

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

ABOUT A RMM INEQUALITY-XX

By Marin Chirciu-Romania

Edited by Florică Anastase-Romania

1) If $a, b, c > 0$ then

$$\sum_{cyc} \frac{a^4}{b^4} \cdot \sum_{cyc} \frac{a^3}{b^3} \geq \left(\sum_{cyc} \frac{a^2}{b^2} \right)^2$$

Proposed by Daniel Sitaru-Romania

Solution. Using AM-GM and CBS Inequality, we get:

$$\begin{aligned} \sum_{cyc} \frac{a^4}{b^4} \cdot \sum_{cyc} \frac{a^3}{b^3} &\geq \sum_{cyc} \frac{a^4}{b^4} \cdot 3 \sqrt[3]{\prod_{cyc} \frac{a^3}{b^3}} = \sum_{cyc} \frac{a^4}{b^4} \cdot 3 = \sum_{cyc} \frac{a^4}{b^4} \cdot \sum_{cyc} 1^2 \geq \\ &\geq \left(\sum_{cyc} \frac{a^2}{b^2} \cdot 1 \right)^2 = \left(\sum_{cyc} \frac{a^2}{b^2} \right)^2 \end{aligned}$$

Equality holds if and only if $a = b = c$.

Remark. The problem can be developed.

2) If $a, b, c > 0$ and $n \in \mathbb{N}^*$ then

$$\sum_{cyc} \frac{a^{2n}}{b^{2n}} \cdot \sum_{cyc} \frac{a^{2n-1}}{b^{2n-1}} \geq \left(\sum_{cyc} \frac{a^n}{b^n} \right)^2$$

Marin Chirciu

Solution. Using AM-GM and CBS Inequality, we get:

$$\begin{aligned} \sum_{cyc} \frac{a^{2n}}{b^{2n}} \cdot \sum_{cyc} \frac{a^{2n-1}}{b^{2n-1}} &\geq \sum_{cyc} \frac{a^{2n}}{b^{2n}} \cdot 3 \sqrt[3]{\prod_{cyc} \frac{a^{2n-1}}{b^{2n-1}}} = \sum_{cyc} \frac{a^{2n}}{b^{2n}} \cdot \sum_{cyc} 1^2 \geq \\ &\geq \left(\sum_{cyc} \frac{a^n}{b^n} \cdot 1 \right)^2 = \left(\sum_{cyc} \frac{a^n}{b^n} \right)^2 \end{aligned}$$

ROMANIAN MATHEMATICAL MAGAZINE

www.ssmrmh.ro

Equality holds for $a = b = c$.

3) If $a, b, c > 0$ and $n \in \mathbb{N}^*, k \in \mathbb{N}$ then

$$\sum_{cyc} \frac{a^{2n}}{b^{2n}} \cdot \sum_{cyc} \frac{a^k}{b^k} \geq \left(\sum_{cyc} \frac{a^n}{b^n} \right)^2$$

Marin Chirciu

Solution. Using AM-GM and CBS Inequality, we get:

$$\begin{aligned} \sum_{cyc} \frac{a^{2n}}{b^{2n}} \cdot \sum_{cyc} \frac{a^k}{b^k} &\geq \sum_{cyc} \frac{a^{2n}}{b^{2n}} \cdot 3 \sqrt[3]{\prod_{cyc} \frac{a^k}{b^k}} = \sum_{cyc} \frac{a^{2n}}{b^{2n}} \cdot 3 = \sum_{cyc} \frac{a^{2n}}{b^{2n}} \cdot \sum_{cyc} 1^2 \geq \\ &\geq \left(\sum_{cyc} \frac{a^n}{b^n} \cdot 1 \right)^2 = \left(\sum_{cyc} \frac{a^n}{b^n} \right)^2 \end{aligned}$$

Equality holds for $a = b = c$.

Note. For $n = 2$ and $k = 3$ we get the proposed problem by Daniel Sitaru-JP.348 from R.M.M.-24, Spring Edition 2022.

REFERENCE:

ROMANIAN MATHEMATICAL MAGAZINE-www.ssmrmh.ro