏

𝒏 + 𝟏
= 𝟐 

Solution 4 by Hikmat Mammadov-Azerbaijan 

𝑺𝟏 =∑𝒌(𝒏 − 𝒌+ 𝟏)

𝒏

𝒌=𝟏

=∑(𝒏𝒌 − 𝒌𝟐 + 𝒌)

𝒏

𝒌=𝟏

= 𝒏∑𝒌

𝒏

𝒌=𝟏

−∑𝒌𝟐
𝒏

𝒌=𝟏

+∑𝒌

𝒏

𝒌=𝟏

= 

= 𝒏 ⋅
𝒏(𝒏 + 𝟏)

𝟐
−
𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏)

𝟔
+ 𝒏 =

𝒏(𝒏 + 𝟏)

𝟔
(𝟑𝒏 + 𝟑 − 𝟐𝒏 − 𝟏) = 

=
𝒏(𝒏 + 𝟏)(𝒏+ 𝟐)

𝟔
 

𝑺𝟐 = ∑𝒌(𝒏 + 𝟏)𝟐
𝒏

𝒌=𝟏

=∑𝒌[(𝒏+ 𝟏)𝟐 + 𝒌𝟐 − 𝟐(𝒏 + 𝟏)𝒌]

𝒏

𝒌=𝟏

= 

= 𝒏𝟐∑𝒌

𝒏

𝒌=𝟏

+∑𝒌𝟑
𝒏

𝒌=𝟏

+∑𝒌

𝒏

𝒌=𝟏

− 𝟐𝒏∑𝒌𝟐
𝒏

𝒌=𝟏

+ 𝟐𝒏∑𝒌

𝒏

𝒌=𝟏

− 𝟐∑𝒌𝟐
𝒏

𝒌=𝟏

 

= 𝒏𝟐 ⋅
𝒏(𝒏 + 𝟏)

𝟐
+ (
𝒏(𝒏 + 𝟏)

𝟐
)

𝟐

+
𝒏(𝒏 + 𝟏)

𝟐
− 𝟐𝒏 ⋅

𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏)

𝟔
+ 𝟐𝒏 ⋅

𝒏(𝒏 + 𝟏)

𝟐
− 

−
𝟐𝒏(𝒏 + 𝟏)(𝟐𝒏 + 𝟏)

𝟔
=
𝒏(𝒏 + 𝟏)

𝟏𝟐
[𝟔𝒏 + 𝟔 − 𝟒(𝟐𝒏 + 𝟏) + 𝟑𝒏] =

𝒏(𝒏 + 𝟏)𝟐(𝒏 + 𝟐)

𝟏𝟐
 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

𝒏𝟐(𝒏 + 𝟏)(𝒏 + 𝟐)

𝟔
⋅

𝟏𝟐

𝒏(𝒏 + 𝟏)𝟐(𝒏 + 𝟐)
= 𝟐 

1692. If 𝑨(𝒏) denotes the 𝒏𝒕𝒉 term of the sequence 𝑨𝟑𝟒𝟒𝟑𝟏𝟕 in OEIS and 

defined as ∀𝒏 ∈ ℕ,  𝑨(𝒏) = 𝒏 ⋅ 𝑨(𝒏 − 𝟏) + 𝒏(𝟏+𝒏)𝒎𝒐𝒅 𝟐; 𝑨(𝟎) = 𝟏. Prove 

that: 
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𝐥𝐢𝐦
𝒏→∞

𝑨(𝒏)

𝒏!
= 𝟏 + 𝟐 𝐬𝐢𝐧𝐡(𝟏) = 𝟏 −

𝟏

𝒆
+ 𝒆 

Proposed by Amrit Awasthi-India 
Solution by Kamel Gandouli Rezgui-Tunisia 

Let 𝒗𝒏 =
𝑨(𝒏)

𝒏!
⇒ 𝒗𝒌 = 𝒗𝒌−𝟏 +

𝒌(𝒌+𝟏) 𝒎𝒐𝒅 𝟐

𝒌!
⇒ 𝒗𝒌 − 𝒗𝒌−𝟏 =

𝒌(𝒌+𝟏) 𝒎𝒐𝒅 𝟐

𝒌!
 

∑(𝒗𝒌 − 𝒗𝒌−𝟏)

𝒏

𝒌=𝟏

=∑
𝒌(𝒌+𝟏) 𝒎𝒐𝒅 𝟐

𝒌!

𝒏

𝒌=𝟏

⇒ 𝒗𝒏 − 𝒗𝟎 =∑
𝒌(𝒌+𝟏) 𝒎𝒐𝒅 𝟐

𝒌!

𝒏

𝒌=𝟏

⇒ 

𝒗𝒏 =∑
𝒌(𝒌+𝟏) 𝒎𝒐𝒅 𝟐

𝒌!

𝒏

𝒌=𝟏

+ 𝟏 

𝐥𝐢𝐦
𝒏→∞

𝑨(𝒏)

𝒏!
= 𝐥𝐢𝐦
𝒏→∞

𝒗𝒏 = 𝐥𝐢𝐦
𝒏→∞

(∑
𝒌(𝒌+𝟏) 𝒎𝒐𝒅 𝟐

𝒌!

𝒏

𝒌=𝟏

+ 𝟏) = 

=∑
𝟏

(𝟐𝒌 + 𝟏)!

∞

𝒌=𝟎

+∑
𝟐𝒌

(𝟐𝒌)!

∞

𝒌=𝟏

+ 𝟏 =∑
𝟏

(𝟐𝒌 + 𝟏)!

∞

𝒌=𝟎

+∑
𝟏

(𝟐𝒌 − 𝟏)!

∞

𝒌=𝟏

+ 𝟏 = 

=∑
𝟏

(𝟐𝒌 + 𝟏)!

∞

𝒌=𝟎

= 𝐬𝐢𝐧𝐡𝟏 

Therefore, 

𝐥𝐢𝐦
𝒏→∞

𝑨(𝒏)

𝒏!
= 𝟏 + 𝟐𝐬𝐢𝐧𝐡(𝟏) = 𝟏 −

𝟏

𝒆
+ 𝒆 

1693.  

𝛀𝟏(𝒏) =∑∑|(𝒊 − 𝒋) (
𝟏

𝟐𝒏 − 𝒊 + 𝟏
−

𝟏

𝟐𝒏 − 𝒋 + 𝟏
)|

𝒏

𝒋=𝟏

𝒏

𝒊=𝟏

 

𝛀𝟐 =∑∑|
𝟏

𝟐𝒏 − 𝒊 + 𝟏
−

𝟏

𝟐𝒏 − 𝒋 + 𝟏
|

𝒏

𝒋=𝟏

𝒏

𝒊=𝟏

 

Find: 

𝛀 = 𝐥𝐢𝐦
𝒏→∞

𝛀𝟏(𝒏)

𝛀𝟐(𝒏)
 

Proposed by Daniel Sitaru-Romania 
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Solution by Kamel Gandouli Rezgui-Tunisia 
Let 𝒌 = 𝒏 − 𝒊 + 𝟏 and 𝒑 = 𝒏 − 𝒋 + 𝟏, then 

