

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
ABOUT NAGEL’S AND GERGONNE'S CEVIANS-(IX)

By Bogdan Fuştei-Romania

Edited by Florică Anastase-Romania
In $\triangle A B C, F$-area, R-circumradius, a, b, c-lengths sides and $M, P \in \operatorname{Int}(\triangle A B C)$. The following relationship holds:

$$
a \cdot A P \cdot A M+b \cdot B P \cdot B M+c \cdot C P \cdot C M \geq a b c(G \cdot B e n n e t) ;(1)
$$

Equality holds if and only if P and M are isogonal conjugate.
Let $P=G, G$-centroid, hence

$$
a \cdot A G \cdot A M+b \cdot B G \cdot B M+c \cdot C G \cdot C M \geq a b c
$$

$$
A G=\frac{2}{3} m_{a} ; B G=\frac{2}{3} m_{b} ; C G=\frac{2}{3} m_{c}
$$

$$
a \cdot m_{a} \cdot A M+b \cdot m_{b} \cdot B M+c \cdot m_{c} \cdot C M \geq \frac{3}{2} a b c=\frac{3}{2} \cdot 4 R F=6 R F
$$

So, we get:

$$
\begin{gathered}
a \cdot m_{a} \cdot A M+b \cdot m_{b} \cdot B M+c \cdot m_{c} \cdot C M \geq 6 R F ;(2) \\
2 F=a \cdot h_{a}=b \cdot h_{b}=c \cdot h_{c} \\
\frac{a \cdot m_{a} \cdot A M}{a \cdot h_{a}}+\frac{b \cdot m_{b} \cdot B M}{b \cdot h_{b}}+\frac{c \cdot m_{c} \cdot C M}{c \cdot h_{c}} \geq \frac{2 R F}{2 F} \\
\frac{m_{a}}{h_{a}} \cdot A M+\frac{m_{b}}{h_{b}} \cdot B M+\frac{m_{c}}{h_{c}} \cdot C M \geq 3 R ;(3) \\
\frac{R}{2 r} \geq \frac{m_{a}}{h_{a}}(\text { Panaitopol }) \\
\frac{R}{2 r}(A M+B M+C M) \geq 3 R \Rightarrow A M+B M+C M \geq 6 r ;(4)
\end{gathered}
$$

Let K-intersection point of simmedians. If $P=K, A K=\frac{2 b c}{a^{2}+b^{2}+c^{2}} \cdot m_{a}$, then

$$
\begin{gather*}
\frac{2 a b c}{a^{2}+b^{2}+c^{2}}\left(m_{a} \cdot A M+m_{b} \cdot B M+m_{c} \cdot C M\right) \geq a b c \\
m_{a} \cdot A M+m_{b} \cdot B M+m_{c} \cdot C M \geq \frac{1}{2}\left(a^{2}+b^{2}+c^{2}\right) ; \tag{5}\\
\text { If } P=O \Rightarrow A P=B P=C P=R,
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE www.ssmrmh.ro
 $(a \cdot A M+b \cdot B M+c \cdot C M) \cdot R \geq a b c$ $a \cdot A M+b \cdot B M+c \cdot C M \geq 4 F ;(a b c=4 F) \Rightarrow$
 $$
\begin{equation*} \frac{A M}{h_{a}}+\frac{B M}{h_{b}}+\frac{C M}{h_{c}} \geq 2 \tag{6} \end{equation*}
$$

