

www.ssmrmh.ro

ABOUT NAGEL'S AND GERGONNE'S CEVIANS-(IX)

By Bogdan Fuştei-Romania

Edited by Florică Anastase-Romania

In $\triangle ABC$, F —area, R —circumradius, a, b, c —lengths sides and M, $P \in Int(\triangle ABC)$.

The following relationship holds:

$$a \cdot AP \cdot AM + b \cdot BP \cdot BM + c \cdot CP \cdot CM \ge abc (G.Bennet); (1)$$

Equality holds if and only if P and M are isogonal conjugate.

Let
$$P = G$$
, G —centroid, hence

$$a \cdot AG \cdot AM + b \cdot BG \cdot BM + c \cdot CG \cdot CM \ge abc$$

$$AG = \frac{2}{3}m_a; BG = \frac{2}{3}m_b; CG = \frac{2}{3}m_c$$

$$a \cdot m_a \cdot AM + b \cdot m_b \cdot BM + c \cdot m_c \cdot CM \ge \frac{3}{2}abc = \frac{3}{2} \cdot 4RF = 6RF$$

So, we get:

$$a \cdot m_a \cdot AM + b \cdot m_b \cdot BM + c \cdot m_c \cdot CM \ge 6RF$$
; (2)

$$2F = a \cdot h_a = b \cdot h_b = c \cdot h_c$$

$$\frac{a \cdot m_a \cdot AM}{a \cdot h_a} + \frac{b \cdot m_b \cdot BM}{b \cdot h_b} + \frac{c \cdot m_c \cdot CM}{c \cdot h_c} \ge \frac{2RF}{2F}$$

$$\frac{m_a}{h_a} \cdot AM + \frac{m_b}{h_b} \cdot BM + \frac{m_c}{h_c} \cdot CM \ge 3R; (3)$$

$$\frac{R}{2r} \ge \frac{m_a}{h_a} (Panaitopol)$$

$$\frac{R}{2r}(AM + BM + CM) \ge 3R \Rightarrow AM + BM + CM \ge 6r; (4)$$

Let K —intersection point of simmedians. If P=K, $AK=rac{2bc}{a^2+b^2+c^2}\cdot m_a$, then

$$\frac{2abc}{a^2+b^2+c^2}(m_a\cdot AM+m_b\cdot BM+m_c\cdot CM)\geq abc$$

$$m_a \cdot AM + m_b \cdot BM + m_c \cdot CM \ge \frac{1}{2}(a^2 + b^2 + c^2); (5)$$

If
$$P = O \Rightarrow AP = BP = CP = R$$
,

www.ssmrmh.ro

$$(a \cdot AM + b \cdot BM + c \cdot CM) \cdot R \ge abc$$

$$a \cdot AM + b \cdot BM + c \cdot CM \ge 4F; (abc = 4F) \Rightarrow$$

$$\frac{AM}{h_a} + \frac{BM}{h_b} + \frac{CM}{h_c} \ge 2; (6)$$

Let N_a -Nagel's point, $AN_a=\frac{a\cdot n_a}{s}$. If $P=N_a$, then:

$$\frac{a^2 \cdot n_a}{s} \cdot AM + \frac{b^2 \cdot n_b}{s} \cdot BM + \frac{c^2 \cdot n_c}{s} \cdot CM \ge abc$$

$$a^2 \cdot n_a \cdot AM + b^2 \cdot n_b \cdot BM + c^2 \cdot n_c \cdot CM \ge s \cdot abc;$$
 (7)

$$\frac{a \cdot n_a}{h_a} \cdot AM + \frac{b \cdot n_b}{h_b} \cdot BM + \frac{c \cdot n_c}{h_c} \cdot CM \ge 2Rs; (8)$$

$$\frac{n_a}{h_a} \cdot \frac{AM}{bc} + \frac{n_b}{h_b} \cdot \frac{BM}{ac} + \frac{n_c}{h_c} \cdot \frac{CM}{ab} \ge \frac{2Rs}{abc} = \frac{1}{2r}$$

But: $bc = 2R \cdot h_a$, $ca = 2R \cdot h_b$, $ab = 2R \cdot h_c$, then:

$$\frac{n_a}{h_a^2} \cdot AM + \frac{n_b}{h_b^2} \cdot BM + \frac{n_c}{h_c^2} \cdot CM \ge \frac{R}{r}; (9)$$

