

ROMANIAN MATHEMATICAL SOCIETY
Mehedinți Branch

ROMANIAN MATHEMATICAL MAGAZINE R.M.M.

Nr.31-WINTER EDITION 2021

ROMANIAN MATHEMATICAL SOCIETY

Mehedinți Branch

CONTENT

ABOUT AN INEQUALITY FROM R.M.M.- Flaviu Cristian Verde 4
ONE DROP FROM THE APPLIED M ATHEM ATICS - Laviniu Bejenaru. 6
ABOUT SOM E INEQUALITIES IN TRIANGLE- D.M .Bătineţu-Giurgiu, Daniel Sitaru 7
NEW INEQUALITIES IN TRIANGLE- D.M .Bătineţu-Giurgiu, Daniel Sitaru,
Neculai Stanciu 8
TRIGONOM ETRIC SUBSTITUTIONS IN PROBLEM SOLVING- Ioan Şerdean, Daniel Sitaru. 10
NEW GENERALIZATIONS OF INEQUALTIES IN TRIANGLE- D.M .Bătineţu-Giurgiu, Claudia
Nănuţi, Daniel Sitaru 24
A COUNTING PROBLEM IN TRIANGLE-Carmen Victorița Chirfot. 26
ABOUT A RMM INEQUALITY-III-M arin Chirciu 30
THE SERIES OF AN ODD NUM BER-M ohammed Bouras. 32
GENERALIZATION OF KOUTRAS' THEOREM-Thanasis Gakopoulos, 33
PROPOSED PROBLEM S 40
RMM-WINTER EDITION 2021 108
INDEX OF PROPOSERS AND SOLVERS RM M-31 PAPER MAGAZNE. 116

ABOUT AN INEQUALITY FROM RMM
 By Flaviu Cristian Verde-Romania

In R.M.M. was published the inequality:

$$
\left(\frac{y^{2}+z^{2}}{x^{2}}+\frac{z^{2}+x^{2}}{y^{2}}+\frac{x^{2}+y^{2}}{z^{2}}\right)\left(a^{4}+b^{4}+c^{4}\right) \geq 96 F^{2}, \quad(B-G, N)
$$

where $x, y, z>0$ and a, b, c are the lengths of the sides of triangle $A B C$ with s-semiperimeter and F-area.

D.M.Bătineţu-Giurgiu, Dan Nănuţi

The solution of this problem was published in [1], now we will developed this problem.
Solution 1. Let's denote: $x^{2}=u, y^{2}=v, z^{2}=w$ and then we must show that:

$$
\begin{equation*}
\left(\frac{v+w}{u}+\frac{w+u}{v}+\frac{u+v}{w}\right)\left(a^{4}+b^{4}+c^{4}\right) \geq 96 F^{2} \tag{1}
\end{equation*}
$$

We have the inequality:

$$
\begin{equation*}
\sum_{c y c} \frac{v+w}{u} \geq 6, \forall u, v, w \in \mathbb{R}_{+}^{*}=(0, \infty) \tag{*}
\end{equation*}
$$

and G. Goldner Inequality: $a^{4}+b^{4}+c^{4} \geq 16 F^{2}$, (G)
From (*),(G) we get:

$$
\left(\sum_{c y c} \frac{v+w}{u}\right)\left(a^{4}+b^{4}+c^{4}\right) \geq 6 \cdot 16 F^{2}=96 F^{2}
$$

which is ($B-G, N$).
Solution 2. We have:

$$
\begin{aligned}
& \left(\sum_{c y c} \frac{y^{2}+z^{2}}{x^{2}}\right)\left(\sum_{c y c} a^{4}\right) \geq \frac{1}{2}\left(\sum_{c y c}\left(\frac{y+z}{x}\right)^{2}\right)\left(\sum_{c y c}\left(a^{2}\right)^{2}\right) \stackrel{B C S}{\geq} \\
\geq & \frac{1}{2}\left(\sum_{c y c} \frac{y+z}{x} \cdot a^{2}\right)^{2} \stackrel{\text { Bătinețu-Giurgiu }}{\geq} \frac{1}{2}(8 \sqrt{3} F)^{2}=\frac{1}{2} \cdot 64 \cdot 3 F^{2}=96 F^{2}
\end{aligned}
$$

Solution 3. We have:

$$
\begin{equation*}
\sum_{c y c} \frac{y^{2}+z^{2}}{x^{2}} \stackrel{A M-G M}{\geq} 2 \cdot \sum_{c y c} \frac{y z}{x^{2}} \stackrel{A M-G M}{\geq} 2 \cdot 3 \cdot \sqrt[3]{\prod_{c y c} \frac{y z}{x^{2}}}=2 \cdot 3 \cdot 1=6 \tag{2}
\end{equation*}
$$

and

$$
\begin{aligned}
a^{4} & +b^{4}+c^{4} \stackrel{A M-G M}{\geq} 3 \cdot \sqrt[3]{(a b c)^{4}}=3 \sqrt[3]{(4 R F)^{4}}=12 F \sqrt[3]{4 R^{4} F} \stackrel{\text { Euler }}{\geq} 12 F \sqrt[3]{4(2 r)^{2} R^{2} F}= \\
& =12 F \sqrt[3]{64 r^{2} F\left(\frac{R}{2}\right)^{2}}=48 F \sqrt[3]{r^{2} F\left(\frac{R}{2}\right)^{2}} \stackrel{\text { Mitrinovic }}{\geq} 48 F^{3} \sqrt{r^{2} F\left(\frac{s}{3 \sqrt{3}}\right)^{2}}=48 F \sqrt[3]{\frac{r^{2} F s^{2}}{27}}=
\end{aligned}
$$

$$
\begin{equation*}
=16 F^{3} \sqrt{F(s r)^{2}}=16 F \sqrt[3]{F^{3}}=16 F^{2} \tag{3}
\end{equation*}
$$

From (2),(3) we deduce that:

$$
\left(\sum_{c y c} \frac{y^{2}+z^{2}}{x^{2}}\right)\left(\sum_{c y c} a^{4}\right) \geq 6 \cdot 16 F^{2}=96 F^{2}
$$

Generalization:

If $m \geq 0, x, y, z>0$ and triangle $A B C$ with s-semiperimeter, F-area, then:

$$
\left(\sum_{c y c} \frac{y^{2 m+2}+z^{2 m+2}}{x^{2 m+2}}\right)\left(\sum_{c y c} a^{4 m+4}\right) \geq 2^{4 m+5} \cdot 3^{1-m} \cdot F^{2 m+2},(* *)
$$

Proof. We have

$$
\begin{gathered}
\left(\sum_{c y c} \frac{y^{2 m+2}+z^{2 m+2}}{x^{2 m+2}}\right)\left(\sum_{c y c} a^{4 m+4}\right) \geq \frac{1}{2^{2 m+1}}\left(\sum_{c y c}\left(\frac{x+y}{z}\right)^{2 m+2}\right)\left(\sum_{c y c} a^{4 m+4}\right)= \\
=\frac{1}{2^{2 m+1}}\left(\sum_{c y c}\left(\frac{x+y}{z}\right)^{2(m+1)}\right)\left(\sum_{c y c}\left(a^{2}\right)^{2(m+1)}\right)^{\text {Radon }} \geq \geq \\
\geq \\
=\frac{1}{2^{2 m+1}} \cdot \frac{1}{3^{m}}\left(\sum_{c y c}\left(\frac{x+y}{z}\right)^{2}\right)^{m+1} \cdot \frac{1}{2^{m}}\left(\sum_{c y c}\left(a^{2}\right)^{2}\right)^{m+1} \cdot \frac{1}{3^{2 m}}\left(\sum_{c y c}\left(\frac{x+y}{z}\right)^{2}\right)^{m+1}\left(\sum_{c y c}\left(a^{2}\right)^{2}\right)^{m+1} \stackrel{\text { BCs }}{\geq} \\
\geq \frac{1}{2^{2 m+1} \cdot 3^{2 m}}\left(\sum_{c y c} \frac{x+y}{z} \cdot a^{2}\right)^{2 m+2}{ }_{\text {Bătinețu-Giurgiu }}^{\geq} \\
\geq \frac{1}{2^{2 m+1} \cdot 3^{2 m}}(8 \sqrt{3} F)^{2 m+2}=\frac{2^{6 m+6}}{2^{2 m+1} \cdot 3^{2 m}} \cdot 3^{m+1} \cdot F^{2 m+2}=2^{4 m+5} \cdot 3^{1-m} \cdot F^{2 m+2}
\end{gathered}
$$

Note. If $m=0$ then from relationship $\left({ }^{* *}\right)$ we get (B-G,N) Inequality.

References:

[1] Chirciu Marin, About Bătineţu's Inequalities-R.M .M .No. 20 Spring Edition 2021, page 4-
10.
[2] Romanian M athematical M agazine-www.ssmrmh.ro

ONE DROP FROM THE APPLIED MATHEM ATICS

By Laviniu Bejenaru-Romania
Problem: Giving one symmetric quatratic matrix \mathbf{A} with the property (Δ), decomposing it into a product $\mathbf{Q} \cdot \mathbf{Q}^{\mathbf{T}}$, where \mathbf{Q} is a lower-triangular matrix and $\mathbf{Q}^{\boldsymbol{\top}}$ is the transpose matrix.
(Δ) each k-dimmensional upper left-corner minor has his determinant strict positive

Example: As one example, we can have the symmetric matrix
$A=\left(\begin{array}{lll}4 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1\end{array}\right)$ with the minors $M_{1}=4>0, M_{2}=\left[\begin{array}{ll}4 & 2 \\ 2 & 2\end{array}\right]=4>0$,
$M_{3}=\left|\begin{array}{lll}4 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1\end{array}\right|=2>0$. So, the solution is:

$$
Q=\left(\begin{array}{ccc}
2 & 0 & 0 \\
1 & 1 & 0 \\
\frac{1}{2} & \frac{1}{2} & \frac{\sqrt{2}}{2}
\end{array}\right)
$$

It can be verified that

$$
\left(\begin{array}{lll}
4 & 2 & 1 \\
2 & 2 & 1 \\
1 & 1 & 1
\end{array}\right)=\left(\begin{array}{ccc}
2 & 0 & 0 \\
1 & 1 & 0 \\
\frac{1}{2} & \frac{1}{2} & \frac{\sqrt{2}}{2}
\end{array}\right) \cdot\left(\begin{array}{ccc}
2 & 1 & \frac{1}{2} \\
0 & 1 & \frac{1}{2} \\
0 & 0 & \frac{\sqrt{2}}{2}
\end{array}\right)
$$

Task:

Find the \mathbf{Q} factor such that $\mathbf{A}=\mathbf{Q} \cdot \mathbf{Q}^{\boldsymbol{\top}}$ for $=\left(\begin{array}{lll}9 & 3 & 1 \\ 3 & 3 & 1 \\ 1 & 1 & 1\end{array}\right)$.

Mean:

The \mathbf{Q} matrix from the factorization $A=Q \cdot Q^{\top}$ is called Cholescky factor of A and this kind of square-look-like operation has many applications: efficiently compute of the determinants, gradients in stochastic models, samples form a Gaussian distribution.

References:

Deisenroth M.P., Faisal A.A., Ong C.S. - M athematics for M achine Learning, Cambridge University Press, 2020, ISBN 9781108679930

ABOUT SOME INEQUALTIES IN TRIANGLE

By D.M.Bătineţu-Giurgiu, Daniel Sitaru-Romania
Let be $m \geq 0 ; x, y, z>0$ and $\triangle A B C$ with F-area, s-semiperimeter, then:

$$
\frac{y+z}{x} \cdot a^{m+1}+\frac{z+x}{y} \cdot b^{m+1}+\frac{x+y}{z} \cdot c^{m+1} \geq 2^{m+2} \cdot \sqrt[4]{3^{3-m}} \cdot \sqrt{F^{m+1}} ;(*)
$$

Proof. We have:

$$
\begin{gathered}
\sum_{c y c} \frac{y+z}{x} \cdot a^{m+1} \geq 2 \cdot \sum_{c y c} \frac{\sqrt{y z}}{x} \cdot a^{m+1} \geq 2 \cdot 3 \cdot \sqrt[3]{\prod_{c y c} \frac{\sqrt{y z}}{x} \cdot a^{m+1}}=6 \sqrt[3]{(a b c)^{m+1}}= \\
=6 \sqrt[3]{(4 R F)^{m+1}}=6^{\sqrt[3]{2^{2 m+2} \cdot R^{m+1} \cdot F^{m+1}}}=6^{\sqrt[3]{ } \sqrt{2^{3(m+1)} \cdot\left(\frac{R}{2}\right)^{m+1}} \cdot F^{m+1}}= \\
=6 \cdot 2^{m+1} \sqrt[3]{\left(\sqrt{\frac{R}{2}} \cdot \sqrt{\frac{R}{2}} \cdot F\right)^{\frac{m+1}{\text { Euler }} \geq} 2^{m+2} \cdot 3 \cdot \sqrt[3]{\left(\sqrt{\frac{R}{2}} \cdot \sqrt{r} \cdot F\right)^{m+1}}{ }^{\text {Mitrinovic }} \geq} \\
\geq 2^{m+2} \cdot 3 \cdot \sqrt[3]{\left(\sqrt{\frac{s}{3 \sqrt{3}}} \cdot r \cdot F\right)^{m+1}}=2^{m+2} \cdot 3 \cdot \sqrt[3]{\left(\sqrt{\frac{F}{3 \sqrt{3}}} \cdot F\right)^{m+1}}= \\
=2^{m+2} \cdot 3 \cdot \sqrt[3]{\left(\sqrt{\frac{F}{\sqrt{3}}}\right)^{3(m+1)}}=2^{m+2} \cdot 3 \cdot \frac{(\sqrt{F})^{m+1}}{(\sqrt[4]{3})^{m+1}}=2^{m+2} \cdot 3^{1-\frac{m+1}{4}} \cdot F^{\frac{m+1}{2}}= \\
=2^{m+2} \cdot 3^{\frac{3-m}{4}} \cdot F^{-\frac{m+1}{2}}
\end{gathered}
$$

If $m=0$ we get:

$$
\begin{equation*}
\sum_{c y c} \frac{y+z}{x} \cdot a \geq 4 \cdot \sqrt[4]{27} \cdot \sqrt{F} \tag{1}
\end{equation*}
$$

If $m=1$ we get:

$$
\sum_{c y c} \frac{y+z}{x} \cdot a^{2} \geq 8 \sqrt{3} \cdot F ; \quad(B-G, 1)
$$

hence the first Bătineţu-Giurgiu Inequality.
If $m=3$ then we have

$$
\sum_{c y c} \frac{y+z}{x} \cdot a^{4} \geq 32 \cdot F^{2} ; \quad(B-G, 2)
$$

hence the second Bătineţu-Giurgiu Inequality.
If $m=2$ then we have:

$$
\sum_{c y c} \frac{y+z}{x} \cdot 3 \geq 16 \cdot \sqrt[3]{3} \cdot F \sqrt{F}
$$

If we denote $u=x^{\frac{1}{m+1}}, v=y^{\frac{1}{m+1}}, w=z^{\frac{1}{m+1}}$ then the inequality $\left({ }^{*}\right)$ becomes:

$$
\begin{aligned}
& \sum_{c y c} \frac{y+z}{x} \cdot a^{m+1}=\sum_{c y c} \frac{v^{m+1}+w^{m+1}}{u^{m+1}} \cdot a^{m+1} \geq \frac{1}{2^{m}} \sum_{c y c}\left(\frac{v+w}{u}\right)^{m+1} \cdot a^{m+1}= \\
& =\frac{1}{2^{m}} \sum_{c y c}\left(\frac{v+w}{u} \cdot a\right)^{m+1} \text { Radon } \frac{1}{2^{m}} \cdot \frac{1}{3^{m}}\left(\sum_{c y c} \frac{v+w}{u} \cdot a\right)^{m+1} \geq \\
& \quad \geq \frac{1}{6^{m}}(4 \cdot \sqrt[4]{27} \cdot \sqrt{F})^{m+1}=\frac{2^{2 m+2} \cdot 3^{\frac{3}{4}(m+1)} \cdot F^{\frac{1}{2}(m+1)}}{6^{m}}= \\
& =2^{2 m+2-m} \cdot 3^{\frac{3}{4}(m+1)-m} \cdot F^{\frac{1}{2}(m+1)}=2^{m+2} \cdot 3^{\frac{1}{4}(3-m)} \cdot F^{\frac{1}{2}(m+1)} ;(*)
\end{aligned}
$$

hence we have the inequality (${ }^{*}$).
If in $(*)$ we take $m=5$, then:

$$
\begin{equation*}
\sum_{c y c} \frac{y+z}{x} \cdot a^{6} \geq 2^{7} \cdot 3^{\frac{1}{4}(3-5)} \cdot F^{3}=\frac{128}{\sqrt{3}} \cdot F^{3} \tag{3}
\end{equation*}
$$

If in $\left(^{*}\right)$ we take $m=7$, then:

$$
\begin{equation*}
\sum_{c y c} \frac{y+z}{x} \cdot a^{8} \geq 2^{9} \cdot \sqrt[4]{3^{-4}} \cdot F^{4}=\frac{256}{3} \cdot F^{4} \tag{4}
\end{equation*}
$$

Refference:

ROM ANIAN MATHEMATICAL MAGAZINE-www.ssmrmh.ro

NEW INEQUALTIES IN TRIANGLE

By D.M.Bătineţu-Giurgiu, Daniel Sitaru, Neculai Stanciu-Romania

Let be $\triangle A B C$ with F-area, s-semiperimeter.
Proposition. If $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z} \in \mathbb{R}_{+}^{*}=(\mathbf{0}, \infty)$, then

$$
\frac{y+z}{x} \cdot(b+c)+\frac{z+x}{y} \cdot(c+a)+\frac{x+y}{z} \cdot(a+b) \geq 8 \sqrt[4]{27} \cdot \sqrt{F}
$$

Proof. We have:

$$
\begin{gathered}
\sum_{c y c} \frac{y+z}{x} \cdot(b+c) \geq 4 \cdot \sum_{c y c} \frac{\sqrt{y z}}{x} \cdot \sqrt{b c} \geq 4 \cdot 3 \sqrt[3]{\prod_{c y c} \frac{\sqrt{y z}}{x} \cdot \sqrt{b c}}= \\
=12 \sqrt[3]{a b c}=12 \sqrt[3]{4 R F}=12 \sqrt[3]{8 \cdot \frac{R}{2} \cdot F}=24 \sqrt[3]{\sqrt{\frac{R}{2}} \cdot \sqrt{\frac{R}{2}} \cdot F} \stackrel{\text { Euler }}{\geq}_{2}^{2} 2 \sqrt[3]{\sqrt{r} \cdot \sqrt{\frac{R}{2}} \cdot F}{ }^{\text {Mitrinovic }} \geq
\end{gathered}
$$

$$
\geq 24 \sqrt[3]{\sqrt{r} \cdot \sqrt{\frac{s}{3 \sqrt{3}}} \cdot F}=24 \sqrt[3]{\frac{\sqrt{r s}}{\sqrt{3 \sqrt{3}}} \cdot F}=24 \cdot \frac{(\sqrt[4]{3})^{4}}{\sqrt[4]{3}} \cdot \sqrt{F}=8 \sqrt[4]{27} \cdot \sqrt{F}
$$

From the inequality (1) we can prof some inequalities from [1] as follows:
Theorem. If $m \in[1, \infty) ; x, y, z>0$ then in any triangle $A B C$ the following relationship holds:

$$
\frac{y+z}{x} \cdot(b+c)^{m}+\frac{z+x}{y} \cdot(c+a)^{m}+\frac{x+y}{z} \cdot(a+b)^{m} \geq 2^{2 m+1} \cdot 3^{\frac{1}{4}(4-m)} \cdot F^{\frac{1}{2} m} ;(* *)
$$

Proof. Let's denote $u=x^{\frac{1}{m}}, v=y^{\frac{1}{m}}, w=z^{\frac{1}{m}}$ and then

$$
\begin{gathered}
\sum_{c y c} \frac{y+z}{x} \cdot(b+c)^{m}=\sum_{c y c} \frac{v^{m}+w^{m}}{u^{m}} \cdot(b+c)^{m} \geq \frac{1}{2^{m-1}} \sum_{c y c}\left(\frac{v+w}{u} \cdot(b+c)\right)^{m} \geq \\
\stackrel{\text { Radon }}{\geq} \frac{1}{2^{m-1} \cdot 3^{m-1}}\left(\sum_{c y c} \frac{v+w}{u} \cdot(b+c)\right)^{m} \stackrel{(*)}{=} \frac{1}{6^{m-1}}\left(\sum_{c y c} \frac{v+w}{u} \cdot(b+c)\right)^{m} \stackrel{(*)}{\geq} \\
\quad \geq \frac{1}{6^{m-1}}\left(8^{\sqrt[4]{27}} \cdot \sqrt{F}\right)^{m}=\frac{2^{3 m} \cdot 3^{\frac{3 m}{4}} \cdot F^{\frac{1}{2} m}}{2^{m-1} \cdot 3^{1-m}}=2^{2 m+1} \cdot 3^{\frac{3}{4} m-m+1} \cdot F^{\frac{1}{2} m} \\
=2^{2 m+1} \cdot 3^{\frac{1}{4}(4-m)} \cdot F^{\frac{1}{2} m}
\end{gathered}
$$

q.e.d.

If $m=2$ then the inequality $\left({ }^{* *}\right)$ becomes as:

$$
\begin{equation*}
\sum_{c y c} \frac{y+z}{x} \cdot(b+c)^{2} \geq 2^{5} \cdot 3^{\frac{1}{2}} \cdot F=32 \sqrt{3} \cdot F \tag{1}
\end{equation*}
$$

If $m=4$ then the inequality $\left({ }^{* *}\right)$ becomes as:

$$
\begin{equation*}
\sum_{c y c} \frac{y+z}{x} \cdot(b+c)^{4} \geq 2^{9} \cdot F^{2}=512 \cdot F^{2} \tag{2}
\end{equation*}
$$

If $m=8$ then the inequality $\left({ }^{* *}\right)$ becomes as:

$$
\begin{equation*}
\sum_{c y c} \frac{y+z}{x} \cdot(b+c)^{8} \geq 2^{17} \cdot 3^{-1} \cdot F^{4}=2^{17} \cdot \frac{1}{3} \cdot F^{4}=\frac{2^{17} \cdot F^{4}}{3} \tag{4}
\end{equation*}
$$

Refference:
[1] Chirciu M.,About Bătineţu's inequalities, Romanian Mathematical Magazine-no.282021, page.4-10.

TRIGONOM ETRIC SUBSTITUTIONS IN PROBLEM SOLVING

By Ioan Şerdean, Daniel Sitaru-Romania
Abstract: In this paper are indicated a few useful trigonometric substitutions for solving problems. Solved problems are also a part of this article.
Case 1: If $x, y, z>0 ; p, q, r \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$
\begin{gathered}
1+x^{2}=1+\tan ^{2} p ; 1+y^{2}=1+\tan ^{2} q ; 1+z^{2}=1+\tan ^{2} r \\
F\left(1+x^{2}, 1+y^{2}, 1+z^{2}\right)=G\left(\frac{1}{\cos ^{2} p}, \frac{1}{\cos ^{2} q}, \frac{1}{\cos ^{2} r}\right)
\end{gathered}
$$

Case 2: If $x, y, z>0 ; p, q, r \in\left(0, \frac{\pi}{2}\right)$

$$
\begin{gathered}
\sqrt{1+x^{2}}=\frac{1}{\cos p} ; \sqrt{1+y^{2}}=\frac{1}{\cos q} ; \sqrt{1+z^{2}}=\frac{1}{\cos r} \\
F\left(\sqrt{1+x^{2}}, \sqrt{1+y^{2}}, \sqrt{1+z^{2}}\right)=G\left(\frac{1}{\cos p}, \frac{1}{\cos q}, \frac{1}{\cos r}\right)
\end{gathered}
$$

Case 3: If $x, y, z>0 ; m \geq 0 ; p, q, r \in\left(0, \frac{\pi}{2}\right)$

$$
\begin{aligned}
& \sqrt{x^{2}+m^{2}}=m \tan p ; \sqrt{y^{2}+m^{2}}=m \tan q ; \sqrt{z^{2}+m^{2}}=m \tan r \\
& F\left(\sqrt{x^{2}+m^{2}}, \sqrt{y^{2}+m^{2}}, \sqrt{z^{2}+m^{2}}\right)=G\left(\frac{m}{\cos p}, \frac{m}{\cos q}, \frac{m}{\cos r}\right)
\end{aligned}
$$

Case 4: If $x, y, z>0 ; p, q, r \in[0,2 \pi]$

$$
\begin{gathered}
4 x^{3}-3 x=\cos p ; 4 y^{3}-3 y=\cos q ; 4 z^{3}-3 z=\cos r \\
F\left(4 x^{3}-3 x, 4 y^{3}-3 y, 4 z^{3}-3 z\right)=F(\cos p, \cos q, \cos r)
\end{gathered}
$$

Case 5: If $x, y, z>0 ; p, q, r \in[0,2 \pi]$

$$
3 x-4 x^{3}=\sin p, 3 y-4 y^{3}=\sin q, 3 z-4 z^{3}=\sin r
$$

$$
F\left(3 x-4 x^{3}, 3 y-4 y^{3}, 3 z-4 z^{3}\right)=F(\sin p, \sin q, \sin r)
$$

Case 6: If $x, y, z>0 ; p, q, r \in[0,2 \pi]$

$$
\begin{gathered}
2 x^{2}-1=\cos p, 2 y^{2}-1=\cos q, 2 z^{2}-1=\cos r \\
F\left(2 x^{2}-1,2 y^{2}-1,2 z^{2}-1\right)=F(\cos p, \cos q, \cos r)
\end{gathered}
$$

Case 7: If $x, y, z>0 ; p, q, r \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$
\begin{gathered}
\frac{2 x}{1-x^{2}}=\tan p, \frac{2 y}{1-y^{2}}=\tan q, \frac{2 z}{1-z^{2}}=\tan r \\
F\left(\frac{2 x}{1-x^{2}}, \frac{2 y}{1-y^{2}}, \frac{2 z}{1-z^{2}}\right)=G(\tan p, \tan q, \tan r)
\end{gathered}
$$

Case 8: If $x, y, z>0 ; p, q, r \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$
\begin{gathered}
\frac{2 x}{1+x^{2}}=\tan p, \frac{2 y}{1+y^{2}}=\tan q, \frac{2 z}{1+z^{2}}=\tan r \\
F\left(\frac{2 x}{1+x^{2}}, \frac{2 y}{1+y^{2}}, \frac{2 z}{1+z^{2}}\right)=G(\tan p, \tan q, \tan r)
\end{gathered}
$$

Case 9: If $x, y, z>0 ; p, q, r \in\left[0, \frac{\pi}{2}\right) \cup\left[\pi, \frac{3 \pi}{2}\right)$

$$
\begin{gathered}
x=\frac{1}{\cos p} ; y=\frac{1}{\cos q} ; z=\frac{1}{\cos r} \\
F\left(x^{2}-1, y^{2}-1, z^{2}-1\right)=G\left(\tan ^{2} p, \tan ^{2} q, \tan ^{2} r\right)
\end{gathered}
$$

Case 10: If $x, y, z>0 ;|x|,|y|,|z| \geq 1, p, q, r \in\left[0, \frac{\pi}{2}\right)$

$$
\begin{gathered}
F\left(\sqrt{x^{2}-1}, \sqrt{y^{2}-1}, \sqrt{z^{2}-1}\right)=G(\tan p, \tan q, \tan r) \\
x=\frac{1}{\cos p}, y=\frac{1}{\cos q}, z=\frac{1}{\cos r}
\end{gathered}
$$

Case 11: If $x, y, z>0 ;|x|,|y|,|z| \geq 1, p, q, r \in\left[0, \frac{\pi}{2}\right)$

$$
\begin{gathered}
x=\frac{m}{\cos p}, y=\frac{m}{\cos q}, z=\frac{m}{\cos r} \\
F\left(\sqrt{x^{2}-m^{2}}, \sqrt{y^{2}-m^{2}}, \sqrt{z^{2}-m^{2}}\right)=G(m \tan p, m \tan q, m \tan r)
\end{gathered}
$$

Case 12: If $x, y, z>0 ; x y \neq 1, y z \neq 1, z x \neq 1, p, q, r \in\left(0, \frac{\pi}{2}\right)$

$$
\begin{gathered}
x=\tan q, y=\tan q, z=\tan r \\
F\left(\frac{x+y}{1-x y} ; \frac{y+z}{1-y z} ; \frac{z+x}{1-z x}\right)=G(\tan (p+q), \tan (q+r), \tan (r+p))
\end{gathered}
$$

Problem 1. If $x \in \mathbb{R} ;|x| \leq 1 ; n \in \mathbb{N}$ then:

$$
(1-x)^{n}+(1+x)^{n} \leq 2^{n}
$$

Proof. $|x| \leq 1 \Rightarrow(\exists) t \in\left[0, \frac{\pi}{2}\right], x=\cos 2 t$
Remains to prove: $(1-\cos 2 t)^{n}+(1+\cos 2 t)^{n} \leq 2^{n} \Leftrightarrow$

$$
\left(2 \sin ^{2} t\right)^{n}+\left(2 \cos ^{2} t\right)^{n} \leq 2^{n} \Leftrightarrow \sin ^{2 n} t+\cos ^{2 n} t \leq 1
$$

which is obviously because:

$$
\left\{\begin{array}{l}
\sin ^{2 n} t \leq \sin ^{2} t \\
\cos ^{2 n} t \leq \cos ^{2} t
\end{array} \Rightarrow \sin ^{2 n} t+\cos ^{2 n} t \leq \sin ^{2} t+\cos ^{2} t=1\right.
$$

Problem 2. If $a \in(-\infty,-1) \cup(1, \infty)$ then:

$$
\sqrt{a^{2}-1}+\sqrt{3} \leq 2|a|
$$

Proof. $|\mathrm{a}|>1 \Rightarrow(\exists)|\mathrm{a}|=\frac{1}{\cos \alpha} ; \alpha \in\left[0, \frac{\pi}{2}\right)$
Remains to prove:

$$
\begin{gathered}
\sqrt{\frac{1}{\cos ^{2} \alpha}-1}+\sqrt{3} \leq \frac{2}{\cos \alpha} \Leftrightarrow \tan \alpha+\sqrt{3} \leq \frac{2}{\cos \alpha} \\
\frac{1}{2} \sin \alpha+\sqrt{3} \cos \alpha \leq 1 \Leftrightarrow \sin \left(\alpha+\frac{\pi}{3}\right) \leq 1
\end{gathered}
$$

Problem 3. If $a \in(0,1)$ then:

$$
\mid 4\left(a^{3}-\sqrt{\left(1-a^{2}\right)^{3}}-3\left(a-\sqrt{1-a^{2}}\right) \mid \leq \sqrt{2}\right.
$$

Proof. $|a|<1 \Rightarrow$ (ヨ) $x \in\left[0, \frac{\pi}{2}\right) ; a=\cos x$
The inequality can be written:

$$
\begin{gathered}
\mid 4\left(\cos ^{3} x-\sqrt{\left(1-\cos ^{2} x\right)^{3}}-3\left(\cos x-\sqrt{1-\cos ^{2} x}\right) \mid \leq \sqrt{2}\right. \\
\left|4\left(\cos ^{3} x-\sin ^{3} x\right)-3(\cos x-\sin x)\right| \leq \sqrt{2} \Leftrightarrow \\
\left|\left(4 \cos ^{3} x-3 \cos x\right)+\left(3 \sin x-4 \sin ^{3} x\right)\right| \leq \sqrt{2} \Leftrightarrow|\sin 3 x+\cos 3 x| \leq \sqrt{2} \Leftrightarrow \\
\left|\cos 3 x \cdot \frac{\sqrt{2}}{2}+\sin 3 x \cdot \frac{\sqrt{2}}{2}\right| \leq 1 \Leftrightarrow\left|\sin \left(3 x+\frac{\pi}{4}\right)\right| \leq 1
\end{gathered}
$$

Problem 4. If $x, y \in \mathbb{R}$ then:

$$
\left|\frac{(x+y)(1-x y)}{\left(1+x^{2}\right)\left(1+y^{2}\right)}\right| \leq \frac{1}{2}
$$

Proof. $x, y \in \mathbb{R} \Rightarrow(\exists) p, q \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) ; x=\tan p ; y=\tan q$

$$
\begin{aligned}
& \frac{(x+y)(1-x y)}{\left(1+x^{2}\right)\left(1+y^{2}\right)}=\frac{(\tan p+\tan q)(1-\tan p \tan q)}{\left(1+\tan ^{2} p\right)\left(1+\tan ^{2} q\right)}= \\
& =\frac{\sin (p+q) \cos (p+q) \cos ^{2} p \cos ^{2} q}{\cos p \cos q \sin p \sin q}=\sin (p+q) \cos (p+q)=\frac{1}{2} \sin 2(p+q)
\end{aligned}
$$

Remains to prove:

$$
\left|\frac{1}{2} \sin 2(p+q)\right| \leq \frac{1}{2} \Leftrightarrow|\sin 2(p+q)| \leq 1
$$

Problem 5. If $a, b \in \mathbb{R}$ then:

$$
a^{2}\left(1+b^{4}\right)+b^{2}\left(1+a^{4}\right) \leq\left(1+a^{4}\right)\left(1+b^{4}\right)
$$

Proof. $a^{2} \geq 0, b^{2} \geq 0 \Rightarrow(\exists) p, q \in\left[0, \frac{\pi}{2}\right), a^{2}=\tan p, b^{2}=\tan q$

$$
\begin{gathered}
\tan p\left(1+\tan ^{2} q\right)+\tan q\left(1+\tan ^{2} p\right) \leq\left(1+\tan ^{2} p\right)\left(1+\tan ^{2} q\right) \\
\tan p \cdot \frac{1}{\cos ^{2} q}+\tan q \cdot \frac{1}{\cos ^{2} p} \leq \frac{1}{\cos ^{2} p} \cdot \frac{1}{\cos ^{2} q} \Leftrightarrow \tan p \cdot \cos ^{2} p+\tan q \cdot \cos ^{2} q \leq 1 \\
\sin p \cos p+\sin q \cos q \leq 1 \Leftrightarrow 2 \sin p \cos p+2 \sin q \cos q \leq 2 \\
\sin 2 p+\sin 2 q \leq 2
\end{gathered}
$$

which its obvious because $\sin 2 p \leq 1, \sin 2 q \leq 1$.
Problem 6. If $x, y \geq 0 ; x+y=1$ then:

$$
\left(x^{2}+\frac{1}{x^{2}}\right)+\left(y^{2}+\frac{1}{y^{2}}\right) \geq \frac{17}{2}
$$

Proof. $x, y \geq 0 \Rightarrow$ (\exists) $p \in[0,2 \pi) ; x=\sin ^{2} p ; y=\cos ^{2} p$

$$
\begin{gathered}
\sin ^{4} p+\frac{1}{\cos ^{4} p}+\cos ^{4} p+\frac{1}{\cos ^{4} p}=\left(\sin ^{4} p+\cos ^{4} p\right)\left(1+\frac{1}{\sin ^{4} p \cos ^{4} p}\right)= \\
=\left(1-2 \sin ^{2} p \cos ^{2} p\right)\left(1+\frac{16}{\sin ^{4} 2 p}\right)=\left(1-\frac{\sin ^{2} 2 p}{2}\right)\left(1+\frac{16}{\sin ^{4} 2 p}\right) \geq\left(1-\frac{1}{2}\right)\left(1+\frac{16}{1}\right) \\
=\frac{1}{2} \cdot 17=\frac{17}{2}
\end{gathered}
$$

Problem 7. If $a, b \in \mathbb{R}$ then:

$$
a^{2}+(a-b)^{2} \geq \frac{3-\sqrt{5}}{2}\left(a^{2}+b^{2}\right)
$$

Proof. If $b=0$ inequality can be written:

$$
2 a^{2} \geq \frac{3-\sqrt{5}}{2} \cdot a^{2} \Leftrightarrow a^{2}(1+\sqrt{5}) \geq 0
$$

If $b \neq 0$, dividing by $b^{2}: \frac{a^{2}}{b^{2}}+\left(\frac{a}{b}-1\right)^{2} \geq \frac{3-\sqrt{5}}{2}\left(\frac{a^{2}}{b^{2}}-1\right)$
But: $\frac{a}{b} \in \mathbb{R} \Rightarrow(\exists) p \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) ; \frac{a}{b}=\tan p$
$\tan ^{2} p+(\tan p-1)^{2} \geq \frac{3-\sqrt{5}}{2}\left(\tan ^{2} p+1\right) \Leftrightarrow \sin ^{2} p(\sin p-\cos p)^{2} \geq \frac{3-\sqrt{5}}{2} \Leftrightarrow$ $1+\sin ^{2} p-2 \sin p \cos p \geq \frac{3-\sqrt{5}}{2} \Leftrightarrow 2+2 \sin ^{2} p-2 \sin 2 p \geq 3-\sqrt{5} \Leftrightarrow$ $1-2 \sin ^{2} p+2 \sin 2 p \leq \sqrt{5} \Leftrightarrow \cos 2 p+2 \sin 2 p \leq \sqrt{5} \Leftrightarrow \frac{1}{\sqrt{5}} \cos 2 p+\frac{2}{\sqrt{5}} \sin 2 p \leq 1 \Leftrightarrow$

$$
\left(\frac{1}{\sqrt{5}}\right)^{2}+\left(\frac{2}{\sqrt{5}}\right)^{2}=1 \Rightarrow(\exists) q \in\left(0, \frac{\pi}{2}\right) ; \frac{1}{\sqrt{5}}=\sin q ; \frac{2}{\sqrt{5}}=\cos q
$$

$$
\sin q \cos 2 p+\cos q \sin 2 p \leq 1 \Leftrightarrow \sin (2 p+q) \leq 1
$$

Problem 8. If $a, b \in[0,1]$ then:

$$
\mid a \sqrt{1-b^{2}}+b \sqrt{1-a^{2}}+\sqrt{3}\left(a b-\sqrt{\left(1-a^{2}\right)\left(1-b^{2}\right)} \mid \leq 2\right.
$$

Proof. $a, b \in[0,1] \Rightarrow(\exists) p, q \in\left[0, \frac{\pi}{2}\right] ; a=\sin p, b=\sin q$

$$
\begin{gathered}
\mid \sin p \sqrt{1-\sin ^{2} q}+\sin q \sqrt{1-\sin ^{2} p}+\sqrt{3}\left(\sin p \sin q-\sqrt{\left(1-\sin ^{2} p\right)\left(1-\sin ^{2} q\right)} \mid \leq 2\right. \\
\Leftrightarrow \mid \sin p \cos q+\sin q \cos p+\sqrt{3}\left(\sin p \sin q-\sqrt{\left(1-\sin ^{2} p\right)\left(1-\sin ^{2} q\right)} \mid \leq 2\right. \\
\Leftrightarrow|\sin (p+q)-\sqrt{3} \cos (p+q)| \leq 2 \Leftrightarrow\left|\frac{1}{2} \sin (p+q)-\frac{\sqrt{3}}{2} \cos (p+q)\right| \leq 1 \Leftrightarrow \\
\left|\sin \left(p+q-\frac{\pi}{3}\right)\right| \leq 1
\end{gathered}
$$

Problem 9. Solve the following equation:

$$
x^{3}-3 x+a\left(1-3 x^{2}\right)=0 ; a \in \mathbb{R}
$$

Proof. $x \in \mathbb{R} \Rightarrow(\exists) b \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) ; x=\tan b$

$$
\begin{gathered}
a\left(1-3 \tan ^{2} b\right)=3 \tan b-\tan ^{3} b \Rightarrow a=\frac{3 \tan b-\tan ^{3} b}{1-3 \tan ^{2} b} \\
a=3 \tan 3 b \Rightarrow 3 b=\tan ^{-1} a+k \pi ; k \in \mathbb{Z} \Rightarrow b=\frac{1}{3} \tan ^{-1}+\frac{k \pi}{3} ; k \in \mathbb{Z} \\
x=\tan b=\tan \left(\frac{1}{3} \tan ^{-1} a+\frac{k \pi}{3}\right) ; k \in\{-2,0,2\}
\end{gathered}
$$

If $a=1$ the equation: $x^{3}-3 x^{2}-3 x+1=0$ has the solutions:

$$
x=\tan \left(\frac{\pi}{12}+\frac{k \pi}{3}\right) ; k \in\{-2,0,2\}, x_{1}=\tan \frac{\pi}{12} ; x_{2}=\tan \frac{\pi}{4} ; x_{3}=\tan \left(-\frac{7 \pi}{4}\right)
$$

If $a=2$ the equation: $x^{3}-6 x^{2}-3 x+2=0$ has the solutions:

$$
\begin{gathered}
x=\tan \left(\frac{1}{3} \tan ^{-1} 2+\frac{k \pi}{3}\right) ; k \in\{-2,0,2\}, x_{1}=\tan \left(\frac{1}{3} \tan ^{-1} 2\right), x_{2}=\left(\frac{1}{3} \tan ^{-1} 2+\frac{2 \pi}{3}\right), \\
x_{3}=\tan \left(\frac{1}{3} \tan ^{-1} 2-\frac{2 \pi}{3}\right)
\end{gathered}
$$

Problem 10. Solve the equation:

$$
4 x^{3}-4 x+a\left(x^{4}-6 x^{2}+1\right)=0 ; a \in \mathbb{R}
$$

Proof. $x \in \mathbb{R} \Rightarrow(\exists) b \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) ; x=\tan b ; a\left(\tan ^{4} b-6 \tan ^{2} b+1\right)=4 \tan b-4 \tan ^{3} b$

$$
\begin{gathered}
a=\frac{4 \tan b-4 \tan ^{3} b}{\tan ^{4} b-6 \tan ^{2} b+1} \Rightarrow a=\tan 4 b \Rightarrow b=\frac{1}{4} \tan ^{-1} a ; \\
x=\tan \left(\frac{1}{4} \tan ^{-1} a+\frac{k \pi}{4}\right) ; k \in \mathbb{Z}
\end{gathered}
$$