Let N_{a}-Nagel's point, $A N_{a}=\frac{a \cdot n_{a}}{s}$. If $P=N_{a}$, then:

$$
\frac{a^{2} \cdot n_{a}}{s} \cdot A M+\frac{b^{2} \cdot n_{b}}{s} \cdot B M+\frac{c^{2} \cdot n_{c}}{s} \cdot C M \geq a b c
$$

$$
a^{2} \cdot n_{a} \cdot A M+b^{2} \cdot n_{b} \cdot B M+c^{2} \cdot n_{c} \cdot C M \geq s \cdot a b c
$$

$$
\frac{a \cdot n_{a}}{h_{a}} \cdot A M+\frac{b \cdot n_{b}}{h_{b}} \cdot B M+\frac{c \cdot n_{c}}{h_{c}} \cdot C M \geq 2 R s ;(8)
$$

$$
\frac{n_{a}}{h_{a}} \cdot \frac{A M}{b c}+\frac{n_{b}}{h_{b}} \cdot \frac{B M}{a c}+\frac{n_{c}}{h_{c}} \cdot \frac{C M}{a b} \geq \frac{2 R s}{a b c}=\frac{1}{2 r}
$$

But: $b c=2 R \cdot h_{a}, c a=2 R \cdot h_{b}, a b=2 R \cdot h_{c}$, then:

$$
\begin{equation*}
\frac{n_{a}}{h_{a}^{2}} \cdot A M+\frac{n_{b}}{h_{b}^{2}} \cdot B M+\frac{n_{c}}{h_{c}^{2}} \cdot C M \geq \frac{R}{r} \tag{9}
\end{equation*}
$$

If $P=I, I$-incenter, we have: $A I=\frac{r}{\sin \frac{A}{2}}, a=4 R \cdot \sin \frac{A}{2} \cos \frac{A}{2}$.

$$
\sum_{c y c} 4 R \cdot \sin \frac{A}{2} \cos \frac{A}{2} \cdot \frac{r}{\sin \frac{A}{2}} \cdot A M \geq 4 R F
$$

$$
A M \cdot \cos \frac{A}{2}+B M \cdot \cos \frac{B}{2}+C M \cdot \cos \frac{C}{2} \geq \frac{F}{r}=s ;(10)
$$

Let $\boldsymbol{\Omega}$-be the first Brocard's point and $\boldsymbol{\omega}$-Brocard's angle.then:

$$
\begin{gather*}
A \Omega=2 R \cdot \frac{b}{a} \cdot \sin \omega, B \Omega=2 R \cdot \frac{c}{b} \cdot \sin \omega, C \Omega=2 R \cdot \frac{a}{c} \cdot \sin \omega \\
\sin \omega=\frac{2 F}{\sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}} \\
a \cdot A \Omega \cdot A M+b \cdot B \Omega \cdot B M+c \cdot C \Omega \cdot C M \geq a b c \\
2 R \cdot \sin \omega(b \cdot A M+c \cdot B M+a \cdot C M) \geq a b c=4 R F \\
b \cdot A M+c \cdot C M+a \cdot C M \geq \sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}} ;(11 \tag{11}
\end{gather*}
$$

$$
G_{a} \text {-Gergonne's point, then } A G_{e}=\frac{g_{a}\left(r_{b}+r_{c}\right)}{4 R+r}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro
From Bennet's inequality, we have that:

$$
\begin{gather*}
\sum_{c y c} a \cdot A M \cdot g_{a}\left(r_{b}+r_{c}\right) \geq(4 R+r) a b c ; \\
\quad b c=2 R \cdot h_{a} ; a b c=4 R F \Rightarrow \\
\sum_{c y c} \frac{g_{a}\left(r_{b}+r_{c}\right)}{h_{a}} \cdot A M \geq 2 R(4 R+r) ;(1 \tag{13}
\end{gather*}
$$