If P=I, I -incenter, we have: $AI=\frac{r}{\sin \frac{A}{2}}$, $\alpha=4R\cdot\sin \frac{A}{2}\cos \frac{A}{2}$.

$$\sum_{cvc} 4R \cdot \sin \frac{A}{2} \cos \frac{A}{2} \cdot \frac{r}{\sin \frac{A}{2}} \cdot AM \ge 4RF;$$

$$AM \cdot \cos \frac{A}{2} + BM \cdot \cos \frac{B}{2} + CM \cdot \cos \frac{C}{2} \ge \frac{F}{r} = s; (10)$$

Let Ω —be the first Brocard's point and ω —Brocard's angle.then:

$$A\Omega = 2R \cdot \frac{b}{a} \cdot \sin \omega$$
, $B\Omega = 2R \cdot \frac{c}{b} \cdot \sin \omega$, $C\Omega = 2R \cdot \frac{a}{c} \cdot \sin \omega$

$$\sin \omega = \frac{2F}{\sqrt{a^2b^2 + b^2c^2 + c^2a^2}}$$

$$a \cdot A\Omega \cdot AM + b \cdot B\Omega \cdot BM + c \cdot C\Omega \cdot CM \ge abc$$

$$2R \cdot \sin \omega (b \cdot AM + c \cdot BM + a \cdot CM) \ge abc = 4RF$$

$$b \cdot AM + c \cdot CM + a \cdot CM \ge \sqrt{a^2b^2 + b^2c^2 + c^2a^2}; (11)$$

$$G_a$$
 —Gergonne's point, then $AG_e=rac{g_a(r_b+r_c)}{4R+r}$

www.ssmrmh.ro

From Bennet's inequality, we have that:

$$\sum_{cyc} a \cdot AM \cdot g_a(r_b + r_c) \ge (4R + r)abc; (12)$$

$$bc = 2R \cdot h_a$$
; $abc = 4RF \Rightarrow$

$$\sum_{c \neq c} \frac{g_a(r_b + r_c)}{h_a} \cdot AM \ge 2R(4R + r); (13)$$

If $M = \Omega$, Ω —the first point of Brocard's, it follows that:

$$\sum_{cyc} bg_a(r_b + r_c) \ge (4R + r)\sqrt{a^2b^2 + b^2c^2 + c^2a^2}; (14)$$

If $M \in Int(\Delta ABC)$ then:

$$AM \cdot \cos \frac{A}{2} + BM \cdot \cos \frac{B}{2} + CM \cdot \cos \frac{C}{2} \ge s$$

Let
$$M=G\Rightarrow AG=rac{2}{3}m_a$$
; $BG=rac{2}{3}m_b$; $CG=rac{2}{3}m_c$, thus,

$$m_a \cdot \cos \frac{A}{2} + m_b \cdot \cos \frac{B}{2} + m_c \cdot \cos \frac{C}{2} \ge \frac{3}{2}s;$$
 (15)

If $M = \Omega$, Ω —the first point of Brocard's, it follows that:

$$\frac{b}{a} \cdot \cos \frac{A}{2} + \frac{c}{b} \cdot \cos \frac{B}{2} + \frac{a}{c} \cdot \cos \frac{C}{2} \ge \frac{s}{2R} \cdot \frac{1}{\sin \omega}$$

$$\frac{1}{\sin \omega} = \frac{\sqrt{a^2b^2 + b^2c^2 + c^2a^2}}{2F}; 2F = 2sr$$

$$\frac{b}{a} \cdot \cos \frac{A}{2} + \frac{c}{b} \cdot \cos \frac{B}{2} + \frac{a}{c} \cdot \cos \frac{C}{2} \ge \frac{\sqrt{a^2b^2 + b^2c^2 + c^2a^2}}{4RF}; (16)$$

$$\cos \frac{A}{2} = \frac{s}{\sqrt{s^2 + r_a^2}}; s^2 = n_a^2 + 2r_a h_a \Rightarrow \cos \frac{A}{2} = \frac{s}{\sqrt{n_a^2 + r_a^2 + 2r_a h_a}}$$

$$n_a^2 + r_a^2 \ge 2r_a h_a \Rightarrow \frac{AM}{\sqrt{s^2 + r_a^2}} + \frac{BM}{\sqrt{s^2 + r_b^2}} + \frac{CM}{\sqrt{s^2 + r_c^2}} \ge 1; (17)$$

$$\sum_{cvc} \frac{AM}{\sqrt{r_a(n_a+h_a)}} \ge \sqrt{2}; (18)$$

www.ssmrmh.ro

Let M = G and from (18), we get:

$$\sum_{c \neq c} \frac{m_a}{\sqrt{r_a(n_a + h_a)}} \ge \frac{3\sqrt{2}}{2}; (19)$$