If $a=1$ the equation: $x^{4}+4 x^{3}-6 x^{2}-4 x+1=0$ has the solutions:

$$
x_{1}=\tan \frac{\pi}{16} ; x_{2}=\tan \frac{5 \pi}{16} ; x_{3}=\tan \left(-\frac{3 \pi}{16}\right) ; x_{4}=\tan \frac{9 \pi}{16}
$$

Problem 11. Find the formula of the general term of the sequence given by the relationships:
$x_{1}=a ; a \in[-1,1], x_{n+1}=2 x_{n}^{2}-1 ; n \geq 1$
Proof. $x_{1}=a \in[-1,1] \Rightarrow(\exists) b \in[0,2 \pi] ; a=\cos b ; b=\cos ^{-1} a$

$$
x_{2}=2 x_{1}^{2}-1=2 \cos ^{2} b-1=\cos 2 b ; x_{3}=2 x_{2}^{2}-1=\cos \left(2^{2} b\right)
$$

$$
x_{4}=2 x_{3}^{2}-1=\cos \left(2^{3} b\right)
$$

Through induction we can prove that: $x_{n}=\cos \left(2^{n-1} b\right)=\cos \left(2^{n-1} \cos ^{-1} a\right)$

Problem 12. Find the formula of the general term of the sequence given by the relationships:

$$
x_{1}=a ; a \in[-1,1], x_{n+1}=1-2 x_{n}^{2} ; n \geq 1
$$

Proof. $x_{1}=a \in[-1,1] \Rightarrow(\exists) b \in[0,2 \pi] ; a=\sin b ; b=\sin ^{-1} a$

$$
x_{2}=1-2 x_{1}^{2}=1-2 \sin ^{2} b=\cos (2 b) ; x_{3}=1-2 x_{2}^{2}=\cos \left(2^{2} b\right)
$$

Through induction we can prove that: $x_{n}=\cos \left(2^{n-1} b\right)=\cos \left(2^{n-1} \sin ^{-1} a\right)$
Problem 13. Find the formula of the general term of the sequence given by the relationships:

$$
x_{1}=a ; a \in[-1,1], x_{n+1}=x_{n}\left(3-4 x_{n}^{2}\right) ; n \geq 1
$$

Proof. $x_{1}=a \in[-1,1] \Rightarrow(\exists) b \in[0,2 \pi] ; a=\sin b ; b=\sin ^{-1} a$

$$
\begin{gathered}
x_{2}=x_{1}\left(3-4 x_{1}^{2}\right)=\sin b\left(3-4 \sin ^{2} 3 b\right)=\sin (3 b) \\
x_{3}=x_{2}\left(3-4 x_{2}^{2}\right)=\sin 3 b\left(3-4 \sin ^{2} 3 b\right)=\sin \left(3^{2} b\right) \\
x_{4}=x_{3}\left(3-4 x_{3}^{2}\right)=\sin \left(3^{2} b\right)\left(3-4 \sin ^{2}\left(3^{2} b\right)\right)=\sin \left(3^{3} b\right)
\end{gathered}
$$

Through induction we can prove that: $x_{n}=\cos \left(3^{n-1} b\right)=\cos \left(3^{n-1} \sin ^{-1} a\right)$
Problem 14. Find the formula of the general term of the sequence given by the relationships:

$$
x_{1}=a ; a \in[-1,1], x_{n+1}=x_{n}\left(4 x_{n}^{2}-3\right) ; n \geq 1
$$

Proof. $x_{1}=a \in[-1,1] \Rightarrow(\exists) b \in[0,2 \pi] ; a=\cos b ; b=\cos ^{-1} a$

$$
\begin{gathered}
x_{2}=x_{1}\left(4 x_{1}^{2}-3\right)=\cos b\left(4 \cos ^{2} 3 b-3\right)=\cos (3 b) \\
x_{3}=x_{2}\left(4 x_{2}^{2}-3\right)=\cos 3 b\left(4 \cos ^{2} 3 b-3\right)=\cos \left(3^{2} b\right) \\
x_{4}=x_{3}\left(4 x_{3}^{2}-3\right)=\cos \left(3^{2} b\right)\left(4 \sin ^{2}\left(3^{2} b\right)-3\right)=\cos \left(3^{3} b\right)
\end{gathered}
$$

Through induction we can prove that: $x_{n}=\cos \left(3^{n-1} b\right)=\cos \left(3^{n-1} \cos ^{-1} a\right)$
Problem 15. Find the formula of the general term of the sequence given by the relationships:

$$
x_{1}=a ; a \in[-1,1], x_{n+1}=\frac{2 x_{n}}{1-x_{n}^{2}} ; n \geq 1
$$

Proof. $x_{1}=a \in[-1,1] \Rightarrow(\exists) b \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) ; a=\tan b ; b=\tan ^{-1} a$

$$
x_{2}=\frac{2 x_{1}}{1-x_{1}^{2}}=\frac{2 \tan b}{1-\tan ^{2} b}=\tan (2 b) ; x_{3}=\frac{2 x_{2}}{1-x_{2}^{2}}=\frac{2 \tan (2 b)}{1-\tan ^{2}(2 b)}=\tan \left(2^{2} b\right)
$$

Through induction we can prove that: $x_{n}=\tan \left(2^{n-1} b\right)=\tan \left(2^{n-1} \tan ^{-1} a\right)$
Problem 16. Find the formula of the general term of the sequence given by the relationships:

$$
x_{1}=a ; a \in[-1,1], x_{n+1}=\frac{3 x_{n}-x_{n}^{3}}{1-3 x_{n}^{2}} ; n \geq 1
$$

Proof. $x_{1}=a \in[-1,1] \Rightarrow(\exists) b \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) ; a=\tan b ; b=\tan ^{-1} a$

$$
\begin{aligned}
& x_{2}=\frac{3 x_{1}-x_{1}^{3}}{1-3 x_{1}^{2}}=\frac{3 \tan b-\tan ^{3} b}{1-3 \tan ^{2} b}=\tan (3 b) ; \\
x_{3}= & \frac{3 x_{2}-x_{2}^{3}}{1-3 x_{2}^{2}}=\frac{3 \tan (3 b)-\tan ^{3}(3 b)}{1-3 \tan ^{2}(3 b)}=\tan \left(3^{2} b\right)
\end{aligned}
$$

Through induction we can prove that: $x_{n}=\tan \left(3^{n-1} b\right)=\tan \left(3^{n-1} \tan ^{-1} a\right)$

Proposed Problems:

17. If $x \geq 0$ then: $\sqrt{x-1}+\sqrt{x \sqrt{x-1}}<x$

$$
\left(U s e: x=\frac{1}{\cos ^{2} p} ; p \in\left[0, \frac{\pi}{2}\right)\right)
$$

18. |f $|a| \leq 1$ then: $\sqrt{1+\sqrt{1-a^{2}}}\left[\sqrt{(1+a)^{3}-\sqrt{(1-a)^{3}}}\right] \leq 2 \sqrt{2}+\sqrt{2-2 a^{2}}$

$$
(\text { Use }: a-\cos p ; p \in[0, \pi])
$$

19. $|f| x \mid \leq 1$ then: $\frac{\sqrt{3}-2}{2} \leq \sqrt{3} x^{2}+x \sqrt{1-x^{2}} \leq \frac{\sqrt{3}+2}{2}$

$$
(U s e: x=\cos p ; p \in[0, \pi])
$$

20. If $a \in[0,2]$ then: $\left|\sqrt{2 a-a^{2}}-\sqrt{3} a+\sqrt{3}\right| \leq 2$

$$
\text { (Use: } a-1=\cos p, p \in[0, \pi])
$$

21. |f $|a| \geq 1$ then: $\left|\frac{\sqrt{a^{2}-1}+\sqrt{3}}{a}\right| \leq 2$

$$
\left(U s e: a=\frac{1}{\cos p} ; p \in\left[0, \frac{\pi}{2}\right) \cup\left[\pi, \frac{3 \pi}{2}\right)\right)
$$

22. |f $|a| \geq 1$ then: $-4 \leq \frac{5-12 \sqrt{a^{2}-1}}{a^{2}} \leq 9$

$$
\left(\text { Use }: a=\frac{1}{\cos p} ; p \in\left[0, \frac{\pi}{2}\right) \cup\left[\pi, \frac{3 \pi}{2}\right)\right)
$$

Problem 23. If $x, y, z>0, x y+y z+z x=1$ then:

$$
\frac{x}{1+x^{2}}+\frac{y}{1+y^{2}}+\frac{3 z}{1+z^{2}} \leq \sqrt{10}
$$

Proof. $x, y, z>0 \Rightarrow(\nexists) A, B, C \in\left(0, \frac{\pi}{2}\right) ; x=\tan \frac{A}{2}, y=\tan \frac{B}{2}, z=\tan \frac{C}{2}$
$\frac{x}{1+x^{2}}=\frac{\tan \frac{A}{2}}{1+\tan ^{2} \frac{A}{2}}=\frac{\sin \frac{A}{2}}{\cos \frac{A}{2}} \cdot \cos ^{2} \frac{A}{2}=\sin \frac{A}{2} \cos \frac{A}{2}$
$\frac{y}{1+y^{2}}=\sin \frac{B}{2} \cos \frac{B}{2} ; \frac{z}{1+z^{2}}=\sin \frac{C}{2} \cos \frac{C}{2}$
$\sin \frac{A}{2} \cos \frac{A}{2}+\sin \frac{B}{2} \sin \frac{B}{2}+3 \sin \frac{C}{2} \cos \frac{C}{2} \leq \sqrt{10} \Leftrightarrow \sin A+\sin B+3 \sin C \leq 2 \sqrt{10}$ $\Leftrightarrow \sin A+\sin B=2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}=2 \cos \frac{C}{2} \cos \frac{B-C}{2} \leq 2 \cos \frac{C}{2}$
$2 \cos \frac{C}{2}+3 \sin C=2 \cos \frac{C}{2}+6 \sin \frac{C}{2} \cos \frac{C}{2} \leq 2 \cos \frac{C}{2}+6 \sin \frac{C}{2}=2\left(\cos \frac{C}{2}+3 \sin \frac{C}{2}\right) \stackrel{C B S}{\leq}$

$$
\leq 2 \cdot \sqrt{1^{2}+3^{2}} \cdot \sqrt{\sin ^{2} \frac{C}{2}+\cos ^{2} \frac{C}{2}}=2 \cdot \sqrt{10} \cdot 1=2 \sqrt{10}
$$

Problem 24. If $x, y, z>0 ; x y+y z+z x=1$ then:

$$
\frac{x}{\sqrt{1+x^{2}}}+\frac{y}{\sqrt{1+y^{2}}}+\frac{z}{\sqrt{1+z^{2}}} \leq \frac{3}{2}
$$

Proof. $x, y, z>0 \Rightarrow(\exists) A, B, C \in\left(0, \frac{\pi}{2}\right) ; x=\cot A, y=\cot B, z=\cot C$

$$
\frac{x}{\sqrt{1+x^{2}}}=\cos A ; \frac{y}{\sqrt{1+y^{2}}}=\cos B ; \frac{z}{\sqrt{1+z^{2}}}=\cos C
$$

Inequality to prove becomes a known one:

$$
\cos A+\cos B+\cos C \leq \frac{3}{2}
$$

Problem 25. If $x, y, z>0 ; x+y+z=x y z$ then:

$$
\left(x^{2}-1\right)\left(y^{2}-1\right)\left(z^{2}-1\right) \leq \sqrt{\left(x^{2}+1\right)\left(y^{2}+1\right)\left(z^{2}+1\right)}
$$

Proof. If $x, y, z>0 \Rightarrow(\exists) A, B, C \in\left(0, \frac{\pi}{2}\right) ; x=\cot \frac{A}{2}, y=\cot \frac{B}{2}, z=\cot \frac{C}{2}$ Inequality to prove becomes:

$$
\begin{aligned}
& \frac{x^{2}-1}{x^{2}+1} \cdot \frac{y^{2}-1}{y^{2}+1} \cdot \frac{z^{2}-1}{z^{2}+1} \leq \frac{1}{\sqrt{\left(x^{2}+1\right)\left(y^{2}+1\right)\left(z^{2}+1\right)}} \\
& \frac{x^{2}-1}{x^{2}+1}=\cos A ; \frac{y^{2}-1}{y^{2}+1}=\cos B ; \frac{z^{2}-1}{z^{2}+1}=\cos C \\
& \frac{1}{\sqrt{x^{2}+1}}=\sin \frac{A}{2} ; \frac{1}{\sqrt{y^{2}+1}}=\sin \frac{B}{2} ; \frac{1}{\sqrt{z^{2}+1}}=\sin \frac{C}{2}
\end{aligned}
$$

Inequality to prove can be written:

$$
\cos A \cos B \cos C \leq \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}
$$

$\cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)]=\frac{1}{2}[\cos (A-B)-\cos C] \leq \frac{1}{2}(1-\cos C)$

$$
=\sin ^{2} \frac{C}{2}
$$

Analogous: $\cos B \cos C \leq \sin ^{2} \frac{A}{2} ; \cos C \cos A \leq \sin ^{2} \frac{B}{2}$ and multiplying its obtained the asked inequality.
Problem 26. If $x, y, z>0 ; x y+y z+z x=1$ then:

$$
\frac{x}{1+x^{2}}+\frac{y}{1+y^{2}}+\frac{z}{1+z^{2}} \geq \frac{3 \sqrt{3}}{4}
$$

Proof. $x, y, z>0 \Rightarrow(\exists) A, B, C \in\left(0, \frac{\pi}{2}\right) ; x=\tan A, y=\tan B, z=\tan C$

$$
\begin{gathered}
\frac{x}{1+x^{2}}=\frac{\tan A}{1+\tan ^{2} A}=\frac{\sin A}{\cos A} \cdot \frac{\cos ^{2} A}{1}=\sin A \cos A \\
\frac{y}{1+y^{2}}=\frac{\tan B}{1+\tan ^{2} B}=\sin B \cos B ; \frac{z}{1+z^{2}}=\sin C \cos C
\end{gathered}
$$

Inequality to prove can be written:
$\sin A \cos A+\sin B \cos B+\sin C \cos C \geq \frac{3 \sqrt{3}}{4} \Leftrightarrow \sin A+\sin B+\sin C \geq \frac{3 \sqrt{3}}{2}$ $f:(0, \pi) \rightarrow \mathbb{R} ; f(x)=\sin x ; f^{\prime}(x)=\cos x ; f^{\prime \prime}(x)=-\sin x<0 \Rightarrow f$-concave.
By Jensen's inequality: $f\left(\frac{A+B+C}{3}\right) \geq \frac{1}{3}(f(A)+f(B)+f(C)) \Leftrightarrow$

$$
3 \sin \frac{\pi}{3} \geq \sin 2 A+\sin 2 B+\sin 2 C \Leftrightarrow \sin 2 A+\sin 2 B+\sin 2 C \leq \frac{3 \sqrt{3}}{2}
$$

Theorem 1. If $A, B, C \in(0, \pi) ; A+B+C=\pi$ then:

$$
\tan \frac{A}{2} \tan \frac{B}{2}+\tan \frac{B}{2} \tan \frac{C}{2}+\tan \frac{C}{2} \tan \frac{A}{2}=1
$$

Theorem 2. If $A, B, C \in(0, \pi) ; A+B+C=\pi$ then:

$$
\sin ^{2} \frac{A}{2}+\sin ^{2} \frac{B}{2}+\sin ^{2} \frac{C}{2}+2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=1
$$

Problem 27. If $x, y, z \in(0, \infty) ; x^{2}+y^{2}+z^{2}+2 x y z=1$ then:

$$
x y+y z+z x \leq \frac{3}{4}
$$

Proof. $x, y, z \in(0, \infty) \Rightarrow(\exists) A, B, C \in(0, \pi) ; x=\sin \frac{A}{2}, y=\sin \frac{B}{2}, z=\sin \frac{C}{2}$

Inequality to prove becomes:

$$
\sin \frac{A}{2} \sin \frac{B}{2}+\sin \frac{B}{2} \sin \frac{C}{2}+\sin \frac{C}{2} \sin \frac{A}{2} \leq \frac{3}{4}
$$

By Jensen's inequality: $\frac{1}{2}=\sin \frac{\pi}{6}=\sin \frac{A+B+C}{6} \geq \frac{1}{3}\left(\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2}\right) \Rightarrow$

$$
\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2} \leq \frac{3}{2}
$$

On the other hand:

$$
\sin \frac{A}{2} \sin \frac{B}{2}+\sin \frac{B}{2} \sin \frac{C}{2}+\sin \frac{C}{2} \sin \frac{A}{2} \leq \frac{1}{3}\left(\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2}\right)^{2} \leq \frac{1}{3} \cdot\left(\frac{3}{2}\right)^{2}=\frac{9}{12}=\frac{3}{4}
$$

Problem 28. If $x, y, z>0 ; x^{2}+y^{2}+z^{2}+2 x y z=1$ then:

$$
x+y+z \geq 4 x y z+1
$$

Proof. $x, y, z \in(0, \infty) \Rightarrow(\exists) A, B, C \in\left(0, \frac{\pi}{2}\right) ; x=\cos A, y=\cos B, z=\cos C$ Inequality to prove can be written:

$$
\begin{gathered}
\cos A+\cos B+\cos C \geq 4 \cos A \cos B \cos C+1 \Leftrightarrow \\
2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}+1-2 \sin ^{2} \frac{C}{2} \geq \cos A \cos B \cos C+1 \Leftrightarrow \\
2 \cos \frac{C}{2} \cos \frac{A-B}{2}-2 \sin ^{2} \frac{C}{2} \geq 4 \cos A \cos B \cos C \Leftrightarrow \\
2 \cos \frac{\pi-C}{2} \cos \frac{A-B}{2}-2 \sin ^{2} \frac{C}{2} \geq 4 \cos A \cos B \cos C \Leftrightarrow \\
2 \sin \frac{C}{2}\left(\cos \frac{A-B}{2}-\sin \frac{C}{2}\right) \geq 4 \cos A \cos B \cos C \Leftrightarrow \\
2 \sin \frac{C}{2} \cdot 2 \cdot \sin \frac{\frac{A-B}{2}+\frac{\pi-C}{2}}{2} \sin \frac{\pi-C}{2}-\frac{A-B}{2} \\
4 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \geq 4 \cos A \cos B \cos B \cos C
\end{gathered}
$$

Remains to prove:

$$
\begin{gathered}
\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \geq \cos A \cos B \cos C \\
\cos A \cos B \leq \frac{(\cos A+\cos B)^{2}}{4}=\sin ^{2} \frac{C}{2} \cos ^{2} \frac{A-B}{2} \leq \sin ^{2} \frac{C}{2}
\end{gathered}
$$

Analogous:

$$
\cos B \cos C \leq \sin ^{2} \frac{A}{2} ; \cos C \cos A \leq \sin ^{2} \frac{B}{2}
$$

By multiplying:

$$
\cos ^{2} A \cos ^{2} B \cos ^{2} C \leq \sin ^{2} \frac{A}{2} \sin ^{2} \frac{B}{2} \sin ^{2} \frac{C}{2} \Leftrightarrow \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \geq \cos A \cos B \cos C
$$

Proposed Problems

29. If $a \in \mathbb{R} ;|a| \geq 1$ then:

$$
\begin{gathered}
a+\frac{a}{\sqrt{a^{2}-1}} \geq 2 \sqrt{2} \\
\left(\text { Use: } a=\frac{1}{\cos p} ; p \in\left[0, \frac{\pi}{2}\right) \cup\left[\pi, \frac{3 \pi}{2}\right)\right)
\end{gathered}
$$

30. If $a \in \mathbb{R}$ then:

$$
\begin{aligned}
& \left|\frac{3 a}{\sqrt{1+a^{2}}}-\frac{4 a^{2}}{\sqrt{\left(1+a^{2}\right)^{3}}}\right| \leq 1 \\
& \left(\text { Use }: a=\tan p ; p \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right)
\end{aligned}
$$

31. If $a \in \mathbb{R}$ then:

$$
\begin{gathered}
\frac{5}{2} \leq \frac{12 a^{4}+8 a^{2}+3}{\left(1+2 a^{2}\right)^{2}} \leq 3 \\
\left(\text { Use: } a=\frac{1}{\sqrt{2}} \tan p ; p \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right)
\end{gathered}
$$

32. If $a \in \mathbb{R}$ then:

$$
-3 \leq \frac{6 a+4\left|a^{2}-1\right|}{a^{2}+1} \leq 5
$$

33. If $a \in[1,3]$ then:

$$
\begin{gathered}
\left|4 a^{3}-24 a^{2}+45 a-26\right| \leq 1 \\
(\text { Use: } a-2=\cos x)
\end{gathered}
$$

34. If $x \in \mathbb{R}$ then:

$$
\left|\frac{x\left(1-x^{2}\right)\left(x^{4}-6 x^{2}+1\right)}{\left(1+x^{2}\right)^{4}}\right| \leq \frac{1}{8}
$$

35. If $a, b, c, d \in \mathbb{R} ; a^{2}+b^{2}=c^{2}+d^{2}=1$ then:

$$
-\sqrt{2} \leq a(c+d)+b(c-d) \leq 2
$$

(Use: $a=\sin x ; b=\cos x ; c=\sin y ; d=\cos y$)
36. If $a, b \in \mathbb{R} ; a^{2}+b^{2}=1$ then:

$$
\left(a^{2}+\frac{1}{a^{2}}\right)^{2}+\left(b^{2}+\frac{1}{b^{2}}\right)^{2} \geq \frac{25}{2}
$$

$$
(U s e: a=\sin x ; b=\cos x)
$$

37. If $a, b \in \mathbb{R} ; a^{2}+b^{2}-2 a-4 b+4=0$ then:

$$
\left|a^{2}-b^{2}+2 \sqrt{3} a b-2(1+2 \sqrt{3}) a+(4-2 \sqrt{3}) b+4 \sqrt{3}-3\right| \leq 2
$$

$$
(U s e: a-1=\sin x ; b-2=\cos x)
$$

38. If $a \in[0,2] ; b \in[0,3]$ then:

$$
4 \leq a^{2}+b^{2}+a b+\sqrt{4-a^{2}} \cdot \sqrt{9-b^{2}} \leq 19
$$

39. If $m, n \in[1, \infty)$ then:

$$
\begin{gathered}
n \sqrt{m-1}+m \sqrt{n-1} \leq m n \\
\left(\text { Use }: m=\frac{1}{\cos ^{2} x} ; n=\frac{1}{\cos ^{2} y} ; x, y \in\left[0, \frac{\pi}{2}\right]\right)
\end{gathered}
$$

40. If $m, n \in(0, \infty) ; m>n$ then:

$$
\begin{aligned}
& \sqrt{m^{2}-n^{2}}+\sqrt{2 m n-n^{2}} \geq m \\
& \left(\text { Use }: \frac{n}{m}=\sin x ; x \in\left[0, \frac{\pi}{2}\right]\right)
\end{aligned}
$$

41. If $x, y \in \mathbb{R} ;|x| \leq 1,|y| \leq 1$ then:

$$
\sqrt{1-x^{2}}+\sqrt{1-y^{2}} \leq \sqrt{4-(x+y)^{2}}
$$

$$
(\text { Use: } x=\sin p ; y=\sin q)
$$

42. If $x_{1}, x_{2}, \ldots, x_{n} \in[-1,1] ; x_{1}^{3}+x_{2}^{3}+\cdots+x_{n}^{3}=0$ then:

$$
\begin{gathered}
x_{1}+x_{2}+\cdots+x_{n} \leq \frac{n}{3} \\
\left(U s e: x_{i}=\cos p_{i} ; p_{i} \in[0, \pi] ; i \in \overline{1, n}\right) \\
a=y+z, b=z+x, c=x+y ; s=x+y+z ; S=\sqrt{x y z(x+y+z)} \\
R=\frac{(x+y)(y+z)(z+x)}{4 \sqrt{x y z(x+y+z)}} ; r=\sqrt{\frac{x y z}{x+y+z}} \\
r_{a}=\sqrt{\frac{(x+y+z) y z}{x}} ; r_{b}=\sqrt{\frac{(x+y+z) z x}{y}} ; r_{c}=\sqrt{\frac{(x+y+z) x y}{z}} \\
\sin \frac{A}{2}=\sqrt{\frac{y z}{(x+y)(x+z)}} ; \sin \frac{B}{2}=\sqrt{\frac{z x}{(y+z)(y+x)}} ; \sin \frac{C}{2}=\sqrt{\frac{x y}{(z+x)(z+y)}} \\
\cos \frac{A}{2}=\sqrt{\frac{(x+y+z) x}{(x+y)(x+z)}} ; \cos \frac{B}{2}=\sqrt{\frac{(x+y+z) y}{(y+x)(y+z)}} ; \cos \frac{C}{2}=\sqrt{\frac{(x+y+z) z}{(z+x)(z+y)}} \\
\tan \frac{A}{2}
\end{gathered} \sqrt{\frac{y z}{x}} ; \tan \frac{B}{2}=\sqrt{\frac{z x}{y}} ; \tan \frac{C}{2}=\sqrt{\frac{x y}{z}}, ~ \sqrt{\frac{x}{y z}} ; \cot \frac{B}{2}=\sqrt{\frac{y}{z x}} ; \cot \frac{C}{2}=\sqrt{\frac{z}{x y}} .
$$

Problem 43. If $x, y, z>0$ then:

$$
\frac{2 x y}{(z+x)(z+y)}+\frac{2 y z}{(x+y)(x+z)}+\frac{3 z x}{(y+z)(y+x)} \geq \frac{5}{3}
$$

Proof. $\cos A=1-2 \sin ^{2} \frac{A}{2}=1-\frac{2 y z}{(x+y)(x+z)} ; \frac{2 y z}{(x+y)(x+z)}=\cos A$

$$
\begin{aligned}
\frac{2 y z}{(x+y)(x+z)}= & \frac{1}{2}-\frac{1}{2} \cdot \cos A ; \frac{2 x z}{(y+x)(y+z)}=\frac{1}{2}-\frac{1}{2} \cdot \cos B ; \\
& \frac{2 x y}{(z+x)(z+y)}=\frac{1}{2}-\frac{1}{2} \cdot \cos C
\end{aligned}
$$

Inequality to prove can be written:

$$
\begin{gather*}
2\left(\frac{1}{2}-\frac{1}{2} \cdot \cos C\right)+2\left(\frac{1}{2}-\frac{1}{2} \cdot \cos A\right)+3\left(\frac{1}{2}-\frac{1}{2} \cdot \cos B\right) \geq \frac{5}{3} \Leftrightarrow \\
1-\cos C+1-\cos A+\frac{3}{2}-\frac{3}{2} \cdot \cos B \geq \frac{5}{3} ; \tag{1}\\
\cos A+\cos C+\frac{3}{2} \cos B=2 \cos \frac{A+C}{2} \cos \frac{A-C}{2}+\frac{3}{2} \cos B \\
=2 \sin \frac{B}{2} \cos \frac{A-C}{2}+\frac{3}{2}\left(1-2 \sin ^{2} \frac{B}{2}\right)
\end{gather*}
$$

By (1), we need to prove:

$$
\begin{gathered}
\frac{7}{2}-2 \sin \frac{B}{2} \cos \frac{A-C}{2}-\frac{3}{2}+3 \sin ^{2} \frac{B}{2} \geq \frac{5}{3} \Leftrightarrow 3 \sin ^{2} \frac{B}{2}-2 \sin \frac{B}{2} \cos \frac{A-C}{2}+\frac{1}{3} \geq 0 \\
3\left(\sin \frac{B}{2}-\frac{1}{3} \cos \frac{A-C}{2}\right)^{2}-\frac{1}{9} \cos ^{2} \frac{A-C}{2}+\frac{1}{3} \geq 0 \Leftrightarrow \\
3\left(\sin \frac{B}{2}-\frac{1}{3} \cos \frac{A-C}{2}\right)^{2}+\frac{1}{9}-\frac{1}{9} \cos ^{2} \frac{A-C}{2}+\frac{2}{9} \geq 0 \\
3\left(\sin \frac{B}{2}-\frac{1}{3} \cos \frac{A-C}{2}\right)^{2}+\frac{1}{9} \sin ^{2} \frac{A-C}{2}+\frac{2}{9} \geq 0
\end{gathered}
$$

Problem 44. If $a, b, c>0 ; a+b+c=1$ then:

$$
\sqrt{\frac{a b}{c+a b}}+\sqrt{\frac{b c}{a+b c}}+\sqrt{\frac{c a}{b+c a}} \leq \frac{3}{2}
$$

Proof.

$$
\begin{gather*}
\sum_{c y c} \sqrt{\frac{a b}{c+a b}} \leq \frac{3}{2} \Leftrightarrow \sum_{c y c} \sqrt{\frac{a b}{(c+a b) \cdot 1}} \leq \frac{3}{2} \Leftrightarrow \sum_{c y c} \sqrt{\frac{a b}{(c+a b)(a+b+c)}} \leq \frac{3}{2} \Leftrightarrow \\
\sum_{c y c} \sqrt{\frac{a b}{c a+c b+c^{2}+a b(a+b+c)}} \leq \frac{3}{2} \Leftrightarrow \sum_{c y c} \sqrt{\frac{a b}{c a+c b+c^{2}+a b}} \leq \frac{3}{2} \Leftrightarrow \\
\sum_{c y c} \sqrt{\frac{a b}{(c+a)(c+b)}} \leq \frac{3}{2} ; \tag{2}
\end{gather*}
$$

Denote: $x=a+b ; y=b+c ; z=c+a ; s=a+b+c$ and from (2) we must prove that:

$$
\begin{gathered}
\sum_{c y c} \sqrt{\frac{(s-y)(s-z)}{y z}} \leq \frac{3}{2} \\
f:(0, \pi) \rightarrow \mathbb{R} ; f(x)=\sin \frac{x}{2} ; f^{\prime}(x)=\frac{1}{2} \cos \frac{x}{2} ; f^{\prime \prime}(x)=-\frac{1}{4} \sin \frac{x}{2} \leq 0
\end{gathered}
$$

By Jensen's Inequality, we have:

$$
\begin{aligned}
& f(A)+f(B)+f(C) \leq 3 f\left(\frac{A+B+C}{3}\right) \Leftrightarrow \sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2} \leq 3 \sin \frac{\pi}{3}=\frac{3}{2} \\
& \sin \frac{A}{2}=\sqrt{\frac{(s-y)(s-z)}{y z}} ; \sin \frac{B}{2}=\sqrt{\frac{(s-x)(s-z)}{z x}} ; \sin \frac{C}{2}=\sqrt{\frac{(s-x)(s-y)}{x y}}
\end{aligned}
$$

Problem 45. If $x, y, z>0$ then:

$$
\sqrt{x(y+z)}+\sqrt{y(z+x)}+\sqrt{z(x+y)} \geq 2 \sqrt{\frac{(x+y)(y+x)(z+x)}{x+y+z}}
$$

(D. Grinberg)

Proof.

$$
\begin{gathered}
\sqrt{\frac{x(x+y+z)}{(x+y)(x+z)}}+\sqrt{\frac{y(x+y+z)}{(y+z)(y+x)}}+\sqrt{\frac{z(x+y+z)}{(z+x)(z+y)}} \geq 2 \\
a=x+y ; b=y+z ; c=z+x ; s=x+y+z
\end{gathered}
$$

$$
\begin{aligned}
& \sqrt{\frac{s(s-b)}{a c}}+\sqrt{\frac{s(s-c)}{a b}}+\sqrt{\frac{s(s-a)}{b c}} \geq 2 \Leftrightarrow \cos \frac{A}{2}+\cos \frac{B}{2}+\cos \frac{C}{2} \geq 2 \\
& \cos \frac{\pi-2 A^{\prime}}{2}+\cos \frac{\pi-2 B^{\prime}}{2}+\cos \frac{\pi-2 C^{\prime}}{2} \geq 2 \Leftrightarrow \sin A^{\prime}+\sin B^{\prime}+\sin C^{\prime} \geq 2
\end{aligned}
$$

By Jordan's Inequality:

$$
\sin A^{\prime} \geq \frac{2 A^{\prime}}{\pi} ; \sin B^{\prime} \geq \frac{2 B^{\prime}}{\pi} ; \sin C^{\prime} \geq \frac{2 C^{\prime}}{\pi}
$$

By adding:

$$
\sin A^{\prime}+\sin B^{\prime}+\sin C^{\prime} \geq \frac{2\left(A^{\prime}+B^{\prime}+C^{\prime}\right)}{\pi}=\frac{2 \pi}{\pi}=2
$$

Problem 46. If $a, b, c \geq ; a+b+c=a b c$ then:

$$
\sqrt{1+\frac{1}{a^{2}}}+\sqrt{1+\frac{1}{b^{2}}}+\sqrt{1+\frac{1}{c^{2}}} \geq 2 \sqrt{3}
$$

(A.Nicolaescu;C.Pătraşcu)

Proof. $a=\tan A ; b=\tan B ; c=\tan C ; A, B, C \in\left(0, \frac{\pi}{2}\right)$
Inequality can be written:

$$
\begin{gathered}
\sqrt{1+\frac{1}{\tan ^{2} A}}+\sqrt{1+\frac{1}{\tan ^{2} B}}+\sqrt{1+\frac{1}{\tan ^{2} C}} \geq 2 \sqrt{3} \Leftrightarrow \frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C} \geq 2 \sqrt{3} \\
\frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C} \stackrel{B C S}{\geq} \frac{(1+1+1)^{2}}{\sin A+\sin B+\sin C} \geq \frac{9}{\frac{3 \sqrt{3}}{2}}=2 \sqrt{3}
\end{gathered}
$$

Problem 47. If $x, y, z>0 ; x+y+z=x y z$ then:

$$
\sqrt{\frac{x^{4}}{3}}+\sqrt{\frac{y^{4}}{3}+1}+\sqrt{\frac{z^{4}}{3}+1} \geq 6
$$

(George Apostolopoulos)
Proof. Denote: $a^{2}=\sqrt{3} \tan A ; b^{2}=\sqrt{3} \tan B ; c^{2}=\sqrt{3} \tan C$

$$
\begin{gathered}
\sqrt{\frac{3 \tan ^{2} A}{3}}+\sqrt{\frac{3 \tan ^{2} B}{3}+1}+\sqrt{\frac{3 \tan ^{2} C}{3}+1} \geq 6 \\
\sqrt{1+\tan ^{2} A}+\sqrt{1+\tan ^{2} B}+\sqrt{1+\tan ^{2} C} \geq 6 \Leftrightarrow \frac{1}{\cos A}+\frac{1}{\cos B}+\frac{1}{\cos C} \geq 6 \\
\frac{1}{\cos A}+\frac{1}{\cos B}+\frac{1}{\cos C} \stackrel{B C S}{\geq} \frac{(1+1+1)^{2}}{\cos A+\cos B+\cos C}=\frac{9}{\frac{3}{2}}=6
\end{gathered}
$$

Problem 48. If $x, y, z>0 ; x+y+z=x y z$ then:

$$
x y+y z+z x \geq 3+\sqrt{x^{2}+1}+\sqrt{y^{2}+1}+\sqrt{z^{2}+1}
$$

Proof. Denote: $x=\tan A ; y=\tan B ; z=\tan C$ Inequality can be written:
$\tan A \tan B+\tan B \tan C+\tan C \tan A \geq 3+\frac{1}{\cos A}+\frac{1}{\cos B}+\frac{1}{\cos C} \Leftrightarrow$
$(\tan A \tan B-1)+(\tan B \tan C-1)+(\tan C \tan A-1) \geq \frac{1}{\cos A}+\frac{1}{\cos B}+\frac{1}{\cos C}$

$$
\begin{gathered}
\frac{\sin A \sin B-\cos A \cos B}{\cos A \cos B}+\frac{\sin B \sin C-\cos B \cos C}{\cos B \cos C}+\frac{\sin C \sin A-\cos C \cos A}{\cos C \cos A} \geq \\
\geq \frac{1}{\cos A}+\frac{1}{\cos B}+\frac{1}{\cos C} \Leftrightarrow \\
\frac{\cos (A+B)}{\cos A \cos B}+\frac{\cos (B+C)}{\cos B \cos C}+\frac{\cos (C+A)}{\cos C \cos A} \geq \frac{1}{\cos A}+\frac{1}{\cos B}+\frac{1}{\cos C} \Leftrightarrow \\
\frac{\cos C}{\cos A \cos B}+\frac{\cos A}{\cos B \cos C}+\frac{\cos B}{\cos C \cos A} \geq \frac{1}{\cos A}+\frac{1}{\cos B}+\frac{1}{\cos C} \Leftrightarrow \\
\cos ^{2} A+\cos B+\cos 2 \geq \cos A \cos B+\cos B \cos C+\cos C \cos A \Leftrightarrow \\
(\cos A-\cos B)^{2}+(\cos B-\cos C)^{2}+(\cos C-\cos A)^{2} \geq 0
\end{gathered}
$$

Problem 49. If $x, y, z>0 ; x y+y z+z x=1$ then:

$$
\frac{1-x^{2}}{1+x^{2}}+\frac{1-y^{2}}{1+y^{2}}+\frac{1-z^{2}}{1+z^{2}} \leq \frac{3}{2}
$$

(C.Popescu)

Proof. Denote $x=\tan \frac{A}{2} ; y=\tan \frac{B}{2} ; z=\tan \frac{C}{2}$
Inequality can be written:

$$
\frac{1-\tan ^{2} \frac{A}{2}}{1+\tan ^{2} \frac{A}{2}}+\frac{1-\tan ^{2} \frac{B}{2}}{1+\tan ^{2} \frac{B}{2}}+\frac{1-\tan ^{2} \frac{C}{2}}{1+\tan ^{2} \frac{C}{2}} \leq \frac{3}{2} \Leftrightarrow \cos A+\cos B+\cos C \leq \frac{3}{2}
$$

Problem 50. If $a, b, c>0 ; a+b+c=1$ then:

$$
a^{2}+b^{2}+c^{2}+2 \sqrt{2 a b c} \leq 1
$$

Proof. Denote $a=x y ; b=y z ; c=z x$

$$
a+b+c=1 \Leftrightarrow x y+y z+z x=1
$$

For $x=\tan \frac{A}{2} ; y=\tan \frac{B}{2} ; z=\tan \frac{C}{2} ; A, B, C \in\left(0, \frac{\pi}{2}\right)$
Inequality can be written:

$$
\begin{gathered}
x^{2} y^{2}+y^{2} z^{2}+z^{2} x^{2}+2 \sqrt{3} x y z \leq 1 \Leftrightarrow \\
(x y+y z+z x)^{2}-2 x y z(x+y+z)+2 \sqrt{3}+x y z \leq 1 \\
1-2 x y z(x+y+z)+2 \sqrt{3} x y z \leq 1 \Leftrightarrow x+y+z \geq \sqrt{3} \\
\tan \frac{A}{2}+\tan \frac{B}{2}+\tan \frac{C}{2} \geq \sqrt{3}
\end{gathered}
$$

Problem 51. If $x, y, z>1 ; \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2$ then:

$$
\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1} \leq \sqrt{x+y+z}
$$

Proof. Denote $x=a+1 ; y=b+1 ; z=c+1 ; a, b, c>0$

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2 \Leftrightarrow a b+b c+c a+2 a b c=1
$$

Inequality can be written:

$$
\sqrt{a}+\sqrt{b}+\sqrt{c} \leq \sqrt{a+b+c}
$$

For $a b=\sin ^{2} \frac{A}{2} ; b c=\sin ^{2} \frac{B}{2} ; c a=\sin ^{2} \frac{C}{2} ; A, B, C \in\left(0, \frac{\pi}{2}\right)$

$$
\sin ^{2} \frac{A}{2}+\sin ^{2} \frac{B}{2}+\sin ^{2} \frac{C}{2}+2 \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}=1
$$

By squaring inequality to prove becomes:

$$
\sqrt{a b}+\sqrt{b c}+\sqrt{c a} \leq \frac{3}{2} \Leftrightarrow \sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2} \leq \frac{3}{2}
$$

Proposed Problems

52. If $a, b \in \mathbb{R} ; 15 a+12 b+7=13$ then:

$$
a^{2}+b^{2}+2(b-a) \geq-1
$$

(Use: $a-1=R \sin p ; b+1=R \cos p)$
53. If $a, b \in \mathbb{R} ;|a| \geq 1 ;|b| \geq 1$ then:

$$
\begin{aligned}
& \left|\frac{\sqrt{a^{2}-1}+\sqrt{b^{2}-1}}{a b}\right| \leq 1 \\
& \left.\frac{1}{\cos p} ; b=\frac{1}{\cos q} ; p, q \in\left[0, \frac{\pi}{2}\right] \cup\left[\pi, \frac{3 \pi}{2}\right]\right)
\end{aligned}
$$

54. If $|x| \geq 1 ;|y| \geq 1$ then:

$$
\begin{gathered}
y \sqrt{x^{2}-1}+4 \sqrt{y^{2}-1}+3 \leq x y \sqrt{26} \\
\left(\text { Use }: x=\frac{1}{\cos p} ; y=\frac{1}{\cos q} ; p, q \in\left(0, \frac{\pi}{2}\right)\right)
\end{gathered}
$$

55. If $x, y, u, v \in \mathbb{R} ; x^{2}+y^{2}=u^{2}+v^{2}=1$ then:
a. $|x u+y v| \leq 1$
b. $|x v+y u| \leq 1$
c. $-2 \leq(x-y)(u+v)+(x+y)(u-v) \leq 2$
d. $-2 \leq(x+y)(u+v)-(x-y)(u-v) \leq 2$

$$
\text { (Use: } x=\cos a ; y=\sin a ; u=\cos b ; v=\sin b ; a, b \in(0,2 \pi))
$$

56. If $a, b \in \mathbb{R}$ then:
a. $(a+b)^{4} \leq 8\left(a^{4}+b^{4}\right)$
b. $(a+b)^{6} \leq 32\left(a^{6}+b^{6}\right)$

$$
\left(U s e: \tan x=\frac{b}{a} ; x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right)
$$

57. If $x, y \in \mathbb{R} ; x y \neq 0$ then:

$$
\begin{gathered}
-2 \sqrt{2}-2 \leq \frac{x^{2}-(x-4 y)^{2}}{x^{2}+4 y^{2}} \leq 2 \sqrt{2}-2 \\
\left(\text { Use: } x=2 y \tan p ; p \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right.
\end{gathered}
$$

58. If $x, y \in \mathbb{R} ; 36 x^{2}+16 y^{2}=9$ then:

$$
\begin{gathered}
\frac{15}{4} \leq y-2 x+5 \leq \frac{25}{4} \\
\left(\text { Use }: x=\frac{1}{2} \cos p ; y=\frac{3}{4} \sin p ; p \in[0,2 \pi]\right)
\end{gathered}
$$

59. If $x, y \in \mathbb{R} ; 3 x+4 y=5$ then $x^{2}+y^{2} \geq 1$

$$
\left(\text { Use }: \sin p=\frac{3}{5} ; \cos p=\frac{4}{5}\right)
$$

60. If $a, b \in \mathbb{R} ; 4 a^{2}+9 b^{2}=25$ then:

$$
\begin{gathered}
|6 a+12 b| \leq 25 \\
\left(\text { Use }: \frac{2}{5} a=\sin p ; \frac{3}{5} b=\cos p ; p \in[0,2 \pi]\right)
\end{gathered}
$$

61. If $x, y, a, b, c>0 ; a x+b y=0 ; a^{2}+b^{2}=c^{2}$ then: $x^{2}+y^{2} \geq 1$

$$
\left(\text { Use }: \frac{a}{c}=\cos p ; \frac{b}{c}=\sin p ; p \in[0,2 \pi)\right)
$$

62. If $a>b>c>0$ then:

$$
\left(\text { Use: } \sqrt{\frac{c}{c} \frac{\sqrt{c(a-c)}}{a}=\sqrt{c(b-c)} \leq \sqrt{a b}} \begin{array}{r}
\left.\sin p ; \sqrt{\frac{a-c}{a}}=\cos p ; \sqrt{\frac{c}{b}}=\sin v ; \sqrt{\frac{b-c}{b}}=\cos v ; u, v \in\left[0, \frac{\pi}{2}\right]\right)
\end{array}\right.
$$

NEW GENERALZATIONS OF INEQUALITIES IN TRIANGLE
 By D.M.Bătineţu-Giurgiu, Claudia Nănuţi, Daniel Sitaru-Romania

Let be $\boldsymbol{m} \geq \mathbf{1} ; \boldsymbol{n}, \boldsymbol{p} \geq \mathbf{0} ; \boldsymbol{n}+\boldsymbol{p}, \boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}>0$ and the triangle $A B C$ with \boldsymbol{F}-area, then:

$$
\begin{gathered}
\frac{y+z}{x}(n b+p c)^{m}+\frac{z+x}{y}(n c+p a)^{m}+\frac{x+y}{z}(n a+p b)^{m} \\
\geq 2^{m+1} \cdot(n+p)^{m} \cdot(\sqrt[4]{3})^{4-m} \cdot F^{\frac{m}{2}} ; \quad(*)
\end{gathered}
$$

Proof. We have:

$$
\begin{gather*}
\sum_{c y c} \frac{y+z}{x}(n b+p c)^{m}=\sum_{c y c} \frac{v^{m}+w^{m}}{u^{m}}(n b+p c)^{m} \geq \frac{1}{2^{m-1}} \cdot \sum_{c y c}\left(\frac{v+w}{u}(n b+p c)\right)^{m} \geq \\
\quad \text { Radon } \frac{1}{2^{m 1}} \cdot \frac{1}{3^{m-1}}\left(\sum_{c y c} \frac{v+w}{u}(n b+p c)\right)^{m}=\frac{1}{6^{m}}\left(\sum_{c y c} \frac{v+w}{u}(n b+p c)\right)^{m} ;(1) \tag{1}
\end{gather*}
$$

where $x=u^{m}, y=v^{m}, z=w^{m}$.
But,

$$
\begin{aligned}
& \sum_{c y c} \frac{v+w}{u}(n b+p c)=n \sum_{c y c} \frac{v+w}{u} \cdot b+p \sum_{c y c} \frac{v+w}{u} \cdot c=(n+p) \sum_{c y c} \frac{v+w}{u} \cdot a \geq \\
& \geq(n+p) \sum_{c y c} \frac{2 \sqrt{v W}}{u} \cdot a=2(n+p) \sum_{c y c} \frac{\sqrt{v W}}{u} \cdot a \geq 2(n+p) \cdot 3 \cdot \sqrt[3]{\prod_{c y c} \frac{\sqrt{v W}}{u} \cdot a}= \\
& =6(n+p) \sqrt[3]{a b c}=6(n+p) \cdot \sqrt[3]{4 R F}=6(n+p) \cdot \sqrt[3]{8 \cdot \frac{R}{2} \cdot F}=12(n+p) \cdot \sqrt[3]{\sqrt{\frac{R}{2}} \cdot \sqrt{\frac{R}{2}} \cdot F} \\
& \stackrel{\text { Euler }}{\geq} 12(n+p) \cdot \sqrt[3]{\sqrt{r} \cdot \sqrt{\frac{R}{2}} \cdot F \stackrel{\text { Mitrinovic }}{\geq} 12(n+p) \cdot \sqrt[3]{\sqrt{r} \cdot \sqrt{\frac{s}{3 \sqrt{3}}} \cdot F}={ }^{2}} \\
& =12(n+p) \cdot \sqrt[3]{\left(\frac{1}{\sqrt[4]{3}}\right)^{3} \cdot \sqrt{r s} \cdot F}=12(n+p) \cdot \frac{1}{\sqrt[4]{3}} \cdot \sqrt[3]{F \sqrt{F}}=\frac{12(n+p) \sqrt{F}}{\sqrt[4]{3}}=
\end{aligned}
$$

Romanian M athematical Society-M ehedinți Branch

$$
\begin{equation*}
=4 \cdot \frac{(\sqrt[4]{3})^{4}(n+p) \sqrt{F}}{\sqrt[4]{3}}=4(n+p)(\sqrt[4]{3})^{3} \sqrt{F}=4(n+p) \sqrt{3} \cdot \sqrt[4]{3} \cdot \sqrt{F} \tag{2}
\end{equation*}
$$

From (1),(2) we get:

$$
\begin{aligned}
& \sum_{c y c} \frac{y+z}{x}(n b+p c)^{m} \geq \frac{1}{6^{m-1}} \cdot 2^{2 m} \cdot(n+p)^{m} \cdot(\sqrt{3})^{m} \cdot(\sqrt[4]{3})^{m} \cdot F^{\frac{m}{2}}= \\
= & \frac{2^{2 m}}{2^{m-1}} \cdot(n+p)^{m} \cdot(\sqrt[4]{3})^{3 m-4 m+4} \cdot F^{\frac{m}{2}}=2^{m+1} \cdot(n+p)^{m} \cdot(\sqrt[4]{3})^{4-m} \cdot F^{\frac{m}{2}}
\end{aligned}
$$

q.e.d.

If $m=1$ we get

$$
\begin{gather*}
\sum_{c y c} \frac{y+z}{x}(n b+p c) \geq 4(n+p) \cdot 3^{\frac{1}{4}(4-1)} \cdot \sqrt{F}=4(n+p)(\sqrt[4]{3})^{3} \cdot \sqrt{F} \\
 \tag{3}\\
=4(n+p) \cdot \sqrt{3} \cdot \sqrt[4]{3} \cdot \sqrt{F}
\end{gather*}
$$

which for $n=p=1$ becomes

$$
\begin{equation*}
\sum_{c y c} \frac{y+z}{x} \cdot(b+c) \geq 8 \sqrt{3} \cdot \sqrt[4]{3} \cdot \sqrt{F} \tag{4}
\end{equation*}
$$

If $n=1, p=0$ we get

$$
\begin{equation*}
\sum_{c y c} \frac{y+z}{x} \cdot a \geq 4 \sqrt{3} \cdot \sqrt[4]{3} \cdot \sqrt{F} \tag{5}
\end{equation*}
$$

If $m=2$ then the inequality ($*$) becomes as

$$
\begin{equation*}
\sum_{c y c} \frac{y+z}{x}(n b+p c)^{2} \geq 8 \cdot(n+p)^{2} \cdot 3^{\frac{1}{4}(4-m)} \cdot F^{\frac{m}{2}}=8 \cdot(n+p)^{2} \cdot \sqrt{3} \cdot F^{\frac{m}{2}} \tag{6}
\end{equation*}
$$

which for $n=p=1$ becomes

$$
\begin{equation*}
\sum_{c y c} \frac{y+z}{x}(b+c)^{2} \geq 32 \sqrt{3} \cdot F \tag{7}
\end{equation*}
$$

and for $n=1, p=0$ we get first Bătineţu-Giurgiu's inequality

$$
\sum_{c y c} \frac{y+z}{x} \cdot b^{2} \geq 8 \sqrt{3} \cdot F ; \quad(B-G, 1)
$$

If $m=3$ the inequality ($*$) becomes

$$
\sum_{c y c} \frac{y+z}{x}(n b+p c)^{3} \geq 2^{4} \cdot(n+p)^{3} \cdot \sqrt[4]{3} \cdot F^{\frac{3}{2}}
$$

which for $n=p=1$ becomes as

$$
\sum_{c y c} \frac{y+z}{x}(b+c)^{3} \geq 2^{7} \cdot \sqrt[4]{3} \cdot F \sqrt{F}=128 \cdot \sqrt[4]{3} \cdot F \sqrt{F}
$$

and for $n=1, p=0$ we get

$$
\begin{equation*}
\sum_{c y c} \frac{y+z}{x} \cdot a^{3} \geq 16 \cdot \sqrt[4]{3} \cdot F \sqrt{F} \tag{10}
\end{equation*}
$$

If $m=4$ the inequality ($*$) becomes

$$
\begin{equation*}
\sum_{c y c} \frac{y+z}{x}(n b+p c)^{4} \geq 2^{5} \cdot(n+p)^{4} \cdot F^{2} \tag{11}
\end{equation*}
$$

which for $n=p=1$ becomes

$$
\begin{equation*}
\sum_{c y c} \frac{y+z}{x}(b+c)^{4} \geq 2^{9} \cdot F^{2}=512 \cdot F^{2} \tag{11}
\end{equation*}
$$

and for $n=1, p=0$ we get second Bătineţu-Giurgiu's inequality

$$
\sum_{c y c} \frac{y+z}{x} \cdot b^{4} \geq 2^{5} \cdot F^{2}=32 \cdot F^{2} ;(B-G, 2)
$$

Refference:

ROM ANIAN M ATHEM ATICAL MAGAZINE-www.ssmrmh.ro

A COUNTING PROBLEM IN TRIANGLE
 By Carmen-Victoriţa Chirfot - Romania

Let be a triangle $A B C$. Consider the points $M_{1}, M_{2}, \ldots, M_{n}$ on the side ($A B$) and $N_{1}, N_{2}, \ldots, N_{3}$ on the side $(A C), n \in \mathbb{N}^{*}$ such that $B M_{1}=M_{1} M_{2}=M_{2} M_{3}=\cdots=$ $M_{n-1} M_{n}=M_{n} A$ and $C N_{1}=N_{1} N_{2}=\cdots=N_{n-1} N_{n}=N_{n} A$. We also consider the points $E_{1}, E_{2}, \ldots, E_{n}$ on the side $(B C)$ such that $B E_{1}=E_{1} E_{2}=E_{2} E_{3}=\cdots=E_{n-1} E_{n}=M_{n} C$.

Obviously, from the reciprocal of Thales' theorem, $M_{k} N_{k} \| B C, k=\overline{1, n}$,
$E_{k} N_{n+1-k}\left\|A B, k=\overline{1, n}, E_{k} M_{k}\right\| A C, k=\overline{1, n}$. We join each point M_{k} with E_{k}, and each point M_{k} with N_{k}, and each point E_{k} with its corespondent N_{n+1-k}.

We intend, for a start, to determine the number of such triangles formed by the intersections of the given segments.

All quadrilaterals resulting at the intersection of parallel lines $M_{k} N_{k}$ and $M_{k+1} N_{k+1}, k=\overline{1, n-1}$ with parallel lines $E_{k} N_{n+1-k}$ and $E_{k+1} N_{n-k}, k=\overline{1, n-1}$, are parallelograms. Analogous to $M_{k} N_{k}$ and $M_{k+1} N_{k+1}, k=\overline{1, n}$ with $E_{k} M_{k} \| E_{k+1} M_{k+1}$,
$k=\overline{1, n-1}$. Let be $\left(x_{n}\right)_{n \geq 1}$ the sequence with x_{k} representing the number of triangles inside the triangle $B E_{k} M_{k}$. Then $x_{1}=1, x_{2}=x_{1}+2 \cdot 1+1+1=5$. For the triangle $B E_{3} M_{3}$, the number of interior triangles is how many x_{2} (as we have already found) to which we add two triangles similar to the vertex in M_{3} and the bases on $M_{2} N_{2}$,
respectively on $M_{1} N_{1}, 2$ triangles similar to the vertex in E_{3} and the bases on $E_{2} N_{n-1}$, respectively on $E_{1} N_{n}$ and count once the large triangle $B E_{3} M_{3}$. So there are 3 innumerable triangles between the parallel lines $E_{2} M_{2}$ and $E_{3} M_{3}$. Thus, $x_{3}=x_{2}+2 \cdot 2+$ $1+3=13$. For the triangle $B E_{4} M_{4}$, the number of interior triangles is how many x_{3} we still count 3 triangles similar to the vertex in M_{4} and the bases on $M_{3} N_{3}, M_{2} N_{2}$, respectively $M_{1} N_{1}, 3$ triangles similar to the vertex in E_{4} and the bases on $E_{3} N_{n-2}, E_{2} N_{n-1}$, respectively on $E_{1} N_{n}$ and count once the large triangle $B E_{4} M_{4}$.

A triangle is also formed with the base on $E_{2} M_{2}$ and the tip on $E_{4} M_{4}$. We also have a triangle with the base on $E_{4} M_{4}$ and the tip on $E_{2} M_{2}$ (let's call it the opposite of the previous triangle). There are 5 countless triangles between the parallel lines $E_{3} M_{3}$ and $E_{4} M_{4}$. Thus, $x_{4}=x_{3}+2 \cdot 3+1+(1)+(1)+5=27$.

For the triangle $B E_{5} M_{5}$, the number of interior triangles is how much x_{4} we count 4 triangles similar to the vertex in M_{5} and the bases on $M_{4} N_{4}, M_{3} N_{3}, M_{2} N_{2}$ respectively $M_{1} N_{1}, 4$ triangles similar to the vertex in E_{5} and the bases on $E_{4} N_{n-3}, E_{3} N_{n-2}, E_{2} N_{n-1}$ respectively on $E_{1} N_{n}$ and we count the big triangle only once $B E_{5} M_{5}$. It also forms 2 triangles with base on $E_{3} M_{3}$ and $E_{5} M_{5}$ tip on. We also have 2 triangles with base on $E_{5} M_{5}$ and the tip on $E_{3} M_{3}$ and a triangle with base on $E_{5} M_{5}$ and the $E_{2} M_{2}$ tip on. There are 7 countless triangles between the parallel lines $E_{4} M_{4}$ and $E_{5} M_{5}$. Thus, $x_{5}=x_{4}+2 \cdot 4+1+(2+0)+(2+1)+7=48$.

For the triangle $B E_{6} M_{6}$, the number of interior triangles is how much x_{5} we count 5 triangles similar to the vertex in M_{6} and the bases on $M_{5} N_{5}, M_{4} N_{4}, M_{3} N_{3}$ respectively $M_{1} N_{1}, 5$ triangles similar to the vertex in E_{6} and the bases on $E_{5} N_{n-4}, E_{4} N_{n-3}, E_{3} N_{n-2}, E_{2} N_{n-1}$ respectively on $E_{1} N_{n}$ and we count the big triangle only once $B E_{6} M_{6}$. It also forms 3 triangles with base on $E_{4} M_{4}$ and $E_{6} M_{6}$ tip on. We also have 2 triangles with base on $E_{6} M_{6}$ and the tip on $E_{3} M_{3}$ and a triangle with base on $E_{6} M_{6}$ and the $E_{2} M_{2}$ tip on. There are 9 countless triangles between the parallel lines $E_{5} M_{5}$ and $E_{6} M_{6}$. Thus, $x_{6}=x_{5}+2 \cdot 5+1+(3+1)+(3+2+1)+\mathbf{9}=\mathbf{7 8}$

For the triangle $B E_{7} M_{7}$, the number of interior triangles is how much x_{6} we count 6 triangles similar to the vertex in M_{7} and the bases on
$M_{6} N_{6}, M_{5} N_{5}, M_{4} N_{4}, M_{3} N_{3}, M_{2} N_{2}$ respectively $M_{1} N_{1}, 6$ triangles similar to the vertex in E_{7} and the bases on $E_{6} N_{n-5}, E_{5} N_{n-4}, E_{4} N_{n-3}, E_{3} N_{n-2}, E_{2} N_{n-1}$ respectively on $E_{1} N_{n}$ and
we count the big triangle only once $B E_{7} M_{7}$. It also forms 2 triangles with base on $E_{4} M_{4}$ and $E_{7} M_{7}$ tip on. We also have 4 triangles with base on $E_{7} M_{7}$ and the tip on $E_{4} M_{4}$ and a triangle with base on $E_{7} M_{7}$ and the $E_{3} M_{3}$ tip on, and a triangle with base on $E_{7} M_{7}$ and the $E_{2} M_{2}$ tip on. There are 11 countless triangles between the parallel lines $E_{6} M_{6}$ and $E_{7} M_{7}$. Thus, $x_{7}=x_{6}+2 \cdot 6+1+(4+2)+(4+3+2+1)+11=118$.

Respecting the algorithm, we obtain that:

$$
x_{8}=x_{7}+2 \cdot 7+1+(5+3+1)+(5+4+3+2+1)+13=\mathbf{1 7 0}
$$

We observe that, if $n=2 k, k \in \mathbb{N}^{*}, k \geq 2$, we get:

$$
\begin{gathered}
x_{2 k}=x_{2 k-1}+2(2 k-1)+1+((2 k-3)+(2 k-5)+\cdots+1)+ \\
((2 k-3)+(2 k-4)+\cdots+1)+4 k-3=x_{2 k-1}+3 k^{2}+k .
\end{gathered}
$$

We observe that, if $n=2 k+1, k \in \mathbb{N}^{*}, k \geq 2$, we get:

$$
x_{2 k+1}=x_{2 k}+2(2 k+1)+((2 k-2)+(2 k-4)+\cdots+2)+
$$

$$
+((2 k-2)+(2 k-3)+(2 k-4)+\cdots+1)+4 k-1=x_{2 k}+3 k^{2}+4 k+1
$$

Let's come back to the term x_{n}, we have: $x_{1}=1, x_{2}=5$,

$$
\begin{gathered}
x_{n}=\left\{\begin{array}{c}
x_{n-1}+\frac{3 n^{2}+2 n}{4}, \text { if } n \in \mathbb{N}^{*}-\text { even }, n \geq 4 \\
x_{n-1}+\frac{3 n^{2}+2 n-1}{4}, \text { if } n \in \mathbb{N}^{*}-\text { odd }, n \geq 3
\end{array}\right. \\
\text { So, } x_{n}=\left\{\begin{array}{l}
5+\frac{3\left(3^{2}+4^{2}+\cdots+n^{2}\right)+2(3+4+5+\cdots+n)}{4}-\frac{n-2}{8}, \text { if } n-\text { odd } \\
5+\frac{3\left(3^{2}+4^{2}+\cdots+n^{2}\right)+2(3+4+5+\cdots+n)}{4}-\frac{n-1}{8}, \text { if } n-\text { even }
\end{array}\right.
\end{gathered}
$$

Hence, $x_{n}=\left\{\begin{array}{c}\frac{2 n^{3}+5 n^{2}+2 n}{8}, n \geq 4, n-\text { odd } \\ \frac{2 n^{3}+5 n^{2}+2 n-1}{8}, n \geq 3, \text { if } n-\text { even }\end{array}\right.$
Consider $A=M_{n+1}$ and $C=E_{n+1}$, then x_{n+1} represent the number of interior triangles of triangle $A B C$ formed according to the given rule.

This is the minimum number of triangles inside the triangle $A B C$ formed by

- n lines parallel to each other $a_{1}, a_{2}, \ldots, a_{n}$ and parallel to $A B$ that intersect the sides ($A C$) and ($B C$),
- n lines parallel to each other $b_{1}, b_{2}, \ldots, b_{n}$ and parallel to $A B$ that intersect the sides $(A B)$ and ($A C$),
- n lines parallel to each other $c_{1}, c_{2}, \ldots, c_{n}$ and parallel to $A B$ that intersect the sides $(A B)$ and ($B C$).

The problem presented above is where any three straight lines a_{m}, b_{n}, c_{p}, and are concurrent, $m, n, p=\overline{1, n}$, i.e. any denote triangle $a_{m} b_{n} c_{p}$ is degenerate.

Refferences:

1. ROM ANIAN M ATHEM ATICAL M AGAZINE-www.ssmrmh.ro

2. https:/ / math.stackexchange.com/ questions/ 203873/ how-many-triangles ABOUT A RMM INEQUALITY-III

By Marin Chirciu-Romania

1) In $\triangle A B C$ the following relationship holds:

$$
\sum\left(\frac{1}{\tan \frac{A}{2}+\tan \frac{B}{2}}-\frac{1}{\cot \frac{A}{2}+\cot \frac{B}{2}}\right) \geq \sqrt{3}
$$

Proposed by Daniel Sitaru - Romania
Solution We prove the following Lemmas:
Lemma 1. 2) In $\triangle A B C$ the following relationship holds:

$$
\sum \frac{1}{\tan \frac{A}{2}+\tan \frac{B}{2}}=\frac{s^{2}+(4 R+r)^{2}}{4 R s}
$$

Proof. Using $\tan \frac{B}{2}+\tan \frac{C}{2}=\frac{a(s-a)}{r s}$ we obtain:

$$
\begin{gathered}
\sum \frac{1}{\tan \frac{A}{2}+\tan \frac{B}{2}}=\sum \frac{r s}{a(s-a)}=r s \sum \frac{1}{a(s-a)}=\frac{s^{2}+(4 R+r)^{2}}{4 R s} \\
\text { which follows from } \sum \frac{1}{a(s-a)}=\frac{s^{2}+(4 R+r)^{2}}{4 R r s^{2}}
\end{gathered}
$$

Lemma 2. 3) In $\triangle A B C$ the following relationship holds:

$$
\sum \frac{1}{\cot \frac{A}{2}+\cot \frac{B}{2}}=\frac{s^{2}+r^{2}+4 R r}{4 R s}
$$

Proof. Using $\cot \frac{B}{2}+\cot \frac{C}{2}=\frac{a}{r}$ we obtain $\sum \frac{1}{\cot \frac{A}{2}+\cot \frac{B}{2}}=\sum \frac{r}{a}=r \sum \frac{1}{a}=\frac{s^{2}+r^{2}+4 R r}{4 R s}$, which follows from the following identity: $\sum \frac{1}{a}=\frac{s^{2}+r^{2}+4 R r}{4 R r s}$. Let's get back to the main problem.

Using the above Lemmas the inequality can be written:

$$
\frac{s^{2}+(4 R+r)^{2}}{4 R r s}-\frac{s^{2}+r^{2}+4 R r}{4 R s} \geq \sqrt{3} \Leftrightarrow \frac{4 R+r}{s} \geq \sqrt{3} \text { (Doucet's inequality) }
$$

Equality holds if and only if the triangle is equilateral.
Remark. We propose in the same way:

4) In $\triangle A B C$ the following identity holds:

$$
\sum\left(\frac{1}{1-\tan \frac{A}{2} \tan \frac{B}{2}}+\frac{1}{1-\cot \frac{A}{2} \cot \frac{B}{2}}\right)=3
$$

Proposed by Marin Chirciu - Romania

SolutionWe prove the following lemmas:
Lemma 1.
5) In $\triangle A B C$ the following relationship holds:

$$
\sum \frac{1}{1-\tan \frac{A}{2} \tan \frac{B}{2}}=\frac{s^{2}+r^{2}+4 R r}{4 R s}
$$

Proof.Using $\tan \frac{B}{2} \tan \frac{C}{2}=\frac{s-a}{s}$ we obtain $\sum \frac{1}{1-\tan \frac{A}{2} \tan \frac{B}{2}}=\sum \frac{s}{a}=s \sum \frac{1}{a}=\frac{s^{2}+r^{2}+4 R r}{4 R r}$,
which follows from the following identity: $\sum \frac{1}{a}=\frac{s^{2}+r^{2}+4 R r}{4 R r s}$

Lemma 2.

6) In $\triangle A B C$ the following relationship holds:

$$
\sum \frac{1}{\cot \frac{A}{2} \cot \frac{B}{2}-1}=\frac{s^{2}+r^{2}-8 R r}{4 R r}
$$

Proof Using $\cot \frac{B}{2} \cot \frac{C}{2}=\frac{s}{s-a}$ we obtain $\sum \frac{1}{\cot \frac{A}{2} \cot \frac{B}{2}-1}=\sum \frac{s-a}{a}=\frac{s^{2}+r^{2}-8 R r}{4 R r s}$ which follows from the following identity $\sum \frac{s-a}{a}=\frac{s^{2}+r^{2}-8 R r}{4 R s}$. Let's get back to the main problem.

Using the Lemmas we obtain:

$$
\sum\left(\frac{1}{1-\tan \frac{A}{2} \tan \frac{B}{2}}+\frac{1}{1-\cot \frac{A}{2} \cot \frac{B}{2}}\right)=\frac{s^{2}+r^{2}+4 R r}{4 R r}-\frac{s^{2}+r^{2}-8 R r}{4 R r}=\frac{12 R r}{4 R r}=3
$$

Reference:

ROM ANIAN M ATHEMATICAL MAGAZINE-www.ssmrmh.ro

THE SERIES OF AN ODD NUMBER

By Mohammed Bouras-M oroco

Definition: The series of an odd number x is the set of odd numbers which does not allow division by this number.
I. The construction of a series of an odd number a.
-The number of series when can form: $N=\frac{a+1}{2}$
-Are ($\boldsymbol{n}, \boldsymbol{m}$) represents the couple in the series, with $\boldsymbol{a}=\frac{\boldsymbol{n + m}}{2}, \boldsymbol{n}, \boldsymbol{m}$-are pairs, $\boldsymbol{n}>m$.
The series becomes: $\boldsymbol{P}_{\mathbf{1}}=\mathbf{1} \stackrel{+n}{\Rightarrow} \boldsymbol{P}_{2} \stackrel{+m}{\Rightarrow} \boldsymbol{P}_{\mathbf{3}} \stackrel{+n}{\Rightarrow} \boldsymbol{P}_{\mathbf{4}} \stackrel{+m}{\Rightarrow} \boldsymbol{P}_{5} \stackrel{+n}{\Rightarrow} \boldsymbol{P}_{6} \stackrel{+m}{\Rightarrow} \boldsymbol{P}_{\mathbf{7}}$
The series is by form: (n, m, n, m, \ldots) on $a: P_{1}=1, P_{2}=1+n, P_{3}=1+n+m$.
The series can be written by form: $\boldsymbol{P}_{\boldsymbol{k}}=\boldsymbol{P}_{\boldsymbol{k}-1}+\boldsymbol{P}_{\boldsymbol{k}-2}-\boldsymbol{P}_{\boldsymbol{k}-3}$ then $\frac{\boldsymbol{P}_{n}}{\boldsymbol{a}} \notin \mathbb{N}$.
We have: $\left\{\begin{array}{c}P_{2 k}(m)=2 a k-m+1 \\ P_{2 k+1}(m)=2 a k+1\end{array}\right.$
Remark. The series says main if and only if $\boldsymbol{m}=\mathbf{0}, \boldsymbol{n}=2 \boldsymbol{a}$.
Example 1: The series of the number $3:$ The principal series: $1 \stackrel{+6}{\Rightarrow} \mathbf{7} \stackrel{+6}{\Rightarrow} \mathbf{1 3} \stackrel{+6}{\Rightarrow} \mathbf{1 9} \stackrel{+6}{\Rightarrow} \mathbf{2 5} \stackrel{+6}{\Rightarrow} \mathbf{3 1} \stackrel{+6}{\Rightarrow} \mathbf{3 7}$
We pose: $P_{1}=1, P_{2}=7, P_{3}=13$. The series it can be written as: $P_{n}=P_{n-1}+P_{n-2}-P_{n-3}$ then $\frac{P_{n}}{3} \notin \mathbb{N}$. The secondary series: $1 \stackrel{+4}{\Rightarrow} 5 \stackrel{+2}{\Rightarrow} 7 \stackrel{+4}{\Rightarrow} 11 \stackrel{+2}{\Rightarrow} 13 \stackrel{+4}{\Rightarrow} 17 \stackrel{+2}{\Rightarrow} 19$

The series is by form: $(\mathbf{4}, \mathbf{2}, 4,2, \ldots)$ The series it can be written as: $\boldsymbol{P}_{\boldsymbol{n}}=\boldsymbol{P}_{\boldsymbol{n - 1}}+\boldsymbol{P}_{\boldsymbol{n - 2}}-\boldsymbol{P}_{\boldsymbol{n - 3}}$ then $\frac{P_{n}}{3} \notin \mathbb{N}$.

Example 2: The series of the number 5: The principal series: $1 \stackrel{+10}{\Longrightarrow} 11 \stackrel{+10}{\Longrightarrow} 21 \stackrel{+10}{\Longrightarrow} 31 \stackrel{+10}{\Longrightarrow} 41 \stackrel{+10}{\Longrightarrow} 51$ $\stackrel{+10}{\Longrightarrow}$ 61. We pose: $P_{1}=1, P_{2}=11, P_{3}=21$. The series it can be written as: $P_{n}=P_{n-1}+P_{n-2}-$ P_{n-3} then $5 \notin \mathbb{N}$.

1. The secondary series: $1 \stackrel{+6}{\Rightarrow} 7 \stackrel{+6}{\Rightarrow} \mathbf{1 3} \stackrel{+6}{\Rightarrow} 19 \stackrel{+6}{\Rightarrow} 25 \stackrel{+6}{\Rightarrow} 31 \stackrel{+6}{\Rightarrow} \mathbf{3 7}$

The series is by form: $(6,4,6,4, \ldots) . P_{1}=1, P_{2}=7, P_{3}=13$.
2. The series it can be written as: $\boldsymbol{P}_{\boldsymbol{n}}=\boldsymbol{P}_{\boldsymbol{n - 1}}+\boldsymbol{P}_{n-2}-\boldsymbol{P}_{n-3}$ then $\frac{P_{n}}{5} \notin \mathbb{N}$.
3. The secondary series $2: 1 \stackrel{+8}{\Rightarrow} 9 \stackrel{+2}{\Rightarrow} \mathbf{1 1} \stackrel{+8}{\Rightarrow} 19 \stackrel{+2}{\Rightarrow} 21 \stackrel{+8}{\Rightarrow} 29 \stackrel{+2}{\Rightarrow} 21$

The series is by form: $(8,2,8,2, \ldots)$. We pose: $P_{1}=1, P_{2}=9, P_{3}=11$ then $\frac{P_{n}}{5} \notin \mathbb{N}$.

A. GENERAUZATION OF KOUTRAS' THEOREM

B. CHARACTERISTIC LINE (g) OF TRIANGLE

By Thanasis Gakopoulos-Farsala-Greece

A. GENERAUZATION of KOUTRAS' THEOREM

Figure-1
Let: $O A=a, O B=b, E Z=c . C D=d, \frac{O A}{O B}=\frac{a}{b}=m, \frac{\overline{E Z}}{\overline{C D}}=k \cdot \frac{\overline{O A}}{\overline{O B}} \Rightarrow \frac{c}{d}=k \cdot m, k \neq 0$
Then holds:
$\tan x=\frac{k \cdot m^{2}-(k+1) m \cdot \cos \vartheta+1}{(k-1) m \cdot \sin \vartheta}$

- If $k=1$, then $\tan x=\infty \Rightarrow x=90^{\circ}$

Stathis Koutras' theorem

$$
\frac{E Z}{C D}=\frac{O A}{O B} \Leftrightarrow M N \perp A B
$$

Proof: (on figure 1). PLAGIOGONAL SYSTEM : $O E \equiv O x, O C \equiv O y$

Let: $O A=a, O B=b, O E=e, O Z=z, O C=c, O D=d$

$$
A B: y=-\frac{a}{b} x-a, \lambda_{A B}=\lambda_{1}=-\frac{a}{b} ;\left(E_{1}\right)
$$

$$
\begin{align*}
E M: y & =-\frac{1}{\cos \vartheta} x+\frac{e}{\cos \vartheta} ;(1), C M: y=-\cos \vartheta \cdot x+c \\
Z N: y & =-\frac{1}{\cos \vartheta}+\frac{Z}{\cos \vartheta} ;(3), D N: y=-\cos \vartheta \cdot x+d \tag{4}
\end{align*}
$$

$$
(1),(2): M\left(\frac{e-c \cdot \cos \vartheta}{\sin ^{2} \vartheta}, \frac{c-e \cdot \cos \vartheta}{\sin ^{2} \vartheta}\right), M\left(m_{1}, m_{2}\right)
$$

$$
\text { (3),(4):N(} \left.\frac{z-d \cdot \cos \vartheta}{\sin ^{2} \vartheta}, \frac{d-z \cdot \cos \vartheta}{\sin ^{2} \vartheta}\right), N\left(n_{1}, n_{2}\right)
$$

$$
\lambda_{M N}=\lambda_{2}=\frac{m_{2}-n_{2}}{m_{1}-n_{1}} \Rightarrow \lambda_{2}=\frac{d-c \cdot \cos \vartheta}{c-d \cdot \cos \vartheta}
$$

$$
\tan x=\frac{\left(\lambda_{2}-\lambda_{1}\right) \cdot \sin \vartheta}{\left(\lambda_{2}+\lambda_{1}\right) \cdot \cos \vartheta+\lambda_{2} \lambda_{1}+1} \stackrel{E_{1} / E_{2}}{\Longleftrightarrow}
$$

$$
\tan x=\frac{\left(1+\frac{a}{b} \cdot \frac{c}{d}\right)-\left(\frac{c}{d}+\frac{a}{b}\right) \cdot \cos \vartheta}{\left(\frac{c}{d}-\frac{a}{b}\right) \cdot \sin \vartheta}=\frac{1+k \cdot \frac{a^{2}}{b^{2}}-\frac{a}{b}(k+1) \cdot \cos \vartheta}{\frac{a}{b}(k-1) \cdot \sin \vartheta}
$$

$$
\tan x=\frac{k \cdot m^{2}-(k+1) m \cdot \cos \vartheta+1}{(k-1) m \cdot \sin \vartheta}
$$

So,

$$
\frac{E Z}{C D}=k \cdot \frac{O A}{O B}, k \in \mathbb{R}-\{0,1\} \Leftrightarrow \tan x=\frac{k \cdot m^{2}-(k+1) m \cdot \cos \vartheta+1}{(k-1) m \cdot \sin \vartheta}
$$

B. CHARACTERISTIC LINE (g) of TRIANGLE

Given triangle $A B C$ and circle (ω) with center K passes throw the vertices B, C and intersects the sides $A B, A C$ at points D, E respectively. Let point G is the perpendicular projection of D on the side $B C$ and line (g) is perpendicular bisector to the segment $D G$. Let circles $\left(\omega_{1}\right),\left(\omega_{2}\right)$ with centers radom points K_{1}, K_{2} belonging to the line (g) and radius $G K_{1}, G K_{2}$ respectively, intersect $A B$ at points D_{1}, D_{2} and $E D$ at points C_{1}, C_{2} respectively.

If $\Varangle A C B=\vartheta, \frac{A D}{D E}=m$, then the tio $\frac{C_{1} C_{2}}{D_{1} D_{2}}=\frac{c}{d}$ depends only on the parameters $\boldsymbol{\vartheta}$ and m.
Holds that $\frac{c}{d}=k \cdot m$, where $k=\frac{m \cdot \cos 2 \vartheta-\cos \vartheta}{m(m \cdot \cos \vartheta-1)} ; k \neq 0, \cos \vartheta \neq \frac{1}{m}$

$$
\begin{gathered}
\text { Let } A D=a, E D=b, \frac{a}{b}=m, \Varangle A C B=x, \Varangle B D C_{1}=\vartheta \\
D K_{1} \cap\left(\omega_{1}\right)=M_{1}, D K_{2} \cap\left(\omega_{2}\right)=M_{2}, \frac{c}{d}=k \cdot m, k \neq 1 . \mathrm{ls}: B C E D-\text { cyclic } \Rightarrow x=\vartheta \\
D M_{1} \text {-diameter of }\left(\omega_{1}\right) \Rightarrow \Varangle D C_{1} M_{1}=\Varangle D D_{1} M_{1}=90^{\circ} \\
D M_{2} \text {-diameter of }\left(\omega_{2}\right) \Rightarrow \Varangle D C_{2} M_{2}=\Varangle D D_{2} M_{2}=90^{\circ}
\end{gathered}
$$

$$
\text { IS: } \tan x=\frac{k \cdot m^{2}-(k+1) m \cdot \cos \vartheta+1}{(k-1) m \cdot \sin \vartheta} \Rightarrow \frac{\sin \vartheta}{\cos \vartheta}=\frac{k \cdot m^{2}-(k+1) m \cdot \cos \vartheta+1}{(k-1) m \cdot \sin \vartheta}
$$

$$
k m \cdot \sin ^{2} \vartheta-m \cdot \sin ^{2} \vartheta=k m^{2} \cdot \cos \vartheta-k m \cdot \cos ^{2} \vartheta+\cos \vartheta
$$

$$
\begin{gathered}
k m \cdot \cos ^{2} \vartheta+k m \cdot \sin ^{2} \vartheta-k m^{2} \cdot \cos \vartheta=m \cdot \sin ^{2} \vartheta-m \cdot \cos ^{2} \vartheta+\cos \vartheta \\
k m-k m^{2} \cdot \cos \vartheta=m\left(\sin ^{2} \vartheta-\cos ^{2} \vartheta\right)+\cos \vartheta \\
k m(m \cdot \cos \vartheta-1)=m \cdot \cos 2 \vartheta-\cos \vartheta, \quad k=\frac{m \cdot \cos 2 \vartheta-\cos \vartheta}{m(m \cdot \cos \vartheta-1)} \\
m \cdot \cos \vartheta-1 \neq 0 \Rightarrow \cos \vartheta \neq \frac{1}{m} \Rightarrow \cos \vartheta \neq \frac{a}{b} \\
\text { If } \vartheta=90^{\circ} \Leftrightarrow k=\frac{m \cdot(-1)-0}{m(m \cdot 0-1)} \Leftrightarrow k=1 \text { and } \frac{c}{d}=\frac{a}{b}
\end{gathered}
$$

Koutras' theorem

Note: If more circles are written with centers $K_{i}, i=1,2,3 \ldots, K_{i} \in(g)$ and points C_{i}, D_{i} respectively, then holds that: $\frac{C_{i} C_{i+j}}{D_{i} D_{i+j}}=k \cdot \frac{a}{b}, j=1,2,3, \ldots ; i \neq j$

This is the characteristic property of line (g)

Application 1. In the figure 1 it is given that:

$$
\boldsymbol{\vartheta}=60^{\circ}, \frac{O A}{O B}=2, \frac{E Z}{C D}=3 \cdot \frac{O A}{O B} \text {. Find angle } x .
$$

Figure-1

Solution. Let $O A=a, O B=b, E Z=c, C D=d . \mathrm{Is}: \frac{a}{b}=m=2, \frac{c}{d}=k \cdot \frac{a}{b} \Rightarrow k=3$

$$
\begin{gathered}
\tan x=\frac{k \cdot m^{2}-(k+1) m \cdot \cos \vartheta+1}{(k-1) m \cdot \sin \vartheta}=\frac{3 \cdot 2^{2}-(3+1) \cdot 2 \cdot \cos 60^{\circ}+1}{(3-1) \cdot 2 \cdot \sin 60^{\circ}}=\frac{3 \sqrt{3}}{2} \\
x=\tan ^{-1}\left(\frac{3 \sqrt{3}}{2}\right) \approx 68,9 \cdot 83^{\circ}
\end{gathered}
$$

Application 2: In the figure 3 it is given that:

$$
\vartheta=30^{\circ}, \frac{O A}{O B}=2, \frac{E Z}{C D}=k \cdot \frac{O A}{O B}, k=\frac{3}{4}(1+\sqrt{3}) \text {. Find angle } \mathrm{x} .
$$

Solution. Let $O A=a, O B=b, E Z=c, C D=d$. $\operatorname{IS} \frac{a}{b}=2=m, \frac{c}{d}=k \cdot \frac{a}{b}=k \cdot m$

$$
\tan x=\frac{k \cdot m^{2}-(k+1) m \cdot \cos \vartheta+1}{(k-1) m \cdot \sin \vartheta}=
$$

$$
=\frac{\frac{3}{4}(1+\sqrt{3}) \cdot 2^{2}-\left[\frac{3}{4}(1+\sqrt{3})+1\right] \cdot 2 \cos 30^{\circ}+1}{\left[\frac{3}{4}(1+\sqrt{3})-1\right] \cdot 2 \sin 30^{\circ}}=2+\sqrt{3} \Rightarrow \tan \vartheta=2+\sqrt{3} \Rightarrow \vartheta=75^{\circ}
$$

Application 3. Given triangle $A B C$ with lengths of sides $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ and $\boldsymbol{b}>a>c, 2 \boldsymbol{b}+\boldsymbol{c}=\mathbf{3 a}$,
$\Varangle B A C=60^{\circ}$. Let points D, E on the extensions of the sides $B A$ to point A and $C A$ to point A respectively, such $2 B D=3 a-c, C E=3 b-2 a$.

Denote I the incenter and O the circumcenter of $\triangle A B C . D E$ and $O I$ intersect at point F. Prove that: $\Varangle \boldsymbol{I F E}=\mathbf{3 0}{ }^{\circ}$

Solution. $2 b+c=3 a \Rightarrow \frac{b-a}{a-c}=\frac{1}{2}, A I_{1}=\frac{-a+b+c}{2}, O A_{1}=\frac{c}{2} \Rightarrow \overline{O_{1} I_{1}}=\frac{b-a}{2}$

$$
\begin{gathered}
A I_{2}=\frac{-a+b+c}{2}, O A_{2}=\frac{b}{2} \Rightarrow \overline{O_{2} I_{2}}=-\frac{a-c}{2} \Rightarrow \frac{\overline{O_{1} I_{1}}}{\overline{O_{2} I_{2}}}=-\frac{b-a}{a-c}=-\frac{1}{2} \\
\overline{D A}=\overline{D B}-\overline{A B}=\frac{3 a-c}{2}-c=\frac{3}{2}(a-c), \overline{E A}=\overline{E C}-\overline{A C}=3 b-2 a-b=2(b-a) \\
\Rightarrow \frac{\overline{A E}}{\overline{A D}}=\frac{4}{3} \cdot \frac{b-a}{a-c}=\frac{4}{3} \cdot \frac{1}{2}=\frac{2}{3}=m, \frac{\overline{O_{1} I_{1}}}{\overline{O_{2} I_{2}}}=k \cdot m \Rightarrow-\frac{1}{2}=k \cdot \frac{2}{3} \Rightarrow k=-\frac{3}{4} \\
\tan \left(180^{\circ}-x\right)=-\tan x=\frac{k m^{2}-(k+1) m \cdot \cos 60^{\circ}}{(k-1) m \cdot \sin 60^{\circ}} \\
\Rightarrow-\tan x=\frac{-\frac{3}{4}\left(\frac{2}{3}\right)^{2}-\left(1-\frac{3}{4}\right) \cdot \frac{2}{3} \cdot \frac{1}{2}+1}{\left(-\frac{3}{4}-1\right) \cdot \frac{2}{3} \cdot \frac{\sqrt{3}}{2}}=-\frac{\sqrt{3}}{3} \Rightarrow x=30^{\circ}
\end{gathered}
$$

Application 4.Given triangle $A B C$ with lengths sides $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ and $\boldsymbol{b}>a>c, 4 \boldsymbol{b}+3 \boldsymbol{c}=7 \boldsymbol{a}$. Let points D, E on the extensions of the sides $B A$ to point A and $C A$ to point $A, \operatorname{such} \frac{A E}{A D}=\frac{16(b-a)}{21(a-c)}$.

Denote I-the incenter and O-the circumcenter of $\triangle A B C$. $D E$ and $O I$ intersect at point F. If $\Varangle B A C=2 \cdot \Varangle I F C=x$, find the value of x.

Solution. $4 b+3 c=7 a \Rightarrow \frac{b-a}{a-c}=\frac{3}{4} ;(1)$

$$
\begin{gather*}
A I_{1}=\frac{-a+b+c}{2}, A O_{1}=\frac{c}{2} \Rightarrow \overline{O_{1} I_{1}}=\frac{b-a}{2}, A I_{2}=\frac{-a+b+c}{2}, O A_{2}=\frac{b}{2} \Rightarrow \overline{O_{2} I_{2}}=-\frac{a-c}{2} \\
\Rightarrow \frac{\overline{O_{1} I_{1}}}{\overline{O_{2} I_{2}}}=-\frac{b-a}{a-c}=-\frac{3}{4} ;(2) \Rightarrow \frac{\overline{A E}}{\overline{A D}}=\frac{16}{21} \cdot \frac{b-a(2)}{a-c} \stackrel{16}{21} \cdot \frac{3}{4}=\frac{4}{7}=m ;(3) \tag{3}\\
\frac{\overline{O_{1} I_{1}}}{\overline{O_{2} I_{2}}}=k \cdot m \stackrel{(2) /(3)}{\longrightarrow}-\frac{3}{4}=k \cdot \frac{4}{7} \Rightarrow k=-\frac{21}{16} ;(4) \tag{4}\\
\tan \left(180^{\circ}-\frac{x}{2}\right)=-\tan \frac{x}{2}=\frac{k^{2}-(k+1) m \cdot \cos x}{(k-1) m \cdot \sin x} \\
\Rightarrow-\tan x=\frac{-\frac{21}{16}\left(\frac{4}{7}\right)^{2}-\left(1-\frac{21}{16}\right) \cdot \frac{4}{7} \cdot \cos x+1}{\left(-\frac{21}{16}-1\right) \cdot \frac{4}{7} \cdot \sin x}=-\frac{\sqrt{3}}{3} \Rightarrow x=30^{\circ} \\
\Rightarrow \frac{3}{2}\left(\cos ^{2} \frac{x}{2}-\sin ^{2} \frac{x}{2}\right)=\frac{3}{4} \Rightarrow \cos x=\frac{1}{2} \Rightarrow x=60^{\circ}
\end{gather*}
$$

Application 5. Cyclic quadrilateral CBED is given. The extension of side $C E$ to point E and the extension of side $B D$ to point D intersect at point A is $\frac{D A}{D E}=\frac{3}{2}$.

Let G be the vertical projection of the point D on the $C B$ and line (g) is the perpendicular bisector of the segment $D G$. Random distinct points K_{1}, K_{2} belonging to the line (g) are the centers of circles $\left(\omega_{1}\right),\left(\omega_{2}\right)$ with radius $G K_{1}, G K_{2}$ respectively.

Circles $\left(\omega_{1}\right),\left(\omega_{2}\right)$ intersect the line $B D$ at points D_{1}, D_{2} and the line $E D$ at ponts C_{1}, C_{2} respectively. If $\frac{C_{1} C_{2}}{D_{1} D_{2}}=S$, find the angle $B C E$.

Solution. Let $\Varangle B C E=\Varangle B D C_{1}$, let $B C \cap\left(\omega_{1}\right)=M_{1}, \Varangle G=90^{\circ} \Rightarrow M_{1} \in O K_{1}$
Let $B C \cap\left(\omega_{2}\right)=M_{2},, \Varangle G=90^{\circ} \Rightarrow M_{2} \in O K_{2}$. Is $M_{1} D_{1} \perp A D, M_{2} D_{2} \perp A D, M_{1} C_{1} \perp E D$,

$$
M_{2} C_{2} \perp E D \text {.Let } \frac{D A}{D E}=m=\frac{3}{2}, \frac{c_{1} C_{2}}{D_{1} D_{2}}=S \text { and let } k: \frac{c}{d}=k \cdot m \Rightarrow k=\frac{10}{3}
$$

Is $k=\frac{m \cdot \cos 2 \vartheta-\cos \vartheta}{m(m \cdot \cos \vartheta-1)} \xlongequal{k=\frac{10}{3} ; m=\frac{3}{2}} 6 \cdot \cos ^{2} \vartheta-17 \cos \vartheta+7=0 \xrightarrow{\cos \vartheta<1} \cos \vartheta=\frac{1}{2} \Rightarrow \Varangle B C E=60^{\circ}$

Reference:

ROM ANIAN M ATHEM ATICAL M AGAZINE-www.ssmrmh.ro PROPOSED PROBLEM S

5-CLASS-STANDARD

V.1. If $a, b, c, d>0 ; \frac{1}{a+1}+\frac{2}{b+1}+\frac{3}{c+1}+\frac{4}{d+1}=1$ then find:

$$
\frac{a}{a+1}+\frac{2 b}{b+1}+\frac{3 c}{c+1}+\frac{4 d}{d+1}
$$

Proposed by Daniel Sitaru,Paula Țuinea - Romania
V.2. Find $a, b \in \mathbb{Z}$ such that $a b+3 a-2 b=7$.

Proposed by Daniel Sitaru,Alina Țigae - Romania
V.3. Find all $\Omega=\overline{a b c d e f}$ such that:

$$
a b c d e f=a b c+d e f
$$

Proposed by Daniel Sitaru,Oana Preda - Romania
V.4. If $\overline{a b} \cdot \overline{c d}=899$ find $\Omega=\overline{a b c d}+\overline{c d a b}$.

Proposed by Daniel Sitaru,Camelia Dană - Romania
V.5. Compare the numbers:

$$
\Omega_{1}=2018^{2018}+2019^{2018} \text { and } \Omega_{2}=2018^{2019}+2019^{2018}
$$

Proposed by Daniel Sitaru,Nineta Oprescu - Romania
V.6. Find Ω_{1}, Ω_{2} natural numbers such that $\Omega_{1}+\Omega_{2}=876$ and great common divisor of Ω_{1}, Ω_{2} is 169 .

Proposed by Daniel Sitaru,Luiza Cremeneanu - Romania

V.7. If $\Omega_{1}=36+36^{2}+\cdots+36^{2018}$

$$
\Omega_{2}=25+25^{2}+\cdots+25^{2018}
$$

then $\Omega_{1}-\Omega_{2}$ is divisible with 11 .
Proposed by Daniel Sitaru,Roxana Vasile - Romania
V.8. Find all numbers $\Omega=\overline{2058 a b c}$ divisible with 343 .

Proposed by Daniel Sitaru,Eugenia Turcu - Romania

V.9. Find last two digits of the number:

$$
\Omega=9+9^{2}+9^{3}+\cdots+9^{2020}
$$

Proposed by Daniel Sitaru,Carina Viespescu - Romania
V.10. Solve for real numbers:

$$
\frac{2 x-1}{2017}+\frac{2 x-2}{2016}+\frac{2 x-3}{2015}+\cdots+\frac{2 x-10}{2008}=\frac{10 x}{1009}
$$

Proposed by Daniel Sitaru,Mihai Ionescu - Romania
V.11. Prove that:

$$
\Omega=\overline{a b c d 2}+(\overline{a b c d 2})^{2}+(\overline{a b c d 2})^{2}+\cdots+(\overline{a b c d 2})^{2020}
$$

is divisible with 10 .
Proposed by Daniel Sitaru,Marian Voinea - Romania
V.12. If $\Omega=\overline{a b b c}-\overline{c b b b a} ; a>c$ then Ω can't be a perfect square.

Proposed by Daniel Sitaru,Delia Popescu - Romania
All solutions for proposed problems can be finded on the http/ / :www.ssmrmh.ro which is the adress of Romanian M athematical M agazine-Interactive Journal.

6-CLASS-STANDARD

VI.1. Find all four digit positive integers, $\overline{M A N Z U}$ with distinct digits M, A, N, Z, U and holds

$$
\left\{\begin{array}{c}
\overline{M A N Z U}-N=\overline{M A N Z X}=N Y^{2} \\
X Z N A=Z A^{2}
\end{array}\right.
$$

$$
\text { where } 0 \leq X, Y \in \mathbb{N} \leq 10 \text { and } Z^{2}-Y=M
$$

Proposed by Naren Bhandari-Nepal
VI.2. Let be $x, y, z, a, b, c>0$, such that:

$$
x+2 y=\frac{a}{x}, y+2 z=\frac{b}{y}, z+2 x=\frac{c}{z} .
$$

Compute $x+y+z$ in function of a, b, c.
Proposed by Marin Chirciu - Romania
VI.3. Let be the set $M=\left\{\left.\frac{n+301}{n+10} \right\rvert\, n \in \mathbb{N}\right\}$. How many natural numbers does the set M contains?

Proposed by Marin Chirciu - Romania
VI.4. Let be $a=3 k, b=3 k+1, c=3 k+2$, where $k \in \mathbb{N}$.

Prove that the number $x=(n+a)(n+b)(n+c)$ is divisible with 3 , for any $n \in \mathbb{N}$.
Proposed by Marin Chirciu - Romania
VI.5. Let be $n \in \mathbb{N}^{*}$. Prove that the number

$$
7^{2 n}-7^{2 n-1}-7^{2 n-2}
$$

can be written as a sum of three nonzero distinct squares.
Proposed by Marin Chirciu - Romania
VI.6. Let be $n \in \mathbb{N}^{*}$. Prove that the number

$$
6^{2 n}-6^{2 n-1}-6^{2 n-2}
$$

can be written as a sum of three nonzero distinct squares.
Proposed by Marin Chirciu - Romania
VI.7. Let be $n \in \mathbb{N}^{*}$. Prove that the number

$$
5^{2 n}-5^{2 n-1}-5^{2 n-2}
$$

can be written as a sum of three nonzero distinct squares.
Proposed by Marin Chirciu - Romania
VI.8. If $n \in \mathbb{N}^{*}$ such that $2 n+3$ and $3 n+3$ are perfect squares, prove that $5 n+9$ is a composed number.

Proposed by Marin Chirciu - Romania
VI.9. Let be $a, b, c \in \mathbb{N}^{*}$ and $n \in \mathbb{N}$. Prove that the fraction

$$
\frac{b^{n} c^{n+1}+a}{b^{n+1} c^{n+1}+a b-1}
$$

is irreducible.
Proposed by Marin Chirciu - Romania
VI.10. Let be $n \in \mathbb{N}$. Prove that:

$$
\frac{1}{6}\left(7^{n}+3^{n+1}+2\right) \in \mathbb{N}
$$

Proposed by Marin Chirciu - Romania
VI.11. Let be $n \in \mathbb{N}$. Prove that:

$$
\frac{1}{4}\left(7^{n}+47^{n}-2\right) \in \mathbb{N}
$$

Proposed by Marin Chirciu - Romania
VI.12. Let be $n \in \mathbb{N}$. Prove that:

$$
\frac{1}{8}\left(7^{n}+75^{n}-2\right) \in \mathbb{N}
$$

Proposed by Marin Chirciu - Romania
VI.13. Let be $n \in \mathbb{N}$. Prove that:

$$
\frac{1}{8}\left(7^{n}+83^{n}-2\right) \in \mathbb{N}
$$

Proposed by Marin Chirciu - Romania
VI.14. Let be $n \in \mathbb{N}$. Prove that the number

$$
1+3+3^{2}+\cdots+3^{4 n+1}
$$

can be divided with 4, but can't be divided with 8 .
Proposed by Marin Chirciu - Romania
VI.15. Prove that the number:

$$
39^{39}+38^{34}
$$

can be divided with 11.
Proposed by Marin Chirciu - Romania
VI.16. Let be $a, b, c, d \in \mathbb{N}$. Prove that the fraction

$$
\frac{2^{3 a+1}+3^{6 b+3}+6}{4^{3 c+2}+5^{6 d}+4}
$$

is reducible.
Proposed by Marin Chirciu - Romania

All solutions for proposed problems can be finded on the http/ / :www.ssmrmh.ro which is the adress of Romanian Mathematical M agazine-Interactive Journal.

7-CLASS-STANDARD

Romanian
Mathernatical
Magazine
VII.1. If $n \in \mathbb{N}$ then Ω is divisible with 191919

$$
\Omega=\frac{n^{37}-n}{10}
$$

VII.2. Let $\sigma(n)$ is the divisor function and observe that

$$
\begin{gathered}
\sigma(11)=12, \sigma(6)=12 \\
\sigma(17)=18, \sigma(10)=18
\end{gathered}
$$

then find all $n \in \mathbb{N}$ such that $\sigma(n)=158$ where 11,17 are primes.
Proposed by Naren Bhandari-Nepal
VII.3. Find $(x, y, z) \in \mathbb{N}^{3}$ such that:

$$
\left\{\begin{array}{c}
\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=\frac{7}{2} \\
x+y+z=2 \operatorname{gcd}(x+y, z) \\
x \leq y \leq z \text { and } z \text { prime number }
\end{array}\right.
$$

Proposed by Mokhtar Khassani-Algerie
VII. 4 Let x, y be positive rational numbers which simultaneous verify the conditions:
i). $2(x-y)^{2}+4 y^{2}=4 x y$
ii). $\sqrt{\frac{11 x+3 y}{7 x+2 y}} \in \mathbb{Q}$.

Compute the value of the rapport: $\frac{2 x+3 y}{4 x+5 y}$. Proposed by Marin Chirciu - Romania VII.5. Find $x \in \mathbb{Z}, x \neq 1$, for which

$$
\sqrt{\frac{5 x-9}{x-1}} \in \mathbb{Z}
$$

Proposed by Marin Chirciu - Romania
VII.6. Let $a, b \in \mathbb{N}^{*}$ and $n \in \mathbb{N}$. Prove that the number

$$
P(n)=(a+b)^{4 n+1}-a\left(a b+b^{2}\right)^{2 n}-b^{4 n+1}
$$

is divisible with $a(a+2 b)^{2}$.
Proposed by Marin Chirciu - Romania
VII.7. Prove that the number 13^{n} can be written as a sum of four nonzero perfect squares, for any $n \in \mathbb{N}^{*}$.

Proposed by Marin Chirciu - Romania

$$
\begin{aligned}
& \begin{array}{l}
\text { All solutions for proposed problems can be finded on the } \\
\text { http//:www.ssmrmh.ro which is the adress of Romanian Mathematical } \\
\text { Magazine-Interactive Journal. } \\
\hline \mathbf{4 5}
\end{array} \text { ROM ANIAN M ATHEM ATICAL M AGAZINE NR. } 31
\end{aligned}
$$

8-CLASS-STANDARD

VIII.1. If $x \in \mathbb{R}_{+}^{*}=(0, \infty), m \in \mathbb{R}_{+}=[0, \infty),[x]$-great integer function, $\{x\}=x-[x]$, then:

$$
2^{m+1}([x] \cdot\{x\})^{\frac{m+1}{2}} \leq x^{m+1} \leq 2^{m}\left([x]^{m+1}+\{x\}^{m+1}\right)
$$

Proposed by D.M.Bătineţu-Giurgiu - Romania
VIII.2. Find last 3 digits of:

$$
\Omega=2018 \frac{201920192019 . .201953}{50 \text { times "2019" }}+2019 \frac{201820182018.201835}{50 \text { times "2018" }}
$$

Proposed by Naren Bhandari-Bajura-Nepal
VIII.3. If $x, y, z \geq 0$ then:

$$
\sum_{c y c} \frac{(x+1)(y+1)}{(x+2)(y+2)}=\frac{3}{4} \Rightarrow \sum_{c y c} \sqrt{(x+1)(y+1)} \geq 3
$$

Proposed by Daniel Sitaru,Aurel Chiriță - Romania
VIII.4. If $a, b, c>0, \frac{1}{a^{3}+1}+\frac{1}{b^{3}+1}+\frac{1}{c^{3}+1}=\frac{8}{3}$ then:

$$
(a+b)(b+c)(c+a) \leq 1
$$

Proposed by Rahim Shahbazov-Azerbaijan
VIII.5. Solve for real numbers:

$$
\left\{\begin{array}{l}
x^{2}=2+y \\
y^{2}=2+z \\
z^{2}=2+x
\end{array}\right.
$$

Proposed by Rahim Shahbazov-Azerbaijan
VIII.6. If $a, b, c>0,(a+b+c)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{49}{4}$ then:

$$
\frac{a}{b}, \frac{b}{c}, \frac{c}{a} \in\left[\frac{1}{4}, 4\right]
$$

Proposed by Rahim Shahbazov-Azerbaijan
VIII.7. If $a, b, c>0, a+b+c=1,0 \leq n \leq \frac{9}{7}$ then:

$$
a b+b c+c a-n a b c \leq \frac{9-n}{27}
$$

Proposed by Marin Chirciu - Romania
VIII.8. Solve for natural numbers:

$$
\left\{\begin{array}{c}
7 x=y z(y+z)+6 \max (x, y, z) \\
7 y=x z(x+z)+\min (x, y, z) \\
7 z=x y(x+y)+\max (\min (x, y), \min (x, z), \min (y, z))
\end{array}\right.
$$

Proposed by Mokhtar Khassani-Algerie
VIII.9. If $0<x, y, z$ then:

$$
\begin{gathered}
x\left(y^{2}[x]+z^{2}\{x\}\right) \geq(y[x]+z\{x\})^{2}, \\
\{x\}=x-[x],[*]-\text { great integer function }
\end{gathered}
$$

Proposed by Daniel Sitaru,Nicolae Oprea - Romania

VIII.10. If $a, b, c>0, a b+b c+c a=3$ then:

$$
a^{2}+b^{2}+c^{2}+a b c(a+b+c) \geq 6
$$

Proposed by George Apostolopoulos - Greece
VIII.11. Solve:

$$
\frac{[x]}{[x]+1}+\frac{8[2 x]}{[2 x]+8}=\frac{[x][2 x]+8[2 x]+[x]+8}{[2 x]+[x]+9}
$$

Proposed by Jalil Hajimir-Canada
VIII.12. If $x, y, z \geq 2$ then:

$$
\sum_{c y c} \frac{1}{x+1}=1 \Rightarrow \sum_{c y c} \frac{3 x^{2}+x+4}{(x+1)\left(x^{4}+2\right)}+2 \leq 2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)
$$

Proposed by Daniel Sitaru,Ramona Nălbaru - Romania
VIII.13. If $a, b, t, x, y, z \in \mathbb{R}_{+}^{*}=(0, \infty)$ then:

$$
\frac{1}{t(a t+b x)}+\frac{1}{x(a x+b y)}+\frac{1}{y(a y+b z)}+\frac{1}{z(a z+b t)} \geq \frac{64}{(a+b)(t+x+y+z)^{2}}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania

All solutions for proposed problems can be finded on the http/ / :www.ssmrmh.ro which is the adress of Romanian Mathematical M agazine-Interactive Journal.

9-CLASS-STANDARD

X.1. If $m \geq 0 ; x, y, z \geq 0$, then in triangle $A B C$ with F-area the following relationship holds:

$$
\sum_{c y c}\left(\frac{y+z}{x}\right)^{m+1} \cdot \frac{a^{2 m}}{h_{a}^{2}} \geq 2^{3 m+1} \cdot(\sqrt{3})^{1-m} \cdot F^{m-1}
$$

Proposed by D.M.Bătineţu-Giurgiu, Flaviu-Cristian Verde - Romania X.2. If in $\triangle A B C, M \in \operatorname{Int}(A B C)$ and $x=M A, y=M B, z=M C$ then:

$$
\sum_{c y c}\left(\frac{x}{a}+\frac{y}{b}\right) \sqrt{\left(\frac{z}{c}+\frac{x}{a}\right)\left(\frac{z}{c}+\frac{y}{b}\right)} \geq 4
$$

Proposed by D.M.Bătineţu-Giurgiu, Flaviu-Cristian Verde - Romania
IX.3. If $x, y, z>0 ; u \geq 0$ then in any $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{(y+z+m)}{(x+u) h_{a}} \cdot a^{3} \geq 16 F
$$

where F-area of triangle $A B C$.
Proposed by D.M.Bătineţu-Giurgiu, Flaviu-Cristian Verde - Romania
IX.4. In $\triangle A B C, M \in(B C), N \in(C A), P \in(A B)$ the following relationship holds:

$$
\left(\frac{A M^{3}}{h_{b}+h_{c}}+\frac{B N^{3}}{h_{c}+h_{a}}+\frac{C P^{3}}{h_{a}+h_{b}}\right)\left(\frac{1}{\left(h_{a}+h_{b}\right)^{2}}+\frac{1}{\left(h_{b}+h_{c}\right)^{2}}+\frac{1}{\left(h_{c}+h_{a}\right)^{2}}\right) \geq \frac{9}{8}
$$

Proposed by D.M.Bătineţu-Giurgiu- Romania
IX. 5 If $a, b, c, x, y \in \mathbb{R}_{+}^{*}=(0, \infty) ; m \in \mathbb{N}$ and $a b c=1$, then:

$$
3 m+\frac{(a x+b y)^{2 m+2}}{(a+b+2 c)^{m+1}}+\frac{(a y+b z)^{2 m+2}}{(2 a+b+c)^{m+1}}+\frac{(a z+b x)^{2 m+2}}{(a+2 b+c)^{m+1}} \geq \frac{3}{4}(m+1)(x+y)^{2}
$$

Proposed by D.M.Bătineţu-Giurgiu- Romania
IX. 6 If in $\triangle A B C, M \in \operatorname{Int}(A B C), x_{A}=M A, x_{B}=M B, x_{C}=M C$ the following relationship holds:

$$
3 m+\left(\frac{x_{A}}{h_{a}}\right)^{m+1}+\left(\frac{x_{B}}{h_{b}}\right)^{m+1}+\left(\frac{x_{C}}{h_{c}}\right)^{m+1} \geq 2(m+1)
$$

Proposed by D.M.Bătineţu-Giurgiu- Romania
IX.7. Let be $m, n \in \mathbb{R}_{+}=[0, \infty) ; p \in \mathbb{N}$ in $\triangle A B C, M \in(A B C), x, y, z$-the distances by point M to the tips A, B, C and u, v, w-the distances by point M to the sides of triangle [$B C],[C A],[A B]$. Prove that:

$$
3 p+\frac{(m x+n y)^{2 p+2}}{(u v)^{p+1}}+\frac{(m y+n z)^{2 p+2}}{(v w)^{p+1}}+\frac{(m z+n x)^{2 p+2}}{(w u)^{p+1}} \geq 12(p+1)(m+n)^{2}
$$

Proposed by D.M.Bătineţu-Giurgiu- Romania
IX.8. Let be $x, y, z \in \mathbb{R}_{+}^{*}=(0, \infty), t \in \mathbb{R}_{+}=[0, \infty)$ and the triangle $A B C$ with F-area, the following relationship holds:

$$
\frac{4 x+3 y+z+2 t}{y+3 z+t} \cdot a^{2}+\frac{x+4 y+3 z+2 t}{z+3 x+t} \cdot b^{2}+\frac{3 x+y+4 z+2 t}{x+3 y+t} \cdot c^{2} \geq 8 \sqrt{3} F
$$

Proposed by D.M.Bătinetu-Giurgiu - Romania
X.9. If in $\triangle A B C, F$-area, $M \in \operatorname{Int}(A B C)$ and $x=M A, y=M B, z=M C$ the following relationship holds:

$$
\frac{x^{2} \cdot h_{a}}{a}+\frac{y^{2} \cdot h_{b}}{b}+\frac{z^{2} \cdot h_{c}}{c} \geq 2 F
$$

Proposed by D.M.Bătineţu-Giurgiu - Romania
X.10. In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{b}}{h_{c}}+\frac{m_{c}}{h_{b}} \geq \frac{2 m_{a}}{h_{a}}
$$

Proposed by Bogdan Fuștei - Romania
X.11. In $\triangle A B C, I$ - inenter the following relationship holds:

$$
\sum_{c y c} \frac{m_{a}}{s_{a}} \leq \min \left(2 \sum_{c y c} \frac{m_{a}}{w_{a}}-3 ; \frac{1}{2 r} \sum_{c y c} A I\right)
$$

Proposed by Bogdan Fuștei - Romania
IX.12. In $\triangle A B C, n_{a}$ - Nagel's cevian the following relationship holds:

$$
\prod_{c y c} \frac{n_{a}^{2}}{r_{a}} \geq \prod_{c y c}\left(4 m_{a}-2 h_{a}-r_{a}\right)
$$

Proposed by Bogdan Fustei - Romania
IX.13. In $\triangle A B C, n_{a}$ - Nagel's cevian, g_{a} - Gergonne's cevian the following relationship holds:

$$
6 R \sum_{c y c} \frac{h_{b} h_{c}}{h_{c}} \geq \sum_{c y c}\left(n_{a}^{2}+2 w_{a}^{2}+g_{a}^{2}\right)
$$

Proposed by Bogdan Fuștei - Romania
IX.14. In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}}{a}+\frac{m_{b}}{b}+\frac{m_{c}}{c} \geq \frac{3 \sqrt{3}}{2} \geq \frac{h_{a}+h_{b}}{a+b}+\frac{h_{b}+h_{c}}{b+c}+\frac{h_{c}+h_{a}}{c+a}
$$

Proposed by Bogdan Fustei - Romania
IX. 15 In acute $\triangle A B C, n_{a}-$ Nagel's cevian the following relaitionship holds:

$$
n_{a} n_{b} n_{c} \geq s^{2} \sqrt{\frac{2\left(m_{a}-2 r\right)\left(m_{b}-2 r\right)\left(m_{c}-2 r\right)}{R}}
$$

Proposed by Bogdan Fustei - Romania
IX.16. In $\triangle A B C, n_{a}$ - Nagel's cevian the follwoing relationship holds:

$$
\frac{n_{a}+m_{a}+w_{b}+w_{c}+\sqrt{2 r_{a} h_{a}}}{h_{a}+h_{b}+h_{c}} \leq\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\right) \sqrt{\frac{R}{r}}
$$

Proposed by Bogdan Fuștei - Romania
IX.17. In $\triangle A B C$ the following relationship holds:

$$
2 \sum_{c y c} \frac{r_{a} r_{b}}{w_{a}^{2}} \geq \sum_{c y c}\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\right)
$$

Proposed by Bogdan Fuștei - Romania
IX.18. In $\triangle A B C$ the following relationship holds:

$$
\frac{r_{a}}{m_{a}}+\frac{r_{b}}{m_{b}}+\frac{r_{c}}{m_{c}} \geq 4-\frac{2 r}{R}
$$

Proposed by Bogdan Fuștei - Romania
XX.19. If $x, y \in \mathbb{R}, x^{2}+y^{2}-6 x-8 y+24 \leq 0$ then:

$$
16 \leq x^{2}+y^{2} \leq 36
$$

Proposed by Daniel Sitaru,Ionuț Ivănescu - Romania
IX.20. Solve for real numbers:

$$
\left\{\begin{array}{c}
2 x+2 y-3 z=-6 \\
3 x^{2}+3 y^{2}-4 z^{2}=-10 \\
4 x^{3}+4 y^{3}-5 z^{3}=-40
\end{array}\right.
$$

Proposed by Radu Diaconu - Romania
IX.21. Solve for real numbers:

$$
(2 m-1) \sin 2 x+(m-2) \cos 2 x+2=0, m \in \mathbb{R}
$$

Proposed by Radu Diaconu - Romania
IX.22. Solve for real numbers:
$4(\sin x+2 \cos y)+3(\cos x+2 \sin y)=15$

Proposed by Daniel Sitaru,Amelia Curcă Năstăselu- Romania

X.23. If $a, b>0$ then:

$$
\left(\frac{a+b}{2}+\sqrt{a b}+\frac{2 a b}{a+b}\right)^{4} \geq \frac{(a+b)^{4}}{16}+15 a^{2} b^{2}+65\left(\frac{2 a b}{a+b}\right)^{4}
$$

Proposed by Daniel Sitaru,Mirea Mihaela Mioara- Romania
|X.24. Let $\phi(m, n)=\frac{n^{2^{m}}-1}{2^{m+2}}, m \in \mathbb{N}^{*}, n$ odd number. Prove that: $\phi(m, n) \in \mathbb{N}$
Proposed by Mohammed Bouras-Morocco
IX.25. Let: $Q=\frac{1+\tan \left(\frac{3 \pi}{8}\right) \cdot \tan \left(\frac{\pi}{10}\right)}{1-\tan \left(\frac{\pi}{8}\right) \cdot \tan \left(\frac{\pi}{10}\right)}$

Prove that: $\frac{Q-1}{Q+1}=\sqrt{7-3 \sqrt{5}-\sqrt{85-38 \sqrt{5}}}$
Proposed by Mohammed Bouras-Morocco
X.26. In $\triangle A B C$ the following relationship holds:

$$
\frac{\left(h_{a}+h_{b}+h_{c}\right)^{3}}{h_{a} h_{b} h_{c}}+5 \geq \frac{16 R}{R-r}
$$

Proposed by Marin Chirciu - Romania
IX.27. In $\triangle A B C, O$ - circumcentre, I - incentre the following relationship holds:

$$
\left(w_{a}-w_{b}\right)^{2}+\left(w_{b}-w_{c}\right)^{2}+\left(w_{c}-w_{a}\right)^{2} \leq n \cdot O I^{2}, n \geq \frac{35}{2}
$$

Proposed by Marin Chirciu - Romania
X.28. In $\triangle A B C$ the following relationship holds:

$$
\frac{s^{2}}{27 r^{2}}+\frac{3 n s^{2}}{(4 R+r)^{2}} \geq n+1, n \leq \frac{16}{9}
$$

Proposed by Marin Chirciu - Romania
|X.29. If $a, b, c>0, n \geq 1$ then:

$$
\frac{a}{n a+b+c}+\frac{b}{n b+c+a}+\frac{c}{n c+a+b} \geq \frac{27}{(n+2)(a+b+c)(a b+b c+c a)}
$$

Proposed by Marin Chirciu - Romania
IX.30. In $\triangle A B C$ the following relationship holds:

$$
a+b+c \leq \frac{a^{2}+b c}{b+c}+\frac{b^{2}+c a}{c+a}+\frac{c^{2}+a b}{a+b} \leq(a+b+c) \frac{R}{2 r}
$$

Proposed by Marin Chirciu - Romania
IX.31. In acute $\triangle A B C$ the following relationship holds:

$$
\frac{1}{1-\tan \frac{B}{2} \tan \frac{C}{2}}+\frac{1}{1-\tan \frac{C}{2} \tan \frac{A}{2}}+\frac{1}{1-\tan \frac{A}{2} \tan \frac{B}{2}} \leq \frac{3 R^{2}-8 R r-5 r^{2}}{2 R^{2}-4 R r-2 r^{2}}
$$

Proposed by Marin Chirciu - Romania
|X.32. If $a, b, c>0$ then:

$$
\sum_{c y c} \frac{c+\sqrt{a b}}{\sqrt{a b}(a+b+2 c)} \geq \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}
$$

Proposed by Daniel Sitaru,Claudiu Ciulcu - Romania
IX.33. If $u, v, w, x, y, z \in \mathbb{R}_{+}^{*}$ and $A B C$ is a triangle having the area F, then:

$$
\frac{u x+(y+z)(v+w)}{u(y+z) h_{a}^{2}}+\frac{u y+(z+x)(w+u)}{v(z+x) h_{b}^{2}}+\frac{u z+(x+y)(u+v)}{w(x+y) h_{c}^{2}} \geq \frac{5 \sqrt{3}}{F}
$$

Proposed by D.M. Bătinețu - Giurgiu, Daniel Sitaru - Romania
X. 34. Let $x, y, z \in \mathbb{R}_{+}^{*} \backslash(0, \infty)$ and d_{a}, d_{b}, d_{c} the centroid's G distances of $A B C$ triangle to it's sides and F the area of triangle.

$$
\left(\frac{x}{d_{a}^{2}}+\frac{y}{d_{b}^{2}}+\frac{z}{d_{c}^{2}}\right)^{2} \geq \frac{81}{p^{2}}(x y+y z+z x)
$$

Proposed by D.M. Bătinețu - Giurgiu, Claudia Nănuți - Romania
IX.35. If d_{a}, d_{b}, d_{c} are the centroid's G distances of $A B C$ triangle, having the area F, then:

$$
\frac{1}{d_{a} d_{b}}+\frac{1}{d_{b} d_{c}}+\frac{1}{d_{c} d_{a}} \geq \frac{9 \sqrt{3}}{F}
$$

Proposed by D.M. Bătinețu - Giurgiu - Romania, Martin Lukarevski - Macedonia IX.36. If $n \in \mathbb{N}$ and m_{a}, m_{b}, m_{c} are the medians lengths of $A B C$ triangle, then:

$$
\frac{m_{a}^{4 m+4}}{\left(m_{b} \cdot m_{c}\right)^{n+1}}+\frac{m_{b}^{4 n+4}}{\left(m_{c} m_{a}\right)^{n+1}}+\frac{m_{c}^{4 n+4}}{\left(m_{a} m_{b}\right)^{n+1}} \geq 27 r^{2}-3 n
$$

Proposed by D.M. Bătinețu - Giurgiu, Daniel Sitaru - Romania IX.37. If $m \in \mathbb{R}_{+}=[0, \infty) ; x, y \in \mathbb{R}_{+}^{*}=(0, \infty)$ then in any $A B C$ triangle the following inequality holds:

$$
\frac{r_{a}}{\left(x r_{b}+y r_{c}\right)^{m+1}}+\frac{r_{b}}{\left(x r_{c}+y r_{a}\right)^{m+1}}+\frac{r_{c}}{\left(x r_{a}+y r_{b}\right)^{m+1}} \geq \frac{3^{m+1}}{(x+y)^{m+1}(y R+r)^{m}}
$$

Proposed by D.M. Bătinețu - Giurgiu, Daniel Sitaru - Romania IX. 38 If $x, y, z \in \mathbb{R}_{+}^{*}=(0, \infty)$, then in any $A B C$ triangle having the area F the following inequality holds:

$$
\frac{y+z}{x h_{b} h_{c}}+\frac{z+x}{y h_{c} h_{a}}+\frac{x+y}{z h_{a} h_{b}} \geq \frac{2 \sqrt{3}}{F}
$$

Proposed by D.M. Bătinețu - Giurgiu, Daniel Sitaru - Romania
X.39. In $\triangle A B C$ the following relationship holds:

$$
\frac{r_{a}}{r_{b}}+\frac{r_{b}}{r_{c}}+\frac{r_{c}}{r_{a}}+\frac{4 r}{R} \geq 5
$$

Proposed by Rahim Shahbazov-Azerbaijan
IX.40. If $x, y, z>0$ then:

$$
9\left(\frac{x y+y z+z x}{x^{2}+y^{2}+z^{2}}\right)^{2}+\frac{2\left(x^{3}+y^{3}+z^{3}\right)}{x y z} \geq 15
$$

Proposed by Rahim Shahbazov-Azerbaijan
X.41. In $\triangle A B C$ the following relationship holds:

$$
8 \cos A \cos B \cos C \leq\left(\frac{a b+b c+c a}{a^{2}+b^{2}+c^{2}}\right)^{2}
$$

Proposed by Rahim Shahbazov-Azerbaijan
XX.42. If $a, b, c>0, a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ then:

$$
\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c} \geq 3
$$

Proposed by Rahim Shahbazov-Azerbaijan
IX.43. In $\triangle A B C, I$ - incenter, the following relationship holds:

$$
\frac{27 r^{2}}{4 s^{2}} \leq\left(\frac{A I}{b+c}\right)^{2}+\left(\frac{B I}{c+a}\right)^{2}+\left(\frac{C I}{a+b}\right)^{2} \leq \frac{1}{4}
$$

Proposed by Marin Chirciu - Romania
X.44. In $\triangle A B C$ the following relationship holds:

$$
\frac{27 R^{2}}{4 s^{2}}+\frac{3 n s^{2}}{(4 R+r)^{2}} \geq n+1, n \leq \frac{11}{16}
$$

Proposed by Marin Chirciu - Romania
IX.45. If $a, b, c>0, a^{2}+b^{2}+c^{2}+2 a b c=1$ then:

$$
\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c} \geq 6
$$

Proposed by Marin Chirciu - Romania
X.46. In $\triangle A B C$ the following relationship holds:

$$
\prod_{c y c}\left(\frac{1}{a+b}+\frac{1}{b+c}-\frac{1}{c+a}\right) \leq \frac{1}{(a+b)(b+c)(c+a)}
$$

Proposed by Daniel Sitaru,Lavinia Trincu- Romania
IX.47. If $x, y, z, t>0$ then:

$$
\frac{(x z-y t)^{2}+(x z-y t)(x t+y z+y t)+(x t+y z+y t)^{2}}{x y z t} \geq 9
$$

Proposed by Daniel Sitaru,Mihaela Nascu - Romania
IX.48. In $\triangle A B C$ the following relationship holds:

$$
2(\sqrt{a}+\sqrt{b}+\sqrt{c}) \leq 3 \sqrt{\frac{3 a b c}{4 R r+r^{2}}}
$$

Proposed by Daniel Sitaru,Nicolae Tomescu- Romania

X.49. In $\triangle A B C$ the following relationship holds:

$$
3\left(a^{3}+b^{3}+8 m_{c}^{3}+6 a b m_{c}\right) \leq 2\left(a+b+2 m_{c}\right)\left(3 a^{2}+3 b^{2}-c^{2}\right)
$$

When the equality does hold?