𝛀𝟏(𝒏) = ∑∑|(𝒑 − 𝒌) (
𝟏

𝒏 + 𝒌
−

𝟏

𝒏 + 𝒑
)|

𝒏

𝒑=𝟏

𝒏

𝒌=𝟏

=∑∑
(𝒑 − 𝒌)𝟐

(𝒏 + 𝒑)(𝒏 + 𝒌)

𝒏

𝒑=𝟏

𝒏

𝒌=𝟏

= 

=∑
𝟏

𝒏+ 𝒌

𝒏

𝒌=𝟏

∑
(𝒑− 𝒌)𝟐

𝒏 + 𝒑

𝒏

𝒑=𝟏

⇒ 

𝛀𝟏(𝒏) ≥ ∑
𝟏

𝒏+ 𝒌
∑
(𝒌− 𝟏)𝟐

𝟐𝒏

𝒏

𝒑=𝟏

𝒏

𝒌=𝟏

≥∑
(𝒌− 𝟏)𝟐

𝟐(𝒏 + 𝒌)

𝒏

𝒌=𝟏

 

Because: 

∑
(𝒑− 𝒌)𝟐

𝒏 + 𝒑

𝒏

𝒑=𝟏

(𝒑 − 𝒌)𝟐 ≥ (𝒌 − 𝟏)𝟐; 𝒑 ≥ 𝟏 𝐚𝐧𝐝 
𝟏

𝒏 + 𝒑
≥
𝟏

𝟐𝒏
; ∀𝒑 ≤ 𝒏 

∑
(𝒌 − 𝟏)𝟐

𝟐𝒏

𝒏

𝒑=𝟏

= 𝒏
(𝒌 − 𝟏)𝟐

𝟐𝒏
=
(𝒌 − 𝟏)𝟐

𝟐
 

𝟏

𝒏 + 𝒌
≥
𝟏

𝟐𝒏
⇒∑

(𝒌 − 𝟏)𝟐

𝟐(𝒏 + 𝒌)

𝒏

𝒌=𝟏

≥∑
(𝒌− 𝟏)𝟐

𝟒𝒏

𝒏

𝒌=𝟏

 

𝛀𝟏(𝒏) ≥ ∑
(𝒌− 𝟏)𝟐

𝟒𝒏

𝒏

𝒌=𝟏

= ∑
𝒌𝟐

𝟒𝒏

𝒏−𝟏

𝒌=𝟎

=
𝟏

𝟏𝟐
𝒏𝟐 −

𝟏

𝟖
𝒏 +

𝟏

𝟐𝟒
 

𝛀𝟐(𝒏) = ∑∑|(
𝟏

𝒏 + 𝒌
−

𝟏

𝒏 + 𝒑
)|

𝒏

𝒑=𝟏

𝒏

𝒌=𝟏

= ∑∑
|𝒑 − 𝒌|

(𝒏 + 𝒑)(𝒏 + 𝒌)

𝒏

𝒑=𝟏

𝒏

𝒌=𝟏

 

⇒ 𝛀𝟐(𝒏) = ∑
𝟏

𝒏 + 𝒌

𝒏

𝒌=𝟏

∑
|𝒑− 𝒌|

𝒏 + 𝒑

𝒏

𝒑=𝟏

≤∑
𝟏

𝒏 + 𝒌

𝒏

𝒌=𝟏

∑
|𝒏− 𝒌|

𝒏 + 𝟏

𝒏

𝒑=𝟏

 

|𝒑 − 𝒌| ≤ |𝒏 − 𝒌| ≤ 𝒏 − 𝟏 and 
𝟏

𝒏+𝒑
≤

𝟏

𝒏+𝟏
 

𝛀𝟐(𝒏) ≤ ∑
𝟏

𝒏 + 𝒌

𝒏

𝒌=𝟏

∑
𝒏−𝒌

𝒏 + 𝟏

𝒏

𝒌=𝟏

≤∑
𝟏

𝒏+ 𝒌

𝒏

𝒌=𝟏

∑
𝒏− 𝟏

𝒏+ 𝟏

𝒏

𝒌=𝟏

≤
𝒏(𝒏 − 𝟏)

𝒏 + 𝟏
∑

𝟏

𝒏+ 𝒌

𝒏

𝒌=𝟏

≤ 

≤
𝒏(𝒏 − 𝟏)

𝒏 + 𝟏
⋅
𝒏

𝒏 + 𝟏
≤

𝒏𝟑

(𝒏 + 𝟏)𝟐
≤ 𝒏 

Therefore, 
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𝛀 = 𝐥𝐢𝐦
𝒏→∞

𝛀𝟏(𝒏)

𝛀𝟐(𝒏)
≥ 𝐥𝐢𝐦
𝒏→∞

𝒏𝟐

𝟏𝟐 −
𝒏
𝟖 +

𝟏
𝟐𝟒

𝒏
= +∞ 

1694. Let 𝑨(𝒙) be the following 𝒏 × 𝒏 real matrix 

𝑨(𝒙) =

(

 
 
 
 

𝒙𝟐

𝟏
𝒙𝟐

𝟏
⋮
𝒙𝟐

𝟏

  

𝟏
𝒙−𝟐

𝟏
𝒙−𝟐

⋮
𝟏
𝒙−𝟐

  

𝒙𝟐

𝟏
𝒙𝟐

𝟏
⋮
𝒙𝟐

𝟏

  

𝟏
𝒙−𝟐

𝟏
𝒙−𝟐

⋮
𝟏
𝒙−𝟐

  

⋯
⋯
⋯
⋯
⋯
⋯
⋯

  

𝒙𝟐

𝟏
𝒙𝟐

𝟏
⋮
𝒙𝟐

𝟏

  

𝟏
𝒙−𝟐

𝟏
𝒙−𝟐

⋮
𝟏
𝒙−𝟐)

 
 
 
 

; 𝒏 − 𝐞𝐯𝐞𝐧 𝐚𝐧𝐝 𝑭(𝒙) = 𝐝𝐞𝐭(𝑰𝒏 + 𝑨(𝒙)) 

Prove that: 

∫
𝟏

(𝟏 − 𝑭(𝒙)) (𝟏 − 𝑭(𝒆
𝝅𝒙𝟐

𝟖 ))

𝒅𝒙

𝒙

∞

𝟎

=
𝝅 − 𝟐 𝐥𝐨𝐠(𝟏 + √𝟐)

𝒏𝟐√𝟐
 

Proposed by Farid Khelili-Algerie 
Solution by proposer 

Let 𝑿 = (𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) ∈ ℝ
𝒏 and ||𝑿||

𝟐
= ∑ 𝒙𝒌𝒙𝒌

𝒏
𝒌=𝟏 . If regard 𝑿 as an element of 

𝑴𝒂𝒕(𝒏 × 𝒏,ℝ), then 𝑿𝑻 ∈ 𝑴𝒂𝒕(𝟏 × 𝒏,ℝ) and 𝑿𝑿𝑻 = (𝒙𝒋𝒙𝒌)𝟏≤𝒋,𝒌≤𝒏 ∈ 𝑴𝒂𝒕
(𝒏,ℝ). Let 

𝑱𝒏 = ∫
𝟏

(𝟏 − 𝑭(𝒙))(𝟏 − 𝑭(𝒆
𝝅𝒙𝟐

𝟖 ))