If $\boldsymbol{M}=\boldsymbol{\Omega}, \boldsymbol{\Omega}$-the first point of Brocard's, it follows that:

$$
\sum_{c y c} b g_{a}\left(r_{b}+r_{c}\right) \geq(4 R+r) \sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}
$$

$$
\text { If } M \in \operatorname{Int}(\triangle A B C) \text { then: }
$$

$$
A M \cdot \cos \frac{A}{2}+B M \cdot \cos \frac{B}{2}+C M \cdot \cos \frac{C}{2} \geq s
$$

$$
\text { Let } M=\boldsymbol{G} \Rightarrow A \boldsymbol{G}=\frac{2}{3} \boldsymbol{m}_{a} ; \boldsymbol{B} \boldsymbol{G}=\frac{2}{3} \boldsymbol{m}_{b} ; \boldsymbol{C G}=\frac{2}{3} \boldsymbol{m}_{c} \text {, thus, }
$$

$$
m_{a} \cdot \cos \frac{A}{2}+m_{b} \cdot \cos \frac{B}{2}+m_{c} \cdot \cos \frac{C}{2} \geq \frac{3}{2} s ;(15)
$$

If $M=\Omega, \Omega-$ the first point of Brocard's, it follows that:

$$
\begin{gathered}
\frac{b}{a} \cdot \cos \frac{A}{2}+\frac{c}{b} \cdot \cos \frac{B}{2}+\frac{a}{c} \cdot \cos \frac{C}{2} \geq \frac{s}{2 R} \cdot \frac{1}{\sin \omega} \\
\frac{1}{\sin \omega}=\frac{\sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}}{2 F} ; 2 F=2 s r
\end{gathered}
$$

$$
\frac{b}{a} \cdot \cos \frac{A}{2}+\frac{c}{b} \cdot \cos \frac{B}{2}+\frac{a}{c} \cdot \cos \frac{C}{2} \geq \frac{\sqrt{a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}}}{4 R F}
$$

$$
\cos \frac{A}{2}=\frac{s}{\sqrt{s^{2}+r_{a}^{2}}} ; s^{2}=n_{a}^{2}+2 r_{a} h_{a} \Rightarrow \cos \frac{A}{2}=\frac{s}{\sqrt{n_{a}^{2}+r_{a}^{2}+2 r_{a} h_{a}}}
$$

$$
n_{a}^{2}+r_{a}^{2} \geq 2 r_{a} \boldsymbol{h}_{a} \Rightarrow \frac{A M}{\sqrt{s^{2}+r_{a}^{2}}}+\frac{B M}{\sqrt{s^{2}+r_{b}^{2}}}+\frac{C M}{\sqrt{s^{2}+r_{c}^{2}}} \geq 1 \text {; (17) }
$$

$$
\sum_{c y c} \frac{A M}{\sqrt{r_{a}\left(n_{a}+h_{a}\right)}} \geq \sqrt{2} ;(18)
$$

ROMANIAN MATHEMATICAL MAGAZINE
 www.ssmrmh.ro
 Let $M=G$ and from (18), we get:

$$
\begin{equation*}
\sum_{c y c} \frac{m_{a}}{\sqrt{r_{a}\left(n_{a}+h_{a}\right)}} \geq \frac{3 \sqrt{2}}{2} \tag{19}
\end{equation*}
$$

If $M=N_{a} ; A N_{a}=\frac{a \cdot n_{a}}{s}$ and from (18), we get:

$$
\sum_{c y c} \frac{a \cdot n_{a}}{\sqrt{r_{a}\left(n_{a}+h_{a}\right)}} \geq s \sqrt{2}
$$

If $M=N_{a} ; A N_{a}=\frac{a \cdot n_{a}}{s}$ and from (10), we get:

$$
\sum_{c y c} a n_{a} \cdot \cos \frac{A}{2} \geq s^{2}
$$

If $M=G_{e}, G_{e}$-Gergonne's point and from (10), we get:

$$
\sum_{c y c} \frac{g_{a}\left(r_{b}+r_{c}\right)}{4 R+r} \cdot \cos \frac{A}{2} \geq s \Rightarrow \sum_{c y c} g_{a}\left(r_{b}+r_{c}\right) \cos \frac{A}{2} \geq(4 R+r) s
$$