If $M=N_a$; $AN_a=rac{a\cdot n_a}{s}$ and from (18), we get:

$$\sum_{c \in C} \frac{a \cdot n_a}{\sqrt{r_a(n_a + h_a)}} \ge s\sqrt{2}; (20)$$

If $M=N_a$; $AN_a=\frac{a\cdot n_a}{s}$ and from (10), we get:

$$\sum_{c \neq c} a n_a \cdot \cos \frac{A}{2} \geq s^2; (21)$$

If $M = G_e$, G_e —Gergonne's point and from (10), we get:

$$\sum_{cyc} \frac{g_a(r_b + r_c)}{4R + r} \cdot \cos \frac{A}{2} \ge s \Rightarrow \sum_{cyc} g_a(r_b + r_c) \cos \frac{A}{2} \ge (4R + r)s; (22)$$

Using $\cos \frac{A}{2} = \frac{s}{\sqrt{s^2 + r_a^2}}$ and from (21), (22), we get:

$$\sum_{cvc} \frac{an_a}{\sqrt{r_a^2 + s^2}} \ge s; (23) \text{ and } \sum_{cvc} \frac{g_a(r_b + r_c)}{\sqrt{r_a^2 + s^2}} \ge 4R + r; (24)$$

If $M=G_e$; $AG_e=rac{g_a(r_b+r_c)}{4R+r}$ and using (18), it follows that:

$$\sum_{cyc} \frac{g_a(r_b + r_c)}{\sqrt{r_a(n_a + h_a)}} \ge (4R + r)\sqrt{2}; (25)$$

Let a, b, c —be lengths sides of a triangle, then the system

$$x+y=c, y+z=a, z+x=b$$
 has unique solution $x=\frac{b+c-a}{2}, y=\frac{a+c-b}{2}, z=\frac{a+b-c}{2}$

$$x = s - a$$
; $y = s - b$; $z = s - c$; $2s = a + b + c = 2(x + y + z)$

$$\cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}} = \sqrt{\frac{x(x+y+z)}{(x+y)(x+z)}}; x, y, z > 0$$

$$AM \cdot \cos \frac{A}{2} + BM \cdot \cos \frac{B}{2} + CM \cdot \cos \frac{C}{2} \ge s \Rightarrow$$

www.ssmrmh.ro

$$\sqrt{x+y+z}\sum_{cvc}AM\sqrt{\frac{x}{(x+y)(x+z)}} \ge x+y+z$$

Finally, for $M \in Int(\Delta ABC)$; x, y, z > 0, we have:

$$\sum_{cyc} AM \sqrt{\frac{x}{(x+y)(x+z)}} \ge \sqrt{x+y+z}; (26)$$

$$\cos A \cos B \cos C = \frac{s^2 - (2R + r)^2}{4R^2}$$

In acute ΔABC , $\cos A$, $\cos B$, $\cos C \geq 0 \Rightarrow s^2 - (2R+r)^2 \geq 0 \Rightarrow s \geq 2R+r$. Thus,

$$\sum_{CYC} AM \cdot \cos \frac{A}{2} \ge 2R + r; (27); \{\Delta ABC - acute, M \in Int(\Delta ABC)\}$$

In acute $\triangle ABC$, $M \in Int(\triangle ABC)$, we have:

$$\sum_{cvc} \frac{an_a}{h_a} \cdot AM \ge 2R(2R+r); (28)$$

$$\sum_{a=c} m_a \cdot \cos \frac{A}{2} \ge \frac{3}{2} (2R + r); (29)$$

$$\sum_{cvc} \frac{an_a}{\sqrt{r_a(n_a + h_a)}} \ge (2R + r)\sqrt{2}; (30)$$

$$\sum_{a=c} g_a(r_b + r_c) \cos \frac{A}{2} \ge (4R + r)(2R + r); (31)$$

$$\sum_{cvc} \frac{an_a}{\sqrt{r_a^2 + s^2}} \ge 2R + r; (32)$$

$$\sum_{c \neq c} \frac{a n_a}{\sqrt{r_a^2 + (2R + r)^2}} \ge s; (33)$$

$$\sum_{c \neq c} \frac{g_a(r_b + r_c)}{\sqrt{r_a^2 + (2R + r)^2}} \ge 4R + r; (34)$$

If in $\triangle ABC$, $A \ge B \ge \frac{\pi}{3} \ge C$, then $s \ge (R+r)\sqrt{3}$; $\tan\frac{A}{2}$, $\tan\frac{B}{2} \ge \frac{\sqrt{3}}{3}$ and $\tan C \le \frac{\sqrt{3}}{3}$. So,

$$\begin{split} &\prod_{cyc} \left(\tan \frac{A}{2} - \frac{\sqrt{3}}{3} \right) \leq 0 \Leftrightarrow \prod_{cyc} \tan \frac{A}{2} - \frac{\sqrt{3}}{3} \sum_{cyc} \tan \frac{B}{2} \tan \frac{C}{2} + \frac{1}{3} \sum_{cyc} \tan \frac{A}{2} - \frac{\sqrt{3}}{9} \leq 0 \\ &\frac{r}{s} - \frac{\sqrt{3}}{3} + \frac{1}{3} \cdot \frac{4R + r}{s} - \frac{\sqrt{3}}{9} \leq 0; \sum_{cyc} \tan \frac{B}{2} \tan \frac{C}{2} = 1; \sum_{cyc} \tan \frac{A}{2} = \frac{4R + r}{s} \Leftrightarrow \\ &9r + 3(4R + r) - 4\sqrt{3}s \leq 0 \Rightarrow s \geq (R + r)\sqrt{3} \\ &\text{ If in } \Delta ABC, A \geq B \geq \frac{\pi}{3} \geq C, \text{ then} \\ &\sum_{cyc} AM \cdot \cos \frac{A}{2} \geq (R + r)\sqrt{3}; (35) \\ &\sum_{cyc} \frac{an_a}{h_a} \cdot AM \geq 2R(R + r)\sqrt{3}; (36) \\ &\sum_{cyc} \frac{an_a}{\sqrt{r_a(n_a + h_a)}} \geq (R + r)\sqrt{6}; (38) \\ &\sum_{cyc} \frac{an_a}{\sqrt{r_a(n_a + h_a)}} \geq (R + r)\sqrt{6}; (38) \\ &\sum_{cyc} \frac{an_a}{\sqrt{r_a^2 + s^2}} \geq (R + r)\sqrt{3}; (40) \\ &\sum_{cyc} \frac{an_a}{\sqrt{r_a^2 + 3(R + r)^2}} \geq 4R + r; (41) \\ &\sum_{cyc} \frac{an_a}{\sqrt{r_a^2 + 3(R + r)^2}} \geq s; (42) \\ &\sum_{cyc} \frac{an_a}{\sqrt{r_a^2 + 3(R + r)^2}} \geq 3(R + r)^2; (43) \end{split}$$

In $\triangle ABC$ the following relationship holds:

www.ssmrmh.ro

$$\frac{(m_a + m_b + m_c)^2}{a^2 + b^2 + c^2} \le 2 + \left(\frac{r}{R}\right)^2$$
; (Sun Wen Cai)

$$(m_a + m_b + m_c)^2 \le \frac{2R^2 + r^2}{R^2} (a^2 + b^2 + c^2)$$

Using (26), we can write:

$$\sum_{cyc} AM \sqrt{\frac{a^2}{(a^2+b^2)(a^2+c^2)}} \ge \sqrt{a^2+b^2+c^2}$$

$$\sum_{c \neq c} \frac{a \cdot AM}{\sqrt{(a^2 + b^2)(a^2 + c^2)}} \ge \sqrt{\frac{R^2}{2R^2 + r^2}(m_a + m_b + m_c)^2}$$

$$\sum_{c \neq c} \frac{a \cdot AM}{\sqrt{(a^2 + b^2)(a^2 + c^2)}} \ge \frac{R(m_a + m_b + m_c)}{\sqrt{2R^2 + r^2}}$$

$$: a = 2R \cdot \sin A$$

$$\sum_{a=c} \frac{\sin A}{\sqrt{(a^2+b^2)(a^2+c^2)}} \cdot AM \ge \frac{1}{2} \cdot \frac{m_a+m_b+m_c}{\sqrt{2R^2+r^2}}; (44)$$