𝒅𝒙

𝒙

∞

𝟎

 

We claim that: 

𝔸. 𝐝𝐞𝐭(𝑰𝒏 + 𝑿𝑿
𝑻) = 𝟏 + ||𝑿||

𝟐
; ∀𝑿 ∈ ℝ𝒏 

𝔹.𝐝𝐞𝐭(𝑰𝒏 + 𝑨(𝒙)) = 𝟏 +
𝒏

𝟐
(𝒙𝟐 +

𝟏

𝒙𝟐
) ; ∀𝒙 ∈ ℝ∗ 

ℂ. 𝑱𝒏 =
𝟏

𝒏𝟐
∫

𝒅𝒙

(𝟏 + 𝒙𝟐) 𝐜𝐨𝐬𝐡 (
𝝅𝒙
𝟒 )

∞

𝟎

=
𝟒

𝒏𝟐
∑

(−𝟏)𝒎

𝟒𝒎 + 𝟑

∞

𝒎=𝟎

 

Proof of claim 𝔸: Let 𝑬 = (𝟏, 𝟎, … , 𝟎) ∈ ℝ𝒏and 𝑿 = (𝒙𝟏, 𝒙𝟐, … . , 𝒙𝒏) ∈ ℝ
𝒏 such that ||𝑿|| ≠

𝟎, if we regard 𝑿 and 𝑬 as elements of 𝑴𝒂𝒕(𝒏 × 𝟏,ℝ), then there exists an orthogonal 

matrix 𝑹 ∈ 𝑶(𝒏,ℝ), 𝑹𝒕𝑹 = 𝑰𝒏, such that 𝑹𝑿 = ||𝑿||𝑬.  
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Since 𝐝𝐞𝐭(𝑹𝑴𝑹𝑻) = 𝐝𝐞𝐭(𝑴𝑹𝑻𝑹) = 𝐝𝐞𝐭(𝑴), for any 𝑴 ∈ 𝑴𝒂𝒕(𝒏, ℝ), then  

𝐝𝐞𝐭(𝑰𝒏 +𝑿𝑿
𝑻) = 𝐝𝐞𝐭[𝑹(𝑰𝒏 + 𝑿𝑿

𝑻)𝑹𝑻] = 𝐝𝐞𝐭(𝑰𝒏 + (𝑹𝑿)(𝑹𝑿)
𝑻) = 𝐝𝐞𝐭 (𝑰𝒏 + ||𝑿||

𝟐
𝑬𝑬𝑻) 

Since 𝑬𝑬𝑻 is the diagonal matrix 𝒅𝒊𝒂𝒈(𝟏, 𝟎,… , 𝟎), then  

𝑰𝒏 + ||𝑿||
𝟐
𝑬𝑬𝑻 = 𝒅𝒊𝒂𝒈(𝟏 + ||𝑿||

𝟐
, 𝟏,… , 𝟏) and  

𝐝𝐞𝐭(𝑰𝒏 +𝑿𝑿
𝑻) = 𝐝𝐞𝐭 (𝑰𝒏 + ||𝑿||

𝟐
𝑬𝑬𝑻) = 𝟏 + ||𝑿||

𝟐
 

The claim 𝔸 is demonstrated. 

Proof of claim 𝔹: Let 𝑿 = (𝒙,
𝟏

𝒙
, 𝒙,

𝟏

𝒙
, … , 𝒙,

𝟏

𝒙
) ∈ ℝ𝒏, 𝒙 ∈ ℝ and 𝒏 is even, then 

 ||𝑿||
𝟐
=
𝒏

𝟐
(𝒙𝟐 +

𝟏

𝒙𝟐
) and 𝑿𝑿𝑻 = 𝑨(𝒙). It follows from claim 𝔸 that 

𝐝𝐞𝐭(𝑰𝒏 + 𝑨(𝒙)) = 𝐝𝐞𝐭(𝑰𝒏 +𝑿𝑿
𝑻) = 𝟏 + ||𝑿||

𝟐
= 𝟏 +

𝒏

𝟐
(𝒙𝟐 +

𝟏

𝒙𝟐
) 

The claim 𝔹 is demonstrated. 

Proof of claim ℂ:  Let 𝑭(𝒙) = 𝐝𝐞𝐭(𝑰𝒏 + 𝑨(𝒙)), it follows from claim 𝔹 that 

𝟏 − 𝑭(𝒙) = 𝟏 − 𝐝𝐞𝐭(𝑰𝒏 + 𝑨(𝒙)) = −
𝒏

𝟐
(𝒙𝟐 +

𝟏

𝒙𝟐
)  𝐚𝐧𝐝 

𝟏 − 𝑭(𝒆
𝝅𝒙𝟐

𝟖 ) = −
𝒏

𝟐
(𝒆
𝝅𝒙𝟐

𝟒 + 𝒆−
𝝅𝒙𝟐

𝟒 ) = −𝒏𝐜𝐨𝐬𝐡(
𝝅𝒙𝟐

𝟒
) 

Thus, 

𝑱𝒏 = ∫
𝟏

(𝟏 − 𝑭(𝒙))(𝟏 − 𝑭(𝒆
𝝅𝒙𝟐

𝟖 ))

𝒅𝒙

𝒙

∞

𝟎

=
𝟐

𝒏𝟐
∫

𝒙𝒅𝒙

(𝟏 + 𝒙𝟒) 𝐜𝐨𝐬𝐡 (
𝝅𝒙𝟐

𝟒
)

∞

𝟎

=
𝒙𝟐→𝒙

 

=
𝟏

𝒏𝟐
∫

𝒅𝒙

(𝟏 + 𝒙𝟐) 𝐜𝐨𝐬𝐡 (
𝝅𝒙
𝟒 )

∞

𝟎

 

Now, use the partial fraction expansion of 𝐜𝐨𝐬𝐡 (
𝝅𝒙

𝟒
) 

𝟏

𝐜𝐨𝐬𝐡 (
𝝅𝒙
𝟒 )

=
𝟏𝟔

𝝅
∑(−𝟏)𝒎

𝟐𝒎+ 𝟏

𝒙𝟐 + 𝟒(𝟐𝒎+ 𝟏)

∞

𝒎=𝟎

 

To rewrite 𝑱𝒏 as 

𝑱𝒏 =
𝟏𝟔

𝝅𝒏𝟐
∑(−𝟏)𝒎(𝟐𝒎+ 𝟏)

∞

𝒎=𝟎

∫
𝟏

𝟏 + 𝒙𝟐
𝒅𝒙

𝒙𝟐 + 𝟒(𝟐𝒎+ 𝟏)𝟐
𝒅𝒙

∞

𝟎

 

The integral on the right is equal to 
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∫
𝟏

𝟏 + 𝒙𝟐
𝒅𝒙

𝒙𝟐 + 𝟒(𝟐𝒎+ 𝟏)𝟐
𝒅𝒙

∞

𝟎

=
𝝅

𝟒

𝟏

(𝟒𝒎+ 𝟑)(𝟐𝒎+ 𝟏)
 

So, 

𝑱𝒏 =
𝟏

𝒏𝟐
∫

𝒅𝒙

(𝟏 + 𝒙𝟐) 𝐜𝐨𝐬𝐡 (
𝝅𝒙
𝒏 )