Using $\cos \frac{A}{2}=\frac{s}{\sqrt{s^{2}+r_{a}^{2}}}$ and from (21), (22), we get:
$\sum_{c y c} \frac{a n_{a}}{\sqrt{r_{a}^{2}+s^{2}}} \geq s ;$ (23) and $\sum_{c y c} \frac{g_{a}\left(r_{b}+r_{c}\right)}{\sqrt{r_{a}^{2}+s^{2}}} \geq 4 R+r$;
If $M=G_{e} ; A G_{e}=\frac{g_{a}\left(r_{b}+r_{c}\right)}{4 R+r}$ and using (18), it follows that:

$$
\sum_{c y c} \frac{g_{a}\left(r_{b}+r_{c}\right)}{\sqrt{r_{a}\left(n_{a}+h_{a}\right)}} \geq(4 R+r) \sqrt{2}
$$

Let a, b, c-be lengths sides of a triangle, then the system

$$
\begin{gathered}
x+y=c, y+z=a, z+x=b \text { has unique solution } x=\frac{b+c-a}{2}, y=\frac{a+c-b}{2}, z=\frac{a+b-c}{2} \\
x=s-a ; y=s-b ; z=s-c ; 2 s=a+b+c=2(x+y+z) \\
\cos \frac{A}{2}=\sqrt{\frac{s(s-a)}{b c}}=\sqrt{\frac{x(x+y+z)}{(x+y)(x+z)}} ; x, y, z>0 \\
A M \cdot \cos \frac{A}{2}+B M \cdot \cos \frac{B}{2}+C M \cdot \cos \frac{C}{2} \geq s \Rightarrow
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

$$
\sqrt{x+y+z} \sum_{c y c} A M \sqrt{\frac{x}{\frac{x}{(x+y)(x+z)}}} \geq x+y+z
$$

Finally, for $M \in \operatorname{Int}(\triangle A B C) ; x, y, z>0$, we have:

$$
\begin{gathered}
\sum_{c y c} A M \sqrt{\frac{x}{(x+y)(x+z)}} \geq \sqrt{x+y+z} \\
\cos A \cos B \cos C=\frac{s^{2}-(2 R)}{4 R^{2}}
\end{gathered}
$$

In acute $\triangle A B C, \cos A, \cos B, \cos C \geq 0 \Rightarrow s^{2}-(2 R+r)^{2} \geq 0 \Rightarrow s \geq 2 R+r$. Thus,

$$
\sum_{c y c} A M \cdot \cos \frac{A}{2} \geq 2 R+r ;(27) ;\{\Delta A B C-\text { acute }, M \in \operatorname{Int}(\Delta A B C)\}
$$

$$
\text { In acute } \triangle A B C, M \in \operatorname{Int}(\triangle A B C) \text {, we have: }
$$

$$
\begin{equation*}
\sum_{c y c} \frac{a n_{a}}{h_{a}} \cdot A M \geq 2 R(2 R+r) \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{c y c} m_{a} \cdot \cos \frac{A}{2} \geq \frac{3}{2}(2 R+r) \tag{29}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{c y c} \frac{a n_{a}}{\sqrt{r_{a}\left(n_{a}+h_{a}\right)}} \geq(2 R+r) \sqrt{2} \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{c y c} g_{a}\left(r_{b}+r_{c}\right) \cos \frac{A}{2} \geq(4 R+r)(2 R+r) \tag{31}
\end{equation*}
$$

$$
\begin{gather*}
\sum_{c y c} \frac{a n_{a}}{\sqrt{r_{a}^{2}+s^{2}}} \geq 2 R+r \\
\sum_{c y c} \frac{a n_{a}}{\sqrt{r_{a}^{2}+(2 R+r)^{2}}} \geq s \\
\sum_{c y c} \frac{g_{a}\left(r_{b}+r_{c}\right)}{\sqrt{r_{a}^{2}+(2 R+r)^{2}}} \geq 4 R+r
\end{gather*}
$$