Proposed by Daniel Sitaru,Seinu Cristina - Romania

IX.50. In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}}{h_{c}}+\frac{m_{c}}{h_{b}} \geq \frac{2 m_{a}}{h_{a}}
$$

Proposed by Bogdan Fuștei - Romania
IX.51. In $\triangle A B C, I$ - incenter the following relationship holds:

$$
\sum_{c y c} \frac{m_{a}}{s_{a}} \leq \min \left(2 \sum_{c y c} \frac{m_{a}}{w_{a}}-3, \frac{1}{2 r} \sum_{c y c} A I\right)
$$

Proposed by Bogdan Fustei - Romania
IX.52. In $\triangle A B C, n_{a}$ - Nagel's cevian the following relationship holds:

$$
\prod_{c y c} \frac{n_{a}^{2}}{r_{a}} \geq \prod_{c y c}\left(4 m_{a}-2 h_{a}-r_{a}\right)
$$

Proposed by Bogdan Fuștei - Romania
IX.53. In $\triangle A B C, n_{a}$ - Nagel's cevian, g_{a} - Gergonne's cevian the following relationship holds:

$$
6 R \sum_{c y c} \frac{h_{b} h_{c}}{h_{c}} \geq \sum_{c y c}\left(n_{a}^{2}+2 w_{a}^{2}+g_{a}^{2}\right)
$$

Proposed by Bogdan Fuștei - Romania
IX.54. In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}}{a}+\frac{m_{b}}{b}+\frac{m_{c}}{c} \geq \frac{3 \sqrt{3}}{2} \geq \frac{h_{a}+h_{b}}{a+b}+\frac{h_{b}+h_{c}}{b+c}+\frac{h_{c}+h_{a}}{c+a}
$$

Proposed by Bogdan Fuștei - Romania
IX.55. In acute $\triangle A B C, n_{a}$ - Nagel's cevian the following relationship holds:

$$
n_{a} n_{b} n_{c} \geq s^{2} \sqrt{\frac{2\left(m_{a}-2 r\right)\left(m_{b}-2 r\right)\left(m_{c}-2 r\right)}{R}}
$$

Proposed by Bogdan Fuștei - Romania
IX.56. In $\triangle A B C$ the following relationship holds:

$$
\left(r_{a}+r_{b}+r_{c}\right)\left(\frac{1}{r_{a}}+\frac{1}{r_{b}}+\frac{1}{r_{b}}\right) \geq \frac{9(a+b)(b+c)(c+a)}{8 a b c}
$$

Proposed by Adil Abdullayev-Azerbaijan
IX.57. In $\triangle A B C$ the following relationship holds:

$$
\sin \frac{A-B}{2} \sin \frac{B-C}{2} \sin \frac{C-A}{2}=\frac{(a-b)(b-c)(c-a)}{16 R^{2} r}
$$

Proposed by Adil Abdullayev-Azerbaijan
IX.58. Show that:

$$
\frac{\sqrt{4-\sqrt{8+\sqrt{15}+\sqrt{3}+\sqrt{10-2 \sqrt{5}}}}}{\sqrt{2^{\frac{3}{2}}-\sqrt{4+\sqrt{8}+\sqrt{3}+\sqrt{10-2 \sqrt{5}}}}}>2 \sin 1^{\circ}
$$

Proposed by Naren Bhandari-Nepal
IX.59. We know that
$1 \times 2 \times 3 \times \ldots \times 7=7 \times \ldots \times 10$.
Now, for $n>7$, can the following equality ever hold true:
$1 \times 2 \times 3 \times \ldots \times(n-1) \times n=n \times \ldots \times(n+k)$ for some positive integer k ?

Proposed by Naren Bhandari-Nepal
|X.60. If $a, b, c, d>0, a+b+c+d+1=5 a b c d$ then:

$$
\frac{a^{3}}{a^{3}+b^{4}+c^{4}+d^{4}}+\frac{b^{3}}{b^{3}+c^{4}+d^{4}+a^{4}}+\frac{c^{3}}{c^{3}+d^{4}+a^{4}+b^{4}}+\frac{d^{3}}{d^{3}+a^{4}+b^{4}+c^{4}} \leq 1
$$

Proposed by Rahim Shahbazov-Azerbaijan
IX.61. In $\triangle A B C$ the following relationship holds:

$$
4 \cos \frac{A}{2} \cos \frac{B}{2} \leq 1+\sqrt{\left(1+\frac{a}{c}\right)^{2}+\left(1+\frac{b}{c}\right)^{2}-2\left(1+\frac{a}{c}\right)\left(1+\frac{b}{c}\right) \cos C}
$$

Proposed by Adil Abdullayev-Azerbaijan
IX.62. In $\triangle A B C$ the following relationship holds:

$$
\prod_{c y c} \frac{r_{a}+r_{b}}{2 r_{c}} \geq \frac{9 R^{2}}{a^{2}+b^{2}+c^{2}} \geq \frac{4\left(2 R^{2}+r^{2}\right)}{a^{2}+b^{2}+c^{2}}
$$

Proposed by Adil Abdullayev-Azerbaijan
X.63. In $\triangle A B C$ the following relationship holds:

$$
\frac{9(a+b)(b+c)(c+a)}{8 a b c} \leq 1+\frac{4 R}{r}
$$

Proposed by Adil Abdullayev-Azerbaijan
IX.64. Find last 3 digits of:

$$
\Omega=2019 \frac{201920192019 \ldots 201953}{50 \text { times "2019" }}
$$

Proposed by Naren Bhandari-Nepal
IX.65. If $a, b, c>0$ then:

$$
\sum_{c y c} \sqrt{\frac{(b+c)^{3}}{a^{3}+a b c}} \geq 6
$$

Proposed by Rahim Shahbazov-Azerbaijan
XX.66. In $\triangle A B C$ the following relationship holds:

$$
\frac{m_{a}^{2}+m_{b}^{2}+m_{c}^{2}}{m_{a} m_{b}+m_{b} m_{c}+m_{c} m_{a}} \leq \frac{R}{2 r}
$$

Proposed by Rahim Shahbazov-Azerbaijan
X.67. In $\triangle A B C$ the following relationship holds:

$$
7 s \sum_{c y c} s_{a}^{3}>(2 \sqrt{2}+1)\left(\sum_{c y c} s_{a}^{2}\right)\left(\sum_{c y c} h_{a}^{2}\right)
$$

Proposed by Daniel Sitaru,Delia Schneider- Romania
IX.68. In $\triangle A B C, I$ - incenter, the following relationship holds:

$$
\frac{n_{a}+r_{a}}{A I}+\frac{n_{b}+r_{b}}{B I}+\frac{n_{c}+r_{c}}{C I} \leq\left(\sqrt{3}-\sqrt{\frac{r}{R}}\right)\left(1+\frac{4 R}{r}\right)
$$

Proposed by Bogdan Fuștei - Romania
XX.69. In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \sqrt{\frac{r_{a}}{4 m_{a}-r_{a}}} \geq \sum_{c y c} \tan \frac{A}{2} \geq \sqrt{4-\frac{2 r}{R}} \geq \sqrt{3}
$$

Proposed by Bogdan Fuștei - Romania
IX.70. In $\triangle A B C, g_{a}$ - Gergonne's cevian the following relationship holds:

$$
\sum_{c y c} \frac{r_{a}+r}{r_{a}-r}>\sum_{c y c} \frac{g_{a}-h_{a}}{w_{a}-g_{a}}, \sum_{c y c} \frac{w_{a}-g_{a}}{r_{a}-r}>\sum_{c y c} \frac{g_{a}-h_{a}}{r_{a}+r}
$$

Proposed by Bogdan Fuștei - Romania
X.71. In $\triangle A B C$ the following relationship holds:

$$
\max \left(\sum_{c y c} \frac{m_{a}-w_{a}}{h_{a}}, \sum_{c y c} \frac{m_{a}-w_{a}}{r_{a}}\right) \leq \frac{s \sqrt{3}-w_{a}-w_{b}-w_{c}}{r}
$$

Proposed by Bogdan Fuștei - Romania
X.72. In $\triangle A B C$ the following relationship holds:

$$
\frac{\sqrt{m_{a} r_{a}}}{w_{a}}+\frac{\sqrt{m_{b} r_{b}}}{w_{b}}+\frac{\sqrt{m_{c} r_{c}}}{w_{c}} \leq 1+\frac{R}{r}
$$

Proposed by Bogdan Fuștei - Romania
X.73. In $\triangle A B C$ the following relationship holds:

$$
\left(\sum_{c y c} \sqrt{\frac{r_{a}}{w_{a}}}\right)^{2} \geq 4+5 \sqrt[5]{\left(\frac{r_{a}+r_{b}+r_{c}}{m_{a}+m_{b}+m_{c}}\right)^{6}}
$$

Proposed by Bogdan Fustei - Romania

1X.74. In $\triangle A B C, n_{a}$ - Nagel's cevian, g_{a} - Gergonne's cevian the following relationship holds:

$$
\frac{2 m_{a}+n_{a}+g_{a}}{h_{a}}+\sqrt{\frac{r_{b}+r_{c}}{h_{a}}} \leq \frac{(1+\sqrt{3}) R}{r}
$$

Proposed by Bogdan Fustei - Romania
IX.75. In $\triangle A B C, n_{a}$ - Nagel's cevian, the following relationship holds:

$$
\frac{n_{a}}{a}+\frac{n_{b}}{b}+\frac{n_{c}}{c} \leq\left(\frac{R}{r}+3 \sqrt{3}-4\right)\left(\frac{R}{r}-1\right)
$$

Proposed by Bogdan Fuștei - Romania
IX.76. Solve for real numbers:

$$
4(\sin x+2 \cos y)+3(\cos x+2 \sin y)=15
$$

Proposed by Daniel Sitaru,Alecu Orlando- Romania
IX.77. Solve for real numbers:

$$
\left\{\begin{array}{l}
x y(4 x y-1)^{2}+16 x y=16 z^{2} \\
y z(4 y z-1)^{2}+16 y z=16 x^{2} \\
z x(4 z x-1)^{2}+16 z x=16 y^{2}
\end{array}\right.
$$

Proposed by Daniel Sitaru,Dan Grigorie - Romania

IX.78. Let be $m, n \in \mathbb{R}_{+}^{*}=(0, \infty)$ and M an interior point to $A B C$ triangle. If x, y, z are the distances of point M to the apices A, B, C and u, v, w the distances of point M to the sides $B C, C A, A B$ then:

$$
\frac{m^{2} y^{2}+n^{2} z^{2}}{v^{2}+2 w u}+\frac{m^{2} z^{2}+n^{2} x^{2}}{w^{2}+2 u v}+\frac{m^{2} x^{2}+n^{2} y^{2}}{u^{2}+2 v w} \geq 2(m+n)^{2}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
|X.79. If $m \in \mathbb{R}_{+}=[0, \infty) ; x, y, z \in \mathbb{R}_{+}=(0, \infty)$ then in any $A B C$ triangle the following inequality holds:

$$
\left(\frac{x \cdot a^{4}}{y+z}\right)^{m+1}+\left(\frac{y \cdot b^{4}}{z+x}\right)^{m+1}+\left(\frac{z \cdot c^{4}}{x+y}\right)^{m+1} \geq \frac{8^{m+1}}{3^{m}} \cdot F^{2 m+2}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
|X.80. If $p \in \mathbb{R}_{+}=[0, \infty) ; m, n, x, y, z \in \mathbb{R}_{+}^{*}=(0, \infty)$ then in any $A B C$ triangle the following inequality holds:

$$
\left(\frac{m y+n z}{x} \cdot a^{4}\right)^{p+1}+\left(\frac{m z+n x}{y} \cdot b^{4}\right)^{p+1}+\left(\frac{m x+n y}{z} \cdot c^{4}\right)^{p+1} \geq
$$

$$
\geq \frac{2^{6 p+6}}{3^{p}} \cdot \frac{m^{p+1} \cdot n^{p+1}}{(m+n)^{p+1}} \cdot F^{2 p+2}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
IX.81. If $m \in \mathbb{R}_{+}=[0, \infty)$ and a, b, c are the sides lengths of $A B C$ triangle having the area F, then:

$$
\frac{a^{m+2}}{(2 a+b+c)^{m}}+\frac{b^{m+2}}{(a+2 b+c)^{m}}+\frac{c^{m+2}}{(a+b+2 c)^{m}} \geq \frac{\sqrt{3}}{4^{m+1}} F
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania IX.82. If $m \in \mathbb{N} ; n, p \in \mathbb{R}_{+}^{*}=(0, \infty), F$ is the area and s the semiperimeter of $A B C$ triangle, then:

$$
m+2^{m}\left(\left(n s^{2}\right)^{m+1}+(p r)^{m+1} \cdot(4 R+r)^{m+1}\right) \geq(m+1)(3 n+p) \sqrt{3} F
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania IX.84. Let $m, n \in \mathbb{N}, n \geq 2$, then in $A B C$ triangle having the semiperimeter s and area F the following inequality holds:

$$
3 m+a^{m+1} r_{b}^{n(m+1)}+b^{m+1} \cdot r_{c}^{n(m+1)}+c^{m+1} r_{a}^{n(m+1)} \geq 2(m+1) F^{2} \cdot s^{n-3}(\sqrt{3})^{6-n}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
IX.85. If $m \in \mathbb{N}$ and $A B C$ triangle is a triangle having the semiperimeter s, then:

$$
\sqrt{\left(\frac{a}{s-a}\right)^{m+1}}+\sqrt{\left(\frac{b}{s-b}\right)^{m+1}}+\sqrt{\left(\frac{c}{s-c}\right)^{m+1}}+3 m \geq 3(m+1) \sqrt{2}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
IX.86. Let be $n \in \mathbb{N}, n \geq 2, x_{k} \in \mathbb{R}_{+}^{*}=(0, \infty), \forall k=\overline{1, n}$ and $\sigma \in S_{n}$, and $a, b \in \mathbb{R}_{+}^{*}$. Then:

$$
\sum_{k=1}^{n}\left(a+\frac{b \cdot x_{k}}{x_{\sigma(k)}}\right)^{2} \geq(a+b)^{2} n
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
|X.87. Let $m \in \mathbb{R}_{+}=[0, \infty), n \in \mathbb{N}, n \geq 3, x_{k} \in \mathbb{R}_{+}^{*}=(0, \infty), \forall k=\overline{1, n}$ and $X_{n}=\sum_{k=1}^{n} x_{k}$ then:

$$
\sum_{k=1}^{n} x_{k}^{m+1}+\frac{1}{(n-1)^{m}} \sum_{k=1}^{n}\left(X_{n}-x_{k}\right)^{m+1} \geq \frac{X_{n}^{m+1}}{n^{m-1}}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
IX. 88. If $x, y \in \mathbb{R}_{+}^{*}=(0, \infty)$ and a, b, c are the sides lengths and h_{a}, h_{b}, h_{c} are the heights lengths of $A B C$ triangle, then:

$$
\frac{(2 x-y) x a}{h_{a}}+\frac{(2 y-x) y b}{h_{b}}+\frac{x y c}{h_{c}} \geq 2 \sqrt{3} x y
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania IX.89. In $A B C$ triangle having the area F let w_{a}, w_{b}, w_{c} be the interior bisectors and the other notations being the usual ones, then:

$$
\frac{a \cdot w_{a}}{h_{a}}+\frac{b \cdot w_{b}}{h_{b}}+\frac{c \cdot w_{c}}{h_{c}} \geq 2 \sqrt{3 \sqrt{3} F}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania X.90. In $A B C$ triangle having the area F, with the usual notations the following inequality holds: $\left(a^{2}+b^{2}+c^{2}\right)^{\frac{3}{2}} \cdot\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right) \geq 18 F$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania IX.91. Let $m \in \mathbb{N}$ and M be an interior point in $A B C$ triangle and x, y, z the sides of point M to A, B, C apices and u, v, w the distances of point M to the sides $B C, C A, A B$. Prove that:

$$
3 m+\frac{x^{2 m+2}}{(v w)^{m+1}}+\frac{y^{2 m+2}}{(w u)^{m+1}}+\frac{z^{2 m+2}}{(u v)^{m+1}} \geq 12(m+1)
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania IX.92. If $a, b, c, d, e \in \mathbb{R}_{+}^{*}=(0, \infty)$ and $a^{2}+b^{2}+c^{2}+d^{2}=e^{2}$, then:

$$
(a+c)(b+d) \leq e^{2}
$$

Proposed by D.M. Bătinețu-Giurgiu, Dan Nănuți - Romania IX.93. Find all functions $f:(0,+\infty) \rightarrow \mathbb{R}$ such that:

$$
f(x y) \leq x f(x)+y f(y) \leq \log (x y), \forall x, y>0
$$

Proposed by Marian Ursărescu-Romania
IX.94. In $\triangle A B C, A A^{\prime}, B B^{\prime}, C C^{\prime}$-internal bisectors, $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$-circumcevian triangle of incenter. Prove that: $\frac{\left[A^{\prime} B^{\prime} C^{\prime}\right]}{\left[A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}\right]} \leq \frac{r}{2 R}$.

Proposed by Marian Ursărescu-Romania

> All solutions for proposed problems can be finded on the http/ / :www.ssmrmh.ro which is the adress of Romanian M athematical M agazine-Interactive Journal.

10-CLASS-STANDARD

X.1. If $x_{k} \in \mathbb{R}_{+}^{*}=(0, \infty), k=\overline{1, n}$, then:

$$
\sum_{k=1}^{n}\left(\frac{\left[x_{k}\right]}{\left\{x_{k+2}\right\}}+\frac{\left[x_{k}\right]^{2}}{\left[x_{k}\right]\left\{x_{k+2}\right\}}\right) \geq \frac{\frac{1}{2}\left(\sum_{k=1}^{n} x_{k}\right)^{2}}{\sqrt{\left(\sum_{k=1}^{n}\left[x_{k}\right]^{2}\right)\left(\sum_{k=1}^{n}\left\{x_{k}\right\}^{2}\right)}}
$$

where $[x]-\mathrm{GIF},\{x\}=x-[x], x \in \mathbb{R}, x_{n+1}=x_{n}, x_{n+2}=x_{1}$.
Proposed by D.M.Bătineţu-Giurgiu- Romania
X.2. If $m, n, x, y, z \in \mathbb{R}_{+}=[0, \infty), m+n=2$, then in any $\triangle A B C$ with F-area the following relationship holds:

$$
y z \cdot \frac{a^{m}}{h_{a}^{n}}+z x \cdot \frac{b^{m}}{h_{b}^{n}}+x y \cdot \frac{c^{m}}{h_{c}^{n}} \leq \frac{(x+y+z)^{2} R^{m+n}}{(a b c)^{n}}
$$

Proposed by D.M.Bătineţu-Giurgiu- Romania
X.3. If $m \in \mathbb{N}, t \in \mathbb{R}_{+}=[0, \infty)$ and $x, y, z \in \mathbb{R}_{+}^{*}=(0, \infty)$ then in any triangle $A B C$ the following relationship holds:

$$
3 m+\left(\frac{y+z+6 t}{(x+3 t) a}\right)^{m+1}+\left(\frac{z+x+6 t}{(y+3 t) b}\right)^{m+1}+\left(\frac{x+y+6 t}{(z+3 t) c}\right)^{m+1} \geq \frac{2 \sqrt{3}(m+1)}{R}
$$

Proposed by D.M.Bătineţu-Giurgiu- Romania
X.4. In any $\triangle A B C, M \in \operatorname{Int}(A B C), x=M A, y=M B, z=M C$ the following relationship holds:

$$
\sum_{c y c}\left(\frac{x}{a}\right)^{4}+\sum_{c y c} \frac{x^{3} y}{a^{3} b} \geq \frac{2}{3}
$$

Proposed by D.M.Bătineţu-Giurgiu- Romania
X.5. Let be $m, n \in \mathbb{R}_{+}=[0, \infty) ; m+n=4 ; x, y, z \in \mathbb{R}_{+}^{*}=(0, \infty)$ and $\triangle A B C$ with F-area, then the following relationship holds:

$$
\left(\frac{x^{2} a^{m}}{h_{a}^{n}}+\frac{y^{2} b^{m}}{h_{b}^{n}}+\frac{z^{2} c^{m}}{h_{c}^{n}}\right)\left(\frac{1}{(x+y)^{2}}+\frac{1}{(y+z)^{2}}+\frac{1}{(z+x)^{2}}\right) \geq 3 \cdot 2^{m-2} \cdot F^{m-2}
$$

Proposed by D.M.Bătineţu-Giurgiu- Romania
X.6. If $m, n \in \mathbb{R}_{+}=[0, \infty), m+n=2, \triangle A B C$ with F-area and $M \in(B C), N \in(C A), P \in$ ($A B$) the following relationship holds:

$$
\frac{\left(a^{2}+b^{2}\right) \cdot C P^{m}}{c^{n}}+\frac{\left(b^{2}+c^{2}\right) \cdot A M^{m}}{a^{n}}+\frac{\left(c^{2}+a^{2}\right) \cdot B N^{m}}{b^{n}} \geq 2^{n+1} \cdot 3 F^{m}
$$

Proposed by D.M.Bătineţu-Giurgiu- Romania
X.7. If $x, y \in \mathbb{R}_{+}=[0, \infty), x+y=2$ then in any triangle $A B C$ with F-area the following relationship holds:

$$
\frac{\left(a^{2}+b^{2}\right) \cdot h_{c}^{x}}{c^{y}}+\frac{\left(b^{2}+c^{2}\right) \cdot h_{a}^{x}}{a^{y}}+\frac{\left(c^{2}+a^{2}\right) \cdot h_{b}^{x}}{b^{y}} \geq 2^{x+1} \cdot 3 F^{x}
$$

Proposed by D.M.Bătineţu-Giurgiu- Romania
X.8. If $m, n \in \mathbb{R}_{+}=[0, \infty), m+n=2$, then in any $\triangle A B C$ with F-area the following relationship holds:

$$
\frac{(a+b)^{2} \cdot h_{c}^{m}}{c^{n}}+\frac{(b+c)^{2} \cdot h_{a}^{m}}{a^{n}}+\frac{(c+a)^{m} \cdot h_{b}^{m}}{b^{n}} \geq 2^{m} \cdot 6 F^{m}
$$

Proposed by D.M.Bătineţu-Giurgiu- Romania
X.9. In $\triangle A B C$ the follwoing relationship holds:

$$
\sqrt[3]{\prod_{c y c} n_{a}^{2}}+2^{3} \sqrt{\prod_{c y c} r_{a} h_{a}} \leq s^{2}
$$

Proposed by Bogdan Fustei - Romania
X.10. If in $\triangle A B C, I$ - incenter, n_{a} - Nagel's cevian, g_{a} - Gergonne's cevian then:

$$
\frac{A I}{h_{a}}+\frac{B I}{h_{b}}+\frac{C I}{h_{c}} \leq \frac{R}{r}, \sum_{c y c} \frac{n_{a}^{2}+g_{a}^{2}}{b^{2}+c^{2}} \geq 2+\frac{r}{2 R}
$$

Proposed by Bogdan Fuștei - Romania
X.11. In $\triangle A B C$ the following relationship holds:

$$
m_{a} \geq \frac{1}{2 \sqrt{2}}\left((b+c) \cos \frac{A}{2}+|b-c| \sin \frac{A}{2}\right)
$$

Proposed by Bogdan Fuștei - Romania
X.12. In $\triangle A B C, n_{a}-$ Nagel's cevian the following relationship holds:

$$
m_{a} \geq \frac{1}{2}\left(\frac{h_{b}+h_{c}}{2}+|b-c| \sin ^{2} \frac{A}{2}\right) \sqrt{\frac{n_{a}+h_{a}}{r_{a}}}
$$

Proposed by Bogdan Fuștei - Romania

X. 13 Let $\alpha, \beta>0$. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
\alpha f(x) f(y)=\beta f(x+y)+\alpha \beta x y, \forall x, y \in \mathbb{R}
$$

Proposed by Nguyen Van Canh-Vietnam
X.14. Solve for complex numbers:

$$
3 x^{6}-9 x^{5}+18 x^{4}-21 x^{3}+15 x^{2}-6 x+1=0
$$

Proposed by Daniel Sitaru,Lucian Lazăr- Romania
X.15. In $\triangle A B C: a+b+c=1$. Prove that:

$$
\sum_{c y c}\left(\frac{1}{9} \cdot \mu^{2}(A)+\frac{2}{3} \cdot \frac{\mu(A)}{\tan \frac{A}{3}}+\frac{a b}{c}\right)>7
$$

Proposed by Radu Diaconu - Romania
X.16. If in $\triangle A B C, r=1$ then the following relationship holds:

$$
\left(\sum_{c y c} \tan \frac{A}{6^{n}}-\sum_{c y c} \sin \frac{A}{6^{n}}\right)\left(\sum_{c y c} \frac{1}{w_{a}}\right)<\frac{1}{6^{n}}, n \geq 2
$$

Proposed by Radu Diaconu - Romania
X.17. In $A B C D$ convexe quadrilateral the following relationship holds ($m>0, n \geq 0$):

$$
\left(\sum_{c y c} \cos ^{2} A\right)\left(\sum_{c y c} \frac{\mu^{m+1}(A)}{(a+n b)^{m}}\right) \geq \frac{8 \pi^{m+1}}{s^{m}(n+1)^{m}} \cos ^{2} \frac{A+B}{2} \cos ^{2} \frac{B+C}{2} \cos ^{2} \frac{C+A}{2}
$$

Proposed by Radu Diaconu - Romania
X.18. In $\triangle A B C$ the following relationship holds:

$$
\left(w_{a}+w_{b}+w_{c}\right)\left(\frac{A}{b+c}+\frac{B}{c+a}+\frac{C}{a+b}\right) \geq \frac{27 \pi r}{4 s}
$$

Proposed by Radu Diaconu - Romania
X.19. In $\triangle A B C$ the following relationship holds:

$$
3(1+3 r)<\sum_{c y c}\left(h_{a}+\frac{1}{4} \cdot \mu(A) \cdot \csc \frac{A}{4}\right)<\frac{3(\pi+3 R)}{2}
$$

Proposed by Radu Diaconu - Romania
X.20. Prove that:

$$
10^{2^{n}}\left(\prod_{k=1}^{n} \frac{1}{10^{2^{n-k}}+1}\right)\left(\sum_{k=1}^{2^{n-1}} 10^{-2 k}\right)=\frac{1}{11}
$$

Proposed by Mohammed Bouras-Morocco
X.21. Solve for real numbers:

$$
\left\{\begin{array}{c}
6 x+3 y+2 z=18 \\
108(x+y+z)^{x+y+z}=x y^{2} z^{3} \cdot 6^{x+y+z}
\end{array}\right.
$$

Proposed by Daniel Sitaru,Daniela Beldea- Romania
X.22. In $\triangle A B C$ the following relationship holds:

$$
\frac{\left(m_{b}+m_{c}\right) \sin A}{m_{a} \sin B \sin C}+\frac{\left(m_{c}+m_{a}\right) \sin B}{m_{b} \sin C \sin A}+\frac{\left(m_{a}+m_{b}\right) \sin C}{m_{c} \sin A \sin B} \geq 4 \sqrt{3}
$$

Proposed by Daniel Sitaru,Simona Miu- Romania
X. 23.
$\Omega(a, b, c)=\frac{(a+b+c)^{3}}{\left(4 a^{3}+1\right)\left(4 b^{3}+1\right)\left(4 c^{3}+1\right)}, a, b, c \in \mathbb{R}$
Find: $\Omega=\max (\Omega(a, b, c))$
Proposed by Marin Chirciu - Romania
X.24. If $x, y, z>0, x+y+z=1, n \geq 2$ then:

$$
\frac{x}{\sqrt{n x+y}}+\frac{y}{\sqrt{n y+z}}+\frac{z}{\sqrt{n z+x}} \leq \sqrt{\frac{3}{n+1}}
$$

Proposed by Marin Chirciu - Romania
X.25. Solve for real numbers:

$$
x+\sqrt{a^{2}-x^{2}+1}+x \sqrt{a^{2}-x+1}=2 a+1, a \in[0,7)
$$

Proposed by Marin Chirciu - Romania
X.26. In $\triangle A B C$ the following relationship holds:

$$
\left(\sum_{c y c} r_{a}\right)\left(\sum_{c y c} \frac{1}{r_{a}}\right)+\frac{2 \mu r}{R} \geq \mu+9, \mu \leq 8
$$

Proposed by Marin Chirciu - Romania
X.27. In $\triangle A B C$ the following relationship holds:

$$
a^{3}+b^{3}+c^{3} \geq 8 \sqrt[4]{3 S^{6}}
$$

Proposed by Daniel Sitaru,Alina Georgiana Ghiță- Romania
X.28. In $\triangle A B C, K$ - Lemoine's point, the following relationship holds:

$$
\frac{a A K+b B K+c C K}{m_{a}+m_{b}+m_{c}} \leq \frac{2 R \sqrt{3}}{3}
$$

Proposed by Daniel Sitaru, Mihaela Dăianu- Romania
X.29. In $\triangle A B C$ the following relationship holds:

$$
\left(\frac{a^{4} m_{a}^{2}}{m_{b} m_{c}}\right)^{5}+\left(\frac{b^{4} m_{b}^{2}}{m_{c} m_{a}}\right)^{5}+\left(\frac{c^{4} m_{c}^{2}}{m_{a} m_{b}}\right)^{5} \geq \frac{(4 S)^{10}}{81}
$$

Proposed by Daniel Sitaru,Doina Cristina Călina- Romania
X.30. If $x, y, z, u, v, w>0, u v+v w+w u=3$ then:

$$
\sum_{c y c} \frac{\left(x^{2}+y^{2}+z^{2}+2 x y+2 z y\right) u^{2}}{x z} \geq 18+u^{2}+v^{2}+w^{2}
$$

Proposed by Daniel Sitaru,Simona Radu- Romania
X.31. Let be $m \in \mathbb{R}_{+}=[0, \infty), n \in \mathbb{N}$ then in $A B C$ triangle with the area F the following inequality holds:

$$
3 n+\frac{a^{(m+2)(n+1)}}{(b+c)^{m(n+1)}}+\frac{b^{(m+2)(n+1)}}{(c+a)^{m(n+1)}}+\frac{c^{(m+2)(n+1)}}{(a+b)^{m(n+1)}} \geq \frac{(n+1) \sqrt{3} F}{2^{m-2}}
$$

Proposed by D.M. Bătinețu - Giurgiu, Dan Nănuți - Romania
X.32. In $A B C$ triangle having the area F the following inequality holds:

$$
3\left(a^{2}+b^{2}+c^{2}\right)^{2} \geq \sum_{c y c}\left(a^{2}+b^{2}-c^{2}\right)^{2}+128 F^{2}
$$

Proposed by D.M. Bătinețu - Giurgiu, Neculai Stanciu - Romania
X.33. If $m \in \mathbb{N}^{*}, x, y, z \in \mathbb{R}_{+}^{*}=(0, \infty)$ and $A B C$ is a triangle having the area F, then:

$$
3 m+\left(\frac{y+z}{x} \cdot a^{2}\right)^{m+1}+\left(\frac{z+x}{y} \cdot b^{2}\right)^{m+1}+\left(\frac{x+y}{z} \cdot c^{2}\right)^{m+1} \geq 4(3 m+2) \sqrt{3} F
$$

Proposed by D.M. Bătinețu-Giurgiu, Claudia Nănuți - Romania
X.34. If $m, n \in \mathbb{N}^{*}, x, y, z, u, v \in \mathbb{R}_{+}^{*}=(0, \infty)$ and $A B C$ is a triangle having the area F then:

$$
\begin{gathered}
\left(m+(u(y+z) \cdot a)^{m+1}\right)\left(n+\left(\frac{v}{x} \cdot a\right)^{n+1}\right)+\left(m+\left(\frac{v}{y} \cdot b\right)^{m+1}\right)+\left(n+(u(z+x) b)^{n+1}\right)+ \\
+(m+1) v\left(\left(\frac{x+y}{z}\right) c^{2} u\right)^{n+1} \geq 8(m+1)(n+1) u v \sqrt{3} F
\end{gathered}
$$

Proposed by D.M. Bătinețu - Giurgiu, Daniel Sitaru - Romania
X.35. If $m \in \mathbb{R}_{+}=[0, \infty) ; n \in \mathbb{N}^{*} ; x, y, z \in R_{+}^{*}=(0, \infty)$ then in $A B C$ triangle having the area F the following inequality holds:

$$
\begin{aligned}
(3 n)^{m+1}+ & \left(\frac{(y+z) a^{2}}{x}\right)^{(m+1)(n+1)}+\left(\frac{(z+x) b^{2}}{y}\right)^{(m+1)(n+1)}+ \\
& +\left(\frac{(x+y) c^{2}}{z}\right)^{(m+1)(n+1)} \geq \frac{(n+1) \sqrt{3}}{2^{2 m-3}} F
\end{aligned}
$$

Proposed by D.M. Bătinețu - Giurgiu, Claudia Nănuți - Romania

X.36. If $x, y \in \mathbb{R}_{+}^{*}=(0, \infty)$ then in any $A B C$ triangle the following inequality holds:

$$
\frac{x a}{(y+z) h_{a}}+\frac{y b}{(z+x) h_{b}}+\frac{z c}{(x+y) h_{c}} \geq \sqrt{3}
$$

Proposed by D.M. Bătinețu - Giurgiu, Claudia Nănuți - Romania
X.37. Let be $m, n \in \mathbb{R}_{+}^{*}=(0, \infty)$ and $A B C$ triangle. If M, N, P are arbitrary points on $B C, C A$ respectively $A B$, then:

$$
\frac{A M \cdot B N}{m h_{a}+n h_{b}}+\frac{B N \cdot C P}{m h_{b}+n h_{c}}+\frac{C P \cdot A B}{m h_{c}+n h_{a}} \geq \frac{18 r}{m+n}
$$

Proposed by D.M. Bătinețu - Giurgiu - Romania
X. 38 If $x, y, z \in \mathbb{R}_{+}^{*}$, then in any $A B C$ triangle having the area F the following inequality holds:

$$
\left(\frac{x}{h_{a}^{2}}+\frac{y}{h_{b}^{2}}+\frac{z}{h_{c}^{2}}\right)^{2} \geq \frac{x y+y+z x}{F^{2}}
$$

Proposed by D.M. Bătinețu - Giurgiu, Claudia Nănuți - Romania

X. 39 If $x, y, z \in \mathbb{R}_{+}^{*}=(0, \infty)$ then in $A B C$ triangle the following inequality holds:

$$
\frac{(y+z) a}{x h_{a}}+\frac{(z+x) b}{y h_{b}}+\frac{(x+y) c}{z h_{c}} \geq 4 \sqrt{3}
$$

Proposed by D.M. Bătinețu - Giurgiu - Romania, Martin Lukarevski - Macedonia
X.40. If $A B C$ is a triangle having the area F, then:

$$
\frac{a^{4} b^{2}}{h_{b}^{2}}+\frac{b^{4} c^{2}}{h_{c}^{2}}+\frac{c^{4} a^{2}}{h_{a}^{2}} \geq \frac{64}{3} \cdot F^{2}
$$

Proposed by D.M. Bătinețu - Giurgiu, Dan Nănuți - Romania
X.41. If $m \in[1, \infty)$ and $A B C$ is a triangle having the area F then:

$$
\frac{a^{2 m} b^{m}}{h_{b}^{m}}+\frac{b^{2 m} c^{m}}{h_{c}^{m}}+\frac{c^{2 m} a^{m}}{h_{a}^{m}} \geq 2^{3 m} \cdot 3^{1-m} \cdot F^{m}
$$

Proposed by D.M. Bătinețu - Giurgiu, Daniel Sitaru - Romania
X.42. If $m \in[1, \infty), x \in \mathbb{R}$ then in any $A B C$ triangle having the area F the following inequality holds:

$$
\frac{a^{m(2-x)}}{h_{a}^{m x}}+\frac{b^{m(2-x)}}{h_{b}^{m x}}+\frac{c^{m(2-x)}}{h_{c}^{n x}} \geq 2^{(2-x) m}(\sqrt{3})^{2-m} \cdot F^{(1-x) m}
$$

Proposed by D.M. Bătinețu - Giurgiu, Dan Nănuți - Romania
X.43. In any $A B C$ triangle having the area F the following inequality holds:

$$
a^{3}+b^{3}+c^{3} \geq 8 \sqrt[4]{3} F \sqrt{F}
$$

Proposed by D.M. Bătinețu - Giurgiu, Daniel Sitaru - Romania
X.44. P and q are distinct prime numbers. Show $\sqrt[p]{q}+\sqrt[q]{p}$ is an irrational number.