∞

𝟎

=
𝟒

𝒏𝟐
∑

(−𝟏)𝒎

𝟒𝒎 + 𝟑

∞

𝒎=𝟎

; (𝟏) 

The claim ℂ  is then demonstrated.The summation on the right of Eq. (1) is equal to  

∑
(−𝟏)𝒎

𝟒𝒎+ 𝟑

∞

𝒎=𝟎

= ∑(−𝟏)𝒎∫ 𝒙𝟒𝒎+𝟐
𝟏

𝟎

𝒅𝒙

∞

𝒎=𝟎

= ∫
𝒙𝟐

𝟏 + 𝒙𝟒
𝒅𝒙

𝟏

𝟎

 

𝑱𝒏 =
𝟒

𝒏𝟐
∑

(−𝟏)𝒎

𝟒𝒎 + 𝟑

∞

𝒎=𝟎

=
𝟒

𝒏𝟐
∫

𝒙𝟐

𝟏 + 𝒙𝟒
𝒅𝒙

𝟏

𝟎

 

Which can be rewritten as 

𝑱𝒏 =
𝟐

𝒏𝟐
∫
𝒙𝟐 − 𝟏

𝟏 + 𝒙𝟒
𝒅𝒙

𝟏

𝟎

+
𝟐

𝒏𝟐
∫
𝒙𝟐 + 𝟏

𝟏 + 𝒙𝟒
𝒅𝒙

𝟏

𝟎

 

𝑱𝒏 =
𝟐

𝒏𝟐
∫

𝟏 + 𝒙−𝟐

(𝒙 + 𝒙−𝟏)𝟐 + 𝟐
𝒅𝒙

𝟏

𝟎

+
𝟐

𝒏𝟐
∫

𝟏− 𝒙−𝟐

(𝒙 + 𝒙−𝟏)𝟐 − 𝟐
𝒅𝒙

𝟏

𝟎

 

Making the change of variable 𝒖 = −(𝒙 − 𝒙−𝟏) in the first integral and 𝒖 = 𝒙 + 𝒙−𝟏 in the 

second integral, one has 

𝑱𝒏 =
𝟐

𝒏𝟐
∫

𝒅𝒖

𝒖𝟐 + 𝟐

∞

𝟎

−
𝟐

𝒏𝟐
∫

𝒅𝒖

𝒖𝟐 − 𝟐

∞

𝟐

=
𝝅

√𝟐𝒏𝟐
−

𝟏

√𝟐𝒏𝟐
𝐥𝐨𝐠(

𝟐 + √𝟐

𝟐 − √𝟐
) 

Therefore, 

∫
𝟏

(𝟏 − 𝑭(𝒙))(𝟏 − 𝑭(𝒆
𝝅𝒙𝟐

𝟖 ))

𝒅𝒙

𝒙

∞

𝟎

=
𝝅 − 𝟐 𝐥𝐨𝐠(𝟏 + √𝟐)

𝒏𝟐√𝟐
 

1695. Find: 

𝛀 = ∫
𝐭𝐚𝐧−𝟏 𝒙

(𝒙 + 𝟏)(𝒙𝟐 + 𝟏)
𝒅𝒙

∞

𝟎

 

Proposed by Vasile Mircea Popa-Romania 
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Solution by Rana Ranino-Setif-Algerie 
 

∫
𝒅𝒙

(𝟏 + 𝒙)(𝟏 + 𝒙𝟐)
=
𝟏

𝟐
∫(

𝟏

𝟏 + 𝒙
+
𝟏 − 𝒙

𝟏 + 𝒙𝟐
)𝒅𝒙 =

𝟏

𝟒
𝐥𝐨𝐠 (

𝒙𝟐 + 𝟐𝒙 + 𝟏

𝒙𝟐 + 𝟏
) +

𝟏

𝟐
𝐭𝐚𝐧−𝟏 𝒙 

𝛀 =
𝑰𝑩𝑷 𝟏

𝟒
[𝐥𝐨𝐠 (

𝒙𝟐 + 𝟐𝒙 + 𝟏

𝒙𝟐 + 𝟏
)𝐭𝐚𝐧−𝟏 𝒙 + 𝟐(𝐭𝐚𝐧−𝟏 𝒙)𝟐]

𝟎

∞

− 

−
𝟏

𝟐
∫

𝐥𝐨𝐠(𝟏 + 𝒙)

𝟏 + 𝒙𝟐

∞

𝟎

𝒅𝒙 +
𝟏

𝟒
∫

𝐥𝐨𝐠(𝟏 + 𝒙𝟐)

𝟏 + 𝒙𝟐
𝒅𝒙

∞

𝟎

−
𝟏

𝟐
∫

𝐭𝐚𝐧−𝟏 𝒙

𝟏 + 𝒙𝟐
𝒅𝒙

∞

𝟎

= 

=
𝝅𝟐

𝟖
−
𝑨

𝟐
+
𝑩

𝟒
−
𝑪

𝟐
 

𝑨 = ∫
𝐥𝐨𝐠(𝟏 + 𝒙)

𝟏 + 𝒙𝟐

∞

𝟎

𝒅𝒙 = ∫ ∫
𝒙

(𝟏 + 𝒙𝒚)(𝟏 + 𝒙𝟐)
𝒅𝒙𝒅𝒚

∞

𝟎

𝟏

𝟎

= 

= ∫
𝟏

𝟏 + 𝒚𝟐

𝟏

𝟎

∫ (
𝒙 + 𝒚

𝟏 + 𝒙𝟐
−

𝒚

𝟏 + 𝒙𝒚
)𝒅𝒙𝒅𝒚

∞

𝟎

= 

= ∫
𝒅𝒚

𝟏 + 𝒚𝟐

𝟏

𝟎

[𝒚 ⋅ 𝐭𝐚𝐧−𝟏 𝒙 +
𝟏

𝟐
𝐥𝐨𝐠(

𝟏 + 𝒙𝟐

𝟏 + 𝟐𝒙𝒚 + 𝒙𝟐𝒚𝟐
)]
𝟎

∞

= 

=
𝝅

𝟐
∫

𝒚

𝟏 + 𝒚𝟐
𝒅𝒚

𝟏

𝟎

−
𝟏

𝟐
∫

𝐥𝐨𝐠 𝒚

𝟏 + 𝒚𝟐
𝒅𝒚

𝟏

𝟎

=
𝝅

𝟒
𝐥𝐨𝐠 𝟐 +

𝑮

𝟐
 

𝑩 = ∫
𝐥𝐨𝐠(𝟏 + 𝒙𝟐)

𝟏 + 𝒙𝟐
𝒅𝒙

∞

𝟎

=
𝒙=𝐭𝐚𝐧 𝜽

− 𝟐∫ 𝐥𝐨𝐠(𝐜𝐨𝐬𝜽)