If in $\triangle A B C, A \geq B \geq \frac{\pi}{3} \geq C$, then $s \geq(R+r) \sqrt{3} ; \tan \frac{A}{2}, \tan \frac{B}{2} \geq \frac{\sqrt{3}}{3}$ and $\tan C \leq \frac{\sqrt{3}}{3}$. So,

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\prod_{c y c}\left(\tan \frac{A}{2}-\frac{\sqrt{3}}{3}\right) \leq 0 \Leftrightarrow \prod_{c y c} \tan \frac{A}{2}-\frac{\sqrt{3}}{3} \sum_{c y c} \tan \frac{B}{2} \tan \frac{C}{2}+\frac{1}{3} \sum_{c y c} \tan \frac{A}{2}-\frac{\sqrt{3}}{9} \leq 0 \\
\frac{r}{s}-\frac{\sqrt{3}}{3}+\frac{1}{3} \cdot \frac{4 R+r}{s}-\frac{\sqrt{3}}{9} \leq 0 ; \sum_{c y c} \tan \frac{B}{2} \tan \frac{C}{2}=1 ; \sum_{c y c} \tan \frac{A}{2}=\frac{4 R+r}{s} \Leftrightarrow \\
9 r+3(4 R+r)-4 \sqrt{3} s \leq 0 \Rightarrow s \geq(R+r) \sqrt{3} \\
\text { If in } \triangle A B C, A \geq B \geq \frac{\pi}{3} \geq C, \text { then }
\end{gathered}
$$

$$
\begin{gather*}
\sum_{c y c} A M \cdot \cos \frac{A}{2} \geq(R+r) \sqrt{3} ;(35) \\
\sum_{c y c} \frac{a n_{a}}{h_{a}} \cdot A M \geq 2 R(R+r) \sqrt{3} ;(36) \\
\sum_{c y c} m_{a} \cdot \cos \frac{A}{2} \geq \frac{3 \sqrt{3}}{2}(R+r) ;(37) \\
\sum_{c y c} \frac{a n_{a}}{\sqrt{r_{a}\left(n_{a}+h_{a}\right)}} \geq(R+r) \sqrt{6} ;(38) \\
\sum_{c y c} g_{a}\left(r_{b}+r_{c}\right) \cos \frac{A}{2} \geq(4 R+r)(R+r) \sqrt{3} ;(39) \\
\sum_{c y c} \frac{a n_{a}}{\sqrt{r_{a}^{2}+s^{2}} \geq(R+r) \sqrt{3} ;(40)} \\
\sum_{c y c} \frac{g_{a}\left(r_{b}+r_{c}\right)}{\sqrt{r_{a}^{2}+3(R+r)^{2}} \geq 4 R+r ;(41)} \\
\sum_{c y c} \frac{a n_{a}}{\sqrt{r_{a}^{2}+3(R+r)^{2}}} \geq s ;(42) \tag{42}\\
\sum_{c y c} a n_{a} \cos \frac{A}{2} \geq 3(R+r)^{2} ;(43) \tag{43}\\
\text { In } \Delta A B C \text { the following relationship holds: }
\end{gather*}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\frac{\left(m_{a}+m_{b}+m_{c}\right)^{2}}{a^{2}+b^{2}+c^{2}} \leq 2+\left(\frac{r}{R}\right)^{2} ;(\text { Sun Wen Cai }) \\
\quad\left(m_{a}+m_{b}+m_{c}\right)^{2} \leq \frac{2 R^{2}+r^{2}}{R^{2}}\left(a^{2}+b^{2}+c^{2}\right)
\end{gathered}
$$