Proposed by Jalil Hajimir-Canada

X.45. Solve:

$$
4^{[x]}+3^{x}=5^{[x]}+2^{x}
$$

$[x]$ is the greatest integer part of x.
Proposed by Jalil Hajimir-Canada
X.46. Solve:

$$
\left(6 x^{2}+1\right)^{6}+2\left(3 x^{2}+1\right)^{3}+3\left(2 x^{2}+1\right)^{2}=6\left(6 x^{2}+1\right)\left(3 x^{2}+1\right)\left(2 x^{2}+1\right)
$$

Proposed by Jalil Hajimir-Canada

X.47. If $a, b, c>0, \frac{1}{2 a+2019}+\frac{1}{2 b+2019}+\frac{1}{2 c+2019}=\frac{1}{2019}$ then:

Proposed by Rahim Shahbazov-Azerbaijan
X.48. If in $\triangle A B C, m(\Varangle A)>152^{\circ}$ then:

$$
h_{a}<\frac{7}{50}(b+c)
$$

Proposed by Rovsen Pirguliyev-Azerbaijan
X.49. Solve for real numbers:

$$
\begin{gathered}
{[\tan x \cdot\{\cos x\}]=[\cot x \cdot\{\sin x\}]} \\
\{x\}=x-[x],[x]-\text { great integer function }
\end{gathered}
$$

Proposed by Rovsen Pirguliyev-Azerbaijan

X.50. If $a, b, c, d>0$ then:

$$
16(a+b+c+d) \geq \sqrt[4]{\frac{a^{4}+b^{4}+c^{4}+d^{4}}{4}}+63 \sqrt[4]{a b c d}
$$

Proposed by Rahim Shahbazov-Azerbaijan
X.51. In $\triangle A B C$ the following relationship holds:

$$
\frac{h_{a} h_{b}}{h_{c}}+\frac{h_{b} h_{c}}{h_{a}}+\frac{h_{c} h_{a}}{h_{b}} \leq m_{a}+m_{b}+m_{c}
$$

Proposed by Rahim Shahbazov-Azerbaijan
X.52. If $x, y, z>0$ then:

$$
\frac{x}{y+z+\sqrt[4]{\frac{y^{4}+z^{4}}{2}}}+\frac{y}{z+x+\sqrt[4]{\frac{z^{4}+x^{4}}{2}}}+\frac{z}{x+y+\sqrt[4]{\frac{x^{4}+y^{4}}{2}}} \geq 1
$$

Proposed by Rahim Shahbazov-Azerbaijan
X.53. If $a, b, c>0, a b c=1$ then:

$$
\frac{1}{a^{100}+b^{99}+c^{98}+3}+\frac{1}{b^{100}+c^{99}+a^{98}+3}+\frac{1}{c^{100}+a^{99}+b^{98}+3} \leq \frac{1}{2}
$$

Proposed by Rahim Shahbazov-Azerbaijan
X.54. If $x, y, z>0, x y z=1$ then:

$$
\frac{1}{x^{5}+x^{3}+x}+\frac{1}{y^{5}+y^{3}+y}+\frac{1}{z^{5}+z^{3}+z} \geq 1
$$

Proposed by Rahim Shahbazov-Azerbaijan
X.55. Solve for real numbers:

$$
x^{2}(2-x)^{2}=1+\left(a^{2}-2\right)(1-x)^{2}, a \in \mathbb{R}, a-\text { fixed }
$$

Proposed by Marin Chirciu - Romania
X.56. $A B C D$ - tangential quadrilateral with inradii $r=1, A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ - contact cyclic quadrilateral of $A B C D$. Prove that:

$$
\left[A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right] \cdot \sum_{c y c} \frac{\mu^{2}(A)}{\mu(A) \mu(B) \mu(C) \mu(D)+1} \geq \frac{32 \pi^{2}}{16+\pi^{4}} \sin \frac{A+B}{2} \sin \frac{B+C}{2} \sin \frac{C+A}{2}
$$

Proposed by Radu Diaconu - Romania
X.57. In acute $\triangle A B C, H$ - orthocenter, the following relationship holds:

$$
\left(A^{2}+B^{2}+C^{2}\right)\left(\frac{a^{5}}{A H}+\frac{b^{5}}{B H}+\frac{c^{5}}{C H}\right) \geq \frac{32 \pi^{2} s^{5}}{243 R}
$$

Proposed by Radu Diaconu - Romania
X.58. Solve for real numbers:

$$
\begin{aligned}
x+x^{\log _{a} b}= & x^{\log _{a}(a+b)}, 1<a<b \\
& \text { Proposed by Marin Chirciu - Romania }
\end{aligned}
$$

X.59. In $\triangle A B C$ the following relationship holds:

$$
\frac{n\left(a^{2}+b^{2}+c^{2}\right)}{a b+b c+c a}+\sum_{c y c} \frac{w_{a}^{2}}{b c} \leq n+\frac{9}{4}, n \leq \frac{5}{4}
$$

Proposed by Marin Chirciu - Romania
X.60. In $\triangle A B C$ the following relationship holds:

$$
\frac{16(2 R-r)^{2}}{r} \leq \sum_{c y c} \frac{r_{a}}{\sin ^{4} \frac{A}{2}} \leq \frac{4 R^{2}(2 R-r)^{2}}{r^{3}}
$$

Proposed by Marin Chirciu - Romania
X.61. In $\triangle A B C$ the following relationship holds:

$$
\left(\frac{a}{w_{b} w_{c}}\right)^{2 n}+\left(\frac{b}{w_{c} w_{a}}\right)^{2 n}+\left(\frac{c}{w_{a} w_{b}}\right)^{2 n} \geq \frac{1}{3^{n-1}}\left(\frac{4}{3 R}\right)^{2 n}, n \in \mathbb{N}^{*}
$$

Proposed by Marin Chirciu - Romania
X.62. In $\triangle A B C$ the following relationship holds:

$$
\frac{b^{2}+c^{2}}{(s-a)^{2}}+\frac{c^{2}+a^{2}}{(s-b)^{2}}+\frac{a^{2}+b^{2}}{(s-c)^{2}} \leq 6\left(\frac{R}{r}\right)^{2}
$$

Proposed by Marin Chirciu - Romania
X.63. In $\triangle A B C$ the following relationship holds:

$$
\left(\frac{h_{a}}{r_{a}}\right)^{2}+\left(\frac{h_{b}}{r_{b}}\right)^{2}+\left(\frac{h_{c}}{r_{c}}\right)^{2}+\frac{2 \mu r}{R} \geq \mu+1, \mu \leq 5
$$

Proposed by Marin Chirciu - Romania
X.64. In $\triangle A B C$ the following relationship holds:

$$
\sqrt{\frac{b c}{r_{b}+r_{c}}}+\sqrt{\frac{c a}{r_{c}+r_{a}}}+\sqrt{\frac{a b}{r_{a}+r_{b}}} \leq \frac{3 R}{2 r} \sqrt{R}
$$

Proposed by Marin Chirciu - Romania
X.65. Solve for real numbers:

$$
\left\{\begin{array}{c}
x+y+z=11 \\
\frac{y z+36 x}{x(y-x)(z-x)}+\frac{z x+36 y}{y(x-y)(z-y)}+\frac{x y+36 z}{x y z=36} \\
z(x-z)(y-z)
\end{array}=1\right.
$$

Proposed by Daniel Sitaru,Virginia Grigorescu- Romania
X.66. Find $x, y, z \geq 0$ such that:

$$
\left\{\begin{array}{c}
x-y-z=\sin x-\sin y-\sin z \\
x^{2}-y^{2}-z^{2}=\sin ^{2} x-\sin ^{2} y-\sin ^{2} z \\
x^{3}-y^{3}-z^{3}=\sin ^{3} x-\sin ^{3} y-\sin ^{3} z
\end{array}\right.
$$

Proposed by Daniel Sitaru,Ileana Duma- Romania
X.67.

$$
\begin{gathered}
\Omega_{1}=\left|z_{1}+z_{2}+z_{3}\right|, z_{1}, z_{2}, z_{3} \in \mathbb{C} \\
\Omega_{2}=\left|z_{1}+z_{2}-z_{3}+4 i\right|+\left|z_{1}-z_{2}+z_{3}+2 i\right|+\left|-z_{1}+z_{2}+z_{3}-6 i\right|
\end{gathered}
$$

Prove that: $\Omega_{1} \leq \Omega_{2}$
Proposed by Daniel Sitaru,Alexandrina Năstase- Romania
X.68. In $\triangle A B C$ the following relationship holds:

$$
\sqrt[3]{\prod_{c y c} n_{a}^{2}}+2^{3} \sqrt{\prod_{c y c} r_{a} h_{a}} \leq s^{2}
$$

Proposed by Bogdan Fustei - Romania
X.69. If in $\triangle A B C, I$ - incenter, n_{a} - Nagel's cevian, g_{a} - Gergonne's cevian then:

$$
\frac{A I}{h_{a}}+\frac{B I}{h_{b}}+\frac{C I}{h_{c}} \leq \frac{R}{r}, \sum_{c y c} \frac{n_{a}^{2}+g_{a}^{2}}{b^{2}+c^{2}} \geq 2+\frac{r}{2 R}
$$

Proposed by Bogdan Fustei - Romania
X.70. In $\triangle A B C$ the following relationship holds:

$$
m_{a} \geq \frac{1}{2 \sqrt{2}}\left((b+c) \cos \frac{A}{2}+|b-c| \sin \frac{A}{2}\right)
$$

Proposed by Bogdan Fuștei - Romania
X.71. In $\triangle A B C, n_{a}-$ Nagel's cevian the following relationship holds:

$$
m_{a} \geq \frac{1}{2}\left(\frac{h_{b}+h_{c}}{2}+|b-c| \sin ^{2} \frac{A}{2}\right) \sqrt{\frac{n_{a}+h_{a}}{r_{a}}}
$$

Proposed by Bogdan Fuștei - Romania
X.72. In $\triangle A B C, n_{a}$ - Nagel's cevian the following relationship holds:

$$
\frac{n_{a}+m_{a}+w_{b}+w_{c}+\sqrt{2 r_{a} h_{a}}}{h_{a}+h_{b}+h_{c}} \leq\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}\right) \sqrt{\frac{R}{r}}
$$

Proposed by Bogdan Fuștei - Romania
X.73. In $\triangle A B C$ the following relationship holds:

$$
2 \sum_{c y c} \frac{r_{a} r_{b}}{w_{a}^{2}} \geq \sum_{c y c}\left(\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}\right)
$$

Proposed by Bogdan Fuștei - Romania
X.74. In $\triangle A B C$ the following relationship holds:

$$
\frac{r_{a}}{m_{a}}+\frac{r_{b}}{m_{b}}+\frac{r_{c}}{m_{c}} \geq 4-\frac{2 r}{R}
$$

Proposed by Bogdan Fuștei - Romania

X.75. In $\triangle A B C$ the following relationship holds:

$$
\left(9 \tan ^{2} \frac{A}{2}+1\right)\left(9 \tan ^{2} \frac{B}{2}+1\right)\left(9 \tan ^{2} \frac{C}{2}+1\right) \geq 64
$$

Proposed by Rahim Shahbazov-Azerbaijan
X.76. If $x, y, z, t>0, x y z t=1$ then:

$$
\frac{x^{2}+1}{x^{5}+3}+\frac{y^{2}+1}{y^{5}+1}+\frac{z^{2}+1}{z^{5}+1}+\frac{t^{2}+1}{t^{5}+1} \leq 2
$$

Proposed by Rahim Shahbazov-Azerbaijan
X.77. If $a, b, c, d>0$ then:

$$
a^{4}+b^{4}+c^{4}+d^{4} \geq 3 a b c d\left(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\right)
$$

Proposed by Rahim Shahbazov-Azerbaijan
X.78. In $\triangle A B C$ the following relationship holds:

$$
\frac{a b+b c+c a}{2 R} \leq m_{a}+m_{b}+m_{c} \leq \frac{a b+b c+c a}{4 r}
$$

Proposed by Adil Abdullayev-Azerbaijan
X.79. Solve in \mathbb{R} :

$$
\sqrt[5]{1-x^{3}}+\sqrt[7]{1+x^{3}}=\sqrt[3]{1-x^{2}}+\sqrt[5]{1+x^{2}}
$$

Proposed by Mokhtar Khassani-Algerie
X.80. In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{\left(m_{a}+m_{b}\right)\left(m_{b}+m_{c}\right)}{\sqrt{\left(m_{a}-m_{b}-m_{c}\right)\left(m_{b}+m_{c}-m_{a}\right)}} \geq \frac{8 r}{R} \sum_{c y c} \sqrt{a}
$$

Proposed by Mokhtar Khassani-Algerie
X.81. If $a, b, c>0$ then:

$$
\frac{\left(\sum_{c y c} a b\right)\left(\sum_{c y c} \frac{1}{a b}\right)}{\left(\sum_{c y c} \sqrt[3]{a}\right)\left(\sum_{c y c} \sqrt[3]{a^{2}}\right)} \geq \frac{\left(\sum_{c y c} \frac{1}{\sqrt[3]{a}}\right)\left(\sum_{c y c} \frac{1}{\sqrt[3]{a^{2}}}\right)}{\left(\sum_{c y c} a^{2} b^{2}\right)\left(\sum_{c y c} \frac{1}{a^{2} b^{2}}\right)}
$$

Proposed by Daniel Sitaru,Tatiana Cristea - Romania
X.82. In $\triangle A B C$ the following relationship holds:

$$
4+\sum_{c y c}\left(\frac{a}{m_{a}}\right)^{2} \leq 8 \prod_{c y c} \frac{r_{a}}{h_{a}}
$$

Proposed by Bogdan Fustei - Romania
X.83. In $\triangle A B C$ the following relationship holds:

$$
\left(m_{a}+m_{b}+m_{c}\right) \sqrt{\frac{2 R}{r}} \geq \frac{a^{2}}{r_{a}-r}+\frac{b^{2}}{r_{b}-r}+\frac{c^{2}}{r_{c}-r}
$$

Proposed by Bogdan Fuștei - Romania
X.84. In $\triangle A B C, n_{a}$ - Nagel's cevian, g_{a}-Gergonne's cevian, the following relationship holds:

$$
\sqrt{n_{a} g_{a} r_{a}}+\sqrt{n_{b} g_{b} r_{b}}+\sqrt{n_{c} g_{c} r_{c}} \geq s \sqrt{r}
$$

Proposed by Bogdan Fustei - Romania
X.85. In $\triangle A B C$ the following relationship holds:

$$
\frac{w_{b}+w_{c}}{a}+\frac{w_{c}+w_{a}}{b}+\frac{w_{a}+w_{b}}{c} \leq 2 \sqrt{6+\frac{3 r}{2 R}}
$$

Proposed by Bogdan Fuștei - Romania
X.86. In $\triangle A B C$ the following relationship holds:

$$
\frac{\cos ^{2}\left(\frac{A-B}{2}\right)}{\tan \frac{C}{2}}+\frac{\cos ^{2}\left(\frac{B-C}{2}\right)}{\tan \frac{A}{2}}+\frac{\cos ^{2}\left(\frac{C-A}{2}\right)}{\tan \frac{B}{2}} \geq 6 \sqrt{3} \cdot \frac{r}{R}
$$

Proposed by George Apostolopoulos - Greece
X.87. If $a, b, c>0, a b c=1$ then:

$$
\sqrt[4]{\frac{b^{2}+c^{2}}{2 a}}+\sqrt[4]{\frac{c^{2}+a^{2}}{2 b}}+\sqrt[4]{\frac{a^{2}+b^{2}}{2 c}} \leq a+b+c
$$

Proposed by George Apostolopoulos - Greece
X.88. In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} \frac{\left(r_{a}^{2}+r_{b}^{2}+r_{c}^{2}+2 r_{a} r_{b}+2 r_{a} r_{c}\right) a^{2}}{r_{b} r_{c}} \geq 28 \sqrt{3} S
$$

Proposed by Daniel Sitaru,Anicuța Patricia Bețiu- Romania
X.89. In $\triangle A B C$ the following relationship holds:

$$
\frac{w_{a}^{2}}{b c}+\frac{w_{b}^{2}}{c a}+\frac{w_{c}^{2}}{a b}+\frac{3\left(a^{2}+b^{2}+c^{2}\right)}{4(a b+b c+c a)} \leq 3
$$

Proposed by Rahim Shahbazov-Azerbaijan
X.90. If $a, b, c>0, a+b+c=a b c$ then:

$$
\left(a^{2}-1\right)\left(b^{2}-1\right)\left(c^{2}-1\right) \leq 8
$$

Proposed by Rahim Shahbazov-Azerbaijan
X.91. In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c}\left(w_{a} \sqrt{\frac{r_{a}}{h_{a}}}\right) \leq \frac{3 R}{2} \sqrt{1+\frac{8 m_{a} m_{b} m_{c}}{h_{a} h_{b} h_{c}}}
$$

Proposed by Mokhtar Khassani-Algerie
X.92. Find two complex solutions such that:

$$
\sqrt{1+x^{2}+x^{4}}+\sqrt{1+x+x^{2}}=1+\sqrt{x}
$$

Proposed by Mokhtar Khassani-Algerie
X.93. Let $a, b, c>0$ prove that:

$$
\left(a+b+\frac{1}{a b}\right)^{4}+\left(a+c+\frac{1}{a c}\right)^{4}+\left(b+c+\frac{1}{b c}\right)^{4} \geq 162 \sqrt{\frac{6}{a+b+c}}
$$

Proposed by Mokhtar Khassani-Algerie
X.94. In $\triangle A B C$ the following relationship holds:

$$
\left(\sum r_{a} r_{b}\right)\left(\sum\left(r_{a}+r_{b}\right)^{2}\left(r_{a}+r_{c}\right)^{2}\right) \geq\left(\prod\left(r_{a}+r_{b}\right)^{2}\right)\left(\sum \cos ^{2}\left(\frac{A}{2}\right)\right)
$$

Proposed by Mokhtar Khassani-Algerie
X.95. In $\triangle A B C$ the following relationship holds:

$$
4\left(\sum_{c y c} \frac{r_{a}}{a}\right)\left(\sum_{c y c} \frac{r_{a}^{2}}{r_{b}+r_{c}}\right) \geq 9 s
$$

Proposed by Mokhtar Khassani-Algerie
X.96. If $a, b, c>0$ then:

$$
\frac{1}{a+a b+b}+\frac{1}{b+b c+c}+\frac{1}{c+c a+a} \leq \sqrt{\frac{a^{2}+b^{2}+c^{2}}{3 a^{2} b^{2} c^{2}}}
$$

Proposed by Daniel Sitaru,Dumitru Săvulescu - Romania
X.97. If $m, n, p \in \mathbb{N}$ then:

$$
3 \sqrt{3}\left(\frac{m^{3}}{(m+3)!}+\frac{n^{5}}{(n+5)!}+\frac{p^{7}}{(p+7)!}\right)<\sqrt{(m!)^{2}+(n!)^{2}+(p!)^{2}}
$$

X.98. If $z_{1}, z_{2}, z_{3} \in \mathbb{C}-\mathbb{R}$ then:

$$
\sum_{c y c} \operatorname{Im}\left(\frac{4 z_{1}+1}{19 z_{1}+5}\right) \cdot\left(\operatorname{Im} z_{1}\right)^{2} \geq\left(\sum_{c y c} \operatorname{Im} z_{1}\right)^{3} \cdot\left(\sum_{c y c} 19 z_{1}+\left.5\right|^{2}\right)^{-1}
$$

Proposed by Daniel Sitaru,Dorina Goiceanu- Romania
X.99. In $\triangle A B C, K$ - Lemoine's point the following relationship holds:

Proposed by Daniel Sitaru,Iulia Sanda - Romania
X.100. In $\triangle A B C$ the following relationship holds (F_{n} - Fibonacci numbers):

$$
\frac{r_{a}^{2} F_{n+2}}{a\left(b F_{n}+c F_{n+1}\right)}+\frac{r_{b}^{2} F_{n+2}}{b\left(c F_{n}+a F_{n+1}\right)}+\frac{r_{c}^{2} F_{n+2}}{c\left(a F_{n}+b F_{n+1}\right)} \geq\left(\frac{3 r}{R}\right)^{2}
$$

Proposed by Daniel Sitaru,Nicolae Radu - Romania

X.101. In $\triangle A B C$ the following relationship holds ($\forall z \in \mathbb{C}$):
$|z-\cos A-i \sin A|+|z-\cos B-i \sin B|+|z-\cos C-i \sin C| \geq 3(|z|-1)^{2}$
Proposed by Daniel Sitaru,Mihaela Stăncele- Romania
X.102. If $a, b, c, d>1, a b c d=e^{4}$ then:

$$
\frac{\ln \left(\frac{e^{2}}{a}\right) \cdot \ln \left(\frac{e^{2}}{b}\right) \cdot \ln \left(\frac{e^{2}}{c}\right) \cdot \ln \left(\frac{e^{2}}{d}\right)}{\ln (a b) \cdot \ln (b c) \cdot \ln (c d) \cdot \ln (d a)} \leq \frac{1}{16}
$$

Proposed by Daniel Sitaru,Carmen Năstase - Romania

X.103. If $a, b, c>0,(a+b)(b+c)(c+a)=8$ then:

$$
(\sqrt[3]{a}+\sqrt[3]{b})(\sqrt[3]{b}+\sqrt[3]{c})(\sqrt[3]{c}+\sqrt[3]{a}) \leq(a+b)(b+c)(c+a)
$$

Proposed by Daniel Sitaru,Cristina Micu - Romania
X.104. In $\triangle A B C$ the following relationship holds:

$$
6+\frac{h_{a}}{r_{a}}+\frac{h_{b}}{r_{b}}+\frac{h_{c}}{r_{c}}=\frac{2 R}{r} \sum_{c y c} \frac{h_{b} h_{c}}{a^{2}}
$$

Proposed by Bogdan Fuștei - Romania
X.105. In $\triangle A B C, I$ - incenter, the following relationship holds:

$$
\sum_{c y c} \frac{r_{b}+r_{c}}{a} \geq \frac{1}{2} \sum_{c y c} \frac{b+c}{A I}
$$

Proposed by Bogdan Fuștei - Romania
X.106. In $\triangle A B C, g_{a}-$ Gergonne's cevian the following relationship holds:

$$
\sum_{c y c}\left(\frac{w_{a}-g_{a}}{a}\right) \geq \frac{1}{2 s} \sum_{c y c}\left(w_{a}-h_{a}\right)
$$

Proposed by Bogdan Fustei - Romania
X.107. In $\triangle A B C, n_{a}$-Nagel's cevian the following relationship holds:

$$
\sqrt{\frac{n_{b} n_{c}}{h_{a}}+\frac{n_{c} n_{a}}{h_{b}}+\frac{n_{a} n_{b}}{h_{c}}} \leq \frac{3 \sqrt{2} R}{2}\left(\frac{R}{r}-1\right)
$$

Proposed by Bogdan Fuștei - Romania
X.108. In $\triangle A B C, n_{a}$ - Nagel's cevian, the following relationship holds:

$$
\frac{6 s-n_{a}-n_{b}-n_{c}}{r} \geq \sqrt{2}\left(3+\sum_{c y c} \sqrt{\frac{b+c}{a}}+\sum_{c y c} \sqrt{\frac{2 r_{a}}{h_{a}}}\right)
$$

Proposed by Bogdan Fuștei - Romania
X.109. Fuștei's refinement for Euler's inequality

In $\triangle A B C, n_{a}$ - Nagel's cevian the following relationship holds:

$$
R \geq r\left(1+\sqrt[3]{\frac{n_{a} n_{b} n_{c}}{h_{a} h_{b} h_{c}}}\right) \geq 2 r
$$

Proposed by Bogdan Fuștei - Romania
X.110. In $\triangle A B C$ the following relationship holds:

$$
\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right) \sqrt{4-\frac{2 R}{r}} \leq \frac{s}{r}
$$

Proposed by Bogdan Fuștei - Romania

X.111. In $\triangle A B C$ the following relationship holds:

$$
\left(s+\sum_{c y c} \sqrt{a b}\right)\left(\sum_{c y c} \frac{1}{2 b+2 c-a}\right) \geq \sum_{c y c} \sin A \cdot \sum_{c y c} \tan \frac{A}{2}
$$

Proposed by Bogdan Fuștei - Romania
X.112. In $\triangle A B C, n_{a}$ - Nagel's cevian, g_{a} - Gergonne's cevian the following relationship holds:

$$
\sqrt{2\left(b^{2}+b c+c^{2}\right)} \geq \frac{1}{2}|b-c|+\frac{\sqrt{3}}{4}\left(n_{a}+g_{a}+\sqrt{2 r_{b} r_{c}}+2 \sqrt{r r_{a}}\right)
$$

Proposed by Bogdan Fuștei - Romania
X.113. If $x, y, z>1$ then:

$$
3+4\left(\log _{x y z^{2}}^{2}\left(\frac{x}{y}\right)+\log _{y z x^{2}}^{2}\left(\frac{y}{z}\right)+\log _{z x y^{2}}^{2}\left(\frac{z}{x}\right)\right) \leq 2\left(\log _{y z} x+\log _{z x} y+\log _{x y} z\right)
$$

Proposed by Daniel Sitaru,Dana Cotfasă - Romania
X.114. In $\triangle A B C$ the following relationship holds:

$$
\sum_{c y c} a(\sin 3 B-\sin 3 C) \leq 8 s \sum_{c y c} \sin (B-C)
$$

Proposed by Daniel Sitaru,Gabriel Tică - Romania
X.115. In $A B C$ triangle, let be the points $D \in(B C), E \in(C A), F \in(A B)$ such that the lines $A D, B E, C F$ are concurrent with the point M, then:

$$
\left(\frac{M D^{2}}{M A^{2}}+\frac{M C^{2}}{M B^{2}}+\frac{M F^{2}}{M C^{2}}\right)\left(a^{8}+b^{8}+c^{8}\right) \geq 64 \cdot S^{4}
$$

where S is the triangle's area.
Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
X.116. In any $A B C$ triangle having the area F the following inequality holds:

$$
e^{a-1}+e^{b-1}+e^{c-1}+\ln \left(a^{a} \cdot b^{b} \cdot c^{c}\right) \geq 4 \sqrt{3} F
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
X.117. If $m \in \mathbb{R}_{+}=[0, \infty)$ and a, b, c are the sides lengths of $A B C$ triangle having the area F, then:

$$
\frac{a^{m+2}}{(2 a+b+c)^{m}}+\frac{b^{m+2}}{(a+2 b+c)^{m}}+\frac{c^{m+2}}{(a+b+2 c)^{m}} \geq \frac{\sqrt{3}}{4^{m+1}} F
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
X.118. Let $A_{1} B_{1} C_{1}, A_{2} B_{2} C_{2}$ be two triangles having the area F_{1}, F_{2} and sides having the lengths a_{1}, b_{1}, c_{1} respectively a_{2}, b_{2}, c_{2}, then:

$$
a_{1}^{2}\left(a_{2}^{2}+2 b_{2} c_{2}\right)+b_{1}^{2}\left(b_{2}^{2}+2 c_{2} a_{2}\right)+c_{1}^{2}\left(c_{2}^{2}+2 a_{2} b_{2}\right) \geq 48 F_{1} F_{2}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
X.119. Let $x, y \in \mathbb{R}_{+}^{*}=(0, \infty)$ and k_{a} the length of the common tangent to the circles from the sides $[A B],[A C]$ as diameter included between the intersection points t_{b}, r_{c} the analogs of k_{a} and r the inradii of $A B C$ triangle, then:

$$
\frac{\left(x t_{a}^{y}+y t_{b}^{y}\right)^{2}}{t_{a} t_{b}}+\frac{\left(x t_{b}^{4}+y t_{c}^{4}\right)^{2}}{t_{b} t_{c}}+\frac{\left(x t_{c}^{4}+y t_{a}^{4}\right)^{2}}{t_{c} t_{a}} \geq 81(x+y)^{2} r^{6}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
X.120. In $A B C$ triangle let be the points $D \in(B C), E \in(C A), F \in(A B)$ such that the sides $A D, B E, C F$ are concurrent with the point M, then:

$$
\left(\frac{M D^{2}}{M A^{2}}+\frac{M C^{2}}{M B^{2}}+\frac{M F^{2}}{M C^{2}}\right)\left(a^{8}+b^{8}+c^{8}\right) \geq 64 S^{4}
$$

where S is the triangle's area.
Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania X.121. If $m \in \mathbb{N} ; x, y, z \in \mathbb{R}_{+}^{*}=(0, \infty)$ then in $A B C$ triangle having the area F the following inequality holds:

$$
3 m+\left(x^{2} a^{4}\right)^{m+1}+\left(y^{2} b^{4}\right)^{m+1}+\left(z^{2} c^{4}\right)^{m+1} \geq \frac{16}{3}(m+1)(x y+y z+z x) F^{2}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania X.122. If $m, u \in \mathbb{R}_{+}=[0, \infty), x, y, z \in \mathbb{R}_{+}=(0, \infty)$ then in any $A B C$ triangle the following inequality holds:

$$
\begin{gathered}
\left(\frac{y+z+u}{x} \cdot a^{2}\right)^{m+1}+\left(\frac{z+x+u}{y} \cdot b^{2}\right)^{m+1}+\left(\frac{x+y+u}{z} \cdot c^{2}\right)^{m+1} \geq \\
\geq 2^{2 n+2}(\sqrt{3})^{1-m}\left(2+\frac{3}{x+y+z}\right)^{m+1} F^{m+1}
\end{gathered}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania X.123. If $m \in \mathbb{R}_{+}=[0, \infty) ; x, y, z \in \mathbb{R}_{+}^{*}=(0, \infty)$, then in any $A B C$ triangle the following inequality holds:

$$
\left(\frac{y+z}{x} \cdot a^{4}\right)^{m+1}+\left(\frac{z+x}{y} \cdot b^{4}\right)^{m+1}+\left(\frac{x+y}{z}\right)^{m+1} \geq \frac{2^{5 m+5}}{3^{m}} \cdot F^{2 m+2}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
X.124. Let be $m, n \in \mathbb{N}^{*}, x, y, z \in \mathbb{R}_{+}^{*}=(0, \infty)$ and $A B C$ a triangle having the area F, then:

$$
\begin{gathered}
\left(3 m^{2}+\left(x a^{2}\right)^{m^{2}+1}+\left(y b^{2}\right)^{m^{2}+1}+\left(z c^{2}\right)^{m^{2}+1}\right)\left(n^{2}+\left(x a^{2}+y b^{2}+z c^{2}\right)^{n^{2}+1}\right) \geq \\
\geq 64 m \cdot n \cdot(x y+y z+z x) F^{2}
\end{gathered}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
X.125. If $m \in \mathbb{N} ; x, y, z \in \mathbb{R}_{+}^{*}=(0, \infty)$, then in $A B C$ triangle having the area F, the following inequality holds:

$$
m+\left(x a^{2}+y b^{2}+z c^{2}\right)^{2(m+1)} \geq 16(m+1)(x y+y z+z x) F^{2}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
X.126. Let $M \in \operatorname{Int} A B C$ where $A B C$ is a triangle having the area F. If x_{A}, X_{B}, X_{C} are the distances from M to the apices A, B, C and d_{a}, d_{b}, d_{c} are the distances from M to the sides $B C, C A$ respectively $A B$, then:

$$
\frac{x_{A}}{d_{a}} a^{4}+\frac{x_{B}}{d_{b}} b^{4}+\frac{x_{c}}{d_{c}} c^{4} \geq 32 F^{2}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
X.127. Let M be an interior point in $A B C$ triangle having the area F and $X=A M \cap B C$,
$Y=B M \cap C A, Z=C M \cap A B$, then:

$$
\frac{M A}{M X} a^{4}+\frac{M B}{M Y} b^{4}+\frac{M C}{M Z} c^{4} \geq 32 F^{2}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
X.128. If $x, y, z, t \in \mathbb{R}_{+}^{*}=(0, \infty)$ and $x^{2}+y^{2}+z^{2}=t^{2}$, then:

$$
(x+z)(y+t) \leq 2 t^{2}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
X.129. Let $m, n \in \mathbb{R}_{+}=[0, \infty) ; m+n \in \mathbb{R}_{+}^{*}=(0, \infty)$ and M an interior point in $A B C$
triangle. If x, y, z are the distances from point M to the sides A, B, C, respectively and u, v, w the distances from point M to the sides $B C, C A, A B$, then:

$$
\frac{m(x+y)+n w}{n(u+v)+m z}+\frac{m(y+z)+n u}{n(v+w)+m x}+\frac{m(z+x)+n v}{n(w+u)+m y} \geq \frac{9(2 m+n)(u+v+w)}{(m+n)(x+y+z)}-3
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
X.130. If $m, p \in \mathbb{N}$ and $A_{1} A_{2} \ldots A_{n}, n \geq 3$ is a convexe polygon having the area F and the sides having the lengths $A_{k} A_{k+1}=a_{k}, k=\overline{1, n}, A_{n+1}=A_{1}$, then:

$$
(m \cdot n)^{p+1}+\sum_{k=1}^{n} a_{k}^{2(m+1)(p+1)} \geq 4^{p+1} \cdot \frac{(m+1)^{p+1}}{(n+1)^{p}} F^{p+1} \cdot \tan ^{p+1} \frac{\pi}{n}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
X.131. Let be $x, y \in \mathbb{R}_{+}^{*}=(0, \infty) x \geq y$ and $n \in \mathbb{N}^{*}-\{1\}$ and $a_{k}, b_{k} \in \mathbb{R}_{+}^{*}, k=\overline{1, n}$ such that $a_{k}>a_{j}, \forall j, h \in \mathbb{N}^{*}, j>i$, then:

$$
\sum_{k=1}^{n-1} \frac{b_{k}^{2}}{x a_{k}-y a_{k+1}} \geq \frac{\left(\sum_{k=1}^{n-1} b_{k}\right)^{2}}{x a_{1}-y a_{n}}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
X.132. Solve for real numbers: $x+9^{\log _{x} 27}+x \cdot 9^{\log _{x} 27}=279$

Proposed by Marian Ursărescu-Romania
X.133. Let be $A\left(z_{1}\right) ; B\left(z_{1}\right) ; C\left(z_{3}\right) ; z_{1}, z_{2}, z_{3} \in \mathbb{C} \backslash\{0\} ;\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right| ; A B=c$;
$B C=a ; C A=b$. If $(b+c) z_{B} z_{C}+(c+a) z_{C} z_{A}+(a+b) z_{A} z_{B}=0$ then $A B=B C=C A$.
Proposed by Marian Ursărescu-Romania
X.134. Let be $z_{A}, z_{B}, z_{C} \in \mathbb{C}^{*}$, different in pairs such that $\left|z_{A}\right|=\left|z_{B}\right|=\left|z_{C}\right|=1$. If $\left|z_{A}-z_{B}-z_{C}\right|+\left|z_{B}-z_{C}-z_{A}\right|+\left|z_{C}-z_{A}-z_{B}\right|=6$, then $\triangle A B C$ is an equilateral triangle.

Proposed by Marian Ursărescu-Romania
X.135. Let be $z_{1}, z_{2}, z_{3} \in \mathbb{C} \backslash\{0\}$ different in pairs: $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1 ; A\left(z_{1}\right) ; B\left(z_{2}\right)$;
$C\left(z_{3}\right)$. If $\left|z_{1}-z_{2}-z_{3}\right|+\left|z_{2}-z_{1}-z_{3}\right|+\left|z_{3}-z_{2}-z_{1}\right|=6$ then $A B=B C=C A$.
Proposed by Marian Ursărescu-Romania
X.136. $z_{A}, z_{B}, z_{C} \in \mathbb{C}^{*}$-differnt in pairs, $\left|z_{A}\right|=\left|z_{B}\right|=\left|z_{C}\right|=1, a=B C, b=C A, c=A B$.

Prove that:

$$
\left|\prod_{c y c} b\left(z_{A}-z_{B}\right)+c\left(z_{A}-z_{C}\right)\right|=(a+b+c)^{3} \Rightarrow A B=B C=C A
$$

Proposed by Marian Ursărescu-Romania
X.137. Find all the polynomials $P \in \mathbb{R}[x]$ having the property

$$
P(x)=P\left(x+\sqrt{x^{2}+1}\right), \forall x \in \mathbb{R}
$$

Proposed by Marian Ursărescu-Romania
X.138. In any $\triangle A B C$ the following relationship holds:

$$
\sum \frac{\left(h_{b}+h_{c}\right)\left(h_{a}+h_{c}\right)}{h_{a} h_{b}} \geq 768\left(\frac{r}{R}\right)^{6}
$$

Proposed by Marian Ursărescu-Romania
X.139. In $\triangle A B C$ the following relationship holds:

$$
m_{a} r_{a}+m_{b} r_{b}+m_{c} r_{c} \leq \frac{3 R}{2 r}\left(2 R^{2}+r^{2}\right)
$$

Proposed by Marian Ursărescu-Romania
All solutions for proposed problems can be finded on the http/ / :www.ssmrmh.ro which is the adress of Romanian M athematical M agazine-Interactive Journal.

11-CLASS-STANDARD

XI.1. Inspired by Prof. Daniel Sitaru.Find:

$$
\lim _{x \rightarrow \infty}\left\{\frac{\sqrt{4 x^{2}+3}+\sqrt{x^{2}+x+1}+\sqrt{x^{2}-x+1}}{3 \sqrt{\left(4 x^{2}+3\right)\left(x^{4}+x^{2}+1\right)}}\right\}
$$

where $\{\cdot\}$ denotes fractional part.
Proposed by Naren Bhandari-Bajura-Nepal
XI.2. Find all functions: $\varphi: \mathbb{R}^{*} \rightarrow \mathbb{R}$ such that:
$\varphi(x y)+x y+m=\varphi(x)+\varphi(y)+x+y, \forall x, y \in \mathbb{R}^{*}$ and $m=$ constant
Proposed by Mokhtar Khassani-Algerie
Xl.3. Let $\alpha, \beta, \gamma>0$. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f(\alpha x+\beta \gamma) \cdot f(\gamma x+\beta \gamma)=f^{2}(\alpha x+\gamma y)+\frac{\alpha}{\beta} x y, \forall x, y \in \mathbb{R}
$$

Proposed by Nguyen Van Canh-Vietnam
XI. 4 Let $\left\{u_{n}\right\}_{n \geq 1}$ satisfy:

$$
\left\{\begin{array}{c}
0<u_{1}<1 \\
u_{n+1}=u_{n}^{2}-u_{n}+1, n=1,2,3 \ldots
\end{array}\right.
$$

Find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(u_{1} u_{2} \ldots u_{n}\right)
$$

Proposed by Nguyen Van Canh-Vietnam
Xl.5. Find all functions $\varphi: \mathbb{R} \rightarrow[-1,1]$ such that:
$2018 \min \left\{\varphi(x), y^{2}\right\}=2019 \min \left\{\varphi(y), z^{2}\right\}+2020 \max \left\{\varphi(z), x^{2}\right\}, \forall x, y \in \mathbb{R}$
Proposed by Nguyen Van Canh-Vietnam
XI.6. Find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n} H_{n+1}^{n}-H_{n}^{n+1}\right)^{\frac{1}{2 n}}
$$

Proposed by Mohammed Bouras-Morocco
XI.7. Find:

$$
\Omega=\lim _{\mathrm{n} \rightarrow \infty}\left(n^{6} \sin \frac{1}{n^{3}} \tan \frac{1}{n^{5}} \sum_{1 \leq k \leq l \leq n} \sin \left(\frac{k+l}{n}\right)\right)
$$

Proposed by Daniel Sitaru,Cristian Moanță - Romania
XI.8. If $a, b, c, d \geq e, e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ then:

$$
5 \log (a e) \cdot \log (b e) \cdot \log (c e) \cdot \log (d e) \geq \log (a b c d e)^{16}
$$

Proposed by Daniel Sitaru - Romania
XI.9. Find:

$$
\Omega=\lim _{\mathrm{n} \rightarrow \infty}\left(n\left(\frac{\log \left(1+\frac{\sqrt[n]{e}}{n}\right)^{n+1}}{\log \left(1+\frac{\sqrt[n]{e}}{n+1}\right)^{n}}-1\right)\right)
$$

Proposed by Daniel Sitaru - Romania
XI.10. Find:

$$
\Omega=\lim _{\mathrm{n} \rightarrow \infty}\left(n^{n-2}\left(\frac{2}{3}\right)^{2} \cdot\left(\frac{3}{5}\right)^{3} \cdot \ldots \cdot\left(\frac{n}{2 n-1}\right)^{n}\right)
$$

Proposed by Daniel Sitaru - Romania
XI.11. If $x, y, z>0, x+y+z=1$ then:

$$
(\sqrt{x}+\sqrt{y}+\sqrt{z}) \sqrt{x^{x}+y^{y}+z^{z}}>\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^{x y+x z+y z}
$$

Proposed by Mohammed Bouras-Morocco
XI.12. Similar of conjecture Syracuse

$$
u_{n+1}=\left\{\begin{array}{c}
\frac{u_{n}}{2} \text { if } u_{n} \text { pair } \\
\frac{u_{n}-1}{4} \in \mathbb{N} \operatorname{or} \frac{u_{n}+1}{4} \in \mathbb{N} \text { if } u_{n} \text { even (we choose the integer value) }
\end{array}\right.
$$

Prove that process will eventually reach the number 1 .
Proposed by Mohammed Bouras-Morocco
Xl.13. If $a_{1}, a_{2}, \ldots, a_{n}>0, n \in \mathbb{N}-\{0,1\}, a_{1}+a_{2}+\cdots+a_{n}=n$ then:

$$
\frac{n+a_{1}}{n-a_{1}}+\frac{n+a_{2}}{n-a_{2}}+\cdots+\frac{n+a_{n}}{n-a_{n}} \geq n+\frac{2 n}{n-1}
$$

Proposed by Mohammed Bouras-Morocco
XI.14. Prove that: $\lim _{n \rightarrow \infty}\left(\sqrt[3]{a x+b \sqrt[3]{x^{2}}}-\sqrt[3]{a x-c \sqrt[3]{x^{2}}}\right)=\frac{b+c}{3 \sqrt[3]{a^{2}}}, a>0$

Proposed by Mohammed Bouras-Morocco
X.15. If $a_{1}, a_{2}, \ldots, a_{n}>0, a_{1}+a_{2}+\cdots+a_{n}=n, p, k \in \mathbb{N}$ then:

$$
\sum_{i=1}^{n}\left(\frac{a_{i}^{p+1}+1}{a_{i}^{p}+1}\right)^{k} \geq n
$$

Proposed by Marin Chirciu, Daniel Sitaru - Romania

XI.16. If $x_{1}, x_{2}, \ldots, x_{k}, n>0, k \in \mathbb{N}-\{0\}, x_{1}+\cdots+x_{k}=k n^{2}$ then:

$$
\frac{1}{2 n-\sqrt{x_{1}}}+\frac{1}{2 n-\sqrt{x_{2}}}+\cdots+\frac{1}{2 n-\sqrt{x_{k}}} \geq \frac{k}{n}
$$

Proposed by Marin Chirciu - Romania
XI.17. Find:

$$
\Omega=\lim _{\mathrm{n} \rightarrow \infty} \sqrt[n]{\left(\sum_{k=1}^{n} \frac{k^{2}}{2 k^{2}-2 n k+n^{2}}\right)\left(\sum_{k=1}^{n} \frac{k^{3}}{3 k^{2}-3 n k+n^{2}}\right)}
$$

Proposed by Daniel Sitaru - Romania
X.18. If $0 \leq a, b, c \leq 1$ then:

$$
27 \sum_{c y c} \sin a \cdot \cos ^{2} c \leq \sum_{c y c} b(3-a)^{3}
$$

Proposed by Daniel Sitaru - Romania

XI.19. If $0<a, b, c \leq \frac{\pi}{2}$ then:
$\left(1+\cos ^{2} a\right)\left(1+\cos ^{2} b\right)\left(1+\cos ^{2} c\right)(\sin a)^{2 \sin ^{2} a(\sin b)^{2 \sin ^{2} b}(\sin c)^{2 \sin ^{2} c} \geq 1, ~(1) ~}$
Proposed by Daniel Sitaru - Romania
Xl.20. If $m, n \in \mathbb{N}-\{0\}, F_{n}-$ Fibonacci numbers, L_{n} - Lucas numbers then:

$$
\sqrt[5]{\frac{F_{m}^{2} F_{n}^{3} L_{n}^{2} L_{m}^{3}}{F_{m+n}^{5}}}+\sqrt[5]{\frac{F_{m}^{3} F_{n}^{2} L_{n}^{3} L_{m}^{2}}{F_{m+n}^{5}}}<2
$$

Proposed by Daniel Sitaru - Romania
XI. 21 If $a, b, c>0, a+b+c=9, n \in \mathbb{N}^{*}, F_{n}$ - Fibonacci numbers then:

$$
\frac{a^{4}}{\sin ^{3}\left(F_{n+2}\right)}+\frac{b^{4}}{\sin ^{3}\left(F_{n}^{2}\right)}+\frac{c^{4}}{\cos ^{3}\left(F_{n+2}^{2}\right)}>72
$$

Proposed by Daniel Sitaru - Romania
XI.22. Let be $m, p \in \mathbb{N}^{*}$ and $\left(a_{n}\right)_{n \geq} a_{n} \in \mathbb{R}_{+}^{*}=(0, \infty), \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n} n}=a \in \mathbb{R}_{+}^{*}$ and

$$
b_{n}=a_{1} \sqrt[m+p]{a_{m+p}} \cdot \sqrt[2 m+p]{a_{2 m+p}} \cdot \ldots \cdot \sqrt[m n+p]{a_{m+p}}, \forall n \in \mathbb{N}^{*}
$$

Find: $\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{b_{n+1}}-\sqrt[n]{b_{n}}\right)$
Proposed by D.M. Bătinețu - Giurgiu, Daniel Sitaru - Romania
X1.23. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying $f(0)=\frac{1}{4}$ and $f(5 x)-f(x)=x$, for all x.

Proposed by Jalil Hajimir-Canada
XI.24. Solve:

$$
\frac{\log _{2}\left(x^{2}+1\right)}{x+1}+\frac{\log _{x+1} 2}{x^{2}+1}+\frac{\log _{x^{2}+1}(x+1)}{2}=\frac{9}{x^{2}+x+4}
$$

Proposed by Jalil Hajimir-Canada

XI.25. Let f be a concave and increasing function on $[a, b]$ and $a \leq m \leq n \leq p<q \leq b$.