𝝅
𝟐

𝟎

𝒅𝜽 = 𝝅 𝐥𝐨𝐠𝟐 

𝑪 = ∫
𝐭𝐚𝐧−𝟏 𝒙

𝟏 + 𝒙𝟐
𝒅𝒙

∞

𝟎

=
𝟏

𝟐
(𝐭𝐚𝐧−𝟏∞)𝟐 =

𝝅𝟐

𝟖
 

𝛀 = ∫
𝐭𝐚𝐧−𝟏 𝒙

(𝒙 + 𝟏)(𝒙𝟐 + 𝟏)
𝒅𝒙

∞

𝟎

=
𝝅𝟐

𝟏𝟔
+
𝝅

𝟖
𝐥𝐨𝐠 𝟐 −

𝑮

𝟐
 

1696. In ∆𝑨𝑩𝑪,𝝎 = 𝒕𝒂𝒏−𝟏 (√
𝒓𝒓𝒂

𝒓𝒃𝒓𝒄
) + 𝒕𝒂𝒏−𝟏 (√

𝒓𝒓𝒃

𝒓𝒄𝒓𝒂
) + 𝒕𝒂𝒏−𝟏 (√

𝒓𝒓𝒄

𝒓𝒂𝒓𝒃
). Find: 

𝛀 = ∫
𝟑𝒔𝒊𝒏𝟐𝒙 + 𝒄𝒐𝒔𝒙 + 𝟐

𝒔𝒊𝒏𝒙 + 𝒄𝒐𝒔𝒙 + 𝟕
𝒅𝒙

𝝎

𝟎

 

Proposed by Daniel Sitaru-Romania 
 



 
www.ssmrmh.ro 

162 RMM-CALCULUS MARATHON 1601-1700 

 

Solution 1 by Ravi Prakash-New Delhi-India 

√
𝒓𝒓𝒂
𝒓𝒃𝒓𝒄

= √

𝑭𝟐

𝒔(𝒔 − 𝒂)

𝑭𝟐

(𝒔 − 𝒃)(𝒔 − 𝒄)

= √
(𝒔 − 𝒃)(𝒔 − 𝒄)

𝒔(𝒔 − 𝒂)
= 𝐭𝐚𝐧

𝑨

𝟐
 

𝐭𝐚𝐧−𝟏√
𝒓𝒓𝒂
𝒓𝒃𝒓𝒄

+ 𝐭𝐚𝐧−𝟏√
𝒓𝒓𝒃
𝒓𝒄𝒓𝒂

+ 𝐭𝐚𝐧−𝟏√
𝒓𝒓𝒄
𝒓𝒂𝒓𝒃

=
𝑨

𝟐
+
𝑩

𝟐
+
𝑪

𝟐
=
𝝅

𝟐
 

𝛀 = ∫
𝟑𝐬𝐢𝐧𝟐 𝒙 + 𝐜𝐨𝐬 𝒙 + 𝟐

𝐬𝐢𝐧𝒙 + 𝐜𝐨𝐬 𝒙 + 𝟕

𝝅
𝟐

𝟎

𝒅𝒙; (𝟏) 

𝛀 = ∫
𝟑𝐜𝐨𝐬𝟐 𝒙 + 𝐬𝐢𝐧𝒙 + 𝟐

𝐜𝐨𝐬 𝒙 + 𝐬𝐢𝐧𝒙 + 𝟕
𝒅𝒙

𝝅
𝟐

𝟎

; (𝟐) 

By adding (1) and (2), we get: 

𝟐𝛀 = ∫
𝟑 + 𝐜𝐨𝐬 𝒙 + 𝐬𝐢𝐧 𝒙 + 𝟒

𝐜𝐨𝐬 𝒙 + 𝐬𝐢𝐧 𝒙 + 𝟕
𝒅𝒙

𝝅
𝟐

𝟎

=
𝝅

𝟐
 

Therefore, 

𝛀 = ∫
𝟑𝐬𝐢𝐧𝟐 𝒙 + 𝐜𝐨𝐬 𝒙 + 𝟐

𝐬𝐢𝐧𝒙 + 𝐜𝐨𝐬 𝒙 + 𝟕

𝝅
𝟐

𝟎

𝒅𝒙 =
𝝅

𝟒
 

Solution 2 by Syed Shahabudeen-Kerala-India 

𝝎 =∑𝐭𝐚𝐧−𝟏√
𝒓𝒓𝒂
𝒓𝒃𝒓𝒄

𝒄𝒚𝒄

=∑𝐭𝐚𝐧−𝟏 (√
(𝒔 − 𝒃)(𝒔 − 𝒄)

𝒔(𝒔 − 𝒂)
)

𝒄𝒚𝒄

= 

=∑𝐭𝐚𝐧−𝟏 (𝐭𝐚𝐧 (
𝑨

𝟐
))

𝒄𝒚𝒄

=
𝟏

𝟐
∑𝑨

𝒄𝒚𝒄

=
𝝅

𝟐
⇒ 𝝎 =

𝝅

𝟐
 

𝛀 = ∫
𝟑𝐬𝐢𝐧𝟐 𝒙 + 𝐜𝐨𝐬 𝒙 + 𝟐

𝐬𝐢𝐧𝒙 + 𝐜𝐨𝐬 𝒙 + 𝟕

𝝅
𝟐

𝟎

𝒅𝒙 

𝟐𝛀 = ∫ 𝒅𝒙

𝝅
𝟐

𝟎

 

Therefore, 
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𝛀 = ∫
𝟑𝐬𝐢𝐧𝟐 𝒙 + 𝐜𝐨𝐬 𝒙 + 𝟐

𝐬𝐢𝐧𝒙 + 𝐜𝐨𝐬 𝒙 + 𝟕

𝝅
𝟐

𝟎

𝒅𝒙 =
𝝅

𝟒
 

1697. Prove that: 

∫
(𝐭𝐚𝐧−𝟏 𝒙)𝟓

(𝟏 + 𝒙)(𝟏 + 𝒙𝟐)
𝒅𝒙

𝟏

𝟎

=
𝟐𝟐𝟓𝝅

𝟐𝟓𝟔
𝜻(𝟓) +

𝝅𝟔

𝟒𝟗𝟏𝟓𝟐
−
𝟏𝟓𝝅𝟑

𝟓𝟏𝟐
𝜻(𝟑) +

𝝅𝟓

𝟐𝟎𝟒𝟖
𝐥𝐨𝐠 𝟐 + 

+
𝟏

𝟐𝟔𝟐𝟏𝟒𝟒
(𝝍𝟓 (

𝟑

𝟒
) − 𝝍𝟓 (

𝟏

𝟒
)) 

where 𝜻 is Zeta function and 𝝍𝒏(𝒛) is 𝒏𝒕𝒉 polygamma function. 