Using (26), we can write:

$$
\begin{gathered}
\sum_{c y c} A M \sqrt{\frac{a^{2}}{\left(a^{2}+b^{2}\right)\left(a^{2}+c^{2}\right)}} \geq \sqrt{a^{2}+b^{2}+c^{2}} \\
\sum_{c y c} \frac{a \cdot A M}{\sqrt{\left(a^{2}+b^{2}\right)\left(a^{2}+c^{2}\right)}} \geq \sqrt{\frac{R^{2}}{2 R^{2}+r^{2}}\left(m_{a}+m_{b}+m_{c}\right)^{2}} \\
\sum_{c y c} \frac{a \cdot A M}{\sqrt{\left(a^{2}+b^{2}\right)\left(a^{2}+c^{2}\right)}} \geq \frac{R\left(m_{a}+m_{b}+m_{c}\right)}{\sqrt{2 R^{2}+r^{2}}} \\
\because a=2 R \cdot \sin A
\end{gathered}
$$

$$
\begin{equation*}
\sum_{c y c} \frac{\sin A}{\sqrt{\left(a^{2}+b^{2}\right)\left(a^{2}+c^{2}\right)}} \cdot A M \geq \frac{1}{2} \cdot \frac{m_{a}+m_{b}+m_{c}}{\sqrt{2 R^{2}+r^{2}}} \tag{44}
\end{equation*}
$$

$$
s^{2}=n_{a}^{2}+2 r_{a} h_{a} \Rightarrow s^{2}-n_{a}^{2}=2 r_{a} h_{a} \Rightarrow\left(s+n_{a}\right)\left(s+n_{a}\right)+\frac{2 r_{a} h_{a}}{n_{a}+s}
$$

$$
\Rightarrow 3 s=n_{a}+n_{b}+n_{c}+2 \sum_{c y c} \frac{r_{a} h_{a}}{n_{a}+s} \stackrel{(10)}{\Longrightarrow}
$$

$$
\begin{equation*}
3 \sum_{c y c} A M \cdot \cos \frac{A}{2} \geq n_{a}+n_{b}+n_{c}+2 \sum_{c y c} \frac{r_{a} h_{a}}{n_{a}+s} \tag{45}
\end{equation*}
$$

$$
\begin{equation*}
2 \sum_{c y c} m_{a} \cdot \cos \frac{A}{2} \geq n_{a}+n_{b}+n_{c}+2 \sum_{c y c} \frac{r_{a} h_{a}}{n_{a}+s} \tag{46}
\end{equation*}
$$

$$
3 \sum_{c y c} \frac{a n_{a}}{\sqrt{r_{a}\left(n_{a}+h_{a}\right)}} \geq \sqrt{2}\left(n_{a}+n_{b}+n_{c}+2 \sum_{c y c} \frac{r_{a} h_{a}}{n_{a}+s}\right)
$$

$3 \sum_{c y c} g_{a}\left(r_{b}+r_{c}\right) \cos \frac{A}{2} \geq(4 R+r)\left(n_{a}+n_{b}+n_{c}+2 \sum_{c y c} \frac{r_{a} h_{a}}{n_{a}+s}\right) ;$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gather*}
3 \sum_{c y c} \frac{a n_{a}}{\sqrt{r_{a}^{2}+s^{2}}} \geq n_{a}+n_{b}+n_{c}+2 \sum_{c y c} \frac{r_{a} h_{a}}{n_{a}+s} ;(4 \tag{49}\\
9 \sum_{c y c} a n_{a} \cos \frac{A}{2} \geq\left(n_{a}+n_{b}+n_{c}+2 \sum_{c y c} \frac{n_{a} h_{a}}{n_{a}+s}\right)^{2} ; \tag{50}
\end{gather*}
$$

From (5) and Sun Wen Cai's inequality, we get:

$$
\begin{equation*}
m_{a} A M+m_{b} B M+m_{c} C M \geq \frac{R^{2}}{2\left(2 R^{2}+r^{2}\right)}\left(m_{a}+m_{b}+m_{c}\right) \tag{51}
\end{equation*}
$$