Prove or disprove:

$$
\frac{f(q)-f(n)}{q-n} \leq \frac{f(p)-f(m)}{p-m}
$$

Proposed by Jalil Hajimir-Canada
XI.26. Find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(n\left(\left(\left(1+\frac{1}{n}\right)^{n}-e+1\right)-e^{-\frac{e}{2}}\right)\right.
$$

Proposed by Rahim Shahbazov-Azerbaijan
X1.27. If in $A B C D$ - convexe quadrilateral $a b c d=1, a, b, c, d$-sides then:

$$
\left(\sum_{c y c} \mu(A)^{n+2}+\sum_{c y c} \frac{1}{\mu(A)^{n+1}}\right)\left(\sum_{c y c} \frac{1+(b c d)^{n}}{1+a^{n}}\right) \geq 4\left(4+\frac{\pi^{n+1}}{2^{n-1}}\right), n \geq 1
$$

Proposed by Radu Diaconu - Romania

XI.28. Prove that in any $A B C$ triangle the following inequality holds:

$$
\left(\sum_{c y c}\left(A+\frac{1}{A}\right)^{2}\right)\left(\sum_{c y c} \frac{A H^{4}+a^{4}}{h_{a}^{4} \cdot m_{a}^{4}}\right) \geq \frac{128\left(\pi^{2}+9\right)^{2}}{656 \pi^{2} r^{4}}
$$

with the usual notations in triangle.
Proposed by Radu Diaconu - Romania
XI. 29 If $a_{1}, a_{2}, \ldots, a_{n} \geq 0, n \in \mathbb{N}^{*}$ then:

$$
\frac{1}{\left(1+\sqrt{a_{1}}\right)^{2}}+\frac{1}{\left(1+\sqrt{a_{2}}\right)^{2}}+\cdots+\frac{1}{\left(1+\sqrt{a_{n}}\right)^{2}} \geq \frac{n^{2}}{2\left(a_{1}+a_{2}+\cdots+a_{n}+n\right)}
$$

Proposed by Marin Chirciu - Romania
XI.30. Find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\frac{\sin n}{n^{4}} \sum_{1 \leq i<j \leq n}\left(\frac{(i+1)(j+1)+\sqrt[4]{n(2 i+3 j)}+\sqrt[6]{n(3 i+4 j)}}{(i+1)(j+1)+\sqrt[3]{n(2 i+3 j)}+\sqrt[5]{n(3 i+4 j)}}\right)\right)
$$

Proposed by Daniel Sitaru - Romania
XI.31. If $x, y, z>0, x y z=1$ then:

$$
\frac{1}{x^{6}-x+3}+\frac{1}{y^{6}-y+3}+\frac{1}{z^{6}-z+3} \leq 1
$$

Proposed by Rahim Shahbazov-Azerbaijan

XI.32. Find the limit of the following for all $n \in \mathbb{N}$

$$
\lim _{x \rightarrow \infty} \frac{\left((1+x)^{2 n+1}+(1-x)^{2 n+1}\right)\left((1+x)^{2 n+3}+(1-x)^{2 n+3}\right)}{\left((1+x)^{2}+(1-x)^{2}\right)^{2 n+1}}
$$

Proposed by Naren Bhandari-Nepal
XI.33. Solve for real numbers:

$$
\sin ^{\csc ^{4}(2 x)} x+\cos ^{\sec ^{4}(2 x)} x+\tan ^{\cot ^{4}(2 x)} x=\frac{4 \sqrt{2}-1}{4}
$$

Proposed by Mokhtar Khassani-Algerie
XI.34. Show that:

$$
\lim _{x \rightarrow \infty}\left(\frac{\left.\left(1+\frac{1}{x}\right)^{x e^{e}}-e^{\left(1+\frac{1}{x}\right.}\right)^{x e}}{\left(e^{e+e^{e}}-e^{e+e^{e}-1}\right)\left(e-\left(1+\frac{1}{x}\right)^{x}\right)}\right)^{x}=\sqrt[4(1-e)]{\sqrt{e^{e+2}+e^{2}+1-e^{e}-e}}
$$

Proposed by Mokhtar Khassani-Algerie
XI. 35 If $a, b, c>0$ then:

$$
\frac{\left(a^{2}-a b+b^{2}\right)^{6}}{(a+b)^{12}}+\frac{\left(b^{2}-b c+c^{2}\right)^{6}}{(b+c)^{12}}+\frac{\left(c^{2}-c a+a^{2}\right)^{6}}{(c+a)^{12}} \geq \frac{3}{4096}
$$

Proposed by Daniel Sitaru - Romania
XI.36. Prove that:

$$
\frac{\sqrt{\pi(n-1)}}{2 n-1}<\prod_{j=0}^{n-1} \frac{2 n-2 j}{2 n-2 j+1}<\frac{\sqrt{\pi n}}{2 n+1}
$$

Proposed by Naren Bhandari-Nepal
XI.37. Find $\Omega=\underbrace{\max (n)}_{n \in \mathbb{N}}$ such that:

$$
(x+y+z)^{4 n} \geq 3^{4 n-1}(x y z)^{n}\left(x^{n}+y^{n}+z^{n}\right), \forall x, y, z>0
$$

Proposed by Rahim Shahbazov-Azerbaijan
XI.38. Find the minimum of:

$$
f(x, y, z)=\sqrt{\frac{2 x}{y+z}}+\sqrt{\frac{2 y}{z+x}}+\sqrt{\frac{z x}{x+y}}, x, y, z>0
$$

Proposed by Jalil Hajimir-Canada
XI.40. Prove:

$$
\tan ^{-1} A+\tan ^{-1} B+3 \tan ^{-1}\left(\frac{A+B}{3}\right) \leq 2 \tan ^{-1}\left(\frac{A+B}{2}\right)+4 \tan ^{-1}\left(\frac{A+B}{4}\right), A, B \geq 0
$$

Proposed by Jalil Hajimir-Canada
XI.41. Let x, y and z be positive real numbers such that $x+y+z=3$. Prove:

$$
\frac{x}{\sqrt{1+3 x^{2}}}+\frac{y}{\sqrt{1+3 y^{2}}}+\frac{z}{\sqrt{1+3 z^{2}}} \leq \frac{3}{2}
$$

Proposed by Jalil Hajimir-Canada
XI.42. Solve for natural numbers:

$$
13^{x}+17^{y}+19^{z}=2^{x}+31^{y}+73^{z}
$$

Proposed by Mokhtar Khassani-Algerie
XI.43. If $x, y, z>0$ and $x+y+z=\frac{3 \pi}{4}$ then find the maximum and minimum of:

$$
\Omega=\left(\cos ^{\sin y} x+\cos ^{\sin z} y+\cos ^{\sin x} z\right)(\cos (x+y)+\cos (x+y)+\cos (y+z))
$$

Proposed by Mokhtar Khassani-Algerie
Xl.44. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that:

$$
f(x y+x)+f(x+y)+x y=f(x y)+f(x)+f(y), \forall x, y \in \mathbb{R}
$$

Proposed by Mokhtar Khassani-Algerie
XI.45. Find the limit

$$
\boldsymbol{\Omega}=\lim _{n \rightarrow \infty} n^{3} \cdot \int_{0}^{1}\left(\frac{1}{n+\cos (\pi x)}+\frac{1}{n} \sin (n \cdot \ln (x))\right) d x
$$

Proposed by Mohammed Bouras-Morocco
XI.46. Find:

$$
\Omega=\lim _{\mathrm{n} \rightarrow \infty} \sqrt[n]{2 \sum_{0 \leq i<j \leq n}\binom{n}{i}\binom{n}{j}+\frac{1}{2} \sum_{i=0}^{n} \sum_{j=0}^{n}\binom{n}{i}\binom{n}{j}}
$$

Proposed by Daniel Sitaru - Romania
XI.47. Find:

$$
\Omega=\lim _{\mathrm{n} \rightarrow \infty}\left(\prod_{k=1}^{n}\left(1+\frac{e-1}{n} \log \left(1+\frac{(e-1) k}{n}\right)\right)\right)
$$

Proposed by Daniel Sitaru - Romania
XI.48. Solve for real numbers:

$$
\frac{3}{\sqrt[3]{1+x}}+\frac{x}{\sqrt[3]{1+x^{3}}}=2 \sqrt[3]{3}
$$

Proposed by Daniel Sitaru - Romania
XI.49. $\Omega_{n}=\frac{\sqrt[n+1]{\pi^{n+1}+e^{n+1}}}{\sqrt[n]{(n \pi)^{n}+(n e)^{n}}}, n \in \mathbb{N}, n \geq 2$. Find:

$$
\Omega=\lim _{\mathrm{n} \rightarrow \infty}\left(\frac{\cos ^{2} \Omega_{n}}{\cos ^{2}\left(2 \Omega_{n}\right)}\right)^{\frac{1}{\Omega_{n}^{2}}}
$$

Proposed by Daniel Sitaru - Romania
XI.50.

$$
\begin{gathered}
A, B \in M_{4}(\mathbb{C}), B^{3}=I_{4}, A^{3}=A B^{2}+B A^{2}, C=\left(\begin{array}{cccc}
28 & 18 & 36 & 723 \\
120 & 121 & 45 & 891 \\
330 & 27 & 151 & 210 \\
450 & 150 & 180 & 181
\end{array}\right) \\
\text { Prove that: } \\
\operatorname{det}\left((C A-C B)\left(A^{2}-B^{2}\right)\right) \neq 0
\end{gathered}
$$

Proposed by Daniel Sitaru - Romania

XI.51. If $x, y, z \in\left(0, \frac{\pi}{2}\right)$ and $n \in \mathbb{N}^{*}$, then:

$$
\frac{\tan ^{2 n+1} x}{\sin y}+\frac{\tan ^{2 n+1} y}{\sin z}+\frac{\tan ^{2 n+1} z}{\sin x}>(x y+y z+z x)^{n}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
XI.52. Find:

$$
\left.\lim _{n \rightarrow \infty}\left(\sqrt[3]{n^{2}}\right)(\sqrt[3 n+3]{(2 n+1)!!}-\sqrt[3 n]{(2 n-1)!!})\right)
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
XI.53. Let $\left(a_{n}\right)_{n \geq 1}$ a sequence of real numbers strictly positive such that:

$$
\lim _{\mathrm{n} \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=a \in \mathbb{R}_{+}^{*}
$$

Find:

$$
\lim _{n \rightarrow \infty} \sqrt[3]{n^{2}}\left(\sqrt[3]{a_{n+1}}-\sqrt[3]{a_{n}}\right)
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
XI.54. Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of real strictly positive numbers such that:

$$
\lim _{n \rightarrow \infty}\left(e^{H_{n+1}} \cdot \frac{a_{n+1}^{2}}{\sqrt{(n+1)!((2 n+1)!!)}}-e^{H_{n}} \cdot \frac{a_{n}^{2}}{\sqrt[n]{n!\cdot((2 n-1)!!)}}\right)
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
XI.55. If $\left(H_{n}\right)_{n \geq 1}, H_{n}=\sum_{k=1}^{n} \frac{1}{k}$ and $\left(a_{n}\right)_{n \geq 1}$ is a sequence of real strictly positive numbers such that
$\lim _{\mathrm{n} \rightarrow \infty} \frac{a_{n+1}}{n \cdot a_{n}}=a \in \mathbb{R}_{+}^{*}=(0, \infty)$ and find:

$$
\lim _{\mathrm{n} \rightarrow \infty} e^{-2 H_{n}}\left(\sqrt[n]{a_{n}}\right)^{2}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
XI.56. Find:

$$
\lim _{n \rightarrow \infty}\left\{(45+\sqrt{2019})^{n}\right\}
$$

where $\{x\}$ is the fractionary part of $a \in \mathbb{R}$.
Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
XI.57. If $a, b \in \mathbb{R}$, find:

$$
\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{(n+1)^{a}((n+1)!)^{b}}-\sqrt[n]{n^{a}(n!)^{b}}\right)
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
XI.58. Let $H_{n}=\sum_{k=1}^{n} \frac{1}{k^{\prime}}$ find:

$$
\lim _{\mathrm{n} \rightarrow \infty} e^{-H_{n}} \sum_{k=2}^{n}\left(\frac{(k+1)^{2}}{\sqrt[k+1]{(2 k+1)!!}}-\frac{k^{2}}{\sqrt[k]{(2 k-1)!!}}\right)
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
XI.59. If $\left(a_{n}\right)_{n \geq 1}$ is a sequence of real strictly positive numbers such that:

$$
\lim _{\mathrm{n} \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=a \in \mathbb{R}_{+}^{*}=(0, \infty)
$$

Find:

$$
\lim _{\mathrm{n} \rightarrow \infty} \frac{1}{a_{n}} \sum_{k=1}^{n} \frac{a_{k}}{k \sqrt[k]{(2 k-1)!!}}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
XI.60. If $\left(H_{n}\right)_{n \geq 1}, H_{n}=\sum_{k=1}^{n} \frac{1}{k^{\prime}}$, find:

$$
\lim _{\mathrm{n} \rightarrow \infty} e^{-m H_{n}}(\sqrt[n]{(2 n-1)!!})^{m}
$$

where $m \in \mathbb{N}^{*}$.
Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
XI.61. Find:

$$
\lim _{n \rightarrow \infty} \frac{\sqrt[3]{(n+1)(n+2) \cdot \ldots \cdot(4 n)}}{n^{3}}
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
XI.62. Let $\left(H_{n}\right)_{n \geq 1}, H_{n}=\sum_{k=1}^{n} \frac{1}{k}$. Find:

$$
\lim _{\mathrm{n} \rightarrow \infty} e^{-H_{n}} \sum_{k=2}^{n}(\sqrt[k+1]{(2 k+1)!!}-\sqrt[k]{(2 k-1)!!})
$$

Proposed by D.M. Bătinețu-Giurgiu, Daniel Sitaru - Romania
XI.63. Let be $A \in M_{5}(\mathbb{R})$, invertible such that: $\operatorname{det}\left(A^{2}+I_{5}\right)=0$. Prove that:
$\operatorname{Tr} A^{*}=1+\operatorname{det} A \cdot \operatorname{Tr} A^{-1}$
Proposed by Marian Ursărescu-Romania
XI.64. Let be $A \in M_{4}(\mathbb{R}) ; \operatorname{det} A=1 ; \operatorname{det}\left(A^{2}+I_{n}\right)=0$. Prove that: $\operatorname{Tr}\left(A^{-1}\right)=\operatorname{Tr} A$

Proposed by Marian Ursărescu-Romania
XI.65. Let $A \in M_{3}(\mathbb{R})$ invertible such that: $\operatorname{Tr} A=\operatorname{Tr} A^{-1}=1$. Prove that:

$$
\operatorname{det}\left(A^{2}+A+I_{3}\right) \geq 3 \operatorname{det} A
$$

Proposed by Marian Ursărescu-Romania
XI.66. If $A \in M_{3}(\mathbb{R}) ; \operatorname{Tr}\left(A^{2}\right)=0 ; \operatorname{det}=1$ then: $\operatorname{det}\left(A^{2}+A+I_{3}\right) \geq(\operatorname{Tr} A)^{3}$

Proposed by Marian Ursărescu-Romania
XI.67. Let be $A \in M_{5}(\mathbb{R})$ such that $A A^{T}=I_{5}$ and $\operatorname{Tr} A=\operatorname{Tr} A^{2}=0$. Find A^{2020}.

Proposed by Marian Ursărescu-Romania
XI.68. If $A, B \in M_{4}(\Omega) ; A B=\left(\begin{array}{rrrr}p & p & p & p \\ 0 & -p & -p & -p \\ 0 & 0 & p & p \\ 0 & 0 & 0 & -p\end{array}\right) ; p \in \mathbb{C}, p \neq 0 ; \Omega_{1}=B A$; $\Omega_{2}=(B A)^{-1}$ then find: $\Omega=\Omega_{1}^{2}+\left(p^{2} \Omega_{2}^{-1}\right)^{2}$

Proposed by Marian Ursărescu-Romania
XI.69. If $A \in M_{2}(\mathbb{R}) ; \operatorname{Tr} A=\operatorname{det} A=1$ then: $\operatorname{det}\left(A^{2}+3 A+3 I_{2}\right) \geq 5 \operatorname{Tr}\left(A^{-1}\right)+3$

Proposed by Marian Ursărescu-Romania
XI.70. If $A \in M_{4}(\mathbb{Q}), \operatorname{det}\left((1-i) A+\sqrt{2} I_{4}\right)=0$ then: $\operatorname{det}\left(A+x I_{4}\right) \geq 2 x^{2}, x \in \mathbb{R}$

Proposed by Marian Ursărescu-Romania
XI.71. If $A \in M_{6}(\mathbb{R})$ such that $\operatorname{det}\left(A^{4}+p A^{2}+p^{2} I_{6}\right)=\operatorname{det}\left(A^{2}+q I_{6}\right)=0, p, q \in \mathbb{R}$ then find: $\Omega=\operatorname{det}(A)$.

Proposed by Marian Ursărescu-Romania
XI.72. If $A \in M_{2}(\mathbb{R})$ such that $\operatorname{det}\left(A^{4}+4 I_{2}\right)=0$.Prove that: $(\operatorname{det} A)^{2}=(\operatorname{tr} A)^{2}$.

Proposed by Marian Ursărescu-Romania
XI.73. If $A \in M_{n}(\mathbb{R}) ; A^{3}=2 A^{2}+7 A+4 I_{n}$ then find: $\Omega=\operatorname{det}\left(A^{2}-3 A+3 I_{n}\right)$

Proposed by Marian Ursărescu-Romania
Xl.74. If $A \in M_{3}(\mathbb{R}), \operatorname{Tr} A=\operatorname{det} A=1$. Prove that: $\operatorname{det}\left(A^{2}+A+I_{3}\right) \geq 3 \operatorname{Tr}\left(A^{-1}\right)$.

Proposed by Marian Ursărescu-Romania
All solutions for proposed problems can be finded on the http/ / :www.ssmrmh.ro which is the adress of Romanian M athematical M agazine-Interactive Journal.

12-CLASS-STANDARD

R
XII.1. Să se calculeze:
a) $\int_{1}^{e} \frac{x^{e}\left(1-\frac{e}{x}\right)}{e^{x}\left(1+\frac{x^{e}}{e^{x}}\right)^{2}} d x$
b) $\int_{-\sqrt{2} / 2}^{\sqrt{2} / 2} x \ln \left(1+e^{x \sqrt{1-x^{2}}}\right) d x$

Proposed by Florică Anastase
XII.2. Să se calculeze:
$I=\int_{0}^{\pi} \frac{(x+1) \sin x}{3+\cos ^{2} x} d x$
Proposed by Florică Anastase
XII.3. Să se calculeze:

$$
I=\int_{-\sqrt{3}}^{\sqrt{3}} \frac{x \operatorname{arctg} x}{1+e^{\operatorname{tg} x}} d x
$$

Proposed by Florică Anastase
XII.4. If $a>1$ then:

$$
\frac{4 \log 2}{\pi}+\int_{1}^{\alpha} \frac{2 x \tan ^{-1} x-\log \left(1+x^{2}\right)}{\left(1+x^{2}\right)\left(\tan ^{-1} x\right)^{2}} d x<\frac{a^{2}}{\tan ^{-1} a}
$$

Proposed by Daniel Sitaru - Romania
XII.5. If $a, b, c>0, a+b+c=3$ then:

$$
\int_{0}^{\frac{\pi}{2}} a^{\sin x} d x+\int_{0}^{\frac{\pi}{2}} b^{\sin x} d x+\int_{0}^{\frac{\pi}{2}} c^{\sin x} d x \leq \frac{3 \pi}{2}
$$

Proposed by Daniel Sitaru - Romania
XII.6. If $f:[a, b] \rightarrow(0, \infty), 0<a<b, f$-continuous then:

$$
6 \int_{a}^{b}\left(1-f^{7}(x)\right)\left(1+f^{5}(x)\right) d x+5 \int_{a}^{b} f^{12}(x) d x \geq 5(b-a)
$$

Proposed by Daniel Sitaru - Romania
XII.7. Prove that:

$$
\int_{0}^{\frac{1}{2}}\left(\log (1+x) \log \left(\frac{3}{2}+x\right)\right) d x \leq \frac{1}{2}\left(\int_{0}^{1} \log (1+x) d x\right)^{2}
$$

Proposed by Daniel Sitaru - Romania
XII.8. Prove that:

$$
\int_{0}^{1}\left(\tan ^{-1} x+\frac{x}{1+x^{2}}\right)^{2} d x+4 \int_{0}^{1} \frac{1}{\left(1+x^{2}\right)^{4}}>\frac{(x+2)^{2}}{16}
$$

Proposed by Daniel Sitaru - Romania
XII.9. If $a, b, c>0, a+b+c=9$ then:

$$
\int_{0}^{3} e^{x^{2}} d x+\sum_{c y c} \frac{1}{a} \int_{0}^{a} e^{x^{2}} d x \geq 4 \sum_{c y c} \frac{1}{9-a} \int_{0}^{\sqrt{b c}} e^{x^{2}} d x
$$

Proposed by Daniel Sitaru - Romania
XII.10. Find without softs:

$$
\Omega=\int_{1}^{e}\left(\frac{e^{x}\left(1+\log x-\log ^{2} x\right)}{e^{2 x}+(x \log x)^{2}}\right) d x
$$

Proposed by Marin Chirciu - Romania
XII.11. Find $x \in\left(0, \frac{\pi}{2}\right)$ such that:

$$
7 \sin 2 x+\frac{32}{\log 4} \int_{-x}^{x}\left(\sin t \cdot \log \left(2^{\sin ^{3} t}+2^{\cos ^{3} t}\right)\right) d x=12 x
$$

Proposed by Daniel Sitaru - Romania
XII.12. Find:

$$
\Omega=\lim _{\mathrm{n} \rightarrow \infty}\left(\begin{array}{c}
\left.\sqrt[n]{n!} \cdot \int_{\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}}^{\frac{\pi^{2}}{6}} e^{x^{2}} d x\right), ~(x)
\end{array}\right)
$$

Proposed by Daniel Sitaru - Romania
XII.13. Find without softs:

$$
\Omega=\int_{\frac{\pi}{5}}^{\frac{3 \pi}{10}} \frac{x}{\sin 2 x} d x
$$

Proposed by Daniel Sitaru - Romania
XII.14. Find:

$$
\Omega=\lim _{\mathrm{n} \rightarrow \infty}\left(n \cdot \int_{\sqrt[n^{2}]{\sqrt[n]{n!}}}^{\left.\frac{\sqrt[(n+1)^{2}]{\sqrt[n+1]{(n+1)!}}}{\sqrt[n]{e^{x}}} d x\right) .}\right.
$$

Proposed by Daniel Sitaru - Romania
XII.15. Find without softs:

$$
\Omega=\int_{\frac{1}{e}}^{e} \frac{d x}{\left(1+x^{2}\right)\left(1+x \log ^{7} x\right)}
$$

Proposed by Daniel Sitaru - Romania
XII.16 If $a \geq 1$ then:

$$
4(\sqrt{a}-1)^{2}+\left(\int_{1}^{a} \sqrt{1-\frac{1}{x}} d x\right)^{2} \leq(a-1)^{2}
$$

Proposed by Daniel Sitaru - Romania
XII.17. Prove:

$$
\frac{\pi}{4}<\int_{0}^{\pi} e^{\sin x+\cos x-2} d x<\frac{\pi}{2}
$$

Proposed by Jalil Hajimir-Canada
XII.18. Find:

$$
\int\left(x^{2}+x+1-\frac{8}{x^{4}}-\frac{4}{x^{3}}-\frac{2}{x^{2}}\right) 6^{\left(x+\frac{2}{x}\right)} d x
$$

Proposed by Jalil Hajimir-Canada
XII.19. Prove:

$$
\frac{\pi}{16}<\int_{0}^{1} \sqrt{\frac{x(1-x)}{\sin \pi x+\cos \pi x+2}} d x<\frac{\pi}{8}
$$

Proposed by Jalil Hajimir-Canada
XII.20. Let f be continuous on [0,1]. If $a f(b)+b f(a) \leq 2 ; \forall a, b \in[0,1]$, prove:

$$
\int_{0}^{1} f(x) d x \leq \frac{\pi}{2}
$$

Proposed by Jalil Hajimir-Canada
XII.21. Prove:

$$
\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}\left((\sec x)^{2 \sec ^{2} x-1}+(\csc x)^{2 \csc x^{2}-1}\right) d x>\frac{\pi}{\sqrt{3}}
$$

XII. 22.

$$
\int \sec x(\sec x+\tan x)^{n} n^{(\sec x+\tan x)^{n}} d x=?
$$

Proposed by Jalil Hajimir-Canada
XII.23. If $f:[a, b] \rightarrow\left(0, \frac{\pi}{2}\right), f$ - continuous, $a \leq b$ then:

$$
\int_{a}^{b} \sin f(x) d x+\frac{1}{2} \int_{a}^{b} \tan f(y) d y+\int_{a}^{b} \cos f(t) d t+\frac{1}{2} \int_{a}^{b} \cot f(z) d z \geq(\sqrt{2}+1)(b-a)
$$

Proposed by Daniel Sitaru - Romania
XII.24. Prove that:

$$
\frac{\pi+4}{\pi-4}+\int_{1}^{a} \frac{\left(\tan ^{-1} x\right)^{2}}{\left(x-\tan ^{-1} x\right)^{2}} d x>\frac{1+\sin a \cdot \tan ^{-1} a}{\tan ^{-1} a-a}, a>1
$$

Proposed by Daniel Sitaru - Romania
XII.25. If $a, b, c \in(0,1), a+b+c=1$ then:

$$
\int_{0}^{\sqrt[4]{a}}\left(\frac{x^{3}+x^{2}+1}{x-1}\right)^{2} d x+\int_{0}^{\sqrt[4]{b}}\left(\frac{x^{3}+x^{2}+1}{x-1}\right)^{2} d x+\int_{0}^{\sqrt[4]{c}}\left(\frac{x^{3}+x^{2}+1}{x-1}\right)^{2} d x>1
$$

Proposed by Daniel Sitaru - Romania
XII.26. Prove without softs:

$$
\int_{\frac{\pi}{8}}^{\frac{3 \pi}{8}} \frac{(1+\sin x)(1+x \sin x)(1+x \sin x \cos x)}{\sin x \cos x(1+x \cos x)} d x>\pi
$$

Proposed by Jalil Hajimir-Canada
XII.27. Let $f \in C^{1}[0,1]$ and $m \leq\left[f^{\prime}(x)\right] \leq M ; \forall x \in[0,1]$

$$
\text { Prove: } \frac{1}{10} m^{2} \leq \int_{0}^{1} f^{2}(x) d x-\left(\int_{0}^{1} f(x) d x\right)^{2} \leq \frac{1}{12} M^{2}
$$

Proposed by Jalil Hajimir-Canada, Dinu Șerbănescu - Romania
XII.28. Prove that

$$
\int_{0}^{1} \frac{(\ln (1+x))^{n}}{1+x} d x=\left(\int_{0}^{1} \arctan \left(1-x+x^{2}\right) d x\right)^{n+1} \cdot \int_{0}^{1} x^{n-1} \cdot \sqrt[n]{1-x^{n}} d x, n \in \mathbb{N}-\{0\}
$$

XII.29. If $f:[a, b] \rightarrow[0, \infty), a<b, f$ - continuous, then:

$$
\int_{a}^{b}(\sqrt[3]{f(x)}+\sqrt[3]{x})^{3} d x+2 \int_{a}^{b} \sqrt{x f(x)} d x \geq 8 \int_{a}^{b} x f(x) d x+\int_{a}^{b} f(x) d x+\frac{(b-a)^{2}}{2}
$$

Proposed by Daniel Sitaru - Romania
XII.30. If $f:[a, b] \rightarrow(0, \infty) ; a<b ; f$ continuous, then:

$$
3(b-a) \int_{a}^{b} f^{2}(x) d x+(b-a)^{2} \geq 2(b-a) \int_{a}^{b} f(x) d x+2\left(\int_{a}^{b} f(x) d x\right)^{2}
$$

Proposed by Daniel Sitaru - Romania

All solutions for proposed problems can be finded on the http/ / :www.ssmrmh.ro which is the adress of Romanian Mathematical M agazine-Interactive Journal.

UNDERGRADUATE PROBLEMS

U.1. The Lucas numbers are defined as following: $L_{0}=2, L_{1}=1$ and $L_{n+2}=L_{n+1}+L_{n}$ then show that:

$$
\begin{aligned}
& \sum_{n}^{\infty} \frac{L_{n}}{n(2 n+1) 5^{n}}=4-2 \sqrt{\frac{10}{1+\sqrt{5}}} \arctan \left(\sqrt{\frac{1+\sqrt{5}}{10}}\right)- \\
& -(5+\sqrt{5}) \sqrt{\frac{2}{1+\sqrt{5}}} \arctan \left(\sqrt{\frac{2}{5(1+\sqrt{5})}}\right)+\log \left(\frac{25}{19}\right)
\end{aligned}
$$

Proposed by Mokhtar Khassani-Algerie
U.2. General Version of Prof. Dan Sitaru's limit. If $b \in \mathbb{N}$ and
$\phi(b)=\lim _{n \rightarrow \infty}\left(\prod_{k=1}^{n}\left(\int_{0}^{1} e^{\frac{x^{k} b}{n}} d x\right)\right)^{n}$ then prove

$$
\lim _{k \rightarrow \infty} \frac{\phi(1)}{k}\left(\sum_{k=1}^{\infty} \log (\phi(2))\right)=\frac{e^{\gamma}\left(\pi e^{2 \pi}+\pi-e^{2 \pi}+1\right)}{2 e\left(e^{2 \pi}-1\right)}
$$

Proposed by Naren Bhandari-Bajura-Nepal
U.3. Generalized version for Prof. Dan Sitaru's problem

Find:

$$
\phi(k)=\lim _{n \rightarrow \infty} \frac{1}{n^{k+1}}\left(\sum_{1 \leq k_{1}<k_{2}<\cdots<k_{m} \leq n}(-1)^{k_{1}+k_{2}+\ldots+k_{m}} \prod_{i=1}^{m} k_{i}\right)
$$

Proposed by Naren Bhandari-Bajura-Nepal
U.4. A modified old problem of Prof. Dan Sitaru. Prove that:

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{m=1}^{n} \sum_{k=1}^{m}\left(\left(H_{k}-\log k\right)\left(H_{m-k+1}-\log (m-k+1)\right)\right)=\gamma^{2}
$$

where γ is Euler's M ascheroni constant
Proposed by Naren Bhandari-Bajura-Nepal
U.5. Bounding of Prof. Dan Sitaru's limit by Naren. Prove that:

$$
\sqrt{\frac{5 e}{\tilde{n}}}<\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k(k+1)}{n(n+1)(n+2)} \exp \left(\frac{k(k+1)(2 k+1)}{n(n+1)(n+2)}\right)<\sqrt{\frac{5 e}{\widetilde{N}}}
$$

where $1 \leq \widetilde{N} \leq 11$ and $12 \leq \tilde{n} \in \mathbb{N}<8$; notation $\exp (x)=e^{x}$
Proposed by Naren Bhandari-Bajura-Nepal
U.6. Find:

$$
\Omega=\sum_{r=0}^{\infty} \sum_{n=0}^{\infty}\left(\frac{(-1)^{r}}{2^{2 n}(2 n+1)(2 n+2+r)}\binom{2 n}{n}\right)
$$

Proposed by Naren Bhandari-Bajura-Nepal
U.7. Evaluate the following sum in a closed form:

$$
\sum_{k}^{\infty}\left(\frac{1}{6 k+1}+\frac{1}{6 k+2}+\frac{1}{6 k+3}-\frac{1}{6 k+4}-\frac{1}{6 k+5}-\frac{1}{6 k+6}\right)
$$

Proposed by Prem Kumar-India
U.8. Evaluate the following sum:

$$
\sum_{k=0}^{\infty}\left(\frac{1}{(4 k+1)!}+\frac{1}{(4 k+2)}-\frac{1}{(4 k+3)!}-\frac{1}{(4 k+4)!}\right)
$$

Proposed by Prem Kumar-India
U.9. Let $\pi(x)$ denotes the prime counting function and p_{n} denotes the $n^{\text {th }}$ prime number.

Find:

$$
\Omega=\lim _{n \rightarrow \infty} \frac{\pi(n)}{p_{n}^{n}}
$$

Proposed by Prem Kumar-India
U.10. Integrate:

$$
I=\int_{0}^{\frac{1}{2}} \frac{x(1-x)}{\sin (\pi x)} d x
$$

Proposed by Prem Kumar-India
U.11. Find the closed form:

$$
\Omega=\sum_{n}^{\infty} \frac{\left\{\frac{1}{n^{4}+n^{2}+1}+\frac{1}{8}\right\}}{n^{2}+1},\{x\}=x-[x],[*]-\text { great integer function }
$$

Proposed by Mokhtar Khassani-Algerie
U.12. Evaluate the integral in a closed form:

$$
M=\int_{0}^{1} \frac{\ln \left(1+x^{2}\right) L i_{2}(x)}{1+x^{2}} d x
$$

Proposed by Mokhtar Khassani-Algerie
U.13. If $a_{1}=3$ and $a_{n+1}+2=a_{n}^{2}$ then find: $M=\lim _{n \rightarrow \infty} n\left(3-\sqrt{5}-\sum_{k}^{n} \frac{2}{\prod_{j=1}^{k} a_{j}}\right)$

Proposed by Mokhtar Khassani-Algerie
U.14. Evaluate:

$$
\lim _{n \rightarrow \infty} n\left(1-\sum_{k=1}^{n}\left(\frac{1}{k}\right)^{\frac{2020}{2019}}\right)
$$

Proposed by Mokhtar Khassani-Algerie
U.15. Find all functions $\phi(t)$ such that:

$$
\left\{\begin{array}{c}
\phi(t)=\int_{1}^{\tau}\left(\frac{\phi(x)}{x}+e^{-\frac{\phi(x)}{x}}\right) d x \\
\phi\left(\frac{1}{\tau}\right)=\frac{1}{t^{2}} \int_{1}^{\tau}\left(x \phi\left(\frac{1}{x}\right)-e^{-x \phi\left(\frac{1}{x}\right)}\right) d x
\end{array}\right.
$$

Proposed by Mohammed Bouras-Morocco
U.16. Find:

$$
\Omega=\lim _{n \rightarrow \infty} \frac{1}{n}\left(\frac{1}{2} H_{n}+\log \left(\prod_{k=1}^{n} \frac{2 k}{2 k-1}\right)\right)
$$

Proposed by Daniel Sitaru - Romania

U.17. Let $\phi(x)=\underbrace{x^{x^{\cdot x}}}_{\text {for } \underbrace{x^{\prime} \text { times }}}, n \in \mathbb{N}-\{0\}$. Prove that:

$$
\phi_{n}\left(\sqrt[n]{n+\frac{1}{n}}\right)+\phi_{n}\left(\sqrt[n]{n-\frac{1}{n}}\right) \geq 2 \phi_{n}(\sqrt[n]{n})
$$

Proposed by Mohammed Bouras-Morocco
U.18. Let $\varphi_{n}(m)=\frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots}}} \quad ; \varphi_{1}(m)=\frac{1}{m}, \varphi_{2}(m)=\frac{m}{m+1} ; n, m \in \mathbb{N}-\{0\}$

$$
\text { for " } n \text { " times division }
$$

Prove that: $\varphi_{n}(m)=\frac{m \cdot F_{n-1}+F_{n-2}}{m \cdot F_{n}+F_{n-1}}$. Then $\varphi_{n}(i)=\sqrt{1-\varphi_{2 n}\left(1-\frac{F_{2 n-1}}{F_{2 n}}\right)}+i \prod_{k}^{2 n-1} \varphi_{k}(1)$ F_{n} - Fibonacci number

Proposed by Mohammed Bouras-Morocco
U.19. Let $A \geq 4$ numbers pair, (P_{i}, P_{i}^{\prime}) prime numbers

$$
A=P_{1}+P_{1}^{\prime}=P_{2}+P_{2}^{\prime}=\cdots=P_{n}+P_{n}^{\prime}(n \text { solution })
$$

Prove that: $\left\{\begin{array}{l}A>\sum_{i=1}^{n} \sqrt{P_{i} \cdot P_{i}^{\prime}} \text { if } n \leq 2 \\ A<\sum_{i=1}^{n} \sqrt{P_{i} \cdot P_{i}^{\prime}} \text { if } n \geq 3\end{array}\right.$
Proposed by Mohammed Bouras-Morocco
U.20. Let $\phi_{n}(a)=\underbrace{\sqrt{a+\sqrt{a+\sqrt{a+\cdots+\sqrt{a}}}}}_{\text {for " } n \text { " times " } a \text { " }}, a>0$

Prove that: $\lim _{n \rightarrow \infty}\left(\frac{\sqrt{a+\phi_{n}(a) \sqrt{a-\phi_{n}(a)}}}{\phi_{n}(a)+\sqrt{a-\phi_{n}(a)}} \times \frac{\sqrt{a-\phi_{n}(a) \sqrt{a-\phi_{n}(a)}}}{\phi_{n}(a)-\sqrt{a-\phi_{n}(a)}}\right)=\frac{1}{2}$
Proposed by Mohammed Bouras-Morocco
U.21. Let: $\phi_{n}=\int_{0}^{+\infty} \frac{1}{1+x+x^{2}+\cdots+x^{n}} d x$

Prove that: $\phi_{13}+\phi_{6}=\frac{2 \pi}{7}\left(\sin \left(\frac{\pi}{7}\right)+\cos \left(\frac{3 \pi}{14}\right)\right)$
Proposed by Mohammed Bouras-Morocco
U.22. Prove the relation

$$
\begin{gathered}
\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin ^{3}(2 x) \log (\log (\tan (x))) d x=\frac{1}{6}\left(2 \log (\pi)-\frac{7 \zeta(3)}{\pi^{2}}-2 \gamma-4 \log (2)\right) \\
\int_{0}^{1} \int_{0}^{1} \frac{\log \left(\frac{1}{x}\right)-\log \left(\frac{1}{y}\right)}{\log \left(\log \left(\frac{1}{x}\right)\right)-\log \left(\log \left(\frac{1}{y}\right)\right)} d x d y=\int_{0}^{1} \int_{0}^{1} \frac{\log \left(\frac{y}{x}\right)}{\log (-\log (x))-\log (-\log (y))} d y d x \\
=\frac{7 \zeta(3)}{\pi^{2}}
\end{gathered}
$$

Proposed by Srinivasa Raghava-AIRMC-India
U.23. Prove that:

$$
\int_{0}^{\infty} \frac{e^{-x}}{e^{2 x}+1} \log ^{2}\left(\frac{e^{x}+1}{e^{x}-1}\right) d x=\frac{\pi^{2}}{3}-\frac{\pi^{3}}{16}
$$

Proposed by Srinivasa Raghava-AIRMC-India
U.24. Evaluate in a closed - form

$$
\int_{0}^{\infty} \frac{\cos (\sqrt{x})}{e^{2 \pi \sqrt{x}}-1} d x
$$

Proposed by Srinivasa Raghava-AIRMC-India
U.25. Prove the sum

$$
1-\frac{1}{4}\left(\frac{2}{3}\right)^{3}+\frac{1}{7}\left(\frac{2 \times 5}{3 \times 6}\right)^{3}-\frac{1}{10}\left(\frac{2 \times 5 \times 8}{3 \times 6 \times 9}\right)^{3}+\cdots=\frac{3 \sqrt{3}}{4(2 \pi)^{5}} \Gamma\left(\frac{1}{3}\right)^{9}
$$

Proposed by Srinivasa Raghava-AIRMC-India
U.26. For $n>1$, prove the inequality:

$$
\frac{1}{\pi(n+1)^{2}}<\int_{\pi n}^{\pi(n+1)} \frac{1-\cos (x)}{x^{2}} d x<\frac{1}{\pi n^{2}}
$$

Proposed by Srinivasa Raghava-AIRMC-India
U.27. Evaluate the sum:

$$
\begin{aligned}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{4(-1)^{m-1}}{2 m-1}\left(\frac{1}{F_{2 n+1}}\right)^{2 m-1} \\
F_{k}-\text { Fibonacci number }
\end{aligned}
$$

Proposed by Srinivasa Raghava-AIRMC-India
U.28. Solve for β

$$
\int_{-\infty}^{\infty} \frac{(\beta+x \operatorname{coth}(2 \pi x))^{2}}{\cosh ^{2}(\pi x)} d x=0
$$

Proposed by Srinivasa Raghava-AIRMC-India
U.29. If for any complex number $n, \operatorname{Re}(n)>0, \theta(n)=\int_{e^{-x}}^{\infty} e^{-n x^{2}} d x$
then show that

$$
\int_{-\infty}^{\infty} \theta(n) e^{-n x} d x=\frac{1}{2} n^{-\frac{n}{2}-\frac{3}{2}} \Gamma\left(\frac{n+1}{2}\right)
$$

Proposed by Srinivasa Raghava-AIRMC-India
U.30. Let, $S(x)=\int_{0}^{x} \frac{\left(x^{2}+y+1\right)^{2}}{\left(x^{2}-y+1\right)^{3}} d y$
then evaluate the integral in a closed - form

$$
\int_{-\infty}^{\infty} \frac{S(x)}{x} d x
$$

Proposed by Srinivasa Raghava-AIRMC-India
U.31. Evaluate the sum

$$
\begin{gathered}
\sum_{m=0}^{n-1}\left(\frac{\sqrt{5}+5-4 \sin ^{2}\left(\frac{\pi n}{n}\right)}{2\left(5-4 \sin ^{2}\left(\frac{\pi m}{n}\right)\right)}-\frac{\phi^{2}+\cos \left(\frac{2 \pi m}{n}\right)}{3+2 \cos \left(\frac{2 \pi m}{n}\right)}\right) \\
\phi-\text { Golden Ratio } \\
\text { Proposed by Srinivasa Raghava-AIRMC-India }
\end{gathered}
$$

U.32. If

$$
\alpha=\frac{4 \pi}{3}-\int_{0}^{1} \int_{0}^{\frac{\pi}{2}} \frac{d x}{\sqrt{\sqrt{y} \tan ^{2}\left(\frac{x}{2}\right)+1}} d y
$$

$$
\text { then prove that: } 9 \alpha(9 \alpha+64)=2176
$$

Proposed by Srinivasa Raghava-AIRMC-India
U.33. If

$$
\begin{gathered}
S(n)=1^{n}+2^{n}+3^{n}+4^{n}+5^{n}+6^{n}+7^{n}+8^{n}+9^{n} \\
S(24 n+19) \equiv 0\left(\bmod 3^{3} \times 5^{2}\right)
\end{gathered}
$$

Proposed by Srinivasa Raghava-AIRMC-India
U. 34.

$$
\frac{107811}{3}, \frac{110778111}{3}, \frac{111077781111}{3}, \frac{111107777811111}{3}, \frac{111110777778111111}{3}, \ldots
$$

Prove that all the numbers in the above sequence are perfect cubes.
Proposed by Srinivasa Raghava-AIRMC-India
U.35. Prove this sharp inequality:

$$
\sum_{k=0}^{\infty} \frac{1}{k!+k!!}>e \pi \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!+k!!}
$$

Proposed by Srinivasa Raghava-AIRMC-India
U.36. For $n \geq 0$

$$
\Lambda(n)=\int_{0}^{\infty} \frac{(1+x) e^{-n x}}{\sqrt{1+\cosh (x)}} d x
$$

then compute the integral in a closed - form

$$
\int_{0}^{\infty} \Lambda(n) e^{-n} d n
$$

Proposed by Srinivasa Raghava-AIRMC-India

U.37. Find without softs:

$$
\Omega=\int_{0}^{\infty}\left(5^{-3 x^{2}+9 x-7}-\left[5^{-3 x^{2}+9 x-7}\right]\right) d x,[*]-\text { great integer function }
$$

Proposed by Jalil Hajimir-Canada

U.38. Find without softs:

$$
\Omega=\int_{0}^{\frac{\pi}{4}} \int_{0}^{\frac{\pi}{4}} \sin (x+y) \csc \left(x+y+\frac{\pi}{4}\right) d x d y
$$

Proposed by Jalil Hajimir-Canada

U.39. If $0<a \leq b$ then:

$$
\int_{a}^{b} \int_{a}^{b} \int_{a}^{b}\left(\frac{(x+y+z)(x y+y z+z x)}{x y z}\right) d x d y d z \leq \frac{\left(2 a^{2}+5 a b+2 b^{2}\right)(b-a)^{3}}{a b}
$$

Proposed by Daniel Sitaru - Romania

U.40. If $f: \mathbb{R} \rightarrow(0, \infty), f$ - continuous, $a, b \in \mathbb{R}, a \leq b$ then:

$$
\int_{a}^{b} \int_{a}^{b}\left(\log \left(\frac{(1+f(x))(1+f(y))}{\left(1+\frac{f(x)+f(y)}{2}\right)^{2}}\right)\right) d x d y \leq(b-a) \int_{a}^{b} f^{2}(x) d x-\left(\int_{a}^{b} f(x) d x\right)^{2}
$$

Proposed by Daniel Sitaru - Romania

U. 41.

$$
\Omega(a)=\lim _{b \rightarrow \infty}\left(\sum_{n=1}^{\infty} \frac{n(n+1)(n+2) \cdot \ldots \cdot(n+a-1)}{(-b)^{n-1}}\right), a \in \mathbb{N}-\{0,1\}
$$

Find:

$$
\Omega=\sum_{a=2}^{\infty} \frac{1}{\Omega(a)}
$$

Proposed by Daniel Sitaru - Romania
U. 42.

$$
\Omega_{k}(m)=2 \lim _{x \rightarrow 0}\left(\frac{1-(\cos k x)^{\frac{1}{k^{m+2}}}}{x^{2}}\right), k, m \in \mathbb{N}^{*}
$$

Find a closed form for:

$$
\Omega=\left(\sum_{k=1}^{\infty} \Omega_{k}(2)\right)\left(\sum_{k=1}^{\infty} \Omega_{k}(3)\right)
$$

Proposed by Daniel Sitaru - Romania
U.43. If $1<a \leq b$ then:

$$
\log \left(\frac{\sqrt{b} \cdot \Gamma(b)}{\sqrt{a} \cdot \Gamma(a)}\right) \leq \int_{a}^{b} \log x d x \leq \log \left(\frac{b \cdot \Gamma(b)}{a \cdot \Gamma(a)}\right)
$$

Proposed by Daniel Sitaru - Romania
U.44. If $0 \leq a \leq b$ then:

$$
\int_{a}^{b} \int_{a}^{b} \frac{d x d y}{(x+y)^{4}} \leq \frac{(b-a)^{2}\left(a^{2}+a b+b^{2}\right)}{48 a^{3} b^{3}}
$$

Proposed by Daniel Sitaru - Romania
U.45. Inspired by Seyran Ibrahimov

> Show that:

$$
\int_{1}^{\infty} \frac{1}{1-\cos x+x^{2}} d x>\frac{\pi}{4}
$$

Proposed by Naren Bhandari-Nepal
U.46. Find:

$$
\Omega=\sum_{n=0}^{\infty}\left(\frac{1}{625 n^{4}+1250 n^{3}+875 n^{2}+250 n+24}\right)
$$

Proposed by Naren Bhandari-Nepal
U.47. Prove the following inequality

$$
\int_{1}^{\infty} \frac{d x}{1+x^{2}}<\int_{1}^{\infty} \frac{d x}{1+\cos x+x^{2}}<\int_{1}^{\infty} \frac{d x}{1-\cos x+x^{2}}
$$

Proposed by Naren Bhandari-Nepal
U.48.

$$
\begin{gathered}
\Phi(k)=\lim _{n \rightarrow \infty}\left(2+\frac{3^{2}}{2}+\frac{4^{3}}{3}+\cdots+\frac{(n+k)^{n}}{n^{n-1}}\right) \\
\Phi\left(k^{\prime}\right)=\lim _{n \rightarrow \infty} \frac{\sqrt{\left(n-k^{\prime}\right)!}}{\left(1+\sqrt{1^{k^{\prime}}}\right)\left(1+\sqrt{2^{k^{\prime}}}\right) \ldots\left(1+\sqrt{n^{k^{\prime}}}\right)}
\end{gathered}
$$

where $k>0$ and $1 \leq k^{\prime}<n$. Find $\Phi(k)+\Phi\left(k^{\prime}\right)$
Proposed by Naren Bhandari-Nepal
U.49. Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence and let $s_{k}=a_{1}+\cdots+a_{k}=\sum_{n=1}^{k} a_{n}$ be it's $k^{t h}$ partial sum. The sequence (a_{n}) is called Cesàro summable, with Cesàro sum $A \in R, A$, as it as n tends to infinity the arithmetic mean of its first n partial sums $s_{1}, s_{2}, \ldots, s_{n}$ tends to A :
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k}^{n} s_{k}=A$. It is well known that
$G=1-1+1-1+1-1+\cdots$

Is Grandi Series which is divergent in nature.

However, the series G is Cesàro summable giving Cesàro sum $\frac{1}{2}$. Now if we define a divergent series $C=1+4+9+16+\cdots$
It is true that series C is also Cesàro summable?. If yes, find the sum.
Proposed by Naren Bhandari-Nepal
U.50. $n \in \mathbb{N}-\{0\}$, fixed, $x_{1}, x_{2}, \ldots, x_{n}$ - are different in pairs. Find the greatest value of $M \in \mathbb{N}, n \leq M$ such that:

$$
4074341<\sum_{n=1}^{M} \sqrt{x_{n}+\sqrt{x_{n}+\sqrt{x_{n}+\cdots}}}<4074343
$$

Proposed by Naren Bhandari-Nepal
U.51. Show that:

$$
\begin{gathered}
\int_{0}^{1} \frac{1+x+\{x\}^{2}+\left\{\frac{1}{1+x}\right\}}{1+\{x\}+\left\{\frac{1}{1+x}\right\}+\left\{\frac{2}{1+x}\right\}+\left\{\frac{3}{1+x}\right\}} d x= \\
=\frac{8}{\sqrt{5}} \arctan \left(\frac{1}{2 \sqrt{5}}\right)-\frac{8}{\sqrt{5}} \arctan \left(\frac{1}{\sqrt{5}}\right)-\frac{19}{\sqrt{15}} \arctan \left(\frac{1}{\sqrt{15}}\right)+\log \left(\frac{7 \sqrt{105}}{64 \sqrt{2}}\right)+3
\end{gathered}
$$

\{. \}: the fractional part function

Proposed by Mokhtar Khassani-Algerie

U.52. Find a closed form:

$$
\Omega=\int_{0}^{1}\left(\frac{\log ^{4} x}{\sqrt{1-x^{2}}}\right) d x
$$

Proposed by Naren Bhandari-Nepal

U.53. Generalized version of Kays Tomy summation.Show that:

$$
\sum_{n=1}^{\infty}\left(\int_{0}^{1} \int_{0}^{2} \int_{0}^{3} \ldots \int_{0}^{n}\left\{\sum_{k=1}^{n} x_{k}\right\} d x_{1} d x_{2} \ldots d x_{n}\right)^{-1}=2(e-1)
$$

Notation: $\{x\}$ represents fractional part of x and $e \approx 2.718281 \ldots$ is Euler's number.
Proposed by Naren Bhandari-Nepal
U.54. Prove that:

$$
\prod_{m=1}^{\infty} \prod_{s=1}^{m}\left(\lim _{n \rightarrow \infty} \frac{1}{\sqrt[n+1]{n}}\left(\prod_{m=1}^{n} k^{k^{n}}\right)^{\frac{1}{n^{s+1} m^{2}}}\right)=\frac{e^{3}}{e^{\zeta(2)+\frac{7}{4} \zeta(4)}}
$$

Proposed by Naren Bhandari-Nepal
U.55. Inspired by M okhtar Khassani. Without Software, show that:

$$
\left\lfloor 10^{4} \int_{\frac{1}{10^{4}}}^{\infty} \frac{e^{-x} \ln \left(1+x^{2}\right) \tan \left(1+10^{4} x^{10^{4}}\right)}{1+x^{10^{4}}} d x\right\rfloor=2019
$$

where [.] denotes floor function.
Proposed by Naren Bhandari-Nepal
U.56. Prove that for all $|k|>1$

$$
2 \sum_{k=2}^{\infty} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^{2} n}{k^{n}\left(k^{n} m+k^{m} n\right)}=\zeta(2)+2 \zeta(3)+\zeta(4)
$$

where ζ (.) denotes Riemann Zeta Function

Proposed by Naren Bhandari-Nepal

U.57. Find the closed form:

$$
\Omega=\sum_{n=0}^{\infty} \frac{H_{n}^{(2)}}{n(n+1) \cdot 8^{n}}
$$

Proposed by Mokhtar Khassani-Algerie
U.58. Compute:

$$
\lim _{n \rightarrow \infty}\left(\sqrt[n+1]{H_{n+1} H_{2 n+3} \log (n+1)\binom{2 n+3}{n+1}}\right)-\sqrt[n]{H_{n} H_{2 n+1} \log (n)\binom{2 n+1}{n}}
$$

Proposed by Mokhtar Khassani-Algerie
U.59. Find:

$$
\lim _{n \rightarrow \infty}\left(e+1-\left(\zeta(2)-\sum_{k=2}^{n} \frac{1}{k^{2}}\right)^{n}\right)^{n}
$$

Proposed by Mokhtar Khassani-Algerie
U.60. Find:

$$
\lim _{n \rightarrow \infty} n^{3} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{(1+i j)\binom{5 n}{i+j}}
$$

Proposed by Mokhtar Khassani-Algerie
U.61. Show that:

$$
\int_{0}^{1} x^{2} \log (2+x) \log (2-x) d x=\frac{2}{27}\left(72 L i_{2}\left(\frac{1}{4}\right)+144 \log ^{2} 2-54 \log 3-6 \pi^{2}+31\right)
$$

Proposed by Mokhtar Khassani-Algerie
U.62. Show that:

$$
\int_{0}^{\infty} \frac{\log x}{1+e^{2 x}+e^{4 x}+e^{6 x}} d x=\frac{\pi}{16} \log \left(\frac{\Gamma^{4}\left(\frac{1}{4}\right)}{2 \pi^{3}}\right)-\frac{11}{16} \log ^{2} 2
$$

Proposed by Mokhtar Khassani-Algerie
U.63. Find:

$$
\Omega=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\infty} \frac{k \cdot(2 n-2 k-1)!!}{(k+1)!\cdot(2+2 n-2 k)!!}\right)
$$

Proposed by Daniel Sitaru - Romania
U.64. Find without softs (without W olfram, M athCad, M aple, M athLab, Derive, etc)

$$
\Omega=\int_{0}^{\infty}\left(\frac{\sin (2016!(\bmod 2017) \cdot x)}{e^{2 \pi x}-1}\right) d x
$$

Proposed by Naren Bhandari-Nepal
U.65. Prove:

Proposed by Jalil Hajimir-Canada

U.66. Let $0<a \leq b$. Prove:

$$
\int_{a}^{2 a} \int_{a}^{2 b} \frac{x y \sin \sqrt{x y}}{(x+y) \sin \left(\frac{2 x}{x+y}\right)} d x d y \geq \frac{2}{9} a b \sqrt{a b}
$$

Proposed by Jalil Hajimir-Canada
U.67. Prove that:

$$
\begin{gathered}
\sum_{n}^{\infty} \frac{\exp (-\pi n)}{n(n+1)(2 n+1)(2 n)!!}= \\
=E i\left(\frac{\exp (-\pi)}{2}\right)-2 \exp \left(\frac{\pi}{2}\right) \sqrt{2 \pi} \operatorname{erfi}\left(\frac{\exp \left(-\frac{\pi}{2}\right)}{\sqrt{2}}\right)-\gamma-\log \left(\frac{\exp (-\pi)}{2}\right)+ \\
+2 \exp \left(\frac{\exp (-\pi)}{2+\pi}\right)-2 \exp (\pi)+3
\end{gathered}
$$

γ : Euler- M ascheroni constant, Ei: exponential integral
105 ROM ANIAN M ATHEM ATICAL M AGAZINE NR. 31
erfi: imaginary error function
Proposed by Mokhtar Khassani-Algerie
U.68. If: $\Psi(x)=\sum_{n=0}^{\infty} \frac{4^{n} x^{2 n+3}}{(2 n+1)(2 n+3)(n+1)\binom{2 n}{n}}$ for $|2 x|<1$
then show that:

$$
\int_{0}^{1}\left(\Psi(x)+\log \left(1+x^{2}\right)\right) x^{2} d x=\frac{27 \zeta(2)}{64}-\frac{\pi}{6}+\frac{\log 2}{3}-\frac{13}{72}
$$

Proposed by Mokhtar Khassani-Algerie
U.69. Find:

$$
M=\int_{0}^{\infty} \frac{\arctan \left(x^{4}\right)}{1+x^{3}+x^{6}} d x
$$

Proposed by Mokhtar Khassani-Algerie
U.70. If: $\Omega=\lim _{n \rightarrow \infty} n^{2}\left(\frac{\pi}{20}+\frac{\log 2}{10}-\frac{1}{20}-\int_{0}^{1} x^{4} \cot ^{-1} x \cdot e^{-\frac{x^{n} \sqrt{x^{n}-x^{2 n}}}{n}} d x\right)$ then show that: $\sum_{n}^{\infty} \frac{F_{n}}{n} \Omega^{n}=-\frac{2}{\sqrt{5}} \operatorname{coth}^{-1}\left(\frac{\pi^{2}-64}{\sqrt{5 \pi^{2}}}\right)$
F_{n} : is the $n^{\text {th }}$ Fibonacci number
Proposed by Mokhtar Khassani-Algerie
U.71. Prove that:

$$
{ }_{4} F_{3}\left(1, \frac{1}{2}, \frac{3}{2}, \frac{9}{2}, \frac{5}{2}, \frac{11}{2}, \frac{7}{2},-1\right)=\frac{3(1260 G-105 \pi-754)}{224}
$$

Proposed by Mokhtar Khassani-Algerie
U.72. Find:

$$
\Omega=\int_{0}^{\frac{\pi}{2}}\left(\sec \left(\frac{x}{2}\right) \cdot \sqrt[4]{\csc (2 x)} \cdot \log ^{2}(\tan x)\right) d x
$$

Proposed by Mokhtar Khassani-Algerie
U.73. Show that:

$$
\int_{0}^{1}\{\log (1+x)\} \log \{1+x\} d x=2(1-\log 2)-\frac{\pi^{2}}{12}
$$

\{. \}: is the fractional part function
Proposed by Mokhtar Khassani-Algerie
U.74. Show that:

$$
\int_{0}^{\frac{3 \pi}{4}}\left\{\frac{1}{3}+\sin (2 x)\right\} d x=\frac{5}{6} \arcsin \left(\frac{2}{3}\right)-\frac{\pi}{3}+\frac{\sqrt{5}}{6}+\frac{1}{2}
$$

\{. \}: the fractional part function
Proposed by Mokhtar Khassani-Algerie
U.75. Prove that:

$$
\int_{0}^{1} \frac{x \log ^{2}\left(1+x^{2}\right) \log \left(1-x^{2}\right)}{1+x^{2}} d x=L i_{4}\left(\frac{1}{2}\right)+\zeta(3) \log (2)-\zeta(4)-\frac{\zeta(2)}{2} \log ^{2} 2+\frac{\log ^{4} 2}{6}
$$

Proposed by Mokhtar Khassani-Algerie
U.76. If $0<a \leq b$ then:

$$
\int_{a}^{b} \int_{a}^{b} \sqrt{\left(1+\frac{1}{x^{4}}\right)\left(1+\frac{1}{y^{4}}\right)} d x d y \geq \frac{2(b-a)^{2}}{a b}
$$

Proposed by Daniel Sitaru - Romania
U.77. Find a closed form:

$$
\Omega=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{2}
\end{array}\right)^{n}, \Omega \in M_{2}(\mathbb{R})
$$

Proposed by Daniel Sitaru - Romania
U.78. Find a closed form:

$$
\Omega=\prod_{n=1}^{\infty}\left(\frac{n^{\frac{1}{n+1}}}{2}\right)
$$

Proposed by Daniel Sitaru - Romania

All solutions for proposed problems can be finded on the http/ / :www.ssmrmh.ro which is the adress of Romanian M athematical M agazine-Interactive Journal.

ROMA NIA N MA THE MA TICA L MA GA ZINE-R.M.M.-WINTER 2021

PROBLEM S FOR JUNIORS

JP.331. In acute $\triangle A B C$ with the lengths $B C=a, C A=b, A B=c$. Prove that:

$$
\frac{a(b+c-a)}{b^{2}+c^{2}-a^{2}}+\frac{b(c+a-b)}{c^{2}+a^{2}-b^{2}}+\frac{c(a+b-c)}{a^{2}+b^{2}-c^{2}} \geq 3
$$

Proposed by Hoang Le Nhat Tung-Vietnam
JP.332. If $\boldsymbol{x}_{\boldsymbol{i}}>1, \forall i=\overline{\mathbf{1}, \boldsymbol{n}} ; \boldsymbol{n} \in \mathbb{N}, \boldsymbol{n} \geq \mathbf{3}$ then prove:

$$
\frac{\log x_{2}}{\log ^{2}\left(x_{1}^{2} x_{2}\right)}+\frac{\log x_{3}}{\log ^{2}\left(x_{1}^{2} x_{2}^{2} x_{3}\right)}+\cdots+\frac{\log x_{n}}{\log ^{2}\left(x_{1}^{2} x_{2}^{2} \ldots x_{n-1}^{2} x_{n}\right)} \leq \frac{\log \sqrt[4]{x_{2} x_{3} \ldots x_{n}}}{\log x_{1} \cdot \log \left(x_{1} x_{2} x_{3} \ldots x_{n}\right)}
$$

Proposed by Florică Anastase-Romania
JP.333. In $\triangle A B C$ the following relationship holds:

$$
\sqrt{r_{a} r_{b}}+\sqrt{r_{b} r_{c}}+\sqrt{r_{c} r_{a}} \leq \sqrt{(a b+b c+c a)\left(2+\frac{r}{2 R}\right)}
$$

Proposed by Nguyen Viet Hung -Vietnam
JP.334. In $\triangle A B C$ the following relationship holds:

$$
\sqrt{\frac{a+b}{a-b+c}}+\sqrt{\frac{b+c}{b-c+a}}+\sqrt{\frac{c+a}{c-a+b}} \leq \frac{3 R}{\sqrt{2} r}
$$

Proposed by Nguyen Viet Hung -Vietnam
JP. 335 If $a, b, c>0$ such that $a b+b c+c a \leq 3$ then prove:

Romanian M athematical Society-M ehedinți Branch

$$
\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{(a+b)^{2}}+\frac{1}{(b+c)^{2}}+\frac{1}{(c+a)^{2}} \geq \frac{15}{4}
$$

Proposed by Nguyen Viet Hung -Vietnam

JP. 336 For all positive integers $\boldsymbol{n}>3$ prove that:

$$
\frac{\sqrt{2 n+1}-1}{2}<\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\cdots+\frac{1}{\sqrt{2 n-1}+\sqrt{2 n}}<\frac{\sqrt{2 n}}{2}
$$

Proposed by Nguyen Hung Viet -Vietnam
JP.337. If $a_{i}, b_{i} \in(0,1) ; p, q \in \mathbb{N}^{*}, \boldsymbol{n} \geq 2$ then prove:

$$
\sum_{i=1}^{n} \log _{a_{i}} \sqrt[n]{\frac{2 a_{i}^{2 p} \cdot b_{i}^{2 q}}{a_{i}^{2 p}+b_{i}^{2 q}}}+\sum_{i=1}^{n} \log _{b_{i}} \sqrt[n]{\frac{2 a_{i}^{2 q} \cdot b_{i}^{2 p}}{a_{i}^{2 q}+b_{i}^{2 p}}} \geq(\sqrt{p}+\sqrt{q})^{2}
$$

Proposed by Florică Anastase-Romania
JP. $338 \operatorname{In} \triangle A B C, P, Q \in \operatorname{Int}(\triangle A B C)$ such that:

$$
\beta \overrightarrow{\mathrm{AB}}+\gamma \overrightarrow{\mathrm{BP}}+\overrightarrow{\mathbf{P C}}=0 \text { and } \overrightarrow{\mathrm{AQ}}+\alpha \overrightarrow{\mathbf{Q B}}+\overrightarrow{\mathbf{B C}}=\mathbf{0}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \gamma \in \mathbb{R}, \alpha, \gamma \neq 1
$$

Prove that A, P, Q are collinear if and only if $\alpha+\gamma=\beta+1$.
Proposed by Florică Anastase-Romania
JP. 339 Solve in real numbers the system:

$$
\left\{\begin{array}{l}
11\left(x^{4}-y^{4}\right)+4 x y\left(x^{2}+y^{2}\right)+x=0 \\
2\left(x^{4}-y^{4}\right)-22 x y\left(x^{2}+y^{2}\right)+y=0
\end{array}\right.
$$

Proposed by Florică Anastase-Romania
JP. 340 Prove that :

$$
\sin 10^{\circ}=\frac{1}{4}-\frac{\sqrt{3}}{4} \tan 10^{\circ}+\frac{1}{4} \tan ^{2} 10^{\circ}-\frac{\sqrt{3}}{4} \tan ^{3} 10^{\circ}
$$

Proposed by Pedro Henrique 0. Pantoja -Brazil
JP. 341 Find all positive integers n such that: $N=\frac{2^{2 n}-n^{2}-1}{n!}$
Proposed by Pedro Henrique 0. Pantoja -Brazil

JP.342. Let be $A B C D A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ cube with length side 1 and $M \in B C, N \in D D^{\prime}, P \in A^{\prime} B^{\prime}$. Find minimum perimeter of $\triangle M N P$.

Proposed by Florentin Visescu-Romania
JP. 343 In acute $\triangle A B C, g_{a}$-Gergonne's cevian the following relationship holds:

$$
\max \left\{g_{a}^{2} \cdot \cos A, g_{b}^{2} \cdot \cos B, g_{c}^{2} \cdot \cos C\right\} \geq r^{2}\left(1+\frac{r}{R}\right)\left(\frac{43}{9}-\frac{8 R}{9 r}\right)
$$

Proposed by Radu Diaconu-Romania
JP.344. Let a, b, c be positive real numbers such that $a b+b c+c a=3$. Prove that:

$$
\left(3 a^{5}-3 a+2 b^{3}+34\right)\left(3 b^{5}-3 b+2 c^{3}+34\right)\left(3 c^{5}-3 c+2 a+34\right) \geq 6^{6}
$$

Proposed by Hoang Le Nhat Tung -Vietnam
JP.345. If $a, b, c \in \mathbb{C} ;|a|=|b|=|c|=3$ then:

$$
\sum_{c y c}|a+3|+3 \sum_{c y c}\left|a^{2}+1\right|+\sum_{c y c}\left|a^{3}+3\right| \geq 18
$$

Proposed by Daniel Sitaru - Romania

PROBLEMS FOR SENIORS

SP.331. If $\triangle A B C$ has inradius r, circumradius R, sides lengths $a=B C, b=A C, c=A B$, and altitudes $\boldsymbol{h}_{\boldsymbol{a}}, \boldsymbol{h}_{\boldsymbol{b}}, \boldsymbol{h}_{\boldsymbol{c}}$ from the vertices A, B, \boldsymbol{C}, respectively, then:

$$
\frac{9 r^{2}}{R} \leq \frac{c}{b+c} \cdot h_{a}+\frac{a}{c+a} \cdot h_{b}+\frac{b}{a+b} \cdot h_{c} \leq \frac{9 R}{4}
$$

Proposed by George Apostolopoulos-Greece
SP.322. Let a, b, c be the lengths of the sides of a triangle $A B C$ with inradius r and circumradius R. Prove that:

$$
\frac{a^{2}}{b+c}+\frac{b^{2}}{c+a}+\frac{c^{2}}{a+b} \leq \frac{3 \sqrt{6} R}{4 r} \sqrt{R^{2}-2 r^{2}}
$$

Proposed by George Apostolopoulos-Greece
SP. 333. Let $x, y, z>0$ be positive real numbers such that $x+y+z=3$.
Find the maximum value of expression:

$$
P=\frac{x}{2 \sqrt{y}+\sqrt{z}}+\frac{y}{2 \sqrt{z}+\sqrt{x}}+\frac{z}{2 \sqrt{x}+\sqrt{y}}+\frac{(x+y)(y+z)(z+x)}{16}
$$

Proposed by Hoang Le Nhat Tung -Vietnam
SP.334. Let x, y, z be a positive real numbers such that $x+y+z=1$. Prove that:

$$
\left(3 x^{2}+1\right)\left(3 y^{2}+1\right)\left(3 z^{2}+1\right) \geq 27(x y+z)(y z+x)(z x+y)
$$

Proposed by Hoang Le Nhat Tung -Vietnam
SP.335. Let $x, y, z>0$ positive real numbers such that

$$
\left(\sqrt{x^{3}}+\sqrt{y^{3}}\right)\left(\sqrt{y^{3}}+\sqrt{z^{3}}\right)\left(\sqrt{z^{3}}+\sqrt{x^{3}}\right)=8
$$

Prove that: $x+y+z \geq \sqrt[3]{x y z\left(x^{2}+x y+y^{2}\right)\left(y^{2}+y z+z^{2}\right)\left(z^{2}+z x+x^{2}\right)}$
Proposed by Hong Le Nhat Tung -Vietnam
SP.336. Let x, y, z be a positive real numbers such that $\left(x^{6}+y^{6}\right)\left(y^{6}+z^{6}\right)\left(z^{6}+x^{6}\right)=8$
Prove that: $\left(3 x^{2}-4 x y+3 y^{2}\right)\left(3 y^{2}-4 y z+3 z^{2}\right)\left(3 z^{2}-4 z x+3 x^{2}\right) \geq 9$
Proposed by Hoang Le Nhat Tung -Vietnam
111 ROM ANIAN M ATHEM ATICAL M AGAZINE NR. 31

SP.337. Let $x, y, z>0$.

1) If $x y+y z+z x \leq 3(2 \sqrt{3}-3)$ then $\sqrt{\frac{x y+y z+z x}{3}}+1 \leq \sqrt[3]{(x+1)(y+1)(z+1)}$.

$$
\begin{aligned}
& \text { 2) If } x y+y z+z x>3(2 \sqrt{3}-3) \text { then } \\
& \sqrt{x y+y z+z x}+1<\sqrt{(x+1)(y+1)(z+1)} .
\end{aligned}
$$

Proposed by Florentin Visescu - Romania
SP. 338. If $t \in[0,2 \pi) ; \boldsymbol{n} \in \mathbb{N}$ then:
$|1+\cos n t+i \sin n t|+|1+\cos 2 n t+i \sin 2 n t|+|1+\cos 3 n t+i \sin 3 n t| \geq 2$
Proposed by Daniel Sitaru - Romania
SP.339. Solve for real numbers:

$$
\sqrt{x^{3}-2 x^{2}+2 x}+3 \sqrt[3]{x^{2}-x+1}+2 \sqrt[4]{4 x-3 x^{4}}=\frac{x^{4}-3 x^{3}}{2}+7
$$

Proposed by Hoang Le Nhat Tung -Vietnam
SP.340. Find all pairs of integers (x, y) such that $x^{4}-2 x^{2}-y^{2}-5 y-3=0$
Proposed by George Apostolopoulos-Greece
SP. 341. Let a, b, c be positive real numbers such that $a b c+a b+b c+c a=4$. Find the maximum value of expression:

$$
T=\frac{1}{\sqrt{2 a^{5}+b^{3}-2 a^{2}+26}}+\frac{1}{\sqrt{2 b^{5}+c^{3}-2 b^{2}+26}}+\frac{1}{\sqrt{2 c^{5}+a^{3}-2 c^{2}+26}}
$$

Proposed by Hoang Le Nhat-Tung -Vietnam
SP.342. Let a, b, c be positive real numbers such that $a+b+c+1=4 a b c$. Find the minimum value of expression:

$$
S=\frac{1}{\sqrt[3]{2 a^{5}-2 a^{3}+b^{2}+26}}+\frac{1}{\sqrt[3]{2 b^{5}-2 b^{3}+c^{2}+26}}+\frac{1}{\sqrt[3]{2 c^{5}-2 c^{3}+a^{2}+26}}
$$

Proposed by Hoang Le Nhat-Tung -Vietnam
SP.343. If $a, b, c \in \mathbb{C} ;|a|=|b|=|c|=5$ then:

$$
\sum_{c y c}|a+5|+5 \sum_{c y c}\left|a^{10}+1\right|+\sum_{c y c}\left|a^{11}+5\right| \geq 30
$$

Proposed by Daniel Sitaru - Romania
SP. 344. If $n \in \mathbb{N}, n \geq 2$ prove that:

$$
\frac{n}{n+2}+\int_{0}^{1}\left(\tan ^{-1}\left(x^{n}\right)\right)^{2} d x \geq 2 \int_{0}^{1} \tan ^{-1}\left(x^{n}\right) \sqrt[n]{\tan ^{-1} x} d x
$$

Proposed by Florică Anastase-Romania
SP.345. Prove that in any triangle $A B C$,

$$
\left(\frac{b+c-a}{a}\right)^{2}+\left(\frac{c+a-b}{b}\right)^{2}+\left(\frac{a+b-c}{c}\right)^{2}+\frac{8 r}{R} \geq 7
$$

Proposed by Nguyen Viet Hung - Vietnam

UNDERGRADUATE PROBLEMS

UP.331. If $a, b, c \in(0,1), n \in \mathbb{N}, \boldsymbol{n} \geq \mathbf{2}$ then prove:

$$
\sum_{c y c}(1-\sqrt[n]{\sin a}) \geq \sum_{c y c} \frac{1-\operatorname{sinasin} b}{2 n+1-\sin a \sin b}
$$

Proposed by Florică Anastase-Romania
UP.332. Let $\left(x_{n}\right)_{n \geq 1},\left(y_{n}\right)_{n \geq 1}$ be sequences of positive real numbers such that:

$$
x_{1}>1, x_{n+1}=\frac{1+(n-1) x_{n}^{n}}{n x_{n}^{n-1}} ; y_{1}>0, y_{n+1}=\frac{(n+1) n^{n} y_{n}}{y_{n}^{n}+n^{n}(n-1)}
$$

Find: $\lim _{n \rightarrow \infty}\left(\frac{x_{n}+y_{n}}{y_{n}}\right)^{\frac{\sqrt{n}}{x_{n}}}$
Proposed by Florică Anastase-Romania
UP.333. If $x_{p}=a_{p}+i b_{p}, p=\overline{1,4}$ are roots of the equation:

$$
x^{4}-2(k+1) x^{3}+2(k+1)^{2} x^{2}-2\left(k^{2}+1\right)(k+1) x+\left(k^{2}+1\right)^{2}=0, k \in R^{*}
$$

Then prove:

$$
\sum_{p=1}^{4} \operatorname{arctg} \frac{a_{p}}{\left|b_{p}\right|}=\pi+2\left(\frac{k-|k|}{k}\right) \operatorname{arctg} k .
$$

Proposed by Florentin Vişescu-Romania

UP.334. Let be $n \in N^{*}$ si $A_{n} \in M_{8 n}(Q)$, such that

$$
\begin{aligned}
& \operatorname{det}\left(A_{n}^{4}+2 A_{n}^{2}\left(1-n^{2}-k\right)+\left(1+n^{2}+k\right)^{2} I_{8 n}\right)=0, \forall k=\overline{1,2 n} . \text { Then find: } \\
& \lim _{n \rightarrow \infty} \operatorname{det}\left(\frac{1}{n} A_{n}\right) .
\end{aligned}
$$

Proposed by Florentin Vişescu-Romania
UP.335. If $a, b, c \in\left(0, \frac{\pi}{2}\right), a+b+c=\pi$ and

Then find maximum value of expression:

$$
\Omega=\prod_{k=1}^{2020} I(k)
$$

Proposed by Florică Anastase-Romania
UP.336. If $\mathbf{0}<a<b<\frac{\pi}{2}$ then prove:

$$
\frac{3(b-a) \sqrt[3]{4(a+b)}}{\sqrt[3]{4(a+b)-\sin 4(a+b)}}<3 \int_{a}^{b} \frac{d x}{\sqrt[3]{1-\cos 4 x}}<\cot 2 a-\cot 2 b+\frac{\pi}{4}
$$

Proposed by Florică Anastase-Romania
UP.337. If $\mathbf{0}<a \leq b$ then:

$$
\int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \frac{y z d x d y d z}{3 x^{2}+2 y^{2}+z^{2}} \leq \frac{(b-a)^{2}(b+a)}{12} \cdot \log \left(\frac{b}{a}\right)
$$

Proposed by Daniel Sitaru-Romania
UP.338. Let a, b, c be positive real numbers such that $a^{2}+b^{2}+c^{2}=12$. Prove that:

$$
\left(\frac{a^{2}}{b c}+\frac{b^{2}}{c a}+\frac{c^{2}}{b a}\right)\left(\frac{a^{2}}{\sqrt{a^{3}+1}}+\frac{b^{2}}{\sqrt{b^{3}+1}}+\frac{c^{2}}{\sqrt{c^{3}+1}}\right) \geq 12
$$

Proposed by George Apostolopoulos
114 ROM ANIAN M ATHEM ATICAL M AGAZINE NR. 31

UP.339. Prove that for any positive real numbers a, b, c :

$$
\frac{a^{2}}{b}+\frac{b^{2}}{c}+\frac{c^{2}}{a}+\frac{1}{2}(a+b+c) \geq \frac{9\left(a^{2}+b^{2}+c^{2}\right)}{2(a+b+c)}
$$

Proposed by Nguyen Viet Hung - Vietnam
UP.340. If $\mathbf{0}<a \leq b ; f:[\boldsymbol{a}, \boldsymbol{b}] \rightarrow[\mathbf{1}, \infty) ; \boldsymbol{f}$ continuous, then:

$$
3(b-a)^{2} \int_{a}^{b} f(x) d x \leq 2(b-a)^{3}+\left(\int_{a}^{b} f(x) d x\right)^{3}
$$

Proposed by Daniel Sitaru - Romania
UP.341. Find:

$$
\Omega=\lim _{n \rightarrow \infty}\left(\int_{0}^{\frac{\pi}{3}} \frac{\sin x}{\cos x\left(1+\cos ^{n} x\right)} d x\right)
$$

Proposed by Daniel Sitaru - Romania
UP.342. Prove that if $\mathbf{0}<a \leq b$ then:

$$
\left(\int_{a}^{b} \frac{\log x}{x} d x\right)^{2} \geq\left(\int_{\frac{a+b}{2}}^{b} \frac{\log x}{x} d x+\int_{\sqrt{a b}}^{b} \frac{\log x}{x} d x\right)\left(\int_{a}^{\frac{a+b}{2}} \frac{\log x}{x} d x+\int_{a}^{\sqrt{a b}} \frac{\log x}{x} d x\right)
$$

Proposed by Daniel Sitaru - Romania
UP.343. Let a, b, c be positive real numbers such that $a^{2}+b^{2}+c^{2}=3$. Prove that:

$$
2\left(a^{4}+b^{4}+c^{4}\right)-\left(a^{3}+b^{3}+c^{3}\right) \geq 3 a b c
$$

Proposed by George Apostolopoulos -Greece
UP.344. Let a, b, c be non-negative real numbers, no two of which are zero. Prove that:

$$
\frac{a}{a^{2}+2(b+c)^{2}}+\frac{b}{b^{2}+2(c+a)^{2}}+\frac{c}{c^{2}+2(a+b)^{2}} \geq \frac{1}{a+b+c}
$$

Proposed by Nguyen Viet Hung - Vietnam UP.345. Let a, b, c be positive real numbers such that $a^{2}+b^{2}+c^{2}=3$. Prove that:

$$
(a+b)(b+c)(c+a)-2 a b c \leq 6
$$

Proposed by George Apostolopoulos - Greece
All solutions for proposed problems can be finded on the http/ / :www.ssmrmh.ro which is the adress of Romanian M athematical M agazine-Interactive Journal.

INDEX OF AUTHORS RMM-31

Nr.crt.	Numele și prenumele	Nr.crt.	Numele și prenumele
1	DANIEL SITARU-ROM ANIA	41	HOANG LE NHAT TUNG-VIETNAM
2	D.M.BĂTINEȚU-GIURGIU-ROMANIA	42	PREM KUM AR-INDIA
3	CLAUDIA NĂNUȚI-ROMANIA	43	ROVSEN PIRGULIYEV-AZERBAIJAN
4	NECULAI STANCIU-ROM ANIA	44	THANASIS GAKOPOULOS-GREECE
5	MARIAN URSĂRESCU-ROMANIA	45	NGUYEN VIET HUNG-VIETNAM
6	BOGDAN FUSTEI-ROMANIA	46	SRINIVASA RAGHAVA-INDIA
7	DAN NĂNUȚI-ROM ANIA	47	NAREN BHANDARI-NEPAL
8	MARIN CHIRCIU-ROMANIA	48	M OKHTAR KHASSANI-ALGERIE
9	FLORICĂ ANASTASE-ROMANIA	49	MOHAMMED BOURAS-MOROCCO
10	FLORENTIN VIȘESCU-ROMANIA	50	RAHIM SHAHBAZOV-AZERBAIJAN
11	LAVINIU BEJENARU-ROMANIA	51	JALL HAJIMIR-CANADA
12	RADU DIACONU-ROMANIA	52	ADIL ABDULAYEV-AZERBAIJAN
13	FLAVIU CRISTIAN VERDE-ROMANIA	53	NGUYEN VAN CANH-VIETNAM
14	IOAN SERDEAN-ROM ANIA	54	PEDRO PANTOJA-BRAZIL
15	CARMEN VICTORITA CHIRFOT-ROMANIA	55	GEORGE APOSTOLOPOULOS-GREECE
16	DELIA POPESCU-ROMANIA	56	MARTIN LUKAREVSKI-MACEDONIA
17	MARIAN VOINEA-ROM ANIA	57	DAN GRIGORIE-ROMANIA
18	MIHAI IONESCU-ROMANIA	58	LUCIAN LAZĂR-ROMANIA
19	CARINA VIESPESCU-ROMANIA	59	DANIELA BELDEA-ROM ANIA
20	EUGENIA TURCU-ROM ANIA	60	SIMONA MIU-ROM ANIA
21	ROXANA VASILE-ROMANIA	61	ALINA GEORGIANA GHIȚĂ-ROM ANIA
22	LUIZA CREMENEANU-ROMANIA	62	MIHAELA DĂIANU-ROMANIA
23	NINETA OPRESCU-ROMANIA	63	DOINA CRISTINA CĂLINA-ROMANIA
24	CAMELIA DANĂ-ROMANIA	64	SIMONA RADU-ROM ANIA
25	OANA PREDA-ROM ANIA	65	VIRGINIA GRIGORESCU-ROMANIA
26	AUNA TIGAE-ROM ANIA	66	ILEANA DUMA-ROM ANIA
27	PAULA TTUINEA-ROMANIA	67	ALEXANDRINA NĂSTASE-ROMANIA
28	AUREL CHIRIȚĂ-ROM ANIA	68	TATIANA CRISTEA-ROMANIA
29	NICOLAE OPREA-ROMANIA	69	ANICUȚA PATRICIA BETTIU-ROM ANIA
30	RAMONA NĂLBARU-ROM ANIA	70	DUMITRU SĂVULESCU-ROMANIA
31	IONUȚ IVANESCU-ROMANIA	71	SORIN PÎRLEA-ROM ANIA
32	AMELIA CURCĂ NĂSTĂSELU-ROMANIA	72	DORINA GOICEANU-ROMANIA
33	MIREA MIHAELA MIOARA-ROMANIA	73	IULIA SANDA-ROM ANIA
34	CLAUDIU CIULCU-ROM ANIA	73	NICOLAE RADU-ROM ANIA
35	LAVINIA TRINCU-ROMANIA	75	MIHAELA STĂNCELE-ROMANIA
36	MIHAELA NASCU-ROM ANIA	76	CARMEN NĂSTASE-ROM ANIA
37	NICOLAE TOM ESCU-ROMANIA	77	CRISTINA MICU-ROMANIA
38	SEINU CRISTINA-ROMANIA	78	ALECU ORLANDO-ROM ANIA
39	DELIA SCHNEIDER-ROMANIA	79	DANA COTFASĂ-ROMANIA
40	GABRIEL TICĂ-ROM ANIA	80	CRISTIAN MOANȚĂ-ROMANIA

NOTĂ: Pentru a publica probleme propuse, articole și note matematice în RMM puteți trimite materialele pe mailul: dansitaru63@yahoo.com