Proposed by Naren Bhandari-Bajura-Nepal 
Solution by Rana Ranino-Setif-Algerie 

𝛀 = ∫
(𝐭𝐚𝐧−𝟏 𝒙)𝟓

(𝟏 + 𝒙)(𝟏 + 𝒙𝟐)
𝒅𝒙

𝟏

𝟎

=
𝒙=𝐭𝐚𝐧 𝒙

∫
𝒙𝟓

𝟏 + 𝐭𝐚𝐧𝒙
𝒅𝒙

𝝅
𝟒

𝟎

=
𝑰𝑩𝑷

 

=
𝟏

𝟐
[𝒙𝟔 + 𝒙𝟓 𝐥𝐨𝐠(𝐬𝐢𝐧 𝒙 + 𝐜𝐨𝐬 𝒙)]

𝟎

𝝅
𝟒 −

𝟓

𝟐
∫ 𝒙𝟒 𝐥𝐨𝐠(𝐬𝐢𝐧 𝒙 + 𝐜𝐨𝐬 𝒙)

𝝅
𝟒

𝟎

𝒅𝒙 

𝛀 =
𝝅𝟔

𝟒𝟗𝟏𝟓𝟐
−
𝟓

𝟐
∫ 𝒙𝟒 𝐥𝐨𝐠 (𝐜𝐨𝐬 (

𝝅

𝟒
− 𝒙))𝒅𝒙

𝝅
𝟒

𝟎

=
𝝅𝟔

𝟒𝟗𝟏𝟓𝟐
−
𝟓

𝟐
∫ (

𝝅

𝟒
− 𝒙)

𝟒

𝐥𝐨𝐠(𝐜𝐨𝐬 𝒙)𝒅𝒙

𝝅
𝟒

𝟎

 

𝛀 =
𝝅𝟔

𝟒𝟗𝟏𝟓𝟐
+
𝟓

𝟐
𝐥𝐨𝐠 𝟐∫ (

𝝅

𝟒
− 𝒙)

𝟒

𝒅𝒙

𝝅
𝟒

𝟎

+
𝟓

𝟐
∑
(−𝟏)𝒏

𝒏

∞

𝒏=𝟏

∫ (
𝝅

𝟒
− 𝒙)

𝟒
𝝅
𝟒

𝟎

𝐜𝐨𝐬(𝟐𝒏𝒙)𝒅𝒙 

∫ (
𝝅

𝟒
− 𝒙)

𝟒
𝝅
𝟒

𝟎

𝒅𝒙 = ∫ 𝒙𝟒
𝝅
𝟒

𝟎

𝒅𝒙 =
𝝅𝟓

𝟓𝟏𝟐𝟎
 

∫ (
𝝅

𝟒
− 𝒙)

𝟒
𝝅
𝟒

𝟎

𝐜𝐨𝐬(𝟐𝒏𝒙)𝒅𝒙 = 

= [(
𝟑

𝟒𝒏𝟓
−
𝟑 (
𝝅
𝟒 − 𝒙)

𝟐

𝟐𝒏𝟑
+
𝟑(
𝝅
𝟒 − 𝒙)

𝟒

𝟐𝒏
)𝐬𝐢𝐧(𝟐𝒏𝒙) − (

(
𝝅
𝟒 − 𝒙)

𝟑

𝒏𝟐
−
𝟑(
𝝅
𝟒 − 𝒙)

𝟐𝒏𝟒
)𝐜𝐨𝐬(𝟐𝒏𝒙)]

𝟎

𝝅
𝟒

 

=
𝟑

𝟒𝒏𝟓
𝐬𝐢𝐧 (

𝒏𝝅

𝟐
) +

𝝅𝟑

𝟔𝟒𝒏𝟐
−
𝟑𝝅

𝒏𝟒
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𝛀 =
𝝅𝟔

𝟒𝟗𝟏𝟓𝟐
+
𝝅𝟓

𝟐𝟎𝟒𝟖
𝐥𝐨𝐠 𝟐 +

𝟓𝝅𝟑

𝟏𝟐𝟖
∑
(−𝟏)𝒏

𝒏𝟓

∞

𝒏=𝟏

+
𝟏𝟓

𝟖
∑
(−𝟏)𝒏 𝐬𝐢𝐧 (

𝒏𝝅
𝟐 )

𝒏𝟔

∞

𝒏=𝟏

 

𝛀 =
𝝅𝟔

𝟒𝟗𝟏𝟓𝟐
+
𝝅𝟓

𝟐𝟎𝟒𝟖
𝐥𝐨𝐠𝟐 −

𝟓𝝅𝟑

𝟏𝟐𝟖
𝜻(𝟑) +

𝟐𝟐𝟓𝝅

𝟐𝟓𝟔
 𝜻(𝟓) −

𝟏𝟓

𝟖
∑

(−𝟏)𝒏

(𝟐𝒏 + 𝟏)𝟔

∞

𝒏=𝟎

 

∑
(−𝟏)𝒏

(𝟐𝒏 + 𝟏)𝟔

∞

𝒏=𝟎

=
𝟏

𝟒𝟎𝟗𝟔
∑(

𝟏

(𝒏 +
𝟏
𝟒
)
𝟔 −

𝟏

(𝒏 +
𝟑
𝟒
)
𝟔)

∞

𝒏=𝟎

= −
𝟏

𝟒𝟗𝟏𝟓𝟐𝟎
(𝝍𝟓 (

𝟑

𝟒
) − 𝝍𝟓 (

𝟏

𝟒
)) 

Therefore, 

∫
(𝐭𝐚𝐧−𝟏 𝒙)𝟓

(𝟏 + 𝒙)(𝟏 + 𝒙𝟐)
𝒅𝒙

𝟏

𝟎

=
𝟐𝟐𝟓𝝅

𝟐𝟓𝟔
𝜻(𝟓) +

𝝅𝟔

𝟒𝟗𝟏𝟓𝟐
−
𝟏𝟓𝝅𝟑

𝟓𝟏𝟐
𝜻(𝟑) +

𝝅𝟓

𝟐𝟎𝟒𝟖
𝐥𝐨𝐠 𝟐 + 

+
𝟏

𝟐𝟔𝟐𝟏𝟒𝟒
(𝝍𝟓 (

𝟑

𝟒
) − 𝝍𝟓 (

𝟏

𝟒
)) 

1698. Let the matrix: 𝑹(𝒙) =

(

  
 
𝒆−𝝅𝒙 𝒆−

𝝅

𝒙

𝒆−
𝝅

𝒙 𝒆−𝒊𝝅𝒙
𝒆−𝝅𝒙 𝒆−

𝒊𝝅

𝒙

𝒆−
𝒊𝝅

𝒙 𝒆−𝝅𝒙

𝒆−𝒊𝝅𝒙 𝒆−
𝒊𝝅

𝒙

𝒆−
𝒊𝝅

𝒙 𝒆−𝝅𝒙
𝒆−𝝅𝒙 𝒆−

𝝅

𝒙

𝒆−
𝝅

𝒙 𝒆−𝒊𝝅𝒙)

  
 

 then prove that 

∫ 𝒆−𝝅𝒙
𝟐
𝑻𝒓[𝑹(𝒙) ⊗ 𝑹(𝒊𝒙)]

∞

−∞

𝒅𝒙 = 𝟒(𝟏 + 𝒆−𝝅) 

where 𝑻𝒓 is trace and  ⊗ is the Kronecker Product 

Proposed by Srinivasa Raghava-AIRMC-India 
Solution by Mohammad Rostami-Afghanistan 

𝛀 = 𝑻𝒓

[
 
 
 
 
 𝒆−𝝅𝒙𝑹(𝒊𝒙) 𝒆−

𝝅
𝒙𝑹(𝒊𝒙)

𝒆−
𝝅
𝒙𝑹(𝒊𝒙) 𝒆−𝒊𝝅𝒙𝑹(𝒊𝒙)