In $\triangle A B C, \Delta A_{1} B_{1} C_{1}, F-$ area of $\triangle A B C, F_{1}-$ area of $\Delta A_{1} B_{1} C_{1}, M \in \operatorname{Int}(\triangle A B C)$, holds:

$$
\begin{gathered}
a_{1} \cdot A M+b_{1} \cdot B M+c_{1} \cdot C M \geq \sqrt{\frac{1}{2} \sum_{c y c} a^{2}\left(b_{1}^{2}+c_{1}^{2}-a_{1}^{2}\right)+8 F F_{1}} ;(\text { Bottem }) \\
\begin{array}{r}
a_{1} \cdot A M+b_{1} \cdot B M+c_{1} \cdot C M \geq \sqrt{\frac{1}{2} \sum_{c y c} a_{1}^{2}\left(b^{2}+c^{2}-a^{2}\right)+8 F F_{1}} ;(\text { Bottema }) \\
b^{2}+c^{2}=n_{a}^{2}+g_{a}^{2}+2 r r_{a} \\
2 r r_{a}=h_{a}(r-a-r) \\
2 F=a h_{a}=b h_{b}=c h_{c}=2 s r \\
r_{a}+r_{b}+r_{c}=4 R+r \\
a^{2}=2 R \cdot \frac{h_{b} h_{c}}{h_{a}} \\
b^{2}+c^{2}=n_{a}^{2}+g_{a}^{2}+2 r r_{a} \geq 2 n_{a} g_{a}+2 r r_{a} \\
b^{2}+c^{2}=2 R h_{a}\left(\frac{h_{b}}{h_{c}}+\frac{h_{c}}{h_{b}}\right) \geq 2 n_{a} g_{a}+h_{a}\left(r_{a}-r\right) \\
\frac{b}{c}+\frac{c}{b} \geq \frac{2 n_{a} g_{a}+h_{a}\left(r_{a}-r\right)}{2 R h_{a}} \Rightarrow \frac{b}{c}+\frac{c}{b} \geq \frac{1}{R}\left(\frac{n_{a} g_{a}}{h_{a}}+\frac{r_{a}-r}{2}\right) \\
\sum_{c y c} \frac{b+c}{a} \geq \frac{1}{R}\left(\sum_{c y c} \frac{n_{a} g_{a}}{h_{a}}+2 R-r\right)
\end{array}
\end{gathered}
$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

$$
\begin{gathered}
\sum_{c y c} \frac{b+c}{a} \geq 2+\frac{1}{R} \sum_{c y c} \frac{n_{a} g_{a}}{h_{a}}-\frac{r}{R} \\
\frac{h_{a}+h_{b}+h_{c}-3 r}{r} \geq 2+\frac{1}{R} \sum_{c y c} \frac{n_{a} g_{a}}{h_{a}}-\frac{r}{R} \\
\frac{h_{a}+h_{b}+h_{c}}{r} \geq \frac{5 R-r}{R}+\frac{1}{R} \sum_{c y c} \frac{n_{a} g_{a}}{h_{a}}
\end{gathered}
$$

$$
\frac{R}{r} \geq \frac{5 R-r+\sum \frac{n_{a} g_{a}}{h_{a}}}{h_{a}+h_{b}+h_{c}}
$$

$$
5 R-r \geq 4 R+r \Rightarrow 5 R-4 R \geq r+r \Rightarrow R \geq 2 r(\text { Euler })
$$

$$
\frac{\boldsymbol{R}}{\boldsymbol{r}} \geq \frac{\boldsymbol{r}_{a}+\boldsymbol{r}_{b}+\boldsymbol{r}_{c}+\sum \frac{n_{a} g_{a}}{\boldsymbol{h}_{a}}}{\boldsymbol{h}_{a}+\boldsymbol{h}_{b}+\boldsymbol{h}_{c}}
$$

$$
\begin{equation*}
g_{a} \geq h_{a} \Rightarrow \frac{R}{r} \geq \frac{r_{a}+r_{b}+r_{c}+n_{a}+n_{b}+n_{c}}{h_{a}+h_{b}+h_{c}} \tag{53}
\end{equation*}
$$

$$
\frac{R}{r} \geq \frac{5 R-r+n_{a}+n_{b}+n_{c}}{h_{a}+h_{b}+h_{c}}
$$

$$
n_{a} g_{a} \geq m_{a} w_{a} \Rightarrow \frac{R}{r} \geq \frac{5 R-r+\sum \frac{m_{a} w_{a}}{h_{a}}}{h_{a}+h_{b}+h_{c}}
$$

$$
\begin{equation*}
\frac{\boldsymbol{R}}{\boldsymbol{r}} \geq \frac{\boldsymbol{r}_{a}+\boldsymbol{r}_{b}+\boldsymbol{r}_{c}+\sum \frac{m_{a} w_{a}}{h_{a}}}{\boldsymbol{h}_{a}+\boldsymbol{h}_{b}+\boldsymbol{h}_{c}} \tag{56}
\end{equation*}
$$

$m_{a} w_{a} \geq s(s-a)=r_{b} r_{c}=\frac{\boldsymbol{h}_{a}}{2}\left(r_{b}+r_{c}\right)$;(Panaitopol)

$$
\begin{equation*}
\frac{R}{r} \geq \frac{5 R-r+r_{a}+r_{b}+r_{c}}{h_{a}+h_{b}+h_{c}}=\frac{9 R}{h_{a}+h_{b}+h_{c}} \tag{57}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{c y c} \frac{n_{a}}{h_{a}^{2}} A M \geq \frac{5 R-r+\sum \frac{n_{a} g_{a}}{h_{a}}}{h_{a}+h_{b}+h_{c}} \tag{58}
\end{equation*}
$$

$$
\begin{aligned}
& \text { ROMANIAN MATHEMATICAL MAGAZINE } \\
& \text { www.ssmrmh.ro } \\
& \sum_{c y c} \frac{n_{a}}{h_{a}^{2}} A M \geq \frac{r_{a}+r_{b}+r_{c}+\sum \frac{n_{a} g_{a}}{h_{a}}}{h_{a}+h_{b}+h_{c}} ;(59) \\
& \sum_{c y c} \frac{n_{a}}{h_{a}^{2}} A M \geq \frac{r_{a}+r_{b}+r_{c}+n_{a}+n_{b}+n_{c}}{h_{a}+h_{b}+h_{c}} ;(60) \\
& \sum_{c y c} \frac{n_{a}}{h_{a}^{2}} A M \geq \frac{5 R-r+n_{a}+n_{b}+n_{c}}{h_{a}+h_{b}+h_{c}} ;(61) \\
& \sum_{c y c} \frac{n_{a}}{h_{a}^{2}} A M \geq \frac{5 R-r+\sum \frac{m_{a} w_{a}}{h_{a}}}{h_{a}+h_{b}+h_{c}} ;(63) \\
& \sum_{c y c} \frac{n_{a}}{h_{a}^{2}} A M \geq \frac{9 R}{h_{a}+h_{b}+h_{c}} ;(64)
\end{aligned}
$$

REFERENCES:

[1]. DANIEL SITARU-A type of useful substitutions in triangle geometrywww.ssmrmh.ro
[2]. 584 G. BENNETT-Multiple triangle inequalities.
[3]. BOGDAN FUŞTEI-About Nagel's and Gergonne's cevian (I-VIII)
[4]. BOGDAN FUŞTEI-Oppenheim's inequality revisited.
[5]. JIAN LIU-On a sharp inequality for the medians of a triangle.
[6]. G.BOTTEMA-Geometric Inequalities.
[7]. ROMANIAN MATHEMATICAL MAGAZINE- www.ssmrmh.ro