$$s^{2} = n_{a}^{2} + 2r_{a}h_{a} \Rightarrow s^{2} - n_{a}^{2} = 2r_{a}h_{a} \Rightarrow (s + n_{a})(s + n_{a}) + \frac{2r_{a}h_{a}}{n_{a} + s}$$

$$\sum_{a} r_{a}h_{a} \quad (10)$$

$$\Rightarrow 3s = n_a + n_b + n_c + 2 \sum_{cyc} \frac{r_a h_a}{n_a + s} \stackrel{(10)}{\Longrightarrow}$$

$$3\sum_{cyc} AM \cdot \cos \frac{A}{2} \ge n_a + n_b + n_c + 2\sum_{cyc} \frac{r_a h_a}{n_a + s}; (45)$$

$$2\sum_{cyc} m_a \cdot \cos \frac{A}{2} \ge n_a + n_b + n_c + 2\sum_{cyc} \frac{r_a h_a}{n_a + s}; (46)$$

$$3\sum_{cyc} \frac{an_a}{\sqrt{r_a(n_a + h_a)}} \ge \sqrt{2} \left(n_a + n_b + n_c + 2\sum_{cyc} \frac{r_a h_a}{n_a + s} \right); (47)$$

$$3\sum_{cyc}g_{a}(r_{b}+r_{c})\cos\frac{A}{2} \geq (4R+r)\left(n_{a}+n_{b}+n_{c}+2\sum_{cyc}\frac{r_{a}h_{a}}{n_{a}+s}\right);(48)$$

www.ssmrmh.ro

$$3\sum_{cyc}\frac{an_a}{\sqrt{r_a^2+s^2}} \ge n_a + n_b + n_c + 2\sum_{cyc}\frac{r_ah_a}{n_a+s}; (49)$$

$$9\sum_{cyc} an_a \cos \frac{A}{2} \ge \left(n_a + n_b + n_c + 2\sum_{cyc} \frac{n_a h_a}{n_a + s}\right)^2; (50)$$

From (5) and Sun Wen Cai's inequality, we get:

$$m_a AM + m_b BM + m_c CM \ge \frac{R^2}{2(2R^2 + r^2)} (m_a + m_b + m_c); (51)$$

In $\triangle ABC$, $\triangle A_1B_1C_1$, F — area of $\triangle ABC$, F_1 — area of $\triangle A_1B_1C_1$, $M\in Int(\triangle ABC)$, holds:

$$a_{1} \cdot AM + b_{1} \cdot BM + c_{1} \cdot CM \ge \sqrt{\frac{1}{2} \sum_{cyc} a^{2} \left(b_{1}^{2} + c_{1}^{2} - a_{1}^{2}\right) + 8FF_{1}}; (Bottema)$$

$$a_{1} \cdot AM + b_{1} \cdot BM + c_{1} \cdot CM \ge \sqrt{\frac{1}{2} \sum_{cyc} a_{1}^{2} (b^{2} + c^{2} - a^{2}) + 8FF_{1}}; (Bottema)$$

$$b^{2} + c^{2} = n_{a}^{2} + g_{a}^{2} + 2rr_{a}$$

$$2rr_{a} = h_{a}(r - a - r)$$

$$2F = ah_{a} = bh_{b} = ch_{c} = 2sr$$

$$r_{a} + r_{b} + r_{c} = 4R + r$$

$$a^{2} = 2R \cdot \frac{h_{b}h_{c}}{h_{a}}$$

$$ah_{a} = (a + b + c)r \Rightarrow \frac{h_{a}}{r} = 1 + \frac{b + c}{a}$$

$$b^{2} + c^{2} = n_{a}^{2} + g_{a}^{2} + 2rr_{a} \ge 2n_{a}g_{a} + 2rr_{a}$$

$$b^{2} + c^{2} = 2Rh_{a}\left(\frac{h_{b}}{h_{c}} + \frac{h_{c}}{h_{b}}\right) \ge 2n_{a}g_{a} + h_{a}(r_{a} - r)$$

$$\frac{b}{c} + \frac{c}{b} \ge \frac{2n_{a}g_{a} + h_{a}(r_{a} - r)}{2Rh_{a}} \Rightarrow \frac{b}{c} + \frac{c}{b} \ge \frac{1}{R}\left(\frac{n_{a}g_{a}}{h_{a}} + \frac{r_{a} - r}{2}\right)$$

$$\sum_{a=a} \frac{b + c}{a} \ge \frac{1}{R}\left(\sum_{a=a} \frac{n_{a}g_{a}}{h_{a}} + 2R - r\right)$$