𝒆−𝝅𝒙𝑹(𝒊𝒙) 𝒆−
𝒊𝝅
𝒙 𝑹(𝒊𝒙)

𝒆−
𝒊𝝅
𝒙 𝑹(𝒊𝒙) 𝒆−𝝅𝒙𝑹(𝒊𝒙)

𝒆−𝒊𝝅𝒙𝑹(𝒊𝒙) 𝒆−
𝒊𝝅
𝒙 𝑹(𝒊𝒙)

𝒆−
𝒊𝝅
𝒙 𝑹(𝒊𝒙) 𝒆−𝝅𝒙𝑹(𝒊𝒙)

𝒆−𝝅𝒙𝑹(𝒊𝒙) 𝒆−
𝝅
𝒙𝑹(𝒊𝒙)

𝒆−
𝝅
𝒙𝑹(𝒊𝒙) 𝒆−𝒊𝝅𝒙𝑹(𝒊𝒙)]

 
 
 
 
 

= 

=∑𝒂𝒊𝒊

𝟏𝟔

𝒊=𝟏

= 𝒂𝟏𝟏 + 𝒂𝟐𝟐 +⋯+ 𝒂𝟏𝟔𝟏𝟔 = 

= 𝟐[𝟐𝒆−(𝟏+𝒊)𝝅𝒙 + 𝟐] + 𝟐[𝟐𝒆−𝟐𝒊𝝅𝒙 + 𝟐𝒆(𝟏−𝒊)𝝅𝒙] 
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𝑰 = ∫ 𝒆−𝝅𝒙
𝟐
⋅ 𝛀

∞

−∞

𝒅𝒙 = 𝟒∫ 𝒆−𝝅[𝒙
𝟐+(𝟏+𝒊)𝒙]

∞

−∞

𝒅𝒙 + 𝟖∫ 𝒆−𝝅𝒙
𝟐

∞

𝟎

𝒅𝒙 + 

+𝟒∫ 𝒆−𝝅(𝒙
𝟐+𝟐𝒊𝒙)

∞

−∞

𝒅𝒙 + 𝟒∫ 𝒆−𝝅[𝒙
𝟐+(𝒊−𝟏)𝒙]

∞

−∞

𝒅𝒙 = 

= 𝟒∫ 𝒆
−𝝅[(𝒙+

𝟏+𝒊
𝟐
)
𝟐

−
𝒊
𝟐
]∞

−∞

𝒅𝒙 + 𝟖 [
𝟏

𝟐𝝅
√𝝅𝚪 (

𝟏

𝟐
)] + 𝟒∫ 𝒆−𝝅[(𝒙+𝒊)

𝟐+𝟏]
∞

−∞

𝒅𝒙

+ 𝟒∫ 𝒆
−𝝅[(𝒙+

𝒊−𝟏
𝟐
)
𝟐

+
𝒊
𝟐
]∞

−∞

𝒅𝒙 = 

= 𝟒𝒆𝒊
𝝅
𝟐 ∫ 𝒆−𝝅𝒖

𝟐
∞

∞

𝒅𝒖 + 𝟖 ⋅
𝟏

𝟐𝝅
√𝝅√𝝅 + 𝟒𝒆−𝝅∫ 𝒆−𝝅𝒖

𝟐
∞

−∞

𝒅𝒖 + 𝟒𝒆−𝒊
𝝅
𝟐 ∫ 𝒆−𝝅𝒖

𝟐
∞

−∞

𝒅𝒖 = 

= 𝟒𝒊(𝟐 ⋅
𝟏

𝟐𝝅
√𝝅𝚪 (

𝟏

𝟐
)) + 𝟒 + 𝟒𝒆−𝝅 (𝟐 ⋅

𝟏

𝟐𝝅
√𝝅𝚪 (

𝟏

𝟐
)) − 𝟒𝒊 (𝟐 ⋅

𝟏

𝟐𝝅
√𝝅𝚪(

𝟏

𝟐
)) = 

= 𝟒𝒊 + 𝟒 + 𝟒𝒆−𝝅 − 𝟒𝒊 = 𝟒(𝟏 + 𝒆−𝝅) 

𝑰 = 𝟒(𝟏 + 𝒆−𝝅) 

1699. Let (𝒙𝒏)𝒏≥𝟏 and (𝒚𝒏)𝒏≥𝟏 be sequences of real numbers defined as 

𝒙𝒏 = ∑𝐬𝐢𝐧 (
𝟏

𝒌
)

𝒏

𝒌=𝟏

+ 𝐥𝐨𝐠 (𝐬𝐢𝐧
𝟏

𝒏
) , 𝒚𝒏 = ∑ [√𝒌 +

𝟏

𝟐
]

𝒏𝟐+𝒏

𝒌=𝟏

 

then prove that 𝐥𝐢𝐦
𝒏→∞

𝒏𝟑𝒙𝒏

𝒚𝒏
= 𝜸, where 𝜸 is Euler Mascheroni constant and [⋅] is 

greatest integer function. 
Proposed by Naren Bhandari-Bajura-Nepal 

Solution by Kamel Gandouli Rezgui-Tunisia 

𝒚𝒏 = ∑ [√𝒌 +
𝟏

𝟐
]

𝒏𝟐+𝒏

𝒌=𝟏

=∑[√𝒌 +
𝟏

𝟐
]

𝟐

𝒌=𝟏

+∑[√𝒌+
𝟏

𝟐
]

𝟔

𝒌=𝟑

+∑[√𝒌+
𝟏

𝟐
]

𝟏𝟐

𝒌=𝟕

+ 

+ ∑ [√𝒌+
𝟏

𝟐
]

𝟐𝟎

𝒌=𝟏𝟑

+ ∑ [√𝒌 +
𝟏

𝟐
]

𝟑𝟎

𝒌=𝟐𝟏

+⋯ = 

=∑ ∑ [√𝒌+
𝟏

𝟐
]

𝒊𝟐+𝒊

𝒌=𝒊𝟐−𝒊+𝟏

𝒏

𝒊=𝟏

=∑ ∑ 𝒊

𝒊𝟐+𝒊

𝒌=𝒊𝟐−𝒊+𝟏

𝒏

𝒌=𝟏

=∑𝟐𝒊𝟐
𝒏

𝒊=𝟏

=
𝒏(𝒏 + 𝟏)(𝟐𝒏+ 𝟏)

𝟑
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Let 𝒇(𝒙) = 𝐬𝐢𝐧
𝟏

𝒙
−
𝟏

𝒙
+

𝟏

𝟑𝒙
−
𝟏

𝟑
𝐥𝐨𝐠 (

𝒙+𝟐

𝒙+𝟏
) ≥ 𝟎 and 𝒈(𝒙) = 𝐬𝐢𝐧

𝟏

𝒙
−
𝟏

𝒙
+

𝟏

𝟑𝒙
−
𝟏

𝟑
𝐥𝐨𝐠

𝒙

𝒙−𝟏
≤ 𝟎, 

then 

∑(−
𝟏

𝟑𝒌
−
𝟏

𝟑
𝐥𝐨𝐠 (

𝟐 + 𝒌

𝒌 + 𝟏
))

𝒏

𝒌=𝟏

≤∑(𝐬𝐢𝐧
𝟏

𝒌
−
𝟏

𝒌
)

𝒏

𝒌=𝟏

≤∑(−
𝟏

𝟑𝒌
−
𝟏

𝟑
𝐥𝐨𝐠 (

𝒌

𝒌 − 𝟏
))

𝒏

𝒌=𝟏

 

−
𝟏

𝟑
(𝑯𝒏(𝐥𝐨𝐠𝒏 + 𝟐)) ≤ ∑(𝐬𝐢𝐧

𝟏

𝒌
−
𝟏

𝒌
)

𝒏

𝒌=𝟏

≤ −
𝟏

𝟑
(𝑯𝒏 − 𝐥𝐨𝐠 𝒏) 

⇒∑(𝐬𝐢𝐧
𝟏

𝒌
−
𝟏

𝒌
)

∞

𝒌=𝟏

= −
𝜸

𝟑
 

𝒙𝒏 =∑𝐬𝐢𝐧 (
𝟏

𝒌
)

𝒏

𝒌=𝟏

+ 𝐥𝐨𝐠 (𝐬𝐢𝐧
𝟏

𝒏
) =∑𝐬𝐢𝐧 (

𝟏

𝒌
)

𝒏

𝒌=𝟏

+ 𝐥𝐨𝐠 𝒏 + 𝐥𝐨𝐠 (𝐬𝐢𝐧
𝟏

𝒏
) − 𝐥𝐨𝐠 𝒏 = 

= ∑(𝐬𝐢𝐧
𝟏

𝒌
−
𝟏

𝒌
)

𝒏

𝒌=𝟏

+ 𝐥𝐨𝐠𝒏 + 𝐥𝐨𝐠 (𝐬𝐢𝐧
𝟏

𝒏
) − 𝐥𝐨𝐠𝒏 +𝑯𝒏 

⇒ 𝐥𝐢𝐦
𝒏→∞

𝒙𝒏 = −
𝜸

𝟑
+ 𝐥𝐢𝐦
𝒏→∞

(𝐥𝐨𝐠𝒏 + 𝐥𝐨𝐠 (𝐬𝐢𝐧
𝟏

𝒏
)) + 𝐥𝐢𝐦

𝒏→∞
(− 𝐥𝐨𝐠 𝒏 +𝑯𝒏) = 

= −
𝜸

𝟑
+ 𝜸 =

𝟐

𝟑
𝜸 

∵ 𝐥𝐢𝐦
𝒏→∞

(𝐥𝐨𝐠𝒏 + 𝐥𝐨𝐠 (𝐬𝐢𝐧
𝟏

𝒏
)) = 𝐥𝐢𝐦

𝒏→∞
𝐥𝐨𝐠

𝐬𝐢𝐧
𝟏
𝒏
𝟏
𝒏

= 𝐥𝐨𝐠𝟏 = 𝟎 

Therefore, 

𝐥𝐢𝐦
𝒏→∞

𝒏𝟑𝒙𝒏
𝒚𝒏

= 𝜸 

1700. Prove that: 

∑∑ (
𝟐𝒏

𝒏
)(
𝟐𝒎

𝒎
)

∞

𝒎=𝟎

𝒎+𝒏 + 𝟑

𝟖𝒎+𝒏(𝒎 + 𝒏 + 𝟐)𝟑

∞

𝒏=𝟎

= 

=
𝟕

𝟐
𝜻(𝟑) +

𝝅𝟐

𝟑
+
𝟐

𝟑
𝐥𝐨𝐠𝟑(𝟐) − 𝟐 𝐥𝐨𝐠𝟐(𝟐) −

𝝅𝟐

𝟑
𝐥𝐨𝐠(𝟐) − 𝟒 

Proposed by Syed Shahabudeen-India  
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Solution by Naren Bhandari-Bajura-Nepal 

Let 𝑺 be the sum and since 

𝒎+ 𝒏+ 𝟑

(𝒎+ 𝒏 + 𝟐)𝟑
=

𝟏

(𝒎+ 𝒏+ 𝟐)𝟐
+

𝟏

(𝒎 + 𝒏 + 𝟐)𝟑
= 

= ∫ 𝒙𝒎+𝒏+𝟏 (− 𝐥𝐨𝐠 𝒙 +
𝐥𝐨𝐠𝟐 𝒙

𝟐
)𝒅𝒙

𝟏

𝟎

 

𝑺 = ∑∑ (
𝟐𝒏

𝒏
) (
𝟐𝒎

𝒎
)

∞

𝒎=𝟎

𝟏

𝟖𝒎+𝒏

∞

𝒏=𝟎

∫ 𝒙𝒎+𝒏+𝟏 (− 𝐥𝐨𝐠 𝒙 +
𝐥𝐨𝐠𝟐 𝒙

𝟐
)𝒅𝒙

𝟏

𝟎

= 𝑺𝟏 + 𝑺𝟐 

It is easy to see: 

∑ (
𝟐𝒎

𝒎
)(
𝟐𝒏

𝒏
)𝒙𝒏+𝒎

𝒎,𝒏≥𝟎

= (∑(
𝟐𝒋

𝒋
) 𝒚𝒋

𝒋≥𝟎

)

𝟐

=
𝟏

𝟏 − 𝟒𝒚
 

for |𝒙| ≤
𝟏

𝟒
 we used then generating function of central binomial coefficients, 

namely  

∑(
𝟐𝒏

𝒏
)𝒚𝒏

𝒏≥𝟎

=
𝟏

√𝟏 − 𝟒𝒚
 

Putting 𝒚 =
𝟏

𝟖
, we see that  

𝑺𝟏 + 𝑺𝟐 = −∫
𝒙 𝐥𝐨𝐠 𝒙

𝟏 −
𝒙
𝟐

𝒅𝒙
𝟏

𝟎

+
𝟏

𝟐
∫
𝒙 𝐥𝐨𝐠𝟐 𝒙

𝟏 −
𝒙
𝟐

𝒅𝒙
𝟏

𝟎

= 

=∑
𝟏

𝟐𝒏−𝟏
(−

𝟏

(𝒏 + 𝟏)𝟐
+

𝟏

𝟐(𝒏 + 𝟏)𝟑
)

𝒏≥𝟏

= −𝟐 + 𝟒𝑳𝒊𝟐 (
𝟏

𝟐
) − 𝟐 + 𝟒𝑳𝒊𝟑 (

𝟏

𝟐
) 

∵ 𝑳𝒊𝟐 (
𝟏

𝟐
) =

𝝅𝟐

𝟏𝟐
−
𝟏

𝟐
𝐥𝐨𝐠𝟐(𝟐)  𝐚𝐧𝐝 𝑳𝒊𝟑 (

𝟏

𝟐
) =

𝟕

𝟖
𝜻(𝟑) −

𝝅𝟐

𝟏𝟐
𝐥𝐨𝐠(𝟐) +

𝐥𝐨𝐠𝟑(𝟑)

𝟔
 

Plugging these values in the latter expression and simplifying gives the announced result.  
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It’s nice to be important but more important it’s to be nice. 

At this paper works a TEAM. 

This is RMM TEAM. 

To be continued! 

Daniel Sitaru 

 

 

 