COMANIAN MATHEMATICAL MAGAZIN www.smrmh.ro
$$\sum_{cyc} \frac{b+c}{a} \ge 2 + \frac{1}{R} \sum_{cyc} \frac{n_a g_a}{h_a} - \frac{r}{R}$$

$$\frac{h_a + h_b + h_c - 3r}{r} \ge 2 + \frac{1}{R} \sum_{cyc} \frac{n_a g_a}{h_a} - \frac{r}{R}$$

$$\frac{h_a + h_b + h_c}{r} \ge \frac{5R - r}{R} + \frac{1}{R} \sum_{cyc} \frac{n_a g_a}{h_a}$$

$$\frac{R}{r} \ge \frac{5R - r + \sum \frac{n_a g_a}{h_a}}{h_a + h_b + h_c}; (51)$$

$$5R - r \ge 4R + r \Rightarrow 5R - 4R \ge r + r \Rightarrow R \ge 2r (Euler)$$

$$\frac{R}{r} \ge \frac{r_a + r_b + r_c + \sum \frac{n_a g_a}{h_a}}{h_a + h_b + h_c}; (52)$$

$$g_a \ge h_a \Rightarrow \frac{R}{r} \ge \frac{r_a + r_b + r_c + n_a + n_b + n_c}{h_a + h_b + h_c}; (53)$$

$$\frac{R}{r} \ge \frac{5R - r + n_a + n_b + n_c}{h_a + h_b + h_c}; (54)$$

$$n_a g_a \ge m_a w_a \Rightarrow \frac{R}{r} \ge \frac{5R - r + \sum \frac{m_a w_a}{h_a}}{h_a + h_b + h_c}; (55)$$

$$\frac{R}{r} \ge \frac{r_a + r_b + r_c + \sum \frac{m_a w_a}{h_a}}{h_a + h_b + h_c}; (56)$$

$$m_a w_a \ge s(s - a) = r_b r_c = \frac{h_a}{2} (r_b + r_c); (Panaitopol)$$

$$\frac{R}{r} \ge \frac{5R - r + r_a + r_b + r_c}{h_a + h_b + h_c} = \frac{9R}{h_a + h_b + h_c}; (57)$$

 $\sum_{a \in C} \frac{n_a}{h_a^2} AM \ge \frac{5R - r + \sum \frac{n_a g_a}{h_a}}{h_a + h_b + h_c}; (58)$

www.ssmrmh.ro

$$\sum_{cyc} \frac{n_a}{h_a^2} AM \ge \frac{r_a + r_b + r_c + \sum \frac{n_a g_a}{h_a}}{h_a + h_b + h_c}; (59)$$

$$\sum_{cyc} \frac{n_a}{h_a^2} AM \ge \frac{r_a + r_b + r_c + n_a + n_b + n_c}{h_a + h_b + h_c}; (60)$$

$$\sum_{cyc} \frac{n_a}{h_a^2} AM \ge \frac{5R - r + n_a + n_b + n_c}{h_a + h_b + h_c}; (61)$$

$$\sum_{cyc} \frac{n_a}{h_a^2} AM \ge \frac{5R - r + \sum \frac{m_a w_a}{h_a}}{h_a + h_b + h_c}; (63)$$

$$\sum_{cyc} \frac{n_a}{h_a^2} AM \ge \frac{9R}{h_a + h_b + h_c}; (64)$$

REFERENCES:

- [1]. DANIEL SITARU-A type of useful substitutions in triangle geometrywww.ssmrmh.ro
- [2]. 584 G. BENNETT-Multiple triangle inequalities.
- [3]. BOGDAN FUŞTEI-About Nagel's and Gergonne's cevian (I-VIII)
- [4]. BOGDAN FUŞTEI-Oppenheim's inequality revisited.
- [5]. JIAN LIU-On a sharp inequality for the medians of a triangle.
- [6]. G.BOTTEMA-Geometric Inequalities.
- [7]. ROMANIAN MATHEMATICAL MAGAZINE- www.ssmrmh.ro